2017年小学五年级下册数学竞赛试题
- 格式:doc
- 大小:17.00 KB
- 文档页数:3
2017年下期五年级数学知识竞赛试题班次姓名计分一、填空(每空2分,共30分)1、2.345345…,用简便方法记作(),它的小数部分第50位的数字是()。
2、在公园里的一个湖的四周栽了100棵杨树,在每两棵杨树之间栽一棵柳树,一共要栽()棵柳树。
3、460×0.29=46×() 3.578÷0.56=()÷564、甲堆棋子是乙堆棋子的3倍,如果把甲堆棋子移12颗到乙堆,两堆棋子数量相等,甲堆有()颗棋子,乙堆有()颗棋子。
5、三个连续偶数,中间一个是a,另外两个分别是()和()。
6、天平左边放3个茶壶,右边放9个茶杯,天平平衡,如果左边拿掉2个茶壶,那么右边要拿掉()个茶杯天平才会平衡。
7、一个梯形的面积是24.6㎝2,和它等高的平行四边形的底等于梯形两底之和,这个平行四边形的面积是()。
8、课间操时,五(2)班同学组成了一个方队,李小乐的位置是(6,6),他的左面和后面没有人,这个方队一共有()人。
9、1港元兑换人民币1.07元,爸爸从香港给小东买的故事书是2.5港元,折合人民币是()元。
10、把一个小数的小数点向右移动一位后,就比原数大4.05,原数是()。
11、用分别写有7、8、9的三张数字卡片,摆出的三位数是奇数的可能性与摆出的数是偶数的可能性相比,摆出()数的可能性大些。
二、对号入座(每空2分,共10分)1、同一平面上,数对(3,6)和(5,6)表示的位置是在()A、同一行B、同一列C、无法确定2、一个平行四边形的底是2㎝,和它面积相等,高也相等的三角形的底是()㎝。
A、1 B、2 C、43、两个数的积是69.25,如果其中一个因数乘10,另一个因数除以10,积是()。
A、6.925 B、69.25 C、692.54、把一个平行四边形框架拉成长方形,它的周长(),它的面积()。
A、比原来小B、比原来大C、与原来相等三、计算下面各题,怎样简便就怎样算(每题5分,共20分)1.25×32×2.53.6+2.4×0.062.4×10.1 9.9×9.9+0.99四、解方程(每题5分,共10分)4(X-16)=36.8 5 X-3×4=43五、生活运用题(每题6分,共30分)1、李校长去家具城购买32套桌椅,每张课桌46.80元,每把椅子22.50元。
2017年第十五届“走美杯”小数数学竞赛上海赛区初赛试卷(五年级)一、填空题(共5小题,每小题8分,满分40分)1.(8分)1+3+5+7+…+97+99﹣10﹣12﹣14…﹣96﹣98= .2.(8分)数学测试满分100分,第二个小组的平均分为86分,明明考了98分,若明明加入第二小组,第二小组平均分将变为88分,第二小组原有人.3.(8分)有一种六位数,从左向右第三位数字开始,每一个数字都是它前面两个数字的和,这样的六位数共有个.4.(8分)24点游戏,用适当的运算符号(包括括号)把3,3,8,8这四个数组成一个算式,使结果等于24..5.(8分)m,n,p是三个不同的正整数,它们除以13的余数分别是3,6,11那么(m+n﹣p)(2m﹣n+p)除以13的余数是.二、解答题(共5小题,满分50分)6.(10分)给定四个正整数9、9、9、17,把他们写在正方形的四个角上,在正方形外面画一个外接正方形,并且连续操作下去,层层嵌套(如图),把这个正方形的角上相邻的两个数相减(以大减小),得到的四个差数分别写在这两个数之间的外接正方形的角上,经过若干次操作,得到的正方形的四个角上的数字之和最小,这个最小值为.7.(10分)从1、2、3、4、5、6、7、8、9这9个数中选出6个不同的数,分别写在一个正方体的6个面上,使任意相邻的面上所写的两个数的差不小于2,这6个数之和最小为.8.(10分)若干个棱长为1的正方体木块组成一个立体图形,从正面看如图1,从侧面看如图2,这组木块最少有个,最多有个.9.(10分)一堆桃子堆在树下,总数为奇数,估计不少于360个,也不会超过400个,一群猴子排队等候猴王分桃,分桃的规则是,若桃子有偶数个,分桃的猴子可以分走一半;若桃子有奇数个,猴王就从树上摘一个桃子放入桃堆,分桃的猴子也分走一半,当剩下1个桃子时就停止分桃,第9个猴子分桃后只剩下了一个桃子,在分桃的过程中,猴王一共摘了7个桃子,这堆桃子原有个.10.(10分)长方形内有2017个点,连同长方形的4个顶点在内,共有2021个点,任意3个点都不在同一条直线上,以这2021个点中的某三点为顶点,可作出个互不重叠的三角形.三、解答题(共5小题,满分60分)11.(12分)一个长方形,长、宽、高均为整数厘米(长>宽>高),已知宽为8厘米,且长方体的三个相邻面的面积值恰好成等差数列,这个长方体的表面积最小为平方厘米.12.(12分)甲、乙、丙、丁四人进行围棋比赛,任意两人都赛一场,胜一场得3分,平一场各得1分,负者不得分,比赛结束,甲得2分,乙和丙都得4分,丁得分.13.(12分)每个小正方体的质量为100克,由125个小正方体组成大正方体,从这个大正方体中抽出一组小正方体,抽的方法是:从一个面到其对面所涉及到的小正方体都要抽掉,如图中涂色部分就是抽出后的情形,抽出这些小正方体后的几何体的质量是克.14.(12分)现有1×1×2的积木(A)、1×1×3的积木(B)、1×2×2的积木(C)(如图),分别有6块、11块、10块,从这些积木中选出若干个,拼成3×3×3的实心正方体,至多可以拼出个3×3×3的实心正方体,写出这几个正方体的拼法分别所用的A、B、C的个数(如1A+7B+1C):15.(12分)0、1、2、3、4、5、6、7这八个数字可以组成两个四位数M和N,如果M+N的和是一个末三位数字相同、千位数字为0的五位数,这个五位数是,M×N的积的不同取值共有种.2017年第十五届”走美杯“小数数学竞赛上海赛区初赛试卷(五年级)参考答案与试题解析一、填空题(共5小题,每小题8分,满分40分)1.(8分)1+3+5+7+…+97+99﹣10﹣12﹣14…﹣96﹣98= 70 .【分析】在算式中,这些数具有一定的特点:相加的数是1﹣﹣99之间的所有奇数,相减的数是10﹣﹣98之间的所有偶数.在1﹣﹣99之间只有1﹣﹣9这一数段中只有1、3、5、7、9这些奇数,而没有2、4、6、8这些偶数.其余的10﹣﹣19、20﹣﹣29、30﹣﹣39一直到90﹣﹣99这9个数段中都是所有的奇数和偶数.我们还知道相邻的2个自然数之间相差着1.所有把10﹣﹣99之间这些没间断的奇数和偶数运用加法的交换律进行计算,把相邻的2个自然数组成一组.这样每个数段的10个数就组成5组,共5×9=45组.1、3、5、7、9单独组成一个特别的组,再进行计算.【解答】1+3+5+7+…+97+99﹣10﹣12﹣14…﹣96﹣98=1+3+5+7+9+11﹣10+13﹣12+…+99﹣98=(1+3+5+7+9)+(11﹣10)+(13﹣12)+…+(99﹣98)=(1+9)+(3+7)+5+1×(5×9)=10+10+5+45=25+45=70【点评】解题的关键是看出这些数的特点,发现其中的规律.特别是怎样分数段,每个数段中有几个组合,它们的差都是1.2.(8分)数学测试满分100分,第二个小组的平均分为86分,明明考了98分,若明明加入第二小组,第二小组平均分将变为88分,第二小组原有 5 人.