1.1飞机起落架油气减震支柱结构组成工作原理
- 格式:docx
- 大小:10.88 KB
- 文档页数:1
2.2起落架减震与收放系统本节内容:飞机减震原理及油气式减震支柱工作原理 轮胎减震、轮胎过热起落架受载起落架收放系统组成和功用(一)飞机减震原理动量定理:F ×t =m ×V y -0着陆减震原理:延长V y 消失时间,吸收完接地动能( ) ,可减小着陆撞击力;消耗接地动能则可减弱飞机颠簸跳动。
221y mv(二)油气式减震支柱工作原理1.基本组成内筒(活塞杆)、外筒、带小孔隔板、液压油、氮气2.工作原理利用气体压缩,吸收接地动能,减小着陆撞击力;(三)减震性能的使用控制油气式减震支柱充气压力的影响支柱特性变硬→撞击力增大架或机翼损坏(四)轮胎减震,轮胎过热1.轮胎的减震充压大->爆胎,构件受力大。
充压小->老化快。
2.轮胎过热概念:指轮胎温度过高危害:老化加快强度降低压力增大可导致脱层、剥离和爆破。
●轮胎过热主要原因刹车热传递与地面滑动摩擦生热橡胶变形内摩擦生热●轮胎过热预防措施结构预防使用预防2.2.2起落架使用的严重受载情况与使用注意1.起落架载荷:。
停机载荷-飞机停放时所受地面支持力P接地、地面运动时受动载荷-通常将其分解为:垂直载荷PY水平载荷PX侧向载荷PZ2.起落架过载:起落架某方向(垂直方向、水平方向或侧向)所受载荷与停机载荷的比值。
3.起落架严重受载情况的产生(条件)。
垂直严重受载水平严重受载侧向严重受载0P P n yy =0P P n Xx =0P P n zz =4.防止起落架及结构损坏使用时应防止重着陆:粗猛着陆-导致载荷超过规定的着陆。
超重着陆-着陆重量超过规定的着陆。
2.2.3起落架收放系统(一)采用可收放起落架的目的: 减小飞行阻力(二)收放机构功用:保证安全可靠收放起落架。
1.收放手柄:用于控制起落架收放2.动作筒:用于提供收放起落架所需的动力3.位置锁功用:用于将起落架可靠地固定在要求的位置型式:•挂钩式收上锁•撑杆式放下锁•液锁式收上锁4.起落架信号设备灯光型指示(英美制飞机) 绿灯(常为3个)红灯(3个或1个)红、绿灯全灭(三)收放操纵1.正常收放手柄2.应急放下电门或手柄人工开锁重力放下–人工打开机械锁–人工解除液锁–人工通过电动机解除收上锁高压氮气(或高压干空气)放下应急液压:电动泵、冲压空气涡轮、手摇泵起落架的地面安全装置功用:防止地面误收起落架。
飞机起落架系统简介阮聪摘要:飞机起落架是飞机上极其重要的部件,飞机的滑行、地面转弯、刹车都需要由起落架来完成,飞机着陆时的冲击能量也主要由起落架吸收。
起落架的设计除了要满足结构的强度、刚度及在预期的安全寿命前提下保证质量最轻要求之外,还要满足起落架的使用、维护和工艺性等要求。
基于此,文章就飞机起落架系统进行分析。
关键词:飞机;起落架系统1 起落架系统布组成及功能以波音系列飞机为例,起落架采用前3点式布局,使用油气式减震支柱,控制系统采用传统的机械液压电气控制方式。
波音系列飞机起落架系统由1个前起落架和2个主起落架组成。
液压能源系统由A、B两套及备用液压系统组成。
实现的主要功能包括起落架正常收放、起落架应急放、手轮操纵前轮转弯、脚蹬差动刹车前轮转弯、有防滑控制的正常刹车、有防滑控制的备用刹车、停机应急刹车等。
2 起落架结构形式2.1 构架式起落架构架式起落架的主要特点是:它通过承力构架将机轮与机翼或机身相连。
承力构架中的杆件及缓冲器都是相互铰接的。
它们只能承受轴向力而不承受弯矩,因此,这种结构的起落架构造简单,质量较小,只有一些小型低速飞机在用。
