ansys面与面接触分析实例
- 格式:doc
- 大小:829.00 KB
- 文档页数:12
接触问题是一种高度非线性行为,需要较大的计算资源,为了进行实为有效的计算,理解问题的特性和建立合理的模型是很重要的。
接触问题存在两个较大的难点:其一,在你求解问题之前,你不知道接触区域,表面之间是接触或分开是未知的,突然变化的,这随载荷、材料、边界条件和其它因素而定;其二,大多的接触问题需要计算摩擦,有几种摩擦和模型供你挑选,它们都是非线性的,摩擦使问题的收敛性变得困难。
一般的接触分类接触问题分为两种基本类型:刚体─柔体的接触,半柔体─柔体的接触,在刚体─柔体的接触问题中,接触面的一个或多个被当作刚体,(与它接触的变形体相比,有大得多的刚度),一般情况下,一种软材料和一种硬材料接触时,问题可以被假定为刚体─柔体的接触,许多金属成形问题归为此类接触,另一类,柔体─柔体的接触,是一种更普遍的类型,在这种情况下,两个接触体都是变形体(有近似的刚度)。
ANSYS接触能力ANSYS支持三种接触方式:点─点,点─面,平面─面,每种接触方式使用的接触单元适用于某类问题。
为了给接触问题建模,首先必须认识到模型中的哪些部分可能会相互接触,如果相互作用的其中之一是一点,模型的对立应组元是一个结点。
如果相互作用的其中之一是一个面,模型的对应组元是单元,例如梁单元,壳单元或实体单元,有限元模型通过指定的接触单元来识别可能的接触匹对,接触单元是覆盖在分析模型接触面之上的一层单元,至于ANSTS使用的接触单元和使用它们的过程,下面分类详述。
点─点接触单元点─点接触单元主要用于模拟点─点的接触行为,为了使用点─点的接触单元,你需要预先知道接触位置,这类接触问题只能适用于接触面之间有较小相对滑动的情况(即使在几何非线性情况下)如果两个面上的结点一一对应,相对滑动又以忽略不计,两个面挠度(转动)保持小量,那么可以用点─点的接触单元来求解面─面的接触问题,过盈装配问题是一个用点─点的接触单元来模拟面─与的接触问题的典型例子。
点─面接触单元点─面接触单元主要用于给点─面的接触行为建模,例如两根梁的相互接触。
基于ANSYS软件的接触问题分析及在工程中的应用基于ANSYS软件的接触问题分析及在工程中的应用一、引言接触问题是工程领域中常见的一个重要问题,它在很多实际应用中都具有关键作用。
接触分析能够帮助工程师设计和改进各种产品和结构,从而提高其性能和寿命,减少故障和事故的发生。
ANSYS作为一款强大的工程仿真软件,提供了多种接触分析方法和工具,为工程师们解决接触问题提供了便利。
本文将重点介绍基于ANSYS软件的接触问题分析方法和其在工程中的应用。
二、接触问题的分析方法接触问题的分析方法主要包括两种:解析方法和数值模拟方法。
解析方法基于一系列假设和理论分析,能够给出理论解析解,但局限于简单的几何形状和边界条件。
数值模拟方法通过建立几何模型和边界条件,利用数值计算的方法求解接触过程的力学行为和变形情况,可以适用于复杂的几何形状和边界条件。
ANSYS软件采用的是数值模拟方法,它基于有限元法和多体动力学原理,可以使用接触元素来建立模型,模拟接触过程中的相互作用,得到接触点的应力、应变以及变形信息,从而分析接触的性能和行为。
接下来将介绍ANSYS软件中的接触分析方法和其在工程中的应用。
三、接触分析方法1. 接触元素:ANSYS软件提供了多种接触元素供用户选择,包括面接触元素、体接触元素和线接触元素。
用户可以根据具体的接触问题选择合适的接触元素,建立几何模型来模拟接触行为。
2. 接触定义:在ANSYS软件中,用户可以通过定义接触性质、接触参数和接触约束来描述接触问题。
接触性质包括摩擦系数、接触行为模型等;接触参数包括接触初始状态、接触刚度等;接触约束包括接触面间的约束条件等。
3. 接触分析:通过在ANSYS软件中建立模型,定义接触参数和加载条件,进行接触分析,得到接触点的应力、应变和变形信息。
可以通过分析结果来评估接触性能,发现可能存在的问题,并进行改进和优化。
四、ANSYS软件在工程中的应用1. 机械工程领域:在机械工程中,接触问题广泛存在于各种设备和结构中,如轴承、齿轮、支撑结构等。
面与面接触实例:插销拨拉问题分析定义单元类型Element/add/edit/delete定义材料属性Material Props/Material ModelsStructural/Linear/Elastic/Isotropic定义材料的摩擦系数建立几何模型Modeling/Create/Volumes/Block/By Dimensions X1=Y1=0,X2=Y2=2,Z1=2、5,Z2=3、5Modeling/Create/Volumes/Cylinder/By DimensionsModeling/Operate/Booleans/Subtract/V olumes先拾取长方体,再拾取圆柱体。