【分析】首先求出明明的数学测试成绩和第二个小组后来的平均分的差是多少;然后用它除以第二小组后来的平均分比原来的平均分多的分数,求出第二小组原有多少人即可.【解答】解:(98﹣88)÷(88﹣86)=10÷2=5(人)答:第二小组原有5人.故答案为:5.【点评】此题主要考查了平均数问题,考查了分析推理能力的应用,要熟练掌握,解答这类应用题时,主要是弄清楚总数、份数、一份数三量之间的关系,根据总数除以它相对应的份数,求出一份数,即平均数.3.(8分)有一种六位数,从左向右第三位数字开始,每一个数字都是它前面两个数字的和,这样的六位数共有 4 个.【分析】可以从首位为1开始算起,1+0=1,故有101123,1+1=2,故有112358,2+0=2,故有202246,3+0=3,故有303369,一共有4个.【解答】解:根据分析,从首位为1开始算起,1+0=1,故有101123;1+1=2,故有112358;2+0=2,故有202246;3+0=3,故有303369,这样的六位数分别是:101123、112358、202246、303369,故答案是:4.【点评】本题考查了数字问题,突破点是:从首位1开始算起,利用数字和求得六位数的个数.4.(8分)24点游戏,用适当的运算符号(包括括号)把3,3,8,8这四个数组成一个算式,使结果等于24.8÷(3﹣8÷3).【分析】首先分析数字题中的有2个搭档,同时组合过程中不容易找到,那么可以分析除法中的特殊情况.【解答】解:依题意可知;8÷(3﹣8÷3)=8÷(3﹣)=8÷=24满足条件.故答案为:8÷(3﹣8÷3)【点评】本题考查对填符号组算式的理解和运用,关键是找到特殊的除法计算.问题解决.5.(8分)m,n,p是三个不同的正整数,它们除以13的余数分别是3,6,11那么(m+n﹣p)(2m﹣n+p)除以13的余数是 4 .【分析】根据“具有同一模的两个同余式,两边分别相加减,仍得同一模的另一同余式”;以及“具有同一模的两个同余式,两边分别相乘,仍得同一模的另一同余式”解答即可.【解答】解:(m+n﹣p)(2m﹣n+p)=(3+6﹣11)×(2×3﹣6+11)=﹣22﹣22(mod )=﹣2×13+4(mod13)=4(mod13)所以,(m+n﹣p)(2m﹣n+p)除以13的余数是4.故答案为:4.【点评】本题考查了孙子定理,关键是明确孙子定理的两个性质定理.二、解答题(共5小题,满分50分)6.(10分)给定四个正整数9、9、9、17,把他们写在正方形的四个角上,在正方形外面画一个外接正方形,并且连续操作下去,层层嵌套(如图),把这个正方形的角上相邻的两个数相减(以大减小),得到的四个差数分别写在这两个数之间的外接正方形的角上,经过若干次操作,得到的正方形的四个角上的数字之和最小,这个最小值为0 .【分析】按照题目所要求的规则依次写出后一层正方形的四个顶点的数字就可以得出结果【解答】解:把四个数字按照顺时针的顺序依次写成(9,9,9,17),外层正方形顶点上的数字依次为:⇒(0,0,8,8)⇒(0,8,0,8),如下图:…再往后推算得到:⇒(8,8,8,8)⇒(0,0,0,0).此时四个数的和最小,为0,故本题答案为:0.【点评】理解清楚题目的处理规则,依据规则进行运算,就不难得出结果.7.(10分)从1、2、3、4、5、6、7、8、9这9个数中选出6个不同的数,分别写在一个正方体的6个面上,使任意相邻的面上所写的两个数的差不小于2,这6个数之和最小为27 .【分析】根据题目要求的数字和最小,首先应考虑1和2为对面,然后考虑它们相邻面的第二组对面的数字情况,进而推断第三组对面.【解答】解:要使六个数之和最小,应有1、2,且1、2不能相邻,只能对面,此时2的四个相邻面中的数不能有3,最小为4、5、6、7;若4、5对面,另两个面中不能出现6,最小为7、8,故满足条件的6个数之和最小为(1+2)+(4+5)+(7+8)=27(括号内的两数对面).故答案为:27.【点评】本题的突破口在于步步推进,首先从最小的数对开始,一步步推出三组对面数字.8.(10分)若干个棱长为1的正方体木块组成一个立体图形,从正面看如图1,从侧面看如图2,这组木块最少有8 个,最多有26 个.【分析】从正面看和从侧面(左侧)看都有4列,可以在4×4的方格中进行摆放,分别看最多和最少可摆放多少方块【解答】解:在如下图所示的4×4方格中,进行摆放方块,来使这堆方块从正面、侧面看起来的画面满足要求,摆放方块最少的情况如下图:最少共需要:3+1+2+2=8块,摆放方块最多的情况如下图:最多需要:26块.故答案为:8;26.【点评】本题需要一定的空间想象能力,要求对摆放的方块的正面和侧面视图进行分析.9.(10分)一堆桃子堆在树下,总数为奇数,估计不少于360个,也不会超过400个,一群猴子排队等候猴王分桃,分桃的规则是,若桃子有偶数个,分桃的猴子可以分走一半;若桃子有奇数个,猴王就从树上摘一个桃子放入桃堆,分桃的猴子也分走一半,当剩下1个桃子时就停止分桃,第9个猴子分桃后只剩下了一个桃子,在分桃的过程中,猴王一共摘了7个桃子,这堆桃子原有 385 个.【分析】首先分析题意,本题可用二进制的方法来解决.若有16个桃子化成二进制的数字是(10000)2,是一个五位数的二进制数字,每次均分,数位减少一个,均分4次以后余数是1个桃子,且不需要从树上摘.继续推理即可.【解答】解:依题意可知:本题可用二进制的方法来解决.若有16个桃子化成二进制的数字是(10000)2,是一个五位数的二进制数字,每次均分,数位减少一个,均分4次以后余数是1个桃子,且不需要从树上摘.((10000)2,(1000)2,(100)2,(10)2,12)看13个桃子13=(1101)2.则在第一次和第二次分桃时从树上各摘一个桃子,即(1101)2+(11)2=(10000)2.看本题中设原来有N 个桃子,则(100000000)2<N <(1000000000)2N 为奇数化为二进制数字后应为9位数,且末尾数字是1,首位数字是1,即是十进制中的256,分桃过程中又摘了7个桃子,第一次必摘,即末尾必加1,中间的7位数有6需要加1,即6个0.只有1个1.因为360<N<400,所以N=256+1+128=385.故答案为:385.【点评】本题考查对二进制的理解和运用,关键问题是找到二进制的数字的表示方法,问题解决.10.(10分)长方形内有2017个点,连同长方形的4个顶点在内,共有2021个点,任意3个点都不在同一条直线上,以这2021个点中的某三点为顶点,可作出4036 个互不重叠的三角形.【分析】这个题如果直接考虑这2021个点的话,会无从下手,可以先只考虑长方形的四个点,可以组成2个三角形,再向长方形内部一个一个的添加点.【解答】解:如图,长方形ABCD的四个顶点,连接BD,可以组成两个三角形:△ABD和△BCD,然后向长方形内部添加点E,连接周围顶点后,现在△BCD被分成3个三角形,相当于多出2个三角形,以此类推,…每添加一个点,三角形数量增加2,共添加2017个点,则三角形的数量为:2+2017×2=4036,故本题答案为:4036.【点评】本题重点在于找到逐一向长方形内部添加点这一思路,化繁为简,找到规律.三、解答题(共5小题,满分60分)11.(12分)一个长方形,长、宽、高均为整数厘米(长>宽>高),已知宽为8厘米,且长方体的三个相邻面的面积值恰好成等差数列,这个长方体的表面积最小为432 平方厘米.