微机电系统MEMS简介
- 格式:ppt
- 大小:1.46 MB
- 文档页数:15
微机电系统的研究与应用前景近年来,微机电系统(MEMS)技术在各个领域得到了广泛的应用,其研究和开发已成为当今科技领域的一个热点。
作为一种高新技术,MEMS系统的研究与应用前景十分广阔,不仅有助于推动信息技术的发展,也对于医疗、环境、能源等领域的发展有着重要的促进作用。
一、MEMS概述MEMS是微型电子机械系统的缩写,也可以称为微机电系统。
它是一种将微电子技术与机械技术相结合的新型技术,它可以制造出微型零部件,如传感器、执行器、微型结构等。
这些微型零部件可以集成到同一芯片上,形成微型系统。
MEMS技术可以利用批量化制造的方式来降低成本,同时还可以提高生产效率,从而实现大规模集成电路制造的梦想。
MEMS 系统具有小尺寸、低功耗、低成本、高稳定性等特点,因此在信息技术领域、医疗、环境、能源等各个领域都有着广泛的应用。
二、MEMS在信息技术领域的应用MEMS技术在信息技术领域有着广泛的应用,其中最重要的是传感器技术。
通过MEMS制造的传感器可以测量各种各样的物理量,如温度、压力、湿度、光强度等。
这些传感器可以集成到智能手机、平板电脑、笔记本电脑等各种便携式设备中,从而实现对设备环境的实时监控。
另外,MEMS加速度传感器也是目前智能手机、平板电脑等设备中最为广泛使用的传感器之一。
通过它们可以探测设备的移动和位置变化,从而实现一系列的交互功能,例如屏幕自动旋转、拍照时的自动对焦等。
MEMS技术与人工智能(AI)的结合也是一个非常重要的方向。
由于MEMS技术可以制造出大量高精度的传感器,这些传感器可以感知环境,收集信息,为AI算法提供数据支持。
目前,许多人工智能应用和设备都采用了MEMS传感器技术,例如智能家居设备、智能汽车、工业4.0等。
三、MEMS在医疗领域的应用MEMS技术在医疗领域也有着广泛的应用。
例如,MEMS技术可以用于制造生物芯片,这些生物芯片可以测量人体内的生物分子,例如蛋白质、DNA等。
这些生物芯片可以用于药物筛选、医学诊断、疫苗研发等领域,对于提高医疗水平和缓解人们的疾病负担有着积极的影响。
微电子机械系统MEMS概述微电子机械系统(Micro-electromechanical Systems, MEMS)是一种将电子技术与机械工程相结合的技术领域,通过制造微尺度的电子器件和机械系统,可以实现微小化、集成化和高性能的微型设备。
MEMS用于制造传感器、执行器和微操纵系统等微型装置,已经广泛应用于通信、汽车、医疗、军事和消费电子等领域。
MEMS的核心技术包括微纳加工技术、传感器技术和微机电系统技术。
微纳加工技术是MEMS制造的基础,主要包括光刻、薄膜沉积、离子刻蚀、扩散和薄膜技术等。
这些技术可以制造出微米甚至纳米级别的微型结构和器件。
传感器技术是MEMS的重要应用领域之一,利用微型传感器可以实现对温度、压力、流量、位移、加速度和姿态等物理量的检测和测量。
而微机电系统技术则是将传感器和执行器等微型装置集成在一起,实现自动化控制和微操纵的功能。
MEMS具有以下几个显著的特点:微小化、集成化、多功能和低成本。
微小化可以实现高密度的集成和高灵敏度的检测,同时降低设备的功耗和重量。
而集成化可以将多个功能模块集成在一个芯片上,提高了系统性能和可靠性,同时减少了系统的体积和重量。
多功能则是指MEMS可以同时实现多种功能,如传感、处理和控制等。
此外,由于MEMS采用的是集成化的制造工艺,可以大规模制造,降低了生产成本,为大规模应用提供了可能。