2.2 支柱式起落架支柱式起落架的主要特点是:缓冲器与承力支柱合二为一,机轮直接固定在缓冲支柱上。
对收放式起落架,收放作动筒可兼作撑杆。
扭矩通过扭力臂传递,亦可以通过活塞杆与缓冲支柱的圆筒内壁采用花键连接来传递。
这种形式的起落架构造简单紧凑、易于收放,而且质量较小,是现代飞机上广泛采用的形式之一。
支柱式起落架的缺点是:活塞杆不但承受轴向力,而且承受弯矩,因而容易磨损及出现卡滞现象,使缓冲器的密封性能变差,不能采用较大的初压力。
2.3 摇臂式起落架摇臂式起落架的主要特点是:机轮通过可转动的摇臂与缓冲器的活塞杆相连。
缓冲器亦可兼作承力支柱。
这种形式的缓冲器只承受轴向力,不承受弯矩,因而密封性能好,可增大缓冲器的初压力以减小缓冲器的尺寸,克服了支柱式的缺点,在现代飞机上得到了广泛的应用。
飞机各种起落架结构形式和受力8.5 起落架的结构型式和受力起落架的结构主要由受力支柱、减震器(当支柱和减震器合成一个构件时则称为减震支柱)、扭力臂或摇臂、机轮和刹车装置等主要构件组成.当起落架放下并锁住时常为静定的空间杆系结构,用以承受和传递机轮上传来的集中力,也便于松开锁后进行收放。
下面介绍几种常用的结构型式并进行受力分析,一、简单支柱式和撑杆支柱式起落架这两种型式的主要受力构件是减震支柱,它上连机体结构,下连机乾,本身作为梁柱受力(图8.12.图8.13)。
这两种结构型式的特点如下:(1)结构简单紧凑,传力较直接,圆筒形支柱具有较好的抗压、抗弯、抗扭的综合性能,因而重量较轻,收藏容易。
(2)可用不同的轮轴、轮叉形式来调整机轮接地点与机体结构连接点间的相互位置和整个起落架的高度。
轮叉一般受两个平面内的弯矩和扭矩、还有剪力等引起的复合应力(图8.14)。
(3)简单支柱式由于上端两个支点很靠近,减震支柱接近于一悬臂梁柱,因而上端的根部弯矩大(图8.12)。
撑杆支柱式则常在支柱中部附近加一撑杆,使减震支柱以双支点外伸梁形式受力.大大减小于支柱上端的弯矩(图8,13).撑杆通常又兼作收放折叠连杆用(图8.1);或直接用收放作动筒锁定于某个位置后作为撑杆(图8.13),这将使起落架结构简化。
撑杆支柱式是目前常用的一种型式.(4)由于机轮通过轮轴(或轮叉)与减震支柱直接相连,因而不能很好吸收前方来的撞击.通常可将支柱向前倾斜一个角度(图8.12)即可对前方来的撞击起一定的减震用,但这会使支柱在受垂直撞击力时受到附加弯矩。
(5)这两种型式的减震支柱本身要受弯,所以它的密封性较差,减震器内部灌充的气体压力将因此受到限制,一般其初压力约为3MPa(一30个大气压),最大许可压力约为IOMPa(一100个大气压).因而减震器行程较大,整个支柱较长,重量增加。
(6)由于减震支柱的活动内杆与外筒(它直接与机体结构连接)之间不可能直接传递机轮载荷引起的扭矩,因此内杆与外筒之间必须用扭力臂连接。
一、起落架的发展和概述(一)、起落架的发展演变在过去,由于飞机的飞行速度低,对飞机气动外形的要求不十分严格,因此飞机的起落架都由固定的支架和机轮组成,这样对制造来说不需要有很高的技术。
当飞机在空中飞行时,起落架仍然暴露在机身之外。
随着飞机飞行速度的不断提高,飞机很快就跨越了音速的障碍,由于飞行的阻力随着飞行速度的增加而急剧增加,这时,暴露在外的起落架就严重影响了飞机的气动性能,阻碍了飞行速度的进一步提高。
因此,人们便设计出了可收放的起落架,当飞机在空中飞行时就将起落架收到机翼或机身之内,以获得良好的气动性能,飞机着陆时再将起落架放下来。
然而,有得必有失,这样做的不足之处是由于起落架增加了复杂的收放系统,使得飞机的总重增加。