【分析】根据题意可设长方形的长、宽、高分别为a、b、c(a>b>c),根据题意可列出a、b、c之间的等量关系,由于均为整数,可将等式凑成乘积的形式结合分解质因数进行求解.【解答】解:设长方形的长、宽、高分别为a、b、c(a>b>c),则长方形的三个相邻面的面积由大到小的顺序为ab、ac、bc,则根据题意可得2ac=ab+bc,其中b=8,则ac=4a+4c,凑成乘积的形式可得(a﹣4)×(c﹣4)=16=16×1=8×2,则a﹣4=16或8,c﹣4=1或2,可得a=20,b=8,c=5或a=12,b=8,c=6.则长方体的表面积=2×(ab+ac+bc)=2×(160+100+40)=600平方厘米或2×(96+72+48)=432平方厘米,因此这个长方体的表面积最小为432平方厘米.故答案为:432.【点评】本题的关键在于能想到画成乘积的形式用分解质因数进行求解,稍有难度.12.(12分)甲、乙、丙、丁四人进行围棋比赛,任意两人都赛一场,胜一场得3分,平一场各得1分,负者不得分,比赛结束,甲得2分,乙和丙都得4分,丁得6分或5 分.【分析】每人恰好都比赛三场,甲得2分,一定是平2场负1场,乙丙都得4分,一定是胜1场平1场负1场,依此推断,丁有两种情形,再分类计算求得丁的得分.【解答】解:根据分析,每人恰好都比赛三场,甲得2分,一定是平2场负1场,乙丙都得4分,一定是胜1场平1场负1场,依此推断,丁有两种情形,如下图(箭头指向负者,线段表示平局);故丁的得分为6分或5分.(图示只为情形之一)故答案是:6分或5分.【点评】本题考查了逻辑推理,突破点是:根据已知,逻辑推理,分析得出丁的得分.13.(12分)每个小正方体的质量为100克,由125个小正方体组成大正方体,从这个大正方体中抽出一组小正方体,抽的方法是:从一个面到其对面所涉及到的小正方体都要抽掉,如图中涂色部分就是抽出后的情形,抽出这些小正方体后的几何体的质量是8000 克.【分析】可以先算出抽出的小正方体的个数,共抽出了3×5+4×5+5×5﹣(2+4)﹣(3×3)=45个小正方体,余下的几何体含有的小正方体个数为:125﹣45=80个,不难求得余下的几何体的质量.【解答】解:根据分析,算出抽出的小正方体的个数,因为抽小正方体的时候上下表面和左右表面以及前后表面共同的小正方体个数有:4+5+6=15个,故共抽出了:3×5+4×5+5×5﹣(4+5+6)=45个小正方体,余下的几何体含有的小正方体个数为:125﹣45=80个,质量为:80×100=8000g,故答案是:8000.【点评】本题考查剪切和拼接,突破点是:先算抽出的小正方体的个数,再求余下的几何体含有的小正方体的个数.14.(12分)现有1×1×2的积木(A)、1×1×3的积木(B)、1×2×2的积木(C)(如图),分别有6块、11块、10块,从这些积木中选出若干个,拼成3×3×3的实心正方体,至多可以拼出 3 个3×3×3的实心正方体,写出这几个正方体的拼法分别所用的A、B、C的个数(如1A+7B+1C):2A+1B+5C、1A+3B+4C、1A+7B+1C或4A+1B+4C、1A+3B+4C、1A+7B+1C【分析】首先计算出1×1×2的积木(A)、1×1×3的积木(B)、1×2×2的积木(C)能提供的总块数为85,3×3×3的实心正方体需要的积木块数为27,85÷27=3…4,因此首先可以判断至多能拼出3个3×3×3的实心正方体,然后根据奇偶性判断A、B、C各自所用的块数,据此解答.【解答】解:6块、11块、10块A、B、C积木总共能提供的块数是2×6+3×11+4×10=85,一个3×3×3的实心正方体需要的块数为27,因此最多拼成3个,且剩下块数为85﹣27×3=4,可以为2个A积木或1个C积木.27=2A+3B+4C,考虑27为奇数,因此B必须为奇数,因此B只能为1,3,5,7,B的总块数为11,因此3个实心正方体所用B的数目可以为1,5,5或1,3,7.①所用B的数目可以为1,5,5:拼法1:1B拼法2:4A+5B+1C拼法3:2A+5B+2C则拼法1中已经没有积木A可用,不符合题意;①所用B的数目可以为1,3,7:拼法1:2A+1B+5C(或4A+1B+4C)拼法2:1A+3B+4C拼法3:1A+7B+1C两种方法均符合题意.因此这几个正方形的拼法可以是 2A+1B+5C、1A+3B+4C、1A+7B+1C或4A+1B+4C、1A+3B+4C、1A+7B+1C.故答案为:3;2A+1B+5C、1A+3B+4C、1A+7B+1C或4A+1B+4C、1A+3B+4C、1A+7B+1C.【点评】本题考查拼接方法,需要掌握这种题的答题技巧,难度较大.15.(12分)0、1、2、3、4、5、6、7这八个数字可以组成两个四位数M和N,如果M+N的和是一个末三位数字相同、千位数字为0的五位数,这个五位数是10333或10666 ,M×N的积的不同取值共有64 种.【分析】按题意,这8个数字的和为28,组成的两个四位数相加和为五位数,相加时至少进位一次,所以这个五位数的数字之和只能是19或10或1,显然五位数10000不合题意,数字和为10时,这个五位数为10333或10666,进一步根据数字的组合情况可求得M、N取值的不同情形,进而求解.【解答】解:根据分析,这8个数字的和为28,组成的两个四位数相加和为五位数,相加时至少进位一次,所以这个五位数的数字之和只能是19或10或1,显然五位数10000不合题意.当数字和为10时,这个五位数为10333,两个四位数相加时若个位和为13,则十位数字和为2,只能选2和0,则数字和为3无法选数字,故不符合要求,同理十位和为13也不符合要求,因此只能个位和为3,十位和为3,百位和为13,千位和为9,对应的数字M和N分别有2×2×2×2×=32种情况,M ×N的积有32÷2=16种不同情形;当数字和为19时,这个五位数为10666,此时两个四位数相加时个、十、百位的和都只能是6(0+6,1+5,2+4),千位数相加和为10(3+7),共有6×4×2=48种不同情形,所以M×N的积共有16+48=64种.故答案是:10333或10666,64.【点评】本题考查了数字问题,突破点是:数字进位和数字之和的性质,可以推测出五位数及不同的取值.。
小学五年级下学期数学竞赛试题(含答案)一一、拓展提优试题1.用1、2、3、5、6、7、8、9这8个数字最多可以组成个质数(每个数字只能使用一次,且必须使用).2.(7分)如图,按此规律,图4中的小方块应为个.3.如图,在梯形ABCD中,若AB=8,DC=10,S△AMD=10,S△BCM=15,则梯形ABCD的面积是.4.两个数的最大公约数和最小公倍数分别是3和135,求这两个数的差最小是.5.如图,若长方形S长方形ABCD=60平方米,S长方形XYZR=4平方米,则四边形S四边=平方米.形EFGH6.解放军战士在洪水不断冲毁大坝的过程中要修好大坝,若10人需45分钟,20人需要20分钟,则14人修好大坝需分钟.7.四位数的所有因数中,有3个是质数,其它39个不是质数.那么,四位数有个因数.8.(8分)如果两个质数的差恰好是2,称这两个质数为一对孪生质数.例如3和5是一对孪生质数,29和31也是一对孪生质数.在数论研究中,孪生质数是最热门的研究课题之一.华裔数学家张益唐在该课题的研究中取得了令人瞩目的成就,他的事迹激励着更多的青年学子投身数学研究.在不超过100的整数中,一共可以找到对孪生质数.9.