MEMS在各个领域的应用也越来越广泛。
在通信领域,MEMS技术可以制造微型光机械开关,用于光通信网络的光信号调控和光路径选择。
在汽车领域,MEMS技术可以制造出压力传感器、加速度传感器和姿态传感器等,用于车辆的安全控制系统和车载导航系统。
在医疗领域,MEMS技术可以制造出微型生物传感器,用于检测体内的生物信号,如血压、血氧和葡萄糖等。
在军事领域,MEMS技术可以制造微型化的惯性导航系统和气体传感器,应用于导弹制导系统和化学生物探测等。
在消费电子领域,MEMS技术可以制造微型微镜头和投影显示器,应用于智能手机、平板电脑和智能手表等。
微机电系统技术及应用微机电系统技术(Micro-Electro-Mechanical Systems,MEMS)是指一种集成微型机械、电子和计算机技术的系统,它利用微型加工技术将传感器、执行器和电子元器件等多种功能集成到一个芯片上,从而实现在微小空间内进行感测、信号处理和控制的复杂系统。
自20世纪80年代以来,MEMS技术在各个领域得到了广泛的应用,成为现代科技进步的重要方向之一。
一、MEMS技术的基本原理MEMS技术的实现基于微机械制造技术,即利用光刻、蚀刻、离子注入、薄膜沉积、微调工艺等多种微加工技术,在硅基底板上制造出微型机械和微型电子元器件,将它们集成在一起实现控制系统的复杂功能。
常见的MEMS元件包括传感器和执行器两类。
传感器一般是将物理量转换成电信号输出的元件,MEMS传感器主要有压力传感器、加速度传感器、角速度传感器、温度传感器、化学传感器等,它们的结构和工作原理各不相同。
以加速度传感器为例,它主要是通过微型悬臂等结构感受加速度的作用,在振动部件上加上感应电极,利用柔性连接器将机械运动转化成电信号输出。
执行器是将电信号转换成物理运动的设备,MEMS执行器主要有微型电机、微泵、微阀门和微喷头等。
以微型电机为例,它主要包括固定部件和旋转部件,其结构具有一定的复杂性。
电机的旋转部件通常采用转子-定子结构,采用MEMS技术可以制造出特殊形状的转子并将其悬挂在薄膜支撑结构上,转子与定子之间通过电容传感器实现控制,电容传感器输出的信号被用于控制电机的转速和方向。
二、MEMS技术的应用领域MEMS技术的应用范围非常广泛,包括空间、军事、医疗、汽车、电子信息等多个领域,在以下几个方面得到了广泛应用。
1.传感器MEMS传感器可以感测体积小、重量轻、功耗低、响应速度快、精度高等诸多优点,使之成为传感器领域的重要技术。
它广泛应用于汽车行业、工业自动化控制、医疗设备等领域,如安全气囊用于汽车碰撞检测、指纹识别传感器、手机加速度传感器等。
微机电系统(MEMS)技术介绍微机电系统(MEMS),在欧洲也被称为微系统技术,或在日本被称为微机械,是一类器件,其特点是尺寸很小,制造方式特殊。
MEMS是指采用微机械加工技术批量制作的、集微型传感器、微型机构、微型执行器以及信号处理和控制电路、接口、通讯等于一体的微型器件或微型系统。
MEMS 器件的特征长度从1毫米到1微米--1微米可是要比人们头发的直径小很多。
MEMS往往会采用常见的机械零件和工具所对应微观模拟元件,例如它们可能包含通道、孔、悬臂、膜、腔以及其它结构。
然而,MEMS器件加工技术并非机械式。
相反,它们采用类似于集成电路批处理式的微制造技术。
今天很多产品都利用了MEMS技术,如微换热器、喷墨打印头、高清投影仪的微镜阵列、压力传感器以及红外探测器等。
