给水全程控制系统设计

  • 格式:doc
  • 大小:725.50 KB
  • 文档页数:19

下载文档原格式

  / 19
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

《给水全程控制系统》设计

专业:自动化

班级:B120410

学号:B12041014

姓名:陈修鹤

本文在讨论给水调节系统的被控对象动态特性、热工测量信号、调节机构特性的基础上,分析了三冲量给水控制系统的结构及工作原理,提出了实现单元制给水全程控制系统应考虑的问题及控制方案。随着锅炉朝大容量、高参数发展,给水系统采用自动控制系统是必不可少的,它可以减轻运行人员的劳动强度,保证锅炉的安全运行。对于大容量高参数锅炉,其给水系统是非常复杂和完善的。针对目前发电厂给水系统的现状及其存在的问题,结合发电厂300MW 机组配置,发电厂300MW 机组给水全程调节系统的构成原理和控制功能,分析了系统的总体结构、工作原理、控制过程、系统切换方式、控制逻辑、调试及参数整定原则。

关键词:给水全程,给水控制,控制系统,汽包水位,自动调节

摘要............................................................................................................................. I 第一章汽包水位全程控制的介绍 (1)

第二章给水控制对象的动态特性 (2)

2.1 给水流量扰动下水位的动态特性 (2)

2.1.1 给水流量扰动下水位的动态特性 (2)

2.1.2 蒸汽流量扰动下水位的动态特性 (2)

2.1.3 炉膛热负荷扰动下水位的动态特性 (3)

第三章热工测量信号 (5)

3.1 水位信号 (5)

3.2 蒸汽流量信号 (6)

3.3 给水流量信号 (6)

第四章调节阀和调速泵的特性 (7)

4.1调节阀门的静特性 (7)

4.2调速泵的安全特性 (7)

第五章控制过程分析 (9)

5.1水位调节主回路及电动给水泵跟随系统 (9)

5.2汽动给水泵副回路控制系统 (9)

5.3锅炉单冲量三冲量无扰切换和汽泵转速控制系统 (10)

5.4流量测量信号 (11)

5.5旁路辅助及保护回路 (12)

5.6汽包水位自动失灵切手动保护 (13)

结论 (15)

参考文献 (16)

第一章汽包水位全程控制的介绍

目前,大型火电单元机组都采用机、炉的联合启动的方式,锅炉、汽轮机按照启动曲线要求进行滑参数启动。具有中间再热的单元机组多采用定压法进行滑参数启动。随着机组容量的增大、参数的提高,在启动和停机过程中需要监视和操作的项目增多,操作的频率也增高,采用人工调节已不适应生产要求,而必须在启、停过程中也实现自动控制。所谓全程控制系统是指机组在启停过程和正常运行时均能实现自动控制的系统。全程控制是相对常规控制系统而言的,全程控制包括启停控制和正常运行工况下控制两方面的内容。常规控制系统一般只适用于机组带大负荷工况下运行,在启停过程或低负荷工况下,一般要用手动进行控制,而全程控制系统能使机组在启动、停机、不同负荷工况下自动运行。以给水控制系统为例,常规串级三冲量给水系统只能在负荷达到额定负荷70%时,才能投入自动,在此以前全部为手动操作,而全程给水系统从锅炉点火启动开始便可以投入自动。

第二章给水控制对象的动态特性

2.1 给水流量扰动下水位的动态特性

汽包水位是由汽包中的储水量和水面下的汽泡容积决定的,因此凡是引起汽包中储水量变化和水面下的汽泡容积变化的各种因素都是给水控制对象的扰动。其中主要的扰动有:给水流量W、锅炉蒸发量D、汽包压力Pb、炉膛热负荷等。给水控制对象的动态特性是指上述引起水位变化的各种扰动与汽包水位间的动态关系。