Modeling/Create/Volumes/Cylinder/By Dimensions划分掠扫网格Meshing/Size Cntrls/ManualSize/Lines/Picked Lines 拾取插销前端的水平与垂直直线,输入NDIV=3再拾取插座前端的曲线,输入NDIV=4PlotCtrls/Style/Size and Shape,在Facets/element edge列表中选择2 facets/edge建立接触单元Modeling/Create/Contact pair,弹出Contact Manager对话框,如图所示。
单击最左边的按钮,启动Contact Wizard(接触向导),如图所示。
单击Pick Target,选择目标面。
选择接触面定义位移约束施加对称约束,Define Loads/Apply/Structural/Displacement/Symmetric B、C/On Areas,选择对称面。
再固定插座的左侧面。
设置求解选项Analysis Type/Sol’s Control求解:Solve/Current LS绘制装配应力图General Postproc/Plot Results/Contour Plot/Nodal Solution,选择Stress/von Mises stress求解拨拉过程选择Z=4、5处的所有节点。
前言WokBench 是众所周知的好东西,以下是自己琢磨的一个小应用,肯定有不对的地方,欢迎指出,便于大家共同提高。
问题描述这是一个塑料小卡扣的例子,主要想使用WorkBench 了解在使用中,塑料件的变形是否足够。
模型是用ProE 制作的,为了简化,只切取了关于变形的部分,如下图:其中蓝色的部分是活动的,只有一个方向的运动,红色的部分是固定的。
大体的尺寸如下,单位是毫米:注意:在模型中,蓝色和红色部件的距离要控制好(这是由ProE 中,模型装配关系决定的),如果太近,软件将自动计算出一个接触区域,但对于这个例子,还需要手动扩大接触区域。
如果距离太远,在手动设置Pinball 类型的接触区域时,Pinball 的半径要设得很大,可能导致无法计算。
请参考上面的尺寸图纸调节两个部件之间的距离。
之后,设置接触面(2、3):需要将两个部件在运动过程中,会接触的地方一一标出,千万不要加无用的面。
将Pinball Region 设置为Radius 方式(4),并将Radius 设置一个合适的值(5),本例设置了3 毫米(如图,会形成一个蓝色的大圆球),求解的时候软件会使用这个PinBall 自动探测接触。
还需要将接触方式设置为无摩擦的(6)。
最后将接触面计算方式设置为Adjust To Touch(7)。
也可以尝试其他的方式,不过对于这个仅研究红色部件变形的例子就无所谓了。
关于单元格WorkBench 中可以不自行划分单元格(在解算的时候,如果没有手动的设置,软件就会先自动划分),软件帮你自动产生。
如果你的其他设置正确,即便是这个自动的值也能很精确了。
添加分析这个分析用静力学就可以了(1)。
之后要设置Analysis Setting(2)。
将Nuber Of Step 设置为2(3)。
注意:1)蓝色部件在运动的过程中,先压迫红色部件,再逐渐松开,因此必须将这个过程至少分解为至少两个阶段(阶段指“Step”)。
a n s y s面与面接触分析实例面与面接触实例:插销拨拉问题分析定义单元类型Element/add/edit/delete定义材料属性Material Props/Material Models Structural/Linear/Elastic/Isotropic定义材料的摩擦系数建立几何模型Modeling/Create/Volumes/Block/By DimensionsX1=Y1=0,X2=Y2=2,Z1=2.5,Z2=3.5Modeling/Create/Volumes/Cylinder/By DimensionsModeling/Operate/Booleans/Subtract/Volumes先拾取长方体,再拾取圆柱体。
Modeling/Create/Volumes/Cylinder/By Dimensions划分掠扫网格Meshing/Size Cntrls/ManualSize/Lines/Picked Lines拾取插销前端的水平和垂直直线,输入NDIV=3再拾取插座前端的曲线,输入NDIV=4PlotCtrls/Style/Size and Shape,在Facets/element edge列表中选择2 facets/edge建立接触单元Modeling/Create/Contact pair,弹出Contact Manager对话框,如图所示。
