2015年东莞市中考数学试卷
- 格式:docx
- 大小:1.14 MB
- 文档页数:12
2015年广东省东莞市中考数学试卷一、选择题:本大题10小题,每小题3分,共30分。
在每小题给出的四个选项中,只有一个是正确的,请把答题卡上对应题目所选的选项涂黑。
2.(3分)(2015•东莞)据国家统计局网站2014年12月4日发布的消息,2014年广东省粮食总产量约为4.(3分)(2015•东莞)如图,直线a∥b,∠1=75°,∠2=35°,则∠3的度数是()28.(3分)(2015•东莞)若关于x的方程x2+x﹣a+=0有两个不相等的实数根,则实数a的取值范围是()9.(3分)(2015•东莞)如图,某数学兴趣小组将边长为3的正方形铁丝框ABCD变形为以A为圆心,AB为半径的扇形(忽略铁丝的粗细),则所得扇形DAB的面积为()10.(3分)(2015•东莞)如图,已知正△ABC的边长为2,E、F、G分别是AB、BC、CA上的点,且AE=BF=CG,设△EFG的面积为y,AE的长为x,则y关于x的函数图象大致是()A.B.C.D.二、填空题:本大题6小题,每小题4分,共24分。
请将下列各题的正确答案填写在答题卡相应的位置上。
11.(4分)(2015•东莞)正五边形的外角和等于(度).12.(4分)(2015•东莞)如图,菱形ABCD的边长为6,∠ABC=60°,则对角线AC的长是.13.(4分)(2015•东莞)分式方程=的解是.14.(4分)(2015•东莞)若两个相似三角形的周长比为2:3,则它们的面积比是.15.(4分)(2015•东莞)观察下列一组数:,…,根据该组数的排列规律,可推出第10个数是.16.(4分)(2015•东莞)如图,△ABC三边的中线AD、BE、CF的公共点为G,若S△ABC=12,则图中阴影部分的面积是.三、解答题(一):本大题3小题,每小题6分,共18分。
17.(6分)(2015•东莞)解方程:x2﹣3x+2=0.18.(6分)(2015•东莞)先化简,再求值:,其中.19.(6分)(2015•东莞)如图,已知锐角△ABC.(1)过点A作BC边的垂线MN,交BC于点D(用尺规作图法,保留作图痕迹,不要求写作法);(2)在(1)的条件下,若BC=5,AD=4,tan∠BAD=,求DC的长.四、解答题(二):本大题3小题,每小题7分,共21分。
2015年广东省中考数学试卷解析(本试卷满分120分,考试时间100分钟)一、选择题(本大题10小题,每小题3分,共30分)1. (2015年广东3分)2-=【 】A.2B.2-C.12 D.12- 2. (2015年广东3分)据国家统计局网站2014年12月4日发布消息,2014年广东省粮食总产量约为13 573 000吨,将13 573 000用科学记数法表示为【 】A. 61.357310⨯B. 71.357310⨯C. 81.357310⨯D. 91.357310⨯ 3. (2015年广东3分)一组数据2,6,5,2,4,则这组数据的中位数是【 】A.2B. 4C. 5D. 64(2015年广东3分)如图,直线a ∥b ,∠1=75°,∠2=35°,则∠3的度数是【 】A. 75°B. 55°C. 40°D. 35°5. (2015年广东3分)下列所述图形中,既是中心对称图形,又是轴对称图形的是【 】A. 矩形B. 平行四边形C. 正五边形D. 正三角形 6. (2015年广东3分)2(4)x -=【 】A. 28x -B. 28xC. 216x -D. 216x 7. (2015年广东3分)在0,2,0(3)-,5-这四个数中,最大的数是【 】A. 0B. 2C. 0(3)-D. 5- 8. (2015年广东3分)若关于x 的方程2904x x a +-+=有两个不相等的实数根,则实数a 的取值范围是【 】A. 2a ≥B. 2a ≤C. 2a >D. 2a <9. (2015年广东3分)如图,某数学兴趣小组将边长为3的正方形铁丝框ABCD 变形为以A 为圆心,AB 为半径的扇形 (忽略铁丝的粗细),则所得的扇形DAB 的面积为【 】A.6B.7C. 8D. 910. (2015年广东3分)如图,已知正△ABC 的边长为2,E ,F ,G 分别是AB ,BC ,CA 上的点,且AE =BF =CG ,设△EFG 的面积为y ,AE 的长为x ,则y 关于x 的函数图象大致是【 】A. B. C. D.