但总的说来是得大于失,因此现代飞机不论是军用飞机还是民航飞机,它们的起落架绝大部分都是可以收放的,只有一小部分超轻型飞机仍然采用固定形式的起落架(如农-5飞机)。
(二)、 起落架的概述起落架是飞机起飞、着陆、滑跑、地面移动和停放所必须的支撑系统,是飞机的重要部件之一,其工作性能的好坏及可靠性直接影响飞机的使用和安全。
通常起落架的质量月占飞机正常起飞总重量的4%—6%,占结构质量的10%—15%。
飞机上安装起落架要达到两个目的:一是吸收并耗散飞机与地面的冲击能量和飞机水平能力;二是保证飞机能够自如二又稳定地完成在地面上的各种动作。
为适应飞机在起飞、着陆滑跑和地面滑行的过程中支撑飞机重力,同时吸收飞机在滑行和着陆时震动和冲击载荷,并且承受相应的载荷,起落架的最下端装有带充气轮胎的机轮。
为了缩短着陆滑跑距离,机轮上装有刹车或自动刹车装置。
此外还包括承力支柱、减震器(常用承力支柱作为减震器外筒)、收放机构、前轮减摆器和转弯操纵机构等。
承力支柱将机轮和减震器连接在机体上,并将着陆和滑行中的撞击载荷传递给机体。
前轮减摆器用于消除高速滑行中前轮的摆振。
前轮转弯操纵机构可以增加飞机地面转弯的灵活性。
一、起落架的发展和概述(一)、起落架的发展演变在过去,由于飞机的飞行速度低,对飞机气动外形的要求不十分严格,因此飞机的起落架都由固定的支架和机轮组成,这样对制造来说不需要有很高的技术。
当飞机在空中飞行时,起落架仍然暴露在机身之外。
随着飞机飞行速度的不断提高,飞机很快就跨越了音速的障碍,由于飞行的阻力随着飞行速度的增加而急剧增加,这时,暴露在外的起落架就严重影响了飞机的气动性能,阻碍了飞行速度的进一步提高。
因此,人们便设计出了可收放的起落架,当飞机在空中飞行时就将起落架收到机翼或机身之内,以获得良好的气动性能,飞机着陆时再将起落架放下来。
然而,有得必有失,这样做的不足之处是由于起落架增加了复杂的收放系统,使得飞机的总重增加。
但总的说来是得大于失,因此现代飞机不论是军用飞机还是民航飞机,它们的起落架绝大部分都是可以收放的,只有一小部分超轻型飞机仍然采用固定形式的起落架(如农-5飞机)。
(二)、 起落架的概述起落架是飞机起飞、着陆、滑跑、地面移动和停放所必须的支撑系统,是飞机的重要部件之一,其工作性能的好坏及可靠性直接影响飞机的使用和安全。
通常起落架的质量月占飞机正常起飞总重量的4%—6%,占结构质量的10%—15%。
飞机上安装起落架要达到两个目的:一是吸收并耗散飞机与地面的冲击能量和飞机水平能力;二是保证飞机能够自如二又稳定地完成在地面上的各种动作。
为适应飞机在起飞、着陆滑跑和地面滑行的过程中支撑飞机重力,同时吸收飞机在滑行和着陆时震动和冲击载荷,并且承受相应的载荷,起落架的最下端装有带充气轮胎的机轮。
为了缩短着陆滑跑距离,机轮上装有刹车或自动刹车装置。
此外还包括承力支柱、减震器(常用承力支柱作为减震器外筒)、收放机构、前轮减摆器和转弯操纵机构等。
承力支柱将机轮和减震器连接在机体上,并将着陆和滑行中的撞击载荷传递给机体。
前轮减摆器用于消除高速滑行中前轮的摆振。
前轮转弯操纵机构可以增加飞机地面转弯的灵活性。
起落架减震系统的技术特征起落架减震装置减少撞击力的原理是:飞机着陆接地时,轮胎和减震器像弹簧那样,延长撞击时间,从而减少撞击力。
还要将撞击动能耗散掉,减少撞击之后的颠簸跳动。
减震原理的实质是,通过产生尽可能大的弹性变形来吸收撞击动能,以减少飞机所受撞击力,利用摩擦热尽快的消散能量,使飞机接地后的颠簸跳动迅速停止。
随着飞行重量和飞行速度不断增加,飞机着陆时撞击动能也相应增大,要求减震器吸收的能量越来越多,同时要求尺寸较小。