MEMS技术可以用于制造压力传感器、惯性传感器、磁力传感器、温度传感器等微型传感器,这些传感器以及它们的部分信号处理电路都可以在只有几毫米或更小的芯片上实现。
与传统的传感器相比,MEMS传感器不仅体积更小、功耗更低,而且它们往往会比传统传感器更加准确、更加灵敏。
随着人们对海洋观测的需求不断增加和海洋观测技术的不断发展,MEMS技术也在逐渐进入海洋观测技术研究领域。
一、MEMS概念“他们告诉我一种小手指指甲大小的电动机。
他们告诉我,目前市场上有一种装置,通过它你可以在大头针头上写祷文。
但这也没什么;这是最原始的,只是我打算讨论方向上的暂停的一小步。
在其下是一个惊人的小世界。
公元2000年,当他们回顾当前阶段时,他们会想知道为何直到1960年,才有人开始认真地朝这个方向努力。
”——理查德·费曼,《底部仍然存在充足的空间》发表于1959年12月29日于加州理工大学(Caltech)举办的美国物理学会年会。
但我们可能会问:为什么要在这样一个微小尺上生成这些对象?MEMS器件可以完成许多宏观器件同样的任务,同时还有很多独特的优势。
这其中第一个以及最明显的一个优势就是小型化。
MEMS是微机电系统(Micro-Electro-Mechanical Systems)的英文缩写。
MEMS 是美国的叫法,在日本被称为微机械,在欧洲被称为微系统,它是指可批量制作的,集微型机构、微型传感器、微型执行器以及信号处理和控制电路、直至接口、通信和电源等于一体的微型器件或系统。
MEMS是随着半导体集成电路微细加工技术和超精密机械加工技术的发展而发展起来的,目前MEMS加工技术还被广泛应用于微流控芯片与合成生物学等领域,从而进行生物化学等实验室技术流程的芯片集成化。
MEMS主要包括微型机构、微型传感器、微型执行器和相应的处理电路等几部分,它是在融合多种微细加工技术,并应用现代信息技术的最新成果的基础上发展起来的高科技前沿学科。
MEMS技术的发展开辟了一个全新的技术领域和产业,采用MEMS技术制作的微传感器、微执行器、微型构件、微机械光学器件、真空微电子器件、电力电子器件等在航空、航天、汽车、生物医学、环境监控、军事以及几乎人们所接触到的所有领域中都有着十分广阔的应用前景。
MEMS技术正发展成为一个巨大的产业,就象近20年来微电子产业和计算机产业给人类带来的巨大变化一样,MEMS也正在孕育一场深刻的技术变革并对人类社会产生新一轮的影响。
目前MEMS市场的主导产品为压力传感器、加速度计、微陀螺仪、墨水喷咀和硬盘驱动头等。
大多数工业观察家预测,未来5年MEMS器件的销售额将呈迅速增长之势,年平均增加率约为18%,因此对对机械电子工程、精密机械及仪器、半导体物理等学科的发展提供了极好的机遇和严峻的挑战。
MEMS是一种全新的必须同时考虑多种物理场混合作用的研发领域,相对于传统的机械,它们的尺寸更小,最大的不超过一个厘米,甚至仅仅为几个微米,其厚度就更加微小。
采用以硅为主的材料,电气性能优良,硅材料的强度、硬度和杨氏模量与铁相当,密度与铝类似,热传导率接近钼和钨。
采用与集成电路(IC)类似的生成技术,可大量利用IC生产中的成熟技术、工艺,进行大批量、低成本生产,使性价比相对于传统“机械”制造技术大幅度提高。
MEMS概述孙舒畅生物与农业工程学院45090120一,MEMS的含义MEMS是英文Micro Electro Mechanical systems的缩写,即微电子机械系统。
微电子机械系统(MEMS)技术是建立在微米/纳米技术(micro/nanotechnology)基础上的21世纪前沿技术,是指对微米/纳米材料进行设计、加工、制造、测量和控制的技术。