单击最左边的按钮,启动Contact Wizard(接触向导),如图所示。
单击Pick Target,选择目标面。
选择接触面定义位移约束施加对称约束,Define Loads/Apply/Structural/Displacement/Symmetric B.C/On Areas,选择对称面。
再固定插座的左侧面。
设置求解选项Analysis Type/Sol’s Control求解:Solve/Current LS绘制装配应力图General Postproc/Plot Results/Contour Plot/Nodal Solution,选择Stress/von Mises stress求解拨拉过程选择Z=4.5处的所有节点。
ansys 接触分析详解ansys是一种广泛使用的有限元分析软件,可用于许多工程领域,包括接触问题的解决。
接触分析是模拟不同组件之间的接触和相互作用的过程,包括机械接触问题、磨损问题和摩擦问题等。
在这篇文章中,我们将深入探讨ansys接触分析的基础知识和应用。
首先,ansys的接触分析功能主要是基于两个主要的接触算法:拉格朗日法和欧拉法。
拉格朗日法是一种基于位移的方法,它根据接触点的相对位移计算接触力,并将其应用于固体上。
欧拉法是一种基于速度的方法,它通过基于刚体动力学计算接触力。
两种方法各有优缺点,应根据具体问题选择合适的方法。
接下来,我们将介绍ansys中用于接触分析的工具和技术:1. 接触配对:在模拟接触问题时,需要对参与接触的两个组件进行配对。
ansys可以自动完成这个过程,并且用户可以通过手动指定匹配方式来进行更精确的模拟。
2. 接触条件:ansys支持多种接触条件,包括无摩擦、粘滞、线性弹簧和非线性弹簧。
用户可以根据实际情况选择合适的接触条件,并根据需要进行调整。
3. 接触分析类型:ansys支持两种接触分析类型:静态接触分析和动态接触分析。
静态接触分析用于研究静止状态下的接触问题,而动态接触分析用于模拟动态接触问题,例如冲击和振动。
4. 接触网格:接触分析需要对网格进行紧密的划分,以准确地表示接触面的几何形状。
为此,ansys提供了多种接触网格工具,包括自动网格划分、手动网格划分和基于接触表面的划分。
用户可以根据需要使用这些工具。
5. 接触后处理:完成接触分析后,还需要进行结果的后处理。
ansys提供了多种接触后处理工具,例如接触力分布图、接触区域和应力分布。
用户可以使用这些工具对结果进行深入的分析。
最后,ansys接触分析的应用范围非常广泛,例如机械工程、航空航天、汽车、船舶、建筑和医疗设备等领域。
ansys的接触分析功能可以帮助工程师准确地模拟接触问题,并提供精确的结果,从而帮助他们做出更好的决策和设计。
Ansys非线性接触分析和设置设置实常数和单元关键选项程序利用20个实常数和数个单元关键选项,来操纵面─面接触单元的接触。
参见《ANSYS Elements Reference》中对接触单元的描述。
实常数在20个实常数中,两个(R1和R2)用来概念目标面单元的几何形状。
剩下的用来操纵接触面单元。
R1和R2 概念目标单元几何形状。
FKN 概念法向接触刚度因子。
FTOLN 是基于单元厚度的一个系数,用于计算许诺的穿透。
ICONT 概念初始闭合因子。
PINB 概念“Pinball"区域。
PMIN和PMAX 概念初始穿透的允许范围。
TAUMAR 指定最大的接触摩擦。
CNOF 指定施加于接触面的正或负的偏移值。
FKOP 指定在接触分开时施加的刚度系数。
FKT 指定切向接触刚度。
COHE 制定滑动抗力粘聚力。
TCC 指定热接触传导系数。
FHTG 指定摩擦耗散能量的热转换率。
SBCT 指定 Stefan-Boltzman 常数。
RDVF 指定辐射观看系数。
FWGT 指定在接触面和目标面之间热散布的权重系数。
FACT 静摩擦系数和动摩擦系数的比率。
DC 静、动摩擦衰减系数。
命令: RGUI:main menu> preprocessor>real constant对实常数 FKN, FTOLN, ICONT, PINB, PMAX, PMIN, FKOP 和 FKT,用户既能够概念一个正值,也能够概念一个负值。
程序将正值作为比例因子,将负值作为绝对值。
程序将下伏单元的厚度作为ICON,FTOLN,PINB,PMAX 和 PMIN 的参考值。
例如 ICON = 说明初始闭合因子是“*基层单元的厚度”。
但是,ICON = 那么表示真实调整带是单位。
若是下伏单元是超单元,那么将接触单元的最小长度作为厚度。
参见图5-8。
图5-8 基层单元的厚度在模型中,若是单元尺寸转变专门大,而且在实常数如 ICONT, FTOLN, PINB, PMAX, PMIN 中应用比例系数,那么可能会显现问题。