二、填空题(本大题6小题,每小题4分,共24分)11. (2015年广东4分)正五边形的外角和等于 ▲ (度).12. (2015年广东4分)如图,菱形ABCD 的边长为6,∠ABC =60°,则对角线AC 的长是 ▲ .13. (2015年广东4分)分式方程321=+x x的解是 ▲ . 14. (2015年广东4分)若两个相似三角形的周长比为2:3,则它们的面积比是 ▲ .15. (2015年广东4分)观察下列一组数:13,25,37,49,511,…,根据该组数的排列规律,可推出第10个数是 ▲ .16. (2015年广东4分)如图,△ABC 三边的中线AD ,BE ,CF 的公共点G ,若12ABC S =△,则图中阴影部分面积是 ▲ .三、解答题(一)(本大题3小题,每小题6分,共18分)17. (2015年广东6分)解方程:2320x x -+=.18. (2015年广东6分)先化简,再求值:21(1)11x x x ÷+--,其中21x =-.19. (2015年广东6分)如图,已知锐角△AB C.(1)过点A 作BC 边的垂线MN ,交BC 于点D (用尺规作图法,保留作图痕迹,不要求写作法); (2)在(1)条件下,若BC =5,AD =4,tan ∠BAD =34,求DC 的长.四、解答题(二)(本大题3小题,每小题7分,共21分)20.(2015年广东7分)老师和小明同学玩数学游戏,老师取出一个不透明的口袋,口袋中装有三张分别标有数字1,2,3的卡片,卡片除数字个其余都相同,老师要求小明同学两次随机抽取一张卡片,并计算两次抽到卡片上的数字之积是奇数的概率,于是小明同学用画树状图的方法寻求他两次抽取卡片的所有可能结果,图是小明同学所画的正确树状图的一部分.(1)补全小明同学所画的树状图;(2)求小明同学两次抽到卡片上的数字之积是奇数的概率.21.(2015年广东7分)如题图,在边长为6的正方形ABCD中,E是边CD的中点,将△ADE沿AE对折至△AFE,延长交BC于点G,连接AG.(1)求证:△ABG≌△AFG;(2)求BG的长.22.(2015年广东7分)某电器商场销售A,B两种型号计算器,两种计算器的进货价格分别为每台30元,40元. 商场销售5 台A型号和1台B型号计算器,可获利润76元;销售6台A型号和3台B型号计算器,可获利润120元.(1)求商场销售A,B两种型号计算器的销售价格分别是多少元?(利润=销售价格﹣进货价格)(2)商场准备用不多于2500元的资金购进A,B两种型号计算器共70台,问最少需要购进A型号的计算器多少台?五、解答题(三)(本大题3小题,每小题9分,共27分)23.(2015年广东9分)如图,反比例函数kyx=(0k≠,0x>)的图象与直线3y x=相交于点C,过直线上点A(1,3)作AB⊥x轴于点B,交反比例函数图象于点D,且AB=3B D. (1)求k的值;(2)求点C的坐标;(3)在y轴上确定一点M,使点M到C、D两点距离之和d=MC+MD最小,求点M的坐标.»BC的中点P作⊙O的直径PG交弦BC 24.(2015年广东9分)⊙O是△ABC的外接圆,AB是直径,过于点D,连接AG,CP,P B.(1)如题图1;若D是线段OP的中点,求∠BAC的度数;(2)如题图2,在DG上取一点k,使DK=DP,连接CK,求证:四边形AGKC是平行四边形;(3)如题图3,取CP的中点E,连接ED并延长ED交AB于点H,连接PH,求证:PH⊥A B.25.(2015年广东9分)如图,在同一平面上,两块斜边相等的直角三角板Rt△ABC与Rt△ADC拼在一起,使斜边AC完全重合,且顶点B,D分别在AC的两旁,∠ABC=∠ADC=90°,∠CAD=30°,AB=BC=4cm.(1)填空:AD= ▲ (cm),DC= ▲ (cm);(2)点M,N分别从A点,C点同时以每秒1cm的速度等速出发,且分别在AD,CB上沿A→D,C→B 的方向运动,当N点运动到B点时,M,N两点同时停止运动,连结MN,求当M,N点运动了x秒时,点N到AD的距离(用含x的式子表示);(3)在(2)的条件下,取DC中点P,连结MP,NP,设△PMN的面积为y(cm2),在整个运动过程中,△PMN的面积y存在最大值,请求出这个最大值.(参考数据:sin75°=624+,sin15°=624-)。