三位偶数A、B、C、D、E满足A<B<C<D<E,若A+B+C+D+E=4306,则A最小.10.(8分)图中所示的图形是迎春小学数学兴趣小组的标志,其中,ABCDEF 是正六边形,面积为360,那么四边形AGDH的面积是.11.小猫咪A、B、C、D、E、F排队依次从猫妈妈手中领鱼干,每只小猫咪每次领一条,领完后在道队尾继续排队领,直到鱼干发完.若猫妈妈有278条鱼干,则最后一个领到鱼干的小猫咪是.12.一次数学竞赛中,某小组10个人的平均分是84分,其中小明得93分,则其他9个人的平均分是分.13.同时掷4个相同的小正方体(小正方体的六个面上分别写有数字1、2、3、4、5、6,则朝上一面的4个数字的和有种.14.从1、2、3、4、5中任取3个组成一个三位数,其中不能被3整除的三位数有个.15.(8分)彤彤和林林分别有若干张卡片:如果彤彤拿6张给林林,林林变为彤彤的3倍;如果林林给彤彤2张,则林林变为彤彤的2倍.那么,林林原有张.16.(8分)有一个特殊的计算器,当输入一个数后,计算器先将这个数乘以3,然后将其结果是数字逆序排列,接着再加2后显示最后的结果,小明输入了一个四位数后,显示结果是2015,那么小明输入的四位数是.17.如图六角星的6个顶点恰好是一个正六边形的6个顶点,那么阴影部分面积是空白部分面积的倍.18.观察下面数表中的规律,可知x=.19.如图,在△ABC 中,D 、E 分别是AB 、AC 的中点,且图中两个阴影部分(甲和乙)的面积差是5.04,则S △ABC = .20.(8分)6个同学约好周六上午8:00﹣11:30去体育馆打乒乓球,他们租了两个球桌进行单打比赛每段时间都有4 个人打球,另外两人当裁判,如此轮换到最后,发现每人都打了相同的时间,请问:每人打了分钟.21.用长是5厘米、宽是4厘米、高是3厘米的长方体木块叠成一个正方体,至少需要这种长方体木块 块.22.(15分)如图,正六边形ABCDEF 的面积为1222,K 、M 、N 分别AB ,CD ,EF 的中点,那么三角形PQR 的边长是 .23.已知13411a b -=,那么()20132065b a --=______。
第 1 页 共 10 页 2017年第十六届“春蕾杯”小学数学竞赛试卷(五年级决赛)一、基础题(每题6分,共60分)1.(6分)计算①(4.8×7.5×8.4)÷(2.1×1.6×1.5)= .②(0.125+34)÷(75−0.7)×16125= . ③(1−12)×(1−13)×(1−14)×(1+15)×(1+16)×(1+17)= .2.(6分)一张足够大的纸的厚度是0.01厘米,对折一次就是0.02厘米,再对折就是0.04厘米,继续对折下去,一共对折15次,这张纸的厚度是 厘米.3.(6分)有3个连续的三位数,分别能被7、8、9整除,这3个连续的三位数的总和是 .4.(6分)有四个孩子,他们的年龄之积是3024,且一个比一个大一岁,这四个孩子的平均年龄是 岁.5.(6分)把57化为循环小数,小数部分前2017个数字的和是 . 6.(6分)从2,2,4,4,5,5,6,6,8,8中取出5个数字,要求其中至少有4个数字不相同,且这五个数字乘积的末位数字是6.用这5个数字组成一个最大的五位数和一个最小的五位数,它们的差是 .7.(6分)有一堆水果糖,如果按8粒一份来分,最后剩下2粒;如果按9粒一份来分,最后剩下3粒;如果按10粒一份来分,最后剩下4粒,这堆糖至少有 粒.8.(6分)有一个长方体,它的正面和底面的面积之和是117,如果它的长、宽、高都是素数,那么它的体积是 .9.(6分)如图所示,在一条400米的环形跑道上,A 、B 两点相距100米.甲、乙两人分别从A 、B 两点同时出发,按逆时针方向跑步.甲每秒跑5米,乙每秒跑4米,每人每跑100米都要停10秒钟,那么甲追上乙需要 秒.10.(6分)如图所示,圆周上共有八个点,每相邻两点的距离不全相等.若以任意三个点为顶点作三角形,一共可以作出 个三角形.。
2017年小学五年级数学竞赛试题及参考答案2017年小学数学学校姓名成绩:一、填空题(每小题4分,共40分)1、一个三位数,它的数字之和正好是18,而十位数字是个位数字的2倍,百位数字是个位数字的3倍,这个三位数是()。
2、100个馒头100个和尚吃,大和尚每人吃3个,小和尚3人吃一个,则大和尚有()个,小和尚有()个。
3、15年前父亲年龄是儿子的7倍,10年后,父亲年龄是儿子的2倍。
今年父亲()岁,儿子()岁。
4、差是减数的4倍,差与减数的差是150。
被减数是()。
5、平面上有30个点,任意三点都不在同一条直线上,若每两点间连一条线段,共可连出()条线段。
6、有人民币5元一张、2元一张、1元三张、5角一张、2角三张、1角一张。
要从中拿出8.6元,有()种分歧的拿法。
7、1×2×3×……×49×50的积的末尾继续有()个零。
8、午餐时,甲有4包点心,乙带有3包点心,(7包点心价钱一样),丙没食物。
他们把点心平分食用,吃完算账丙要给甲和乙共7元钱,那么,乙()元。
9、3247—1630的尾数是()。
10、在右面的乘法中,A、B表示不同的数字,其中A表示(),B表示()。
二、挑选题(每题2分,共10分)1、全班35位同学排成一行,从左边数小明是第20个,从右边数小刚是第21个,小明与小刚之间有()人。
A.6 B.5 C.4D.31应得2、右图中共有()个三角形。
A.8B.11C.14D.173、小华今年12岁,5年后爷爷是他年龄的5倍,爷爷现在的年龄是()。
A.80 B.81 C.82D.844、566除以一个数所得的商是12,而且除数与余数的差是6,余数是()。
A.40 B.38C.36D.345、现有30克和5克的砝码和一台天平,要把300克盐均分成3等份,至少要称()次。
A.2 B.3C.4D.5三、简便计算(每题5分,共20分)(1)2010×—2009×(2)6.8×0.1+0.5×68+0.049×680(3)5.3÷9+3.7÷9(4)1-3+5-7+9-11+…-1999+2001四、解答题(每小题10分,共30分)。
数学竞赛试卷五年级下册【含答案】专业课原理概述部分一、选择题(每题1分,共5分)1. 下列哪个数是质数?A. 21B. 23C. 27D. 302. 一个等腰三角形的底边长为10厘米,腰长为12厘米,那么这个三角形的周长是多少厘米?A. 22厘米B. 32厘米C. 44厘米D. 52厘米3. 下列哪个数是偶数?A. 101B. 102C. 103D. 1044. 一个长方体的长、宽、高分别是8厘米、6厘米、4厘米,那么这个长方体的体积是多少立方厘米?A. 192立方厘米B. 200立方厘米C. 216立方厘米D. 224立方厘米5. 下列哪个分数是最简分数?A. 2/4B. 3/6C. 4/8D. 5/10二、判断题(每题1分,共5分)1. 0是最小的自然数。
()2. 任何两个奇数相加的和都是偶数。
()3. 任何两个偶数相加的和都是偶数。
()4. 一个正方形的周长等于它的面积。
()5. 1是任何非0自然数的因数。
()三、填空题(每题1分,共5分)1. 36的因数有:1、2、3、4、6、12、18、______。
2. 一个等边三角形的周长是18厘米,那么它的边长是______厘米。
3. 0.25小时等于______分钟。
4. 一个长方体的长是10厘米,宽是6厘米,高是4厘米,那么它的体积是______立方厘米。