ANSYS中如何使用接触向导定义接触对在ANSYS中定义接触通常有两种方法:1.用户自己手工创建接触单元和目标单元。
这种方法,在定义接触和目标单元时还比较简单,但是在设置或修改单元属性和定义实常数时却比较复杂。
需要用户对接触有较深刻的理解和通过实践积累丰富的经验。
2.即接触本文将化。
图6mm一、1.和几何模型有关。
比如,对三维面模型,可以划分壳体单元,后面直接以壳体面作为创建接触对的基础;而三维体模型,可以划分实体单元,后面则以实体单元的表面作为创建接触对的基础。
2. 在使用接触管理器(接触向导) 创建接触对时,可以选为接触面或目标面的对象有:线、面、节点、节点组(component)等。
如果模型比较复杂,临时选择不太方便,建议将准备创建接触的实体边界(面、线)分别建为单独的实体组 (Component),或者分别取出其包含的节点(使用NSLA、NSLL命令),建为单独的节点组件(Component)。
二、打开接触管理器在前处理中,点击GUI屏幕上命令输入小窗口右边的第三个小图标,就可以打开接触管理器:器(在创置。
三、创建接触对下面来创建接触对。
需要创建两个接触对,分别为两个平板与上下两个圆半球之间可能接触的部位。
为了便于创建接触对,先创建4个组件,分别包含上下平板与球之间的两个接触对的可能接触面。
图4中名为A1、A2、A3和A4的四个不同颜色的Component分别为相应的四个组件:然后创建接触对。
在接触向导窗口中,点击左上角第一个按钮“ContactWizard”:。
然后点击选择上半球的4个小球面作为“目标面”:对话框变为选择“接触面”,在其中,将ContactSurface设置为Areas;ContactElementType 设置为Surface-to-Surface。
然后点击“PickContact…”按钮选择接触面:点击Next,对话框变为如下形式:1.系数。
或者,还可以在材料ID中输入一个未定义过的材料编号,程序会自动创建新的材料编号,并定义摩擦系数值。
ANSYS接触分析ANSYS是一种广泛使用的工程仿真软件,能够进行各种工程问题的数值分析和模拟。
接触分析是ANSYS中的一种重要分析方法,用于研究和评估两个或多个物体之间的接触行为。
接触分析在机械、土木、汽车、航空航天等领域都有广泛应用,在设计和优化工程系统时提供了重要指导。
接触分析的基本原理是通过建立接触面上的接触条件和力学行为模型,来预测接触过程中的应力、应变和接触面的变形情况。
使用接触分析可以评估接触面上的压力分布、接触面的形状变化、摩擦力和接触面之间的滑动行为等。
接触分析能够帮助工程师优化设计,提高系统可靠性和效率。
ANSYS提供了多种接触分析方法,包括接触与非线性分析(contact and nonlinear analysis)、接触单元分析(contact element analysis)和基于拉格朗日和欧拉方法的接触分析(Lagrange and Euler contact analysis)等。
不同的方法适用于不同的接触问题,例如铰链接触、摩擦接触和完全粘连接触等。
在进行接触分析时,首先需要定义接触区域,即两个或多个物体之间的接触面。
接触面可以是平面、曲面或曲线,可以通过CAD模型导入或手动创建。
接下来,需要定义接触材料的特性,包括弹性模量、泊松比和摩擦系数等。
然后,需要为接触面上的节点或单元分配合适的边界条件,例如约束条件和荷载。
最后,可以运行接触分析并获得结果。
ANSYS的接触分析模块提供了丰富的分析结果和可视化工具,可以帮助用户理解接触行为并进行设计优化。
常见的结果包括两个物体之间的接触面积、接触面的法向压力分布、接触区域的摩擦力和切向位移等。
通过分析这些结果,可以评估接触性能和接触界面的强度。
总结来说,ANSYS接触分析是一种重要的工程仿真方法,可以用于评估两个或多个物体之间的接触行为。
它能够帮助工程师优化设计,提高系统可靠性和效率。
通过定义接触区域、材料特性和边界条件,运行接触分析并分析结果,可以得到关于接触性能和接触界面强度的重要信息。
一般的接触分类 (2)ANSYS接触能力 (2)点─点接触单元 2点─面接触单元 2面─面的接触单元 3执行接触分析 (3)面─面的接触分析 4接触分析的步骤: 4步骤1:建立模型,并划分网格 (4)步骤2:识别接触对 (4)步骤2:指定接触面和目标面 4步骤4:定义刚性目标面 (5)步骤5:定义柔性体的接触面 (8)步骤6:设置实常数和单元关键字 (9)步骤7:控制刚体目标的运动 (19)步骤8:给变形体单元加必要的边界条件 (20)步骤9:定义求解和载荷步选项20第十步:检查结果 (21)点─面接触分析 (23)点─面接触分析的步骤 (24)点-点的接触 (32)接触分析实例(GUI方法) (34)非线性静态实例分析(命令流方式) (37)接触分析接触问题是一种高度非线性行为,需要较大的计算资源,为了进行实为有效的计算,理解问题的特性和建立合理的模型是很重要的。