2015年广东省中考数学试卷(本试卷满分120分,考试时间100分钟)一、选择题(本大题10小题,每小题3分,共30分)1. (2015年广东3分)2-=【 】A.2B.2-C.12D.12- 2. (2015年广东3分)据国家统计局网站2014年12月4日发布消息,2014年广东省粮食总产量约为13 573 000吨,将13 573 000用科学记数法表示为【 】A. 61.357310⨯B. 71.357310⨯C. 81.357310⨯D. 91.357310⨯3. (2015年广东3分)一组数据2,6,5,2,4,则这组数据的中位数是【 】A.2B. 4C. 5D. 64(2015年广东3分)如图,直线a ∥b ,∠1=75°,∠2=35°,则∠3的度数是【 】A. 75°B. 55°C. 40°D. 35°5. (2015年广东3分)下列所述图形中,既是中心对称图形,又是轴对称图形的是【 】A. 矩形B. 平行四边形C. 正五边形D. 正三角形6. (2015年广东3分)2(4)x -=【 】A. 28x -B. 28xC. 216x -D. 216x7. (2015年广东3分)在0,2,0(3)-,5-这四个数中,最大的数是【 】A. 0B. 2C. 0(3)-D. 5-8. (2015年广东3分)若关于x 的方程2904x x a +-+=有两个不相等的实数根,则实数a 的取值范围是【 】 A. 2a ≥ B. 2a ≤ C. 2a > D. 2a <9. (2015年广东3分)如图,某数学兴趣小组将边长为3的正方形铁丝框ABCD 变形为以A 为圆心,AB 为半径的扇形 (忽略铁丝的粗细),则所得的扇形DAB 的面积为【 】A.6B.7C. 8D. 910. (2015年广东3分)如图,已知正△ABC 的边长为2,E ,F ,G 分别是AB ,BC ,CA 上的点,且AE =BF =CG ,设△EFG 的面积为y ,AE 的长为x ,则y 关于x 的函数图象大致是【 】 A. B. C. D.二、填空题(本大题6小题,每小题4分,共24分)11. (2015年广东4分)正五边形的外角和等于 (度)..12. (2015年广东4分)如图,菱形ABCD 的边长为6,∠ABC =60°,则对角线AC 的长是 .13. (2015年广东4分)分式方程321=+x x的解是 . 14. (2015年广东4分)若两个相似三角形的周长比为2:3,则它们的面积比是 .15. (2015年广东4分)观察下列一组数:13,25,37,49,511,…,根据该组数的排列规律,可推出第10个数是 .16. (2015年广东4分)如图,△ABC 三边的中线AD ,BE ,CF 的公共点G ,若12ABC S =△,则图中阴影部分面积是 .三、解答题(一)(本大题3小题,每小题6分,共18分)17. (2015年广东6分)解方程:2320x x -+=.18. (2015年广东6分)先化简,再求值:21(1)11x x x ÷+--,其中21x =-. 19. (2015年广东6分)如图,已知锐角△AB C.(1)过点A 作BC 边的垂线MN ,交BC 于点D (用尺规作图法,保留作图痕迹,不要求写作法);(2)在(1)条件下,若BC =5,AD =4,tan ∠BAD =34,求DC 的长. 四、解答题(二)(本大题3小题,每小题7分,共21分)20. (2015年广东7分)老师和小明同学玩数学游戏,老师取出一个不透明的口袋,口袋中装有三张分别标有数字1,2,3的卡片,卡片除数字外其余都相同,老师要求小明同学两次随机抽取一张卡片,并计算两次抽到卡片上的数字之积是奇数的概率,于是小明同学用画树状图的方法寻求他两次抽取卡片的所有可能结果,图是小明同学所画的正确树状图的一部分.(1)补全小明同学所画的树状图;(2)求小明同学两次抽到卡片上的数字之积是奇数的概率.21. (2015年广东7分)如题图,在边长为6的正方形ABCD 中,E 是边CD 的中点,将△ADE 沿AE 对折至△AFE ,延长EF 交BC 于点G ,连接AG .(1)求证:△ABG ≌△AFG ;(2)求BG 的长.22. (2015年广东7分)某电器商场销售A ,B 两种型号计算器,两种计算器的进货价格分别为每台30元,40元. 商场销售5 台A 型号和1台B 型号计算器,可获利润76元;销售6台A 型号和3台B 型号计算器,可获利润120元.(1)求商场销售A ,B 两种型号计算器的销售价格分别是多少元?(利润=销售价格﹣进货价格)(2)商场准备用不多于2500元的资金购进A ,B 两种型号计算器共70台,问最少需要购进A 型号的计算器多少台?五、解答题(三)(本大题3小题,每小题9分,共27分)23. (2015年广东9分)如图,反比例函数k y x=(0k ≠,0x >)的图象与直线3y x =相交于点C ,过直线上点A (1,3)作AB ⊥x 轴于点B ,交反比例函数图象于点D ,且AB =3B D.