5. 下列各数中,合数有:4、6、8、9、10、______。
四、简答题(每题2分,共10分)1. 请写出5个质数。
2. 请写出3个偶数。
3. 请写出3个奇数。
4. 请写出2个既是质数又是偶数的数。
5. 请写出2个既是奇数又是合数的数。
五、应用题(每题2分,共10分)1. 一个长方体的长是12厘米,宽是8厘米,高是6厘米,那么这个长方体的表面积是多少平方厘米?2. 一个等腰直角三角形的直角边长为10厘米,那么这个三角形的面积是多少平方厘米?3. 一个数加上它的2倍再加上它的3倍,结果是60,那么这个数是多少?4. 一个数的3倍减去它的2倍,结果是10,那么这个数是多少?5. 一个长方体的长、宽、高分别是10厘米、6厘米、4厘米,那么这个长方体的对角线长度是多少厘米?六、分析题(每题5分,共10分)1. 请分析一个长方体和一个正方体的相同点和不同点。
2017年第11届北京学而思综合能力诊断五年级4月竞赛数学试卷一.填空题Ⅰ(每题5分,共20分)二.填空题Ⅱ(每题6分,共24分)三.填空题Ⅲ(每题7分,共28分)爱智康1.清明节是中国民间最重要的“八节”(上元、清明、立夏、端午、中元、中秋、冬至和除夕)之一.今年清明节是月日,那么,和的最大公因数是 .44842.定义新运算,例如.那么, .a ∇b =(a +b )×(a −b )3∇2=(3+2)×(3−2)=56∇4=3.下图中有 个三角形.4.薇儿有一些铅笔和钢笔,其中铅笔的数量是钢笔的倍,且铅笔比钢笔多支.那么,薇儿有 支铅笔.385.艾迪和薇儿进行一场计算比赛,以积分卡作为奖品.艾迪答对第一题,奖励积分卡总量的;薇儿答对第二题,奖励积分卡总量的.最终还剩张积分卡.那么,原本共有 张积分卡.1213106.下图是由块尺寸相同的小正方体拼成的立体图形.在不移动图中已有小正方体的前提下,至少还需要 个同样大小的小正方体,才能拼成一个完整的实心正方体.147.我们把只由数字和组成的非零自然数叫做“球球数”,那么,能被整除的最小 “球球数”是 .08158.在下面的乘法数字谜中,两个乘数之和是 .9.已知循环小数.那么 .0.2=a ∙5∙N 27N =10.如下图,正方形内接于圆,以正方形边长为直径做两个半圆,已知正方形面积是平方厘米,那么图中阴影部分的面积是 平方厘米.18四.填空题Ⅳ(每题8分,共32分)五.计算题(每题8分,共16分)爱智康11.博士在纸上写出一个各位数字互不相同的三位数,艾迪在三位数前填上数字,组成的四位数恰好是的倍数;薇儿在三位数前填上数字,组成的四位数恰好是的倍数;大宽在三位数前填上数字,组成的四位数恰好是的倍数.那么三位数的最大值是 .abc ¯¯¯¯¯¯¯a aabc ¯¯¯¯¯¯¯¯¯¯a b babc ¯¯¯¯¯¯¯¯¯b c cabc ¯¯¯¯¯¯¯¯¯c abc ¯¯¯¯¯¯¯12.下图的每个方格中填入至中的一个数字,使得每行、每列和每个粗线宫内数字都不重复,且每条线上的数都是回文数,例如:、这样对称的数都叫做回文数.那么,四位数 .161213443=ABCD ¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯13.一个各位数字互不相同的五位数,如果万位,千位,百位的数字依次增大;百位,十位,个位的数字依次减小,我们称这样的数为“宝塔数”.那么符合条件的“宝塔数”有 个.14.甲、乙两人分别从、两地同时出发相向而行,、分别是的三等分点.甲在段和段的速度是米/秒,在段的速度是米/秒;乙的速度是米/秒.已知甲乙第一次相遇地点和第二次相遇地点相距米,那么两地的距离是 米.A B C D AB AC DB 3CD 24760AB 15.定义为,,,,的最小公倍数,例如:,,,若是的因数个数,那么有 个奇因数.M n 123⋯n =[1,2,3]=6M 3=[1,2,3,4]=12M 4=[1,2,3,4,5,6,7,8]=840M 8N M 100N 16.如图,已知正六边形的面积是平方厘米,分别以正六边形邻边对角线为边向外作六个大正六边形,那么阴影部分面积是 平方厘米.ABCDEF 1817.(1)(2)计算下列题目,写出简要的计算过程与计算结果:666×+666×+666×121316(++)×12011×212×313×418.解下列方程或者方程组,写出简要的解方程过程与方程的解:x −1x +1。
小学五年级下学期数学竞赛试题(含答案)一、拓展提优试题1.如果一个自然数的约数的个数是奇数,我们称这个自然数为“希望数”,那么,1000以内最大的“希望数”是.2.小松鼠储藏了一些松果过冬.小松鼠原计划每天吃6个松果,实际每天比原计划多吃2个,结果提前5天吃完了松果.小松鼠一共储藏了个松果.3.(8分)在长方形ABCD中,BE=5,EC=4,CF=4,FD=1,如图所示,那么△AEF的面积是;4.甲、乙两人进行射击比赛,约定每中一发得20分,脱靶一发扣12分,两人各打10分,共得208分,最后甲比乙多得64分,乙打中发.5.如图:平行四边形ABCD中,OE=EF=FD.平行四边形面积是240平方厘米,阴影部分的面积是平方厘米.6.(8分)有一种细胞,每隔1小时死亡2个细胞,余下的每个细胞分裂成2个.若经过5小时后细胞的个数记为164.最开始的时候有个细胞.7.如图中,A、B、C、D为正六边形四边的中点,六边形的面积是16,阴影部分的面积是.8.某数学竞赛有10道题,规定每答对一题得5分,答错或不答扣2分.A、B 两人各自答题,得分之和是58分,A比B多得14分,则A答对道题.9.如图,魔术师在一个转盘上的16个位置写下来了1﹣16共16个数,四名观众甲、乙、丙、丁参与魔术表演.魔术师闭上眼,然后甲从转盘中选一个数,乙、丙、丁按照顺时针方向依次选取下一个数,图示是一种可能的选取方式,魔术师睁开眼,说:“选到偶数的观众请举手.”,这时候,只有甲和丁举手,这时候魔术师就大喝一声:“我知道你们选的数了!”.你认为甲和丁选的数的乘积是.10.用一根34米长的绳子围成一个矩形,且矩形边长都是整数米,共有种不同的围法(边长相同的矩形算同一种围法).11.(8分)有一个特殊的计算器,当输入一个数后,计算器先将这个数乘以3,然后将其结果是数字逆序排列,接着再加2后显示最后的结果,小明输入了一个四位数后,显示结果是2015,那么小明输入的四位数是.12.(8分)小胖把这个月的工资都用来买了一支股票.第一天该股票价格上涨,第二天下跌,第三天上涨,第四天下跌,此时他的股票价值刚好5000元,那么小胖这个月的工资是元.13.如图是一个由26个相同的小正方体堆成的几何体,它的底层由5×4个小正方体构成,如果把它的外表面(包括底面)全部涂成红色,那么当这个几何体被拆开后,有3个面是红色的小正方体有块.14.同学们去春游,带水壶的有80人,带水果的有70人,两样都没带的有6人.若既带水壶又带水果的人数是所有参加春游人数的一半,则参加春游的同学共有人.15.某场考试共有7道题,每道题问的问题都只与这7道题的答案有关,且答案只能是1、2、3、4中的一个.已知题目如下:①有几道题的答案是4?②有几道题的答案不是2也不是3?③第⑤题和第⑥题的答案的平均数是多少?④第①题和第②题的答案的差是多少?⑤第①题和第⑦题的答案的和是多少?⑥第几题是第一个答案为2的?⑦有几种答案只是一道题的答案?那么,7道题的答案的总和是.【参考答案】一、拓展提优试题1.