油气式减震器应运而生,至今仍然是起落架减震器的主要形式。
油气式减震器利用气体的压缩变形吸收撞击动能,利用油液高速流过小孔的摩擦消耗能量,采用的油液是粘度相对较高,高温下化学稳定性较好的石油基液压油,采用的气体是干燥的氮气,能避免液压油在高温、高压下氧化、燃烧。
根据减震器气室的数量,可以分为单气室油气减震器和双气室油气减震器。
1.减震器的工作特性(1)气体作用力的工作特性压缩行程介于等温和绝热过程之间的多变过程,伸张行程中气体的膨胀过程也是一种多半过程,这两个行程的工作特性,可以用同一根曲线表示。
减震器压缩量增加时,不仅气体作用力增加,而且单位压缩量内作用力的增量也越来越大。
压缩行程吸收的能量和伸张行程释放的能量基本相等,它们都可以用曲线以下包含面积表示。
(2)油液的工作特性在压缩和伸张行程中,油液要产生一个阻止减震器压缩和伸张的作用力。
在活塞有效面积、阻力系数和油液密度不变的情况下,油液作用力与活塞运动速度平方成正比,与通油孔面积平方成反比。
油液作用力与压缩量的关系可用油液特性曲线表示。
油液的加速过程比减速过程迅速,因此最大油液作用力产生在全行程的前半部。
伸张行程中,油液作用力的变化情况与压缩行程相同,但这时的油液作用力是抵消一部分气体作用力的,所以把伸张行程的油液工作特性曲线画在横坐标之下。
面积OABO表示压缩行程中油液消耗的能量,面积OBCO表示伸张行程中油液消耗的能量。
环境温度改变时,油液的粘度会发生变化,油液作用力也发生变化。
`8.6 起落架的减震系统一、概述飞机起落架的减震系统由减震器和轮胎组成.其中减震器(也称缓冲器)是所有现代起落架所必须具备的构件,也是最重要的构件.某些起落架可以没有机轮、刹车、收放系统等,但是它们都必须具备某种形式的减震器。
而轮胎虽然也能吸收一部分能量,但仅占减震系统总量的10%~15%。
当飞机以一定的下沉速度(一般“限制下沉速度”为3 m/s,美国规定某些短距起落或海军用舰载机等可以更大些)着陆时,起落架会受到很大的撞击,并来回振动.减震装置的主要作用就是用来吸收着陆和滑行时的撞击能,以使作用到机体上的载荷减小到可以接受的程度;同时须使振动很快衰减。
由以上功用对减震装置提出如下的设计要求.(1)在压缩行程(正行程)时,减震装置应能吸收设计规要求的全部撞击能,而使作用在起落架和机体结构上的载荷尽可能小。
在压缩过程中载荷变化应匀滑,功量曲线应充实——也即减震器应具有较高的效率.(2)为了减少颠簸或在伸展行程(反行程)中不出现回跳,要求系统在压缩行程中所吸收的能量中的较大部分(一般应有65%~80%左右)转化为热能消散掉。
(3)为了让起落架能及时承受再次撞击,减震器应有必要的能量和伸展压力使起落架恢复到伸出状态,伸展放能时应柔和,支柱慢慢伸出,这样可消除回跳。
减震器完成一个正、反行程的时间应短,一般不能大于o.8s。
以上(2),(3)项措施同时也对提高乘员舒适性有利。
(4)着陆滑跑时,根据各种飞机对所预定的使用跑道的通过性(漂浮性)要求,规定在遇到某一高度的凸台和坑洼地时载荷系数不能超过允许值,(如某些次等级跑道的路面包含有76 mm高的凸台.以及一定波长和波幅的波形表面隆起)。
轮胎的弹性变形和弹性力对吸收能量、减小载荷系数和提高滑行时乘员的舒适性等方面均起一定作用,但是它不能消耗能量。
二、减震器的类型总的说减震器可分为两大类广类是由橡胶或钢制的固体“弹簧”式减震器;另一类是使用气体、油液或两者混合(通常称油气式)的流体“弹簧”式减震器。
1.1飞机起落架油气减震支柱结构组成工作原理