(1)求k 的值;(2)求点C 的坐标;(3)在y 轴上确定一点M ,使点M 到C 、D 两点距离之和d =MC +MD 最小,求点M 的坐标.24. (2015年广东9分)⊙O 是△ABC 的外接圆,AB 是直径,过»BC的中点P 作⊙O 的直径PG 交弦BC 于点D ,连接AG , CP ,P B.(1)如题图1;若D 是线段OP 的中点,求∠BAC 的度数;(2)如题图2,在DG 上取一点k ,使DK =DP ,连接CK ,求证:四边形AGKC 是平行四边形;(3)如题图3,取CP 的中点E ,连接ED 并延长ED 交AB 于点H ,连接PH ,求证:PH ⊥A B.25. (2015年广东9分)如图,在同一平面上,两块斜边相等的直角三角板Rt △ABC 与Rt △ADC 拼在一起,使斜边AC 完全重合,且顶点B ,D 分别在AC 的两旁,∠ABC =∠ADC =90°,∠CAD =30°,AB =BC =4cm .(1)填空:AD = ▲ (cm ),DC = ▲ (cm );(2)点M ,N 分别从A 点,C 点同时以每秒1cm 的速度等速出发,且分别在AD ,CB 上沿A →D ,C →B 的方向运动,当N 点运动 到B 点时,M ,N 两点同时停止运动,连结MN ,求当M ,N 点运动了x 秒时,点N 到AD 的距离(用含x 的式子表示);(3)在(2)的条件下,取DC 中点P ,连结MP ,NP ,设△PMN 的面积为y (cm 2),在整个运动过程中,△PMN 的面积y 存在最大值,请求出这个最大值.(参考数据:sin 75°=624+,sin 15°=624-) 参考答案1.A2..B3.B4.C5.A6.D7.B8.C9.D 10.D11. 360. 12.6 13.2=x 14. 4:9. 15.2110. 16.4。
广东省2015年九年级全一册数学中考真题试卷(考试时间:100 总分:120)一、选择题(本题共10小题,共30分)1、(3分)=( )A、2B、-2C、D、【标准答案】 A【解析】本题主要考查绝对值的性质。
根据绝对值的性质可得:负数的绝对值等于它的相反数。
属于简单试题。
所以-2的绝对值是2。
故A正确。
【end】2、(3分)据国家统计局网站2014年12月4日发布消息,2014年广东省粮食总产量约为13573000吨,将13573000用科学记数法表示为( )A、1.3573×106B、1.3573×107C、1.3573×108D、1.3573×109【标准答案】 B【解析】本题主要考查的科学记数法。
表示形式为a×10n的形式,其中1≤|a|<10,n为整数。
确定n 的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同。
得:13573000=1.3573×107,故B正确。
【end】3、(3分)一组数据2,6,5,2,4,则这组数据的中位数是( )A、2B、4C、5D、6【标准答案】 B【解析】本题主要考查数据的中位数定义。
将一组数据从小到大排列,处于最中间的数字就是中位数。
本题有5个数字,则排在第三个的就是中位数。
由小到大排列,得:2,2,4,5,6,所以,中位数为4。
【end】4、(3分)如图,直线a∥b,∠1=75°,∠2=35°,则∠3的度数是( )A、75°B、55°C、40°D、35°【标准答案】 C【解析】本题主要考查的是平行线的性质和三角形外角和。
两直线平行,同位角相等,三角形的一个外角等于与它不相邻的两个内角之和,所以75°=∠2+∠3,所以,∠3=40°。
【end】5、(3分)下列所述图形中,既是中心对称图形,又是轴对称图形的是( )A、矩形B、平行四边形C、正五边形D、正三角形【标准答案】 A【解析】本题主要考查中心对称图形和轴对称图形的性质。