解:根据分析可得:1000以内最大的“希望数”就是1000以内最大的完全平方数,而已知1000以内最大的完全平方数是312=961,根据约数和定理可知,961的约数个数为:2+1=3(个),符合题意,答:1000以内的最大希望数是961.故答案为:961.2.解:(6+2)×[(5×6)÷2]=8×15,=120(个).答:小松鼠一共储藏了120个松果.故答案为:120.3.解:根据分析,AD=BE+EC=5+4=9,AB=1+4=5,S△EFC=×EC×FC=×4×4=8;S△ABE=×AB×BE=×5×5=12.5;S△ADF=×AD×DF=×9×1=4.5;S长方形ABCD=AB×AD=5×9=45,要求的△AEF的面积等于整体长方形的面积减去三个三角形的面积.S△AEF=S长方形ABCD﹣S△EFC﹣S△ABE﹣S△ADF=45﹣8﹣12.5﹣4.5=20.故答案是:20.4.解:假设全打中,乙得了:(208﹣64)÷2=72(分),乙脱靶:(20×10﹣72)÷(20+12),=128÷32,=4(发);打中:10﹣4=6(发);答:乙打中6发.故答案为:6.5.解:因为平行四边形ABCD中,AC和BD是对角线,把平行四边形ABCD 的面积平分4份,平行四边形面积是240平方厘米,所以S△DOC=240÷4=60(平方厘米),又因为△OCE、△ECF、△FCD和△DOC等高,OE=EF=FD,所以S△ECF=S△DOC=×60=20(平方厘米),所以阴影部分的面积是 20平方厘米.故答案为:20.6.解:第5小时开始时有:164÷2+2=84(个)第4小时开始时有:84÷2+2=44(个)第3小时开始时有:44÷2+2=24(个)第2小时开始时有:24÷2+2=14(个)第1小时开始时有:14÷2+2=9(个)答:最开始的时候有 9个细胞.故答案为:9.7.解:如图:连接正方形的一条对角线,延长DA,与最上边正六边形边的延长线交与一点,这样可得两个三角形①、②三角形①和三角形②是全等三角形,它们的面积相等,进而可得出阴影部分两侧的三角形可补到六边形的角上,这样就成了一个长方形,阴影部分的面积等于空白部分的面积,所以阴影部分的面积是正六边形面积的一半16÷2=8答:阴影部分的面积是8.故答案为:8.8.解:(58+14)÷2=72÷2=36(分)答错:(5×10﹣36)÷(2+5)=14÷7=2(道)答对:10﹣2=8道.故答案为:8.9.解:依题意可知:2个偶数中间间隔是2个奇数.发现只有数字10,11,9,12是符合条件的数字.乘积为10×12=120.故答案为:12010.解:设矩形的长为am,宽为bm,且a≥b,根据题意,a+b=17,由于a,b均为整数,因此(a,b)的取值有以下8种:(16,1),(15,2),(14,3),(13,4),(12,5),(11,6),(10,7),(9,8),故答案为8.11.解:依题意可知:经过了乘以3,再逆序排列,再加上2得到的数字是2015.那么要求原来的数字可以逆向思维求解.2015﹣2=2013,再逆序变成3102,再除以3得3102÷3=1034.故答案为:103412.解:5000÷(1﹣)÷(1+)÷(1﹣)÷(1+)=5000××××=5000(元)答:小胖这个月的工资是5000元.故答案为:5000.13.解:依题意可知:第一层的共有4个角满足条件.第二层的4个角是4面红色,去掉所有的角块其余的符合条件.分别是3+2+3+2=10(个);共10+4=14(个);故答案为:1414.解:设既带水壶又带水果的为x人,则参加春游的同学共有2x人,由题意可得:80+70﹣x+6=2x156﹣x=2x3x=156x=52则2x=2×52=104答:则参加春游的同学共有104人.故答案为:104.15.解:因为每道题的答案都是1、2、3、4的一个,所以①的答案不宜太大,不妨取1,此时②的答案其实就是7个答案中1和4的个数,显然只能取2、3、4中的一个,若取2,则意味着剩余的题目只能有一道题答案为1,这是④填1,⑦填2,⑤填3,⑥填2,而③无法填整数,与题意矛盾;所以②的答案取3,则剩余的题目答案为1和4各有1道,此时④填2,显然⑦只能填1,那么⑤填2,则4应该是⑥的答案,从而③填3,此时7道题的答案如表;它们的和是1+3+3+2+2+4+1=16.。
五年级数学下册竞赛试题HEN system office room 【HEN16H-HENS2AHENS8Q8-HENH1688】五年级数学竞赛试卷年班姓名:得分:一、填空题:(20分)1、一间长方体形状的教室长8米,宽6.5米,高3.2米,里面坐着50名学生,平均每人占地()平方米,平均每人占有空间()立方米。
2、把一条4分米长的线对折后再对折一次,折后每段长是全长的(),每段长是()分米。
3、一个分数,分子和分母的和是28。
如果分子减去2,这个分数就等于1,原分数是()。
4、1×2+3×4+5×6+……+199×200的和是奇数还是偶数?()5、一袋糖,既可以分给8个小朋友,也可以分给12个小朋友,都没有剩余,这袋糖至少有()个。
6、甲、乙、丙、丁四人共买了10个面包,他们平分着吃,甲拿出6个面包的钱,乙和丙都只拿出2个面包的钱,丁没有带钱,吃完后一算,丁应该拿出元,甲应该收回()元。
7、35的分子加上9,要使分数的大小不变,分母应该加上()。
8、从面积是60平方分米,宽是4分米的长方形纸上剪下一个最大的三角形,这个三角形的面积是()平方分米。
9、小李上班步行下班乘车,往返一次需要小时,如果往返都乘车,那么只要小时,如果都步行,那么需要()小时。
10、两个自然数的和与差的积是41,那么这两个自然数的积是()。
三、解决问题:(50分)1、李老师从家步行去县城,每小时走5千米。
回家时,骑自行车每小时走13千米。
骑自行车比步行的时间少4小时。
李老师家到县城有多少千米?2、一个长20厘米,截面是正方形的长方体,如果长增加5厘米,表面积就增加40平方厘米,求原长方体的表面积?3、一列火车经过南京长江大桥,大桥长6700米,这列火车长140米,火车每分钟行400米,这列火车通过长江大桥需要多少分钟?4、弟弟有课外书20本,哥哥有课外书25本,哥哥给弟弟多少本后,弟弟的课外书是哥哥的2倍?5、有白兔、灰兔、黑兔若干只。
新北师大版2016-2017下学期五年级数学核心素养竞赛题班级: 姓名:一、填空(共22分)1、在括号里填上合适的数,9( ) = 0.75 = 3 ÷( )=( )24=( )折 2、5700立方分米 = ( ) 立方米 9.12升 = ( ) 毫升3、至少需要( )个小正方体才能拼成一个大正方体,如果一个小正方体的棱长是6厘米,那么大正方体的表面积是( )平方厘米。
4、 一根绳子长8米,截下34米,还剩下( )米;一根绳子长8米,截下34,还剩下( )米。
5、电脑城有电脑220台,第一天卖出15,第二天卖出的是第一天的119,第二天卖出电脑( )台。
二、判断(共12分)1、 棱长是6厘米的正方体,它的体积与表面积是相等的。
( )2、相邻的两个面是正方形的长方体一定是一个正方体。
( )3、甲数的45 和乙数相等,那么甲数比乙数大14。
( )4、一个长方体恰好截成两个正方体,截开后表面积增加18平方米,这个长方体体积是18立方米。
( )三、我会选(共12分)1、两根同样长的铁丝,一根用去全长的14 ,另一根用去全长的14米,剩下的铁丝 ( )。