飞机起落架油气减震支柱是由油气减震器、支撑杆、连接杆和支撑构架组成的。
工作原理如下:
1. 飞机起落架油气减震器:油气减震器主要由两个密封的气腔和一个阻尼活塞组成。
当飞机起落时,减震器受到冲击力,压缩气腔内的气体和液体,减缓冲击力的传递,避免对飞机结构产生过大的冲击负荷。
2. 支撑杆:支撑杆起到连接减震器和飞机底座的作用,通过连接减震器和飞机的底座,将冲击力传递到减震器上,实现减震的作用。
3. 连接杆:连接杆连接减震器和支撑杆,起到加强结构的作用,使其能够承受冲击力和飞机的重量。
4. 支撑构架:支撑构架是连接整个起落架系统的框架结构,通过连接杆和支撑杆,将油气减震支柱与飞机底座相连,提供整个起落架的支撑和稳定性。
当飞机起落时,减震器受到冲击力,通过油气减震器的减震作用和支撑系统的连接,将冲击力分散并减缓传递,使飞机能够平稳降落或起飞,保证飞机结构和乘客的安全。
波音737飞机起落架减震机构介绍摘要:起落架是飞机着陆缓冲、滑行减震和停机支撑的重要部件,减震器和机轮是起落架的主要缓冲构件,起着吸收和耗散飞机着陆撞击、地面不平激励的飞机运动能量,在减缓飞机发生振动,降低飞机地面载荷,提高乘员舒适性,保障飞机飞行安全等方面发挥着极其重大的作用。
而在飞机的起落过程中,起落架和飞机机身都将承受很大的冲击载荷,而这种冲击载荷被认为是造成飞机及其起落架结构发生疲劳与振动引起乘员不舒服的重要因素。
现代飞机上应用的减震机构是油气式减震器和全油液式减震器(液体减震器)。
本文主要研究波音737-300型飞机,该机型飞机起落架采用前三点油气支柱套筒式起落架,这是现代民航运输机普遍采用的起落架结构形式,它具有体积小,易收放,结构紧凑,减震性能好等特点,其机械故障较少。
关键字:波音737 起落架减震机构油气式减震器1.1 飞机减震器总体介绍1.1.1概述飞机起落架的减震系统由减震器和轮胎组成.其中减震器(也称缓冲器)是所有现代起落架所必须具备的构件,也是最重要的构件.某些起落架可以没有机轮、刹车、收放系统等,但是它们都必须具备某种形式的减震器。
而轮胎虽然也能吸收一部分能量,但仅占减震系统总量的10%~15%。
当飞机以一定的下沉速度(一般“限制下沉速度”为3 m/s,美国规定某些短距起落或海军用舰载机等可以更大些)着陆时,起落架会受到很大的撞击,并来回振动.减震装置的主要作用就是用来吸收着陆和滑行时的撞击能,以使作用到机体上的载荷减小到可以接受的程度;同时须使振动很快衰减。
由以上功用对减震装置提出如下的设计要求. (1)在压缩行程(正行程)时,减震装置应能吸收设计规范要求的全部撞击能,而使作用在起落架和机体结构上的载荷尽可能小。
在压缩过程中载荷变化应匀滑,功量曲线应充实——也即减震器应具有较高的效率.(2)为了减少颠簸或在伸展行程(反行程)中不出现回跳,要求系统在压缩行程中所吸收的能量中的较大部分(一般应有65%~80%左右)转化为热能消散掉。
2. 起落架的减震装置落架减震装置由轮胎和减震器两部分组成。
它的功用是:减小飞机在着陆接地和地面运动时所受的撞击力,并减弱飞机因撞击而引起的颠簸跳动。
飞机在着陆接地时,要与地面剧烈碰撞;在滑行和起飞、着陆滑跑中,由于地面不平,也会与地面相撞。
如果起落架减震装置工作不良,飞机就要受到很大的撞击力,并产生强烈的颠簸跳动,这对飞机结构和飞行安全都极为不利。
因此,研究减震装置的工作具有十分重要的意义。
现代飞机上应用的减震机构是油气式减震器和全油液式减震器(液体减震器)。
2.1油气式减震器这种减震器主要依靠压缩空气受压时的变形来吸收撞击功能,并利用油液高速流过小孔产生的摩擦发热来消耗动能,因此吸收能量大而反跳小。