它可将机械构件、光学系统、驱动部件、电控系统集成为一个整体单元的微型系统。
这种微电子机械系统不仅能够采集、处理与发送信息或指令,还能够按照所获取的信息自主地或根据外部的指令采取行动。
它用微电子技术和微加工技术(包括硅体微加工、硅表面微加工、LIGA和晶片键合等技术)相结合的制造工艺,制造出各种性能优异、价格低廉、微型化的传感器、执行器、驱动器和微系统。
二,MEMS的特点1)微型化:MEMS器件体积小、重量轻、耗能低、惯性小、谐振频率高、响应时间短。
2)以硅为主要材料,机械电器性能优良:硅的强度、硬度和杨氏模量与铁相当,密度类似铝,热传导率接近钼和钨。
3)批量生产:用硅微加工工艺在一片硅片上可同时制造成百上千个微型机电装置或完整的MEMS。
批量生产可大大降低生产成本。
4)集成化:可以把不同功能、不同敏感方向或致动方向的多个传感器或执行器集成于一体,或形成微传感器阵列、微执行器阵列,甚至把多种功能的器件集成在一起,形成复杂的微系统。
微传感器、微执行器和微电子器件的集成可制造出可靠性、稳定性很高的MEMS。
5)多学科交叉:MEMS涉及电子、机械、材料、制造、信息与自动控制、物理、化学和生物等多种学科,并集约了当今科学技术发展的许多尖端成果。
MEMS发展的目标在于,通过微型化、集成化来探索新原理、新功能的元件和系统,开辟一个新技术领域和产业。
MEMS可以完成大尺寸机电系统所不能完成的任务,也可嵌入大尺寸系统中,把自动化、智能化和可靠性水平提高到一个新的水平。
微机电系统(mems)工艺基础与应用
微机电系统(MEMS)是指将微型机械元件、微电子元件、微光学元件、微流体元件及其它微加工技术相集成而成的系统。
它既是微电子技术、光学技术、力学技术、材料科学技术的综合,又是精密制造技术、微加工技术与传感器技术的相结合。
本文将对MEMS的工艺基础及其应用进行探讨。
一、MEMS的工艺基础 1.硅微加工技术 MEMS的制造材料主要是硅微电子材料及其它材料,硅微加工技术是MEMS 的核心技术。
硅微加工技术的主要工艺流程包括光刻、蚀刻、金属沉积、制膜、扩散、离子注入等。
2.压力传感器的制造工艺 MEMS的压力传感器主要采用压阻效应制作。
它的基本原理是利用极细硅悬臂梁作为传感器,在外界压力下悬臂梁弯曲,悬臂梁两端的电阻发生变化,进而反映出压力。
二、MEMS的应用 1.生物医学及生物传感技术应用MEMS技术制造的微型传感器,可以在细胞水平上检测微小的信号变化,诊断疾病、研究生物学行为。
2.汽车及工业应用汽车领域是MEMS技术的主要应用领域之一。
MEMS技术应用于汽车系统中,可以制造出精密的安全气囊、一个小孔的喷油嘴、传感器等元件。
3.消费市场在消费市场上,MEMS技术的应用范围同样广泛。
借助MEMS技术,可以生产出更小、更趋近于无形的产品,如MEMS振动器、MEMS加速计、MEMS麦克风。
总之,MEMS技术的应用范围和前景十分广阔,它在不断地为各个领域带来更多革命性的变革和新的想象空间。
同时,要想在MEMS领域取得更为显著的进展,需要更多的前沿科技、人才、资金等方面的支持和加速发展。
微系统中的巨人的MEMS(45090123 沈潇)一、概述MEMS是英文Micro Electro Mechanical systems的缩写,即微电子机械系统。
它的前身可追溯到1946年2月15日在美国诞生的第一台电子计算机ENIAC。