接触问题存在两个较大的难点:其一,在你求解问题之前,你不知道接触区域,表面之间是接触或分开是未知的,突然变化的,这随载荷、材料、边界条件和其它因素而定;其二,大多的接触问题需要计算摩擦,有几种摩擦和模型供你挑选,它们都是非线性的,摩擦使问题的收敛性变得困难。
一般的接触分类接触问题分为两种基本类型:刚体─柔体的接触,半柔体─柔体的接触,在刚体─柔体的接触问题中,接触面的一个或多个被当作刚体,(与它接触的变形体相比,有大得多的刚度),一般情况下,一种软材料和一种硬材料接触时,问题可以被假定为刚体─柔体的接触,许多金属成形问题归为此类接触,另一类,柔体─柔体的接触,是一种更普遍的类型,在这种情况下,两个接触体都是变形体(有近似的刚度)。
ANSYS接触能力ANSYS支持三种接触方式:点─点,点─面,平面─面,每种接触方式使用的接触单元适用于某类问题。
为了给接触问题建模,首先必须认识到模型中的哪些部分可能会相互接触,如果相互作用的其中之一是一点,模型的对立应组元是一个结点。
面与面接触实例:插销拨拉问题分析定义单元类型Element/add/edit/delete定义材料属性Material Props/Material ModelsStructural/Linear/Elastic/Isotropic定义材料的摩擦系数建立几何模型Modeling/Create/Volumes/Block/By Dimensions X1=Y1=0,X2=Y2=2,Z1=2.5,Z2=3.5Modeling/Create/Volumes/Cylinder/By DimensionsModeling/Operate/Booleans/Subtract/V olumes先拾取长方体,再拾取圆柱体。
Modeling/Create/Volumes/Cylinder/By Dimensions划分掠扫网格Meshing/Size Cntrls/ManualSize/Lines/Picked Lines 拾取插销前端的水平和垂直直线,输入NDIV=3 再拾取插座前端的曲线,输入NDIV=4PlotCtrls/Style/Size and Shape,在Facets/element edge列表中选择2 facets/edge建立接触单元Modeling/Create/Contact pair,弹出Contact Manager对话框,如图所示。
单击最左边的按钮,启动Contact Wizard(接触向导),如图所示。
单击Pick Target,选择目标面。
选择接触面定义位移约束施加对称约束,Define Loads/Apply/Structural/Displacement/Symmetric B.C/On Areas,选择对称面。
再固定插座的左侧面。
设置求解选项Analysis Type/Sol’s Control求解:Solve/Current LS绘制装配应力图General Postproc/Plot Results/Contour Plot/Nodal Solution,选择Stress/von Mises stress求解拨拉过程选择Z=4.5处的所有节点。
Define Loads/Apply/Structural/Displacement/On Nodes,弹出Apply U,ROT on Nodes拾取框,单击Pick All按钮,选择UZ,在Displacement value输入1.7Select/EverythingAnalysis Type/Sol’s ControlSolve/Current LS结果后处理扩展模型:Style/Symmetry Expansion/Priodic/Cyclic Smmetry,在弹出的对话框中选择1/4 Dihedral Sym选择General Postproc/Read Results/By time/frequency,在TIME域输入120。
选择插销中与插座接触的单元,在Select Entities中选择Element,在列表中选择By Element name,再Element Name域输入174Plot/ElementsGeneral Postproc/Plot Results/Contour Plot/Nodal Solution,在对话框中选择Contact / Contact Pressure读入载荷步2结果。
Read Results/By Load Step绘制拨拉过程的应变变化动画PlotCtrls/Animate/Over Results,弹出如图所示的对话框。