汽包水位动态特性较为复杂,一是对汽包水位扰动有四个来源,二是“虚假水位”问题的存在,特别是后一个问题使得人们设计出“三冲量”给水控制系统。了解、掌握汽包水位动态特性是保证给水自动控制系统顺利投入的基本要求。2.1.1 给水流量扰动下水位的动态特性

给水流量是调节机构所改变的控制量,给水流量扰动是来自控制侧的扰动,又称内扰。给水流量扰动下水位的阶跃响应曲线如图2.1 所示。当给水流量阶跃增加ΔW 后,水位H 的变化如图中曲线H 所示。水位控制对象的动态特性表现为有惯性的无自平衡能力的特点。当给水流量突然增加后,给水流量虽然大于蒸汽流量,但由于给水温度低于汽包内饱和水的温度,给水吸收了原有饱和水中的部分热量使水面下汽泡容积减少,实际水位响应曲线可视为由H1 和H2 两条曲线叠加而成,所以扰动初期水位不会立即升高。当水面下汽泡容积的变化过程逐渐平衡,水位就反应出由于汽包中储水量的增加而逐渐上升的趋势,最后当水面下汽泡容积不再变化时,由于进、出工质流量不平衡,水位将以一定的速度直线上升。

图2.1 给水流量阶跃扰动下水位响应曲线

2.1.2 蒸汽流量扰动下水位的动态特性

蒸汽流量扰动主要来自汽轮发电机组的负荷变化,属外部扰动。在蒸汽流量D 扰动下水位变化的阶跃响应曲线如图2.2 所示。当蒸汽流量突然阶跃增大时,

由于汽包水位对象是无自平衡能力的,这时水位应下降,如图2.2 中H1 曲线所示。但当锅炉蒸发量突然增加时,汽包水下面的汽泡容积也迅速增大,即锅炉的蒸发强度增加,从而使水位升高,因蒸发强度的增加是有一定限度的,故汽泡容积增大而引起的水位变化可用惯性环节特性来描述,如图2.2 中H2 曲线所示。实际的水位变化曲线H 则为H1 和H2 的合成。由图2.2 可以看出,当锅炉蒸汽负荷变化时,汽包水位的变化具有特殊的形式:在负荷突然增加时,虽然锅炉的给水流量小于蒸发量,但开始阶段的水位不仅不下降,反而迅速上升(反之,在负荷突然减少时,水位反而先下降),这种现象称为“虚假水位”现象。这是因为在负荷变化的初期阶段,水面下汽泡的体积变化很快,它对水位的变化起主要影响作用的缘故,因此水位随汽泡体积增大而上升。只有当汽泡体积与负荷适应而不再变化时,水位的变化就仅由物质平衡关系来决定,这时水位就随负荷增大而下降,呈无自平衡特性。

虚假水位现象与锅炉参数及蒸汽负荷变化大小有关,对于100~670t/h 中、高压锅炉,当负荷阶跃变化10%时,虚假水位可达30~40mm。

图2.2 蒸气流量阶跃扰动下水位响应曲线

2.1.3 炉膛热负荷扰动下水位的动态特性

当燃料量扰动时,例如燃料量增加使炉膛热负荷增强,从而使锅炉蒸发强度增大。若此时汽轮机负荷未增加,则汽轮机侧调节阀开度不变。随着炉膛热负荷的增大,锅炉出口压力提高,蒸汽流量也相应增加,这样蒸汽流量大于给水流量,水位应该下降。但是蒸发强度增大同样也使水面下汽泡容积增大,因此也会出现虚假水位现象。燃料量扰动下的水位阶跃响应曲线如图2.3 所示,由图可以看出,这种扰动下的“虚假水位”现象不太严重,这是因为蒸汽流量增加的同时汽压也增大了,因而使汽泡体积的增加比蒸汽流量扰动时要小,从而使水位上升幅度较小。另外,由于蒸发量随燃料量的增加有惯性和时滞,如图2.3 虚线所示,