随着技术和工艺的的革新,渐渐趋于小型化,微型化。
1987年10月IEEE的机器人和自动化委员会组织了有关讨论会,会后来自MIT、Berkeley、Stanford和NSF的15名科学家提出了“小机器,大机遇:关于新兴领域——微动力学的报告”的国家计划建议书,并引起美国政府的高度重视,从此微机电系统——MEMS 技术正式诞生。
目前的MEMS技术是建立在微米/纳米技术基础上的21世纪前沿技术,是指对微米/纳米材料进行设计、加工、制造、测量和控制的技术。
它可将机械构件、光学系统、驱动部件、电控系统集成为一个整体单元的微型系统。
这种微电子机械系统不仅能够采集、处理与发送信息或指令,还能够按照所获取的信息自主地或根据外部的指令采取行动。
它用微电子技术和微加工技术(包括硅体微加工、硅表面微加工、LIGA和晶片键合等技术)相结合的制造工艺,制造出各种性能优异、价格低廉、微型化的传感器、执行器、驱动器和微系统。
MEMS还有较广泛的一个定义,有关MEMS基础理论的研究领域还包括:微摩擦学、微材料力学、微流体力学、微传热学、微机构学、设计与仿真、微测试等。
二、当前发展与运用通过研究MEMS的商业浪潮可以梗概地看出它的发展历程。
MEMS第一轮商业化浪潮始于20世纪70年代末80年代初,当时用大型蚀刻硅片结构和背蚀刻膜片制作压力传感器。
多用于触发汽车安全气囊和定位陀螺仪。
第二轮商业化出现于20世纪90年代,主要围绕着PC和信息技术的兴起。
第三轮商业化出现于世纪之交,微光学器件通过全光开关及相关器件而成为光纤通讯的补充。
微光学器件从长期看来将是MEMS一个增长强劲的领域。
推动第四轮商业化的其它应用包括一些面向射频无源元件、生物和神经元探针,以及所谓的“片上实验室”生化药品开发系统和微型药品输送系统的静态和移动器件。
微机电系统工程专业认识介绍微机电系统工程(Microelectromechanical Systems Engineering,简称MEMS)是一门涉及微纳技术、机械工程和电子工程的交叉学科。
通过微纳加工技术,它将微型传感器、微型执行机构和微型电子电路集成在一起,实现微米级或纳米级尺寸的器件和系统。
本文将介绍微机电系统工程的发展背景、应用领域、专业课程和前景。
发展背景微机电系统工程源于20世纪70年代的芯片工艺技术。
随着半导体技术的发展,研究人员开始尝试将机械结构集成到芯片上,从而实现微小化、低成本和高性能的传感器和执行机构。
随着纳米技术的兴起,微机电系统工程发展迅速,并在多个领域得到广泛应用。
应用领域微机电系统工程在许多领域都有广泛的应用。
其中包括: - 生物医学领域:用于生物标记、药物传递、体内监测等。
- 无线通信领域:用于振荡器、滤波器、天线等。
- 汽车工业:用于汽车传感器、气囊系统、刹车系统等。
- 空间探索:用于微型卫星、航天器等。
- 环境监测:用于气象仪器、空气质量监测等。
专业课程微机电系统工程作为一门交叉学科,其专业课程包括: - 微电子学基础:介绍半导体材料与器件的基本原理和制造工艺。
- 机械工程基础:包括力学、热力学、流体力学等基础知识。
- 微机电系统设计:介绍微机电系统的设计原理和方法。
- 微纳加工技术:介绍微纳加工工艺和设备。
- 传感器与执行机构:介绍各种传感器和执行机构的原理和应用。
- 信号处理与控制:介绍信号处理和控制技术在微机电系统中的应用。
前景随着智能化设备的普及和技术的不断进步,微机电系统工程的应用前景非常广阔。
微机电系统的小尺寸、低功耗和高性能使其在物联网、智能家居、医疗健康等领域有着广泛应用的潜力。