命令流操作:(1)建立几何模型/filename,bolt/title,bolt_pulling analysis/PREP7Block,-2,2,-2,2,2.5,3.5/view,1,1,1,1/ang,1/rep,fastCylind,0.49,,2.5,3.5,0,360Vsbv,1,2Cylind,0.5,,2,4.5,0,360/pnum,volu,1Wpstyle,0.05,0.1,-1,1,0.003,0,0,,5 Wpstyle,,,,,,,,1Wpro,,,90Wsbw,allVdele,4,,,1Vdele,6,,,1Wpcsys,-1,0Wpro,,90Vsbw,allVdele,p51x,,,1Wpcsys,-1,0Wpstyle,,,,,,,,0(2)定义单元类型、材料模型和网格划分Et,1,solid185 Mptemp,,,,,,,,Mptemp,1,0Mpdata,ex,1,,36e6Mpdata,prxy,1,,0.3Lesize,4,,,3,,,,,0Lesize,10,,,3,,,,,0Lesize,18,,,4,,,,,0Vsweep,all/shrink,0/eshape,0.0/Efacet,2/ratio,1,1,1/cformat,32,0(3)定义接触单元/com,contact pair creation-startCm,_nodecm,nodeCm,_elemcm,elemCm,_kpcm,kpCm,_linecm,lineCm,_areacm,areaCm,_volucm,volu/gsav,cwz,gsav,,tempMp,mu,1,0.2Mat,1Mp,emis,1,7.88860905221e-031 R,3Real,3Et,2,170Et,3,174R,3,,,0.1,0.1,0Rmore,,,1.0e20,0.0,1.0 Rmore,0.0,0,1.0,0.5Rmore,0,1.0,1.0,0.0,,1.0 Keyopt,3,4,0Keyopt,3,5,0Nropt,unsymKeyopt,3,7,0Keyopt,3,8,0Keyopt,3,10,1Keyopt,3,11,0Keyopt,3,12,0Keyopt,3,2,0Keyopt,3,5,0Asel,s,,,23Cm,_target,areaType,2Nsla,s,1Esln,s,0EsurfCmsel,s,_elemcmAsel,s,,,27Cm,_contact,areaType,3Nsla,s,1Esln,s,0EsurfAllselEsel,allEsel,s,type,,2Esel,a,type,,3Esel,r,real,,3/psymb,esys,1/pnum,type,1/num,1EplotEsel,s,type,,2Esel,a,type,,3Esel,r,real,,3Cmsel,a,_nodecmCmdel,_nodecmCmsel,a,_elemcmCmdel,_elemcmCmsel,s,_kpcmCmdel,_kpcmCmsel,s,_linecmCmdel,_linecmCmsel,s_areacmCmdel,_areacmCmsel,s,_volucmCmdel,_volucm/gres,cwz,gsavCmdel,_targetCmdel,_contact/com,contact pair creation-end (4)定义位移约束Finishaplot/soluFlst,2,4,5,orde,4Fitem,2,3Fitem,2,7Fitem,2,11Fitem,2,14Da,p51x,symmFlst,2,1,5,orde,1Fitem,2,19Da,p51x,all,0(5)求解装配预应力Antype,0Nlgeom,1Nsubst,1,0,0Autots,0Time,100/status,soluSolveFinish/post1/efacet,1Plnsol,s,eqv,0,1.0 Save(6)求解拨拉过程AplotNsel,s,loc,z,4.5Finish/solAntype,restD,all,,1.7,,,,uz,,,,, Allsel,allNsrbst,100,10000,10 Outres,erase Outres,all,all Outots,1Time,200/status,soluSolveFinish(7)结果后处理/expand,4,polar,half,,90 Eplot/post1Set,,,1,,120Esel,s,ename,,174 Eplot/efacet,1Avprin,0Plnsol,cont,pres,0,1.0 Allsel,allSet,2,last,1/efacet,1Avprin,0Plnsol,s,eqv,0,1.0 Plns,s,eqvAndata,0.5,,0,0,0,1,1,1 finish/exit,all。