2015年广东省初中毕业生学业考试数学满分120分,考试时间100分钟一、选择题(本大题10小题,每小题3分,共30分)1.2-= ( )A.2 B.-2 C.12D.12-【答案】A2.据国家统计局网站2014年12月4日发布消息,2014年广东省粮食总产量约为13 573 000吨,将13 573 000用科学记数法表示为( )A.1.3573×106B.1.3573×107C.1.3573×108D.1.3573×109【答案】B3.一组数据2,6,5,2,4,则这组数据的中位数是( )A.2 B.4 C.5 D.6【答案】B【解答过程】解:先将所给的一组数据按从小到大的顺序排列,得:2,2,4,5,6,∵处在最中间的数是4,∴这5个数据的中位数是4,因此,本题选B.4.如图,直线a∥b,∠1=75°,∠2=35°,则∠3的度数是( )A.75°B.55°C.40°D.35°【答案】C【解答过程】解:∵直线a∥b,∴∠1=∠4.∵∠4=∠2+∠3,∴∠1=∠2+∠3.∵∠1=75°,∠2=35°,∴∠3=40°,故选择C.5.下列所述图形中,既是中心对称图形,又是轴对称图形的是( )A.矩形B.平行四边形C.正五边形D.正三角形【答案】A【解答过程】解:对各个支项逐一加以分析、讨论.显然,平行四边形只是中心对称图形,正五边形、正三角形只是轴对称图形,只有矩形符合,故选择A.6.(-4x)2= ( )A.-8x2B.8x2C.-16x2D.16x2【答案】D【解答过程】解:原式=(-4x)2=(-4)2x2=16x2,故选择D.7.在0,2,(-3)0,-5这四个数中,最大的数是( )A.0 B.2 C.(-3)0D.-5 【答案】B【解答过程】解:∵(-3)0=1,∴在0,2,(-3)0,-5这四个数中,最大的数为2,故选择B.8.若关于x的方程290 4x x a+-+=有两个不相等的实数根,则实数a的取值范围是( )A.a≥2 B.a≤2 C.a>2 D.a<2【答案】C【解答过程】解:由题意得:b2-4ac=12-4×1×(94a-+)>0,即1+4a-9>0,解得a>2,故选择C.9.如图,某数学兴趣小组将边长为3的正方形铁丝框ABCD变形为以A为圆心,AB为半径的扇形(忽略铁丝的粗细),则所得的扇形DAB的面积为( )A.6 B.7 C.8 D.9【解答过程】解:由条件可知:扇形的弧DCB的长就是正方形的BC与CD长的和为6,半径为3,则16392S=⨯⨯=扇形,故选择D.10.如图,已知正△ABC的边长为2,E,F,G分别是AB,BC,CA上的点,且AE=BF=CG,设△EFG的面积为y,AE的长为x,则y关于x的函数图象大致是( )【答案】D【解答过程】解:由题意知:AE=BF=CG,且正三角形ABC的边长为2,则BE=CF=AG=2-x,所以可得△AEG、△BEF、△CFG这三个三角形都是全等的.在△AEG中,AE=x,AG=2-x,则S△AEG =12AE×AG×sin A3(2-x),所以y=S△ABC-3S△AEG=34×22-3⨯3x(2-x3(3x2-6x+4),故可得其图象为二次函数,且开口向上,故选择D .二、填空题(本大题6小题,每小题4分,共24分) 11.正五边形的外角和等于 度 . 【答案】36012.如图,菱形ABCD 的边长为6,∠ABC =60°,则对角线AC 的长是.【答案】6【解答过程】解:由菱形的性质可知AB =BC ,并根据“∠ABC =60°”可得△ABC 为等边三角形,从而知道AC =BC =6,故答案为6.13.分式方程321x x =+的解是. 【答案】x =2【解答过程】解:去分母,得:3x =2x +2,解得:x =2.经检验:当x =2时,x (x +1)≠0,所以原分式方程的解为x =2,故答案为x =2.14.若两个相似三角形的周长比为2:3,则它们的面积比是 . 【答案】4:9【解答过程】解:因为两个相似三角形的周长比为2:3,所以这两个相似三角形的相似比为2:3,它们的面积比是4:9,故答案为4:9.15.观察下列一组数:13,25,37,49,511,…,根据该组数的排列规律,可推出第10个数是. 【答案】1021【解答过程】解:分母为奇数,分子为自然数,所以,它的规律用含n 的代数式表示为21nn +,则n =10时可得结果为1021,故答案为1021.16.如图,△ABC 三边的中线AD ,BE ,CF 的公共点G ,若S △ABC =12,则图中阴影部分面积是.【答案】4【解答过程】解:由三角形的重心性质,可得AG =2GD ,则S △BGF =11212111222232326ABG ABD ABC S S S =⨯=⨯⨯=⨯=△△△,同理,S △CGE 11212111222232326ACG ACD ABC S S S =⨯=⨯⨯=⨯=△△△,∴阴影部分的面积为4,故答案为4.三、解答题(一)(本大题3小题,每小题6分,共18分) 17.解方程:2320x x -+=.