此外,随着纳米技术的发展,微机电系统的尺寸将进一步缩小,功能将进一步增强,所能应用的领域也将进一步扩展。
结论微机电系统工程是一门融合了微纳技术、机械工程和电子工程的交叉学科。
1.什么是MEMS?有哪些应用,列举三种以上MEMS产品及其应用。
答:MEMS是微机电系统(Micro-Electro-Mechanical Systems)的缩写。
MEMS是由微传感器、微执行器、信号处理和控制电路、通讯接口和电源等部件组成的一体化的微型器件系统。
MEMS特点:微型化;集成化;多学科交叉产品:压力传感器、加速度计、微陀螺仪、墨水喷嘴和硬盘驱动头等应用:2222①跟上发展步伐步程计。
它用于测量人行走时的速度或距离。
②让GPS更可靠:微加速度计。
在汽车安全气袋系统中,用于检测和监控前面和侧面的碰撞。
③为游戏应用提供更佳的控制能力:MEMS加速器。
在改善电子游戏的体验方面,改善控制盘和操纵杆的倾斜及运动敏感功能。
④微型医疗机器人:注入人体血管,进行测量、诊断以及做出相应的治疗。
⑤角速度计:用于车轮侧滑和打滚控制。
2.尺度效应的定义,在MEMS设计中如何利用尺度效应?答:尺度效应是指在微成形过程中,由于制品整体或局部尺寸的微小化引起的成形机理及材料变形规律表现出不同于传统成形过程的现象。
从微成形工艺系统角度出发,要分析微尺度效应的动态性和相关性;本构理论出发,要分析产生微尺度效应的原因。
MEMS中使用的材料结构为单晶体,在进行微观力学分析时,作为纯的单晶体,不考虑其内部的点缺陷,线缺陷和面缺陷的分布。
单晶硅的变形可用晶格理论来解释:在外力作用下,处于晶格格点位置上的原子偏起始所处的平衡位置,并在新的位置处于平衡。
由此计算该原子在外力作用下的位移。
3.湿法刻蚀和干法刻蚀的概念及其在MEMS中应用?答: 湿法刻蚀:将被腐蚀材料氧化,然后通过化学反应生成一种或多种氧化物再溶解。
这个过程有时在高温中以气相的形式完成刻蚀。
干法刻蚀:应用气态腐蚀介质,通过电场气态离子被加速到衬底上。
湿法刻蚀应用:砷化镓的湿法刻蚀;SiO2膜的湿法刻蚀;磷硅玻璃(PSG)湿法刻蚀;混合氧化物的湿法刻蚀;氮化硅的湿法刻蚀;多晶硅和半绝缘多晶硅的湿法刻蚀;硅化物薄膜的湿法刻蚀;金属薄膜的湿法刻蚀等。
MEMS简介45080223 宋建涛生物学院农机二班MEMS是微机电系统的缩写。
MEMS主要包括微型机构、微型传感器、微型执行器和相应的处理电路等几部分,它是在融合多种微细加工技术,并应用现代信息技术的最新成果的基础上发展起来的高科技前沿学科。
MEMS技术的发展开辟了一个全新的技术领域和产业,采用MEMS技术制作的微传感器、微执行器、微型构件、微机械光学器件、真空微电子器件、电力电子器件等在航空、航天、汽车、生物医学、环境监控、军事以及几乎人们所接触到的所有领域中都有着十分广阔的应用前景。
目前MEMS市场的主导产品为压力传感器、加速度计、微陀螺仪、墨水喷咀和硬盘驱动头等。
大多数工业观察家预测,未来5年MEMS器件的销售额将呈迅速增长之势,年平均增加率约为18%,因此对对机械电子工程、精密机械及仪器、半导体物理等学科的发展提供了极好的机遇和严峻的挑战。
其研究内容一般可以归纳为以下三个基本方面:1.理论基础:在当前MEMS所能达到的尺度下,宏观世界基本的物理规律仍然起作用,但由于尺寸缩小带来的影响,许多物理现象与宏观世界有很大区别,因此许多原来的理论基础都会发生变化,如力的尺寸效应、微结构的表面效应、微观摩擦机理等,因此有必要对微动力学、微流体力学、微热力学、微摩擦学、微光学和微结构学进行深入的研究。