①第一根长 ②第二根长 ③两根一样长 ④无法比较2、正方体的棱长扩大到原来的2倍,正方体的体积扩大到原来的( ) 。
①2倍 ②6倍 ③4倍 ④ 8倍3、把45米长的铁丝剪成相等的3段,每段是全长的( )。
① 13 米 ② 13 ③ 112 ④ 34米 4、古埃及人想表示,不用“”,而是用“+”来表示。
如果用古埃及 人的方法表示,应为( )① + ② + ③ + ④ ×四、计算。
(1)口算(共10分)+= += ×= 5= 2- =3÷7= ÷= 4= = - =(2)怎样简便就怎样算。
(共8分)35×49 - 49 + 11×49 48×(165+ 1324 - 712 )(3)我会解方程。
五年级 第1页 五年级 第2页绝密★启用前世界少年奥林匹克数学竞赛(中国区)选拔赛地方海选赛试题(2017年10月)选手须知:1、本卷共三部分,第一部分:填空题,共计50分;第二部分:计算题,共计12分;第三部分:解答题,共计58分。
2、答题前请将自己的姓名、学校、赛场、参赛证号码写在规定的位置。
3、比赛时不能使用计算工具。
4、比赛完毕时试卷和草稿纸将被收回。
五年级试题(A卷)(本试卷满分120分 ,考试时间90分钟 )一、填空题。
(每题5分,共计50分)1、一桶油连桶重120千克,用去一半后,连桶还重65千克。
这桶里原有油 千克,空桶 重 千克。
2、连续的六个自然数,前三个数的和是60,那么后三个数的和是 。
3、有一个一位小数,如果去掉小数点,得到的新数比原数多907.2这个一位小数是 。
4、今天是星期日,从今天算起,第60天是星期 。
5、有一根木料,要锯成4段,每锯开一处,需要4分钟。
全部锯完需要 分钟。
6、如图长方形纸片,假如按图中所示剪成四块,这四块纸片可拼成一个正方形.那么所拼成的正方形 的边长是 厘米.7、苹果的个数是梨的3倍,如果每天吃2个苹果、1个梨,若干天后,苹果还剩7个,梨正好全 部吃完。
原来有苹果 个。
8、在一次登山活动中,小红上山每分钟行50米,然后按原路下山,每分钟行75米。
小红上山和 下山平均每分钟行 米。
9、一个数减去16加上24,再除以7得36,这个数是 。
10、自1开始,每隔3个数一数,得到数列1,4,7,10,……问第100个数是 。
二、计算题。
(每题6分,共计12分)11、 9999+999+99+9+812、(425×5776—425+4225×425)÷125÷8省 市 学校 姓名 赛场 参赛证号∕∕∕∕∕∕〇∕∕∕∕∕∕〇∕∕∕∕∕∕∕〇∕∕∕∕∕∕ 密 〇 封 〇 装 〇 订 〇 线 ∕∕∕∕∕∕〇∕∕∕∕∕∕〇∕∕∕∕∕∕〇∕∕∕∕∕∕〇∕∕∕∕∕∕密 封 线 内 不 要 答 题三、解答题。
最新2017人教版(内部密卷)小学五年级数学竞赛试卷及答案小学五年级数学知识竞赛试卷一、填空。
(每小题5分,合计70分)1.简算:89.6×3.68+8.96×63.2=6666×74-3333×48= 3316.482.五1班有学生60人,参加语文兴趣小组的有20人,参加数学兴趣小组的有28人。
语、数小组都参加的有10人,这两个兴趣小组都没有参加的有2人。
3.用20个棱长1厘米的正方体可以摆成24种形状不同的长方体。
4.如果把一根木料锯成3段要用6分钟,那么用同样的速度把这根木料锯成6段要用15分钟。
5.五年级同学排成一个方阵,最外一层的人数为60人,这个方阵共有361人。
6.XXX是个数学迷,参加全市初中数学竞赛,他的好友问:“这次数学竞赛,你得多少分?获第几名?”小聪说:“我的名次与我的岁数与我的分数连乘积是2910,你猜我的成绩是90分,名次是第17名。
”7.有一批砖,每块长45厘米,宽30厘米,至少要用9块这样的砖才能铺成一个正方形的地面。
8.一把钥匙只能开一把锁,现有5把钥匙和5把锁搞乱了,最多试开10次就能确定哪把钥匙开哪把锁。
9.从1、2、3、5、7、8中选出四个数字,排成能被2、3、5整除的四位数,其中最大的是8750,最小的是2350.10.一次智力竞赛有20题,规定每答对一题得5分,每答错一题反扣2分。
XXX答完全部题得了72分。
XXX答对了16题。
11.把3÷70化成小数,小数点后面第2012位的数字是4.最新精品真题试卷12.父亲比儿子大30岁,明年父亲的年龄是儿子的3倍。
那么今年儿子是10岁。
13.XXX家里原来有30个鸡蛋,而且还养了一只一天能下一个蛋的母鸡。
XXX一天要吃3个鸡蛋,家里的鸡蛋可以连续吃9天。
14.一个分数,如果分子加上1,分母不变,则分数值为2/3;如果分母加上1,分子不变,则分数值为1/2.原来这个分数是3/4.二、解决问题。
2017年五年级数学下册竞赛试题(卷)得分一、我会填。
(1~13题每空2分,14~17题每空1分,16题算2空,共35分)1、由3个百、4个十、6个一、8个0.01组成的数是( )。
2、0.45=( ) ÷4。
3、找规律填空。
1、4、9、16、25、()、49。
4、一个两位数,十位上的数字是5,个位上的数字是A,这个两位数是()。
5、如果3X+4=25,那么4X+3=()。
6、能同时被2和3整除,并且是5的倍数的最大三位数是()。
7、期中考试张丽语文、数学的平均分为88分,要想语文、数学、英语三科的平均分达到90分,在接下来的英语测试中必须达到()分。
8、把红、黄、蓝、白四种颜色的球各8个放到一个袋子里,至少要取()个球,才可以保证取到两个颜色相同的球。
9、一套西服原价350元,商家搞活动“买四送一”,这套西服实际降低了()元。
10、a与b的积是c,当a增加3倍,b不变时,它们的积是()。
11、如图,一个平行四边形被两条直线分成4个小平行四边形,其中三个的面积分别是22cm2、33cm2、90cm2,阴影部分的面积是()cm2。
12、一个梯形的下底是18厘米。
如果下底缩短8厘米,就成为一个平行四边形,面积减少28平方厘米,原梯形的高是()厘米。
13、一张桌子坐6人,两张桌子拼起来坐10人,三张桌子拼起来坐14人,照这样计算,如果坐38人,需要拼()张桌子才能坐下。
14、用60厘米长的铁丝焊成一个正方体框架(接口处不计),该正方体的体积是(),表面积是()。
15、用12个棱长为1分米的正方体拼成一个长方体,拼成的长方体的表面积最小是( )平方分米,最大是()平方分米。
16、一副扑克牌有54张,从中任意摸一张,摸到4的可能性是()();如果去掉大、小王,摸到牌面是红桃的可能性是()()。
17、当n表示自然数时,2n+1表示();与2n+1相邻的两个偶数是()和()。
二、我会判断。
(每题2分,共12分)1、2.4和2.40相等,但它们的计数单位却不相等。
湖州市第十届“期望杯”小学数学竞赛试题(五年级)(2017年12月30日下午1:30—3:00;满分120分)考点:_______________________ 考场号:___________ 座位号:_________________学校:_______________________ 班级:____________姓名:_________________题号一(1~11)二(12~16)得分得分一、填空(第1~2题每题6分,第3~11题每题7分,共75分)1. 计算:0.37×1.9+0.81×3.7=()2. 计算:15.9÷1.1-3.8÷1.1=()3. 2017个7连乘,积的个位数字是()。