【解答过程】方法1:原方程可化为(x -1)(x -2)=0,∴x -1=0或x -2=0,因此x 1=1,x 2=2;方法2:将a =1,b =-3,c =2代入24b b ac x -±-=得:x 1=1,x 2=2;方法3:由方程x 2-3x +2=0,得:x 2-3x =-2, 则x 2-3x +49=-2+49, (x -23)2=41,开方得,x -23=±21, ∴ x 1=1,x 2=2,【易错点津】此类问题容易出错的地方是方法不当、公式记忆不清.18.先化简,再求值:21(1)11x x x ÷+--,其中21x =-. 【解答过程】原式=1(1)(1)x x x x x -⋅+-=11x +当21x =+时,原式=2211=-+. 【易错点津】此类问题容易出错的地方是分式运算顺序出错或结果未化简或二次根式化简错误.19.如图,已知锐角△ABC .(1) 过点A 作BC 边的垂线MN ,交BC 于点D (用尺规作图法,保留作图痕迹,不要求写作法);(2) 在(1)条件下,若BC =5,AD =4,tan ∠BAD =34,求DC 的长.【解答过程】(1)如图所示,MN 为所作;(2)在Rt △ABD 中,tan ∠BAD =34AD BD =, ∴344BD =, ∴BD =3,∴DC =BC -BD =5-3=2.【易错点津】此类问题容易出错的地方是不会应用基本的尺规作图进行画图.四、解答题(二)(本大题3小题,每小题7分,共21分)20.老师和小明同学玩数学游戏,老师取出一个不透明的口袋,口袋中装有三张分别标有数字1,2,3的卡片,卡片除数字个其余都相同,老师要求小明同学两次随机抽取一张卡片,并计算两次抽到卡片上的数字之积是奇数的概率,于是小明同学用画树状图的方法寻求他两次抽取卡片的所有可能结果,如图是小明同学所画的正确树状图的一部分.(1)补全小明同学所画的树状图;(2)求小明同学两次抽到卡片上的数字之积是奇数的概率.【解答过程】(1) 如图,补全树状图;(2) 从树状图可知,共有9种等可能结果,其中两次抽取卡片上的数字之积为奇数的有4种结果,∴P(积为奇数)=49.【易错点津】此类问题容易出错的地方是误认为是不放回式试验.21.如图,在边长为6的正方形ABCD中,E是边CD的中点,将△ADE沿AE对折至△AFE,延长交BC于点G,连接AG.(1)求证:△ABG≌△AFG;(2) 求BG的长.【解答过程】(1) ∵四边形ABCD是正方形,∴∠B=∠D=90°,AD=AB,由折叠的性质可知AD=AF,∠AFE=∠D=90°,∴∠AFG=90°,AB=AF,∴∠AFG=∠B,又AG=AG,∴△ABG≌△AFG(HL);(2) ∵△ABG ≌△AFG ,∴BG =FG ,设BG =FG =x ,则GC =6-x , ∵E 为CD 的中点, ∴CF =EF =DE =3, ∴EG =x +3,∴32+(6-x )2=(x +3)2, 解得x =2, ∴BG =2.【易错点津】此类问题容易出错的地方是不能从图形折叠前后寻找相等的边或角.22.某电器商场销售A ,B 两种型号计算器,两种计算器的进货价格分别为每台30元,40元. 商场销售5台A 型号和1台B 型号计算器,可获利润76元;销售6台A 型号和3台B 型号计算器,可获利润120元.(1)求商场销售A ,B 两种型号计算器的销售价格分别是多少元?(利润=销售价格﹣进货价格) (2)商场准备用不多于2500元的资金购进A ,B 两种型号计算器共70台,问最少需要购进A 型号的计算器多少台?【解答过程】(1) 设A ,B 型号的计算器的销售价格分别是x 元,y 元,得:5(30)(40)766(30)3(40)120x y x y -+-=⎧⎨-+-=⎩,,解得4256x y =⎧⎨=⎩,, 答:A ,B 两种型号计算器的销售价格分别为42元、56元; (2) 设需要购进A 型号的计算a 台,得:30a +40(70-a )≤2500,解得a ≥30.答:最少需要购进A 型号的计算器30台.【易错点津】此类问题容易出错的地方是审题不清,找错不等关系.五、解答题(三)(本大题3小题,每小题9分,共27分)23.如图,反比例函数ky x=(0k ≠,x >0)的图象与直线y =3x 相交于点C ,过直线上点A (1,3)作AB ⊥x 轴于点B ,交反比例函数图象于点D ,且AB =3BD . (1) 求k 的值;(2) 求点C 的坐标;(3) 在y 轴上确定一点M ,使点M 到C ,D 两点距离之和d =MC +MD 最小,求点M 的坐标.