这一方面的研究虽然受到重视,但难度较大,往往需要多学科的学者进行基础研究。
2.技术基础:MEMS的技术基础可以分为以下几个方面:(1)设计与仿真技术;(2)材料与加工技术(3)封装与装配技术;(4)测量与测试技术;(5)集成与系统技术等。
3.应用研究:人们不仅要开发各种制造MEMS的技术,更重要的是如何将MEMS技术与航空航天、信息通信、生物化学、医疗、自动控制、消费电子以及兵器等应用领域相结合,制作出符合各领域要求的微传感器、微执行器、微结构等MEMS器件与系统。
完整的MEMS是由微传感器、微执行器、信号处理和控制电路、通讯接口和电源等部件组成的一体化的微型器件系统。
微电子机械系统MEMS概述微电子机械系统(MEMS)是一种集成在微型尺寸结构中的机械和电子元器件的技术。
MEMS技术将传感器、执行器和电子电路等一系列微型元器件集成在一起,形成一个完整的系统。
MEMS技术在多个领域中得到广泛应用,如医疗、汽车、航空航天、通信等,其特点是体积小、功耗低、响应速度快等优势。
MEMS技术的起源可以追溯到20世纪60年代,当时W. C. Hughes首次提出利用晶体管制作出微动力传感器。
在接下来的几十年里,MEMS技术得到了迅猛发展,其应用范围也不断扩大。
MEMS技术的核心是微加工技术,包括光刻、薄膜制备、干湿混合蚀刻等一系列工艺,这些工艺能够在微米尺度上加工出各种微结构。
MEMS技术的主要组成部分包括传感器和执行器。
传感器用于感知环境信息,如温度、压力、湿度等,同时还可以用于测量运动、加速度等。
传感器通常通过微加工技术在基片上制作出微结构,当受到外界刺激时,微结构会产生相应的变化,再通过电子电路进行信号放大和处理,最后输出所需的信息。
执行器则用于控制和操作外部物体,如驱动微机械臂的运动、控制液晶显示器的像素等。
执行器通常通过微加工技术制作出可移动的微结构,通过施加电压或电流,可以实现微结构的运动和控制。
MEMS技术的应用非常广泛。
其中最常见的应用是传感器。
MEMS传感器在汽车领域中被广泛应用,如车辆倾斜传感器、空气压力传感器、车速传感器等。
此外,MEMS传感器还在医疗领域用于血糖检测、体温监测、心率监测等。
MEMS技术还在通信领域得到广泛应用,如MEMS麦克风和扬声器用于手机、平板电脑等设备。
MEMS技术的发展还带来了一些新的应用,如微型投影仪、生物芯片、能量收集等。
微型投影仪可以将显示器的内容投影到墙壁或屏幕上,体积小、便携性好,适用于移动设备。
生物芯片结合了MEMS技术和生物学技术,可以实现对生物分子的检测和分析,可应用于基因测序、病原体检测等领域。
能量收集是指通过各种能量转换和收集技术,将环境中的能量转化为可用电能供应给MEMS系统,以减少对电池的依赖。
何谓微机电系统(MEMS)为了说明什么是微机电系统MEMS (Micro Electro Mechanical Systems),首先来解释一下什么是机电系统。
20多年以前,汽车还是一个单纯的机械系统,后来随着电子技术的发展,汽车的很多零部件(例如电子点火器、燃油电子喷射装置、电控自动变速箱等)都依靠电子系统进行控制,因此现在的汽车实际上就是一个大的机械电子系统。
而微机电系统则是指微小的机械电子系统,例如比一粒花生米还要小的飞机或汽车,是由很多只有几百微米大小的零件组成的,而这些零件是用微电子等微细加工技术制备出来的,既包含机械部件又包含电子部件,因此我们称这类微小的机械电子系统为微机电系统。