其工作原理如图2-1所示。
油气式减震器主要由外筒、活塞、活塞杆、限制活门'密封装置等部件组成。
当飞机着陆与地面发生撞击时,飞机继续下沉而压缩减震器使活塞杆上移。
这叫作“正行程”或“压缩行程”,见图2-1(a)。
活塞上面,外筒中的油液被迫冲开制动活门向下以高速流过几个小孔。
油液与小孔发生剧烈摩擦所产生的热量经过活塞杆和外筒而消散。
同时,外筒中的油液被压缩而升高K使得冷气的体积缩小K气压增大,吸收了撞击动能。
当冷气被压缩到最小体积,活塞上升到顶点时,飞机便停止下沉而向上运动。
冷气作为弹性体开始膨胀,活塞杆向下滑动,这叫作“反行程”或”伸展行程”。
这时活塞中的油液将制动活门关闭,油液以更高速度通过小孔向上流动。
油液与小孔发生更剧烈的摩擦,消散了更多的动能。
这样一正一反两个行程,完成了一个循环。
经过若干个循环就可将全部撞击动能逐步转化为热能而消散,使飞机平稳下来。
图2-1 油气减震器的工作原理简图(a)正行程(减震器压缩)(b)反行程(减震器伸展)1-外筒(上接飞机骨架)2-冷气 3-油液 4-活塞杆(下接机轮)5-密封装置6-制动活门 7-箭头表示活塞杆向上(正行程) 8-箭头表示活塞杆向下(反行程)2.2液体减震器液体减震器减震效率高、尺寸小、重量轻,如图2-2所示。
飞机起落架缓冲器原理
飞机起落架缓冲器是一种用于减缓起落过程中振动和冲击的
装置,它起到保护飞机和载荷的作用。
其原理是利用弹性材料
和液压系统来吸收和分散能量。
具体来说,飞机起落架缓冲器由弹性材料、活塞、液压油和
阀门组成。
当飞机在降落或起飞过程中,起落架经历了垂直载
荷和冲击力。
这些力量会通过缓冲器传递到弹性材料上。
弹性材料通常由橡胶或液体弹簧制成,它们具有良好的弹性
和吸能能力。
当飞机着陆或起飞时,弹性材料会受到载荷的压
缩和变形,吸收和储存能量。
这使得飞机起落架可以缓冲和抑
制振动和冲击。
一旦过载,弹性材料会通过液压系统释放压力,以保护起落架和飞机。
在缓冲器中,液压油起到传递和调节能量的作用。
当弹性材
料被压缩时,油体积会增加,从而提供一定的阻尼作用。
液体
阻尼可以有效地减缓起落过程中的快速运动和震动,使飞机平
稳过渡。
此外,缓冲器还通过阀门来调节油流的速度和流量,以控制
缓冲效果。
阀门的打开和关闭可以根据起落架的运动和载荷的
变化自动调节,以提供最佳的缓冲效果。
总之,飞机起落架缓冲器的原理是通过弹性材料和液压系统
来吸收和分散起落过程中的能量,以确保飞机和载荷的安全。
通过合理设计和调节,缓冲器可以有效减少起落架的振动和冲击,提高飞行的平稳性和安全性。
1.1飞机起落架油气减震支柱结构组成工作原理
飞机起落架油气减震支柱的结构组成和工作原理如下:
1. 结构组成:飞机起落架的油气减震支柱主要由以下几个部分组成:储油罐、活塞、油管、油气分离器、橡胶密封件等。
2. 工作原理:当飞机起落架降落时,储油罐中的油会通过油管压入活塞,使活塞产生位移。
这个位移会产生压力,使油气分离器中的气体被压缩,从而产生减震效果。
同时,橡胶密封件可以保证油气在系统中的正常流动。
3. 优点:油气减震支柱的优点是减震效果好,可以有效地减小飞机在起落过程中的震动,提高飞行安全性。
同时,油气减震支柱的结构相对简单,易于维护和更换。
4. 缺点:油气减震支柱的缺点是需要在储油罐中储存大量的油,增加了飞机的重量。
同时,如果油气分离器出现问题,可能会导致油气泄漏,影响飞行安全。
总的来说,飞机起落架的油气减震支柱是一种高效且安全的减震系统,它在飞机起落过程中起着至关重要的作用。