【解答过程】(1) ∵A (1,3),∴OB =1,AB =3, 又AB =3BD ,∴BD =1, ∴D (1,1), ∴k =1×1=1;(2) 由(1)知反比例函数的解析式为1y x=, 解方程组31y x y x =⎧⎪⎨=⎪⎩,,得33x y ⎧=⎪⎨⎪=⎩,或33x y ⎧=-⎪⎨⎪=-⎩,(舍去), ∴点C 的坐标为(3,3); (3) 如图,作点D 关于y 轴对称点E ,则E (-1,1),连接CE 交y 轴于点M ,即为所求.设直线CE 的解析式为y kx b =+,则331k b k b ⎧+=⎪⎪-+=⎩,,解得233k =-,232b =-, ∴直线CE 的解析式为(233)232y x =-+-, 当x =0时,y =232-, ∴点M 的坐标为(0,232-).【易错点津】此类问题容易出错的地方是不能探求某条直线上一个点到直线同旁的两点距离和最小24.⊙O 是△ABC 的外接圆,AB 是直径,过BC 的中点P 作⊙O 的直径PG 交弦BC 于点D ,连接AG ,CP ,PB .(1)如图①,若D 是线段OP 的中点,求∠BAC 的度数;(2)如图②,在DG 上取一点k ,使DK =DP ,连接CK ,求证:四边形AGKC 是平行四边形; (3)如图③,取CP 的中点E ,连接ED 并延长ED 交AB 于点H ,连接PH ,求证:PH ⊥AB .① ② ③【解答过程】(1) 连接OC .∵AB 为⊙O 直径, ⌒BP =⌒PC , ∴∠COP =∠BOP .∵在⊙O 中,OC =OB ,∴PG ⊥BC ,即∠ODB =90°, ∵D 为OP 的中点,∴OD =1122OP OB =,∴cos ∠BOD =12OD OB =,∴∠BOD=60°,∵AB为⊙O直径,∴∠ACB=90°,∴∠ACB=∠ODB,∴AC∥PG,∴∠BAC=∠BOD=60°;(2) 由(1)知,CD=BD,∵∠BDP=∠CDK,DK=DP,∴△PDB≌△CDK,∴CK=BP,∠OPB=∠CKD,∵∠AOG=∠BOP,∴AG=BP,∴AG=CK∵OP=OB,∴∠OPB=∠OBP,又∠G=∠OBP,∴AG∥CK,∴四边形AGCK是平行四边形;(3) ∵CE=PE,CD=BD,∴DE∥PB,即DH∥PB∵∠G=∠OPB,∴PB∥AG,∴DH∥AG,∴∠OAG=∠OHD,∵OA=OG,∴∠OAG=∠G,∴∠ODH=∠OHD,∴OD=OH,又∠ODB=∠HOP,OB=OP,∴△OBD≌△HOP,∴∠OHP=∠ODB=90°,∴PH⊥AB.【易错点津】此类问题容易出错的地方是不能综合应用图形中所涉基本图形的相关性质25.如图,在同一平面上,两块斜边相等的直角三角板Rt△ABC与Rt△ADC拼在一起,使斜边AC 完全重合,且顶点B,D分别在AC的两旁,∠ABC=∠ADC=90°,∠CAD=30°,AB=BC=4cm.(1) 填空:AD= (cm),DC= (cm);(2) 点M,N分别从A点,C点同时以每秒1cm的速度等速出发,且分别在AD,CB上沿A→D,C→B的方向运动,当N点运动到B点时,M,N两点同时停止运动,连结MN,求当M,N点运动了x秒时,点N到AD的距离(用含x的式子表示);(3) 在(2)的条件下,取DC中点P,连结MP,NP,设△PMN的面积为y(cm2),在整个运动过程中,△PMN的面积y存在最大值,请求出这个最大值.(参考数据:sin75°62+sin15°62-【解答过程】(1) 在Rt △ABC 中, AB =BC =4cm , AC =22AB BC +=2244+=42,在Rt △ADC中,cos ∠CAD =AD AC ,AD =AC ·cos ∠CAD =42×32=26;在Rt △ADC 中,sin ∠CAD =CD AC,CD =AC ·sin ∠CAD =42×12=22,故答案为26,22;(2)如图,过点N 作NE ⊥AD 于E ,作NF ⊥DC 延长线于F ,则NE =DF .∵∠ACD =60°,∠ACB =45°, ∴∠NCF =75°,∠FNC =15°,∴sin15°=FCNC,又NC =x ,∴62FC -=, ∴NE =DF 6222-+. ∴点N 到AD 6222-+cm ; (3) ∵sin75°=FNNC,∴62FN +=, ∵PD =CP 2, ∴PF 622- ∴162621162(26)(22)(26)2(2)222y x x +--=++-·62()+ 即226732223y ---=+∵2-68<0,当73224262x --=-⨯=732262---时,y 有最大值为6673102304246+---=83+236+92-1616.【易错点津】此类问题容易出错的地方是不能灵活应用三角函数和二次函数的数学模型进行解答.。