微机械电子系统是微电子技术的拓宽和延伸,它是将微电子技术和精密机械加工技术相互融合,并将微电子与机械融为一体的系统。
MEMS将电子系统和外部世界有机地联系起来,它不仅能感受运动、光、声、热、磁等自然界的外部信号,使之转换成电子系统可以识别的电信号,而且还能通过电子系统控制这些信号,进而发出指令,控制执行部件完成所需的操作。
MEMS主要包含微型传感器、执行器和相应的处理电路三部分。
作为输入信号的自然界各种信息首先通过传感器转换成电信号,经过信号处理以后(模拟/数字)再通过微执行器对外部世界发生作用。
传感器可以把能量从一种形式转化为另一种形式,从而将现实世界的信号(如热、运动等信号)转化为系统可以处理的信号(如电信号)。
执行器根据信号处理电路发出的指令完成人们所需要的操作。
信号处理器则可以对信号进行转换、放大和计算等处理。
美国AnalogDevice公司已经研制出很多种将集成电路与MEMS集成在一起的集成微加速度计、微陀螺等产品。
MEMS技术是一种典型的多学科交叉的前沿性研究领域,它几乎涉及到自然及工程科学的所有领域,如电子技术、机械技术、光学、物理学、化学、生物医学、材料科学、能源科学等。
MEMS技术的目标是通过系统的微型化、集成化来探索具有新原理、新功能的元件和系统。
MEMS综述一、EMES基本概念微机电系统一词源于美国,日本称为微机械,欧洲称为微系统是指利用微电子精细加工手段制造微米量级内的设计和制造技术。
它是集微传感器、微执行器、微机械结构、微电源微能源、信号处理和控制电路、高性能电子集成器件、接口、通信等于一体的微型器件或系统。
二、发展历史MEMS这一名词是由美国国家科学基金会于1989年正式提出的,从技术上看,它的产生和发展经历了以下3个主要时期:1、发展初期20世纪50年代,MEMS随着集成电路制造技术的发展而出现。
20世纪60年代的主要研究内容是硅微型传感器和各向异性蚀刻技术。
但是,这个时期的器件由于不够完善而没有商品化。
2、快速发展期20世纪70年代,汽车用传感器和医用压力传感器开始成为MEMS的研究重点,并促进了相应微加工技术的完善。
20世纪80年代,世界各国相继开始MEMS 领域的研究,制造技术不断完善,应用领域快速拓展。
80年代后期,包括微加工、结构设计、微动力学、材料学、控制理论、测量等多个领域在内的MEMS研究全面展开。
3、高速发展期20世纪90年代MEMS在国防生物医学、汽车、通信、航空航天等领域的应用全面开始,并有大量MEMS产品推向市场。
21世纪,MEMS逐步从实验室走向实用化。
MEMS的研究领域将进一步扩展,逐渐形成纳米器件、生物医学、光学、能源、海量存储、信息等新的应用方向,并从单一的MEMS器件和功能向着系统功能集成的方向发展。
三、研究内容1、理论研究主要研究微尺寸效应、微磨擦、微结构的机械效应。
微机械、微传感器、微执行器等的设计原理和控制方法。
2、工艺研究主要研究微材料性能、微加工工艺技术、微器件的集成和装配以及微丈量技术等。
世界上制作MEMS器件的工艺技术主要有三种:第一种是以美国为代表的利用化学离蚀或IC工艺,对硅材料进行加工,形成硅基MEMS器件。
目前,国内主要利用这种方法制备MEMS器件,该方法与IC工艺兼容,可实现微机械和微电子的系统集成,适合批量生产,成为制备MEMS器件的主要技术;第二种是以德国为代表的LIGA技术,它利用X射线光刻技术,通过电铸成型和铸塑工艺形成深层微结构方法,制作MEMS器件。