4. 把循环小数2.71828·1·,移动循环节的第一个圆点,使新产生的循环小数尽可能大,最大是()。
5. 左下图是一个经过改造的台球桌面的示意图,图中四个角上的阴影部分分别表示四个入球孔。
如果一个球按图中所示的方向被击出(球可以经过多次反射),那么该球最后将落入()号袋。
6. 排一本400页的书的页码,共需要()个数码“0”。
7. 右上图中每个小正方形的边长都是1,图中阴影部分的面积是()。
8. 把15把椅子放成一排,客人随时来到,并在空椅子上就坐,而每当此时,与他相邻的客人就起身离去。
如果开始时所有椅子都是空的,那么椅子上客人最多时坐()人。
9. 下图中共有12个小图形,每一个不同的小图形表示1-9中的一个数码,每三个图形表示1个三位数。
共有4个三位数:146,521,658和692。
请问,第2幅图表示的三位数是()。
(1)(2)(3)(4)10.从1~9这9个数字中取出三个,组成六个不同的三位数。
如果六个三位数的和是3330,那么这六个三位数中最大的是()11.如右图,1个三角形把平面分成了A、B两部分,那么用3个三角形最多可以把平面分成()部分。
2017年小学第十五届“希望杯”全国数学邀请赛五年级第1试试题以下每题6分,共120分。
1、计算:1.25×6.21×16+5.8=。
2、观察下面数表中的规律,可知x=。
3、图1是一个由26个相同的小正方体堆成的几何体,它的底层由5×4个小正方体构成,如果把它的外表面(包括底面)全部涂成红色,那么当这个几何体被拆开后,有3个面是红色的小正方体有块。
4、非零数字a,b,c能组成6个没有重复数字的三位数,且这6个数的和是5994,则这6个数中的任意一个数都被9整除。
(填“能”或“不能”)5、将4个边长为2的正方形如图2放置在桌面上,则它们在桌面上所能覆盖的面积是。
6、6个大于零的连续奇数的乘积是135135,则这6个数中最大的是。
7、A,B两桶水同样重,若从A桶中倒2.5千克到B桶中,则B桶中水的重量是A桶中水的重量的6倍,那么桶B中原来有水千克。
8、图3是一个正方体的平面展开图,若该正方体相对的两个面上的数值相等,则a—b×c的值是。
9、同学们去春游,带水壶的有80人,带水果的有70人,两样都没带的有6人,若两样都带的人数是所有参加春游人数的一半,则参加春游的同学有人。
10、如图4,小正方形的面积是1,则图中阴影部分的面积是。
11、6个互不相同的非零自然数的平均数是12,若将其中一个两位数ab换成ba,(a,b是非零数字),这6个数的平均数变成15,所有满足条件的两位数ab共有个。
12、如图5,在△ABC中,D,E,分别是AB,AC的中点,且图中两个阴影部分(甲和乙)的面=。
积差是5.04,则S△ABC13、松鼠A,B,C共有松果若干个,松鼠A原有松果26颗,从中拿出10颗平均分给B,C,然后松鼠B拿出自己的18颗松果平均分给A,C,最后松鼠C把自己现有的松果的一半平分给A,B,此时3只松鼠的松果数量相同,则松鼠C原有松果颗。
14、已知α是锐角,β是钝角,4位同学在计算0.25(α+β)时,得到的结果依次是15.2°,45.3°,78.6°,112°,其中可能正确的是。
2017-2018学年浙江省台州市玉环县陈屿小学五年级(下)竞赛数学试卷
一、填空(30分,其中1-4题每空2分,其余每题3分)
1.(4.00分)既是2的倍数,又是5和7的倍数中,最小三位数是,最大三位数是.2.(2.00分)的分子增加15,分母应该增加,分数的大小不变.
3.(2.00分)一个正方体纸盒放在桌面上,它盖住桌面25dm2的面积,这个正方体纸盒的体积是.
4.(4.00分)甲数除以6余3,乙数除以6余2,那么甲乙两数的和除以6余,甲乙两数的差除以6余.
5.(3.00分)五个数的平均数是20,把其中一个数改为8后,这五个数的平均数变成了17,这个改动的数原来为.
6.(3.00分)正方形的对角线长12cm,这个正方形的面积为cm2.
7.(3.00分)有一个自然数,它最小的两个因数之和是4,最大的两个因数之和是100,求这个自然数.
8.(3.00分)下面4个方框各填一个数字,如果这四个数字都是奇数,请写出这个完整的算式.□□×□□=585.
9.(3.00分)四个完全一样的长方形和一个小正方形组成一个大正方形的,(如图)如果大、小正方形的面积分别为64分米2和4分米2,其中一个长方形的长是.
10.(3.00分)甲每小时生产15个零件,乙每小时生产12个零件.一次,甲乙同时生产同样多的零件,结果甲比乙提前4小时完成任务.甲一共生产了个零件.
二、解答题(共1小题,满分12分)
11.(12.00分)简便计算
12.5×+×12.5+×12.5
+++…。
2017年小学五年级下册数学竞赛试题
一.真知灼见。
(每空3分,共45分)
1. 一个长方体木料的长和宽都是4分米,高是8分米,如果把这根木料锯成两个正方体,那么这两个正方体的表面积的和是( )。
2.一个长方形至少旋转( )度,与原来的图形重合。
一个等边三角形至少旋转( )度与原来的图形重合。
一个正六边形至少旋转( )度与原来的图形重合。
3把一张纸连续对折三次,所得长度是这张纸的( ),折四次,所得长度是这张纸的 ( )。
4两个棱长5厘米的正方体木板粘成一个长方体,这个长方体的表面积是( ),体积是( )。
5、用体积是 1立方厘米的小正方体,堆成一个体积是 1立方米的大正方体,需要( )个小正方体木块,如果把这些小正方体木块一个挨一个的排成一行,长( )千米.
6.小红家的贮藏室长16分米,宽12分米,如果用边长是整分米数的正方形地砖把贮藏室的地面铺满,使用的地砖都是整块,可以选择边长是( )分米的地砖.
7. 我们在观察一个正方体时,一次最多能看到( )个面。
8、一根6.4米长的彩带,每1.4米剪一段包扎一个礼盒,这根彩带可以包扎( )个礼盒.
9、四个连续自然数的和是190,其中最大的一个数是( )。
10. 用棱长2厘米的正方体切成棱长1厘米的小正方体,可以切成( )块。
二.精挑细选。
(每题3分,15分)
1.昙花的寿命最少保持能4小时,小麦开花的时间是昙花寿命的
0.02倍,约 ( ) 左右。
A、0.8分钟
B、5分钟
C、0.08分钟
D、4分钟
2.一个长方体体积是100立方厘米,现知它的长是10厘米,宽是2厘米,高是( ) 。
A. 8厘米
B. 5厘米
C. 5平方厘米
3.一个长方体的棱长之和是180厘米,相交于一个顶点的三条棱的长度和是( )。
A. 45厘米
B. 30厘米
C. 90厘米
4.正方体的棱长扩大3倍,体积扩大( )。
A、3倍
B、9倍
C、27倍
5.下面图形中,( )可以密铺。
A 圆
B 正五边形
C 正六边形
三.生活实践。
(每题10分,40分)
1)一个正方形草坪,四周向外修1米宽小路,路面面积是80平方米,求草坪面积。
2)胜利小学五年级3班体育达标人数是24人,没达标人数是12人,达标人数占全班人数的几分之几?
3)一个长方形铁皮长30cm,宽25cm,从四个角各切掉一个长为5cm的正方形,然后做成一个无盖的盒子,这个盒子用了多少铁皮?它的容积是多少?
4)一个底面为正方形的长方体,高减少4厘米就成正方体,表面积比原来减少80平方厘米,长方体体积是多少
(注:文档可能无法思考全面,请浏览后下载,供参考。
可复制、编制,期待你的好评与关注)。