2015年广东中考数学试卷一(时间:100分钟,满分120分)一、选择题(本大题共5小题,每小题3分,共15分;在每小题给出的四个选项中,只有一个是正确的)1.27的立方根是( ) A .3 B .3- C .9 D .9-2.5月31日,参观上海世博会的游客约为505 000人.505 000用科学记数法表示为( )A .505×103B .5.05×103C .5.05×104D .5.05×105 3.下列计算正确的是( )A .a 4+a 2=a 6B .2a ·4a =8aC .a 5÷a 2=a 3D .(a 2)3=a 54.方程组⎩⎪⎨⎪⎧x +y =3x -y =-1的解是( )A.⎩⎪⎨⎪⎧ x =1y =2B.⎩⎪⎨⎪⎧ x =1y =-2C.⎩⎪⎨⎪⎧ x =2y =1D.⎩⎪⎨⎪⎧x =0y =-1 5.一个几何体的三视图如图所示.那么这个几何体是( )二、填空题(本大题共5小题,每小题4分,共20分)6.若x 、y 为实数,且x +3+|y -2|=0,则x +y = .7.如图,菱形ABCD 中,对角线AC 、BD 相交于点O ,H 为AD 边中点,菱形ABCD 的周长为24,则OH 的长等于 .8.一组数据1,6,x,5,9的平均数是5,那么这组数据的中位数是 .9.双曲线y =2k -1x的图象经过第二、四象限,则k 的取值范围是 .10.如图,观察每一个图中黑色正六边形的排列规律,则第10个图中黑色正六边形有 个.三、解答题(本大题共5小题,每小题6分,共30分) 11.计算:(-2 011)0+⎝⎛⎭⎫22-1+||2-2-2cos60°.12.解方程:x +4xx -=3x -1.13.先化简,再求值:⎝ ⎛⎭⎪⎫a -1a 2-4a +4-a +2a 2-2a ÷⎝⎛⎭⎫4a -1,其中a =2- 3.14.如图,已知二次函数y =-12x 2+bx +c 的图象经过A (2,0),B (0,-6)两点.(1)求这个二次函数的解析式;(2)设该二次函数的对称轴与x 轴交于点C ,连接BA 、BC ,求△ABC 的面积.15.某市为缓解城市交通压力,决定修建人行天桥,原设计天桥的楼梯长AB =6 m , ∠ABC =45°,后考虑到安全因素,将楼梯脚B 移到CB 延长线上点D 处,使∠ADC =30°(如图所示).(1)求调整后楼梯AD 的长; (2)求BD 的长(结果保留根号).四、解答题(本大题共4小题,每小题7分,共28分)16.日本福岛出现核电站事故后,我国国家海洋局高度关注事态发展,紧急调集海上巡逻的海检船,在相关海域进行现场监测与海水采样,针对核泄漏在极端情况下对海洋环境的影响及时开展分析评估.如图,上午9时,海检船位于A 处,观测到某港口城市P 位于海检船的北偏西67.5°方向,海检船以21海里/时的速度向正北方向行驶,下午2时海检船到达B 处,这时观察到城市P 位于海检船的南偏西36.9°方向,求此时海检船所在B 处与城市P 的距离?⎝⎛参考数据:sin 36.90≈35,tan 36.90≈34,⎭⎫sin 67.50≈1213,tan 67.50≈12517.2011年6月4日,李娜获得法网公开赛的冠军,圆了中国人的网球梦,也在国内掀起一股网球热.某市准备为青少年举行一次网球知识讲座,小明和妹妹都是网球球迷,要求爸爸去买门票,但爸爸只买回一张门票,那么谁去就成了问题,小明想到一个办法:他拿出一个装有质地、大小相同的2x个红球与3x个白球的袋子,让爸爸摸出一个球,如果摸出的是红球,妹妹去听讲座,如果摸出的是白球,小明去听讲座.(1)爸爸说这个办法不公平,请你用概率的知识解释原因;(2)若爸爸从袋中取出3个白球,再用小明提出的办法来确定谁去听讲座,请问摸球的结果是对小明有利还是对妹妹有利,说明理由.18.绵阳市“全国文明村”江油白玉村果农王灿收获枇杷20吨,桃子12吨.现计划租用甲、乙两种货车共8辆将这批水果全部运往外地销售,已知一辆甲种货车可装枇杷4吨和桃子1吨,一辆乙种货车可装枇杷和桃子各2吨.(1)王灿有几种方案安排甲、乙两种货车可一次性地将水果运到销售地?(2)若甲种货车每辆要付运输费300元,乙种货车每辆要付运输费240元,则果农王灿应选择哪种方案,使运输费最少?最少运费是多少?19.已知:如图,在Rt△ABC中,∠C=90°,∠BAC的角平分线AD交BC边于D.(1)以AB边上一点O为圆心,过A、D两点作⊙O(不写作法,保留作图痕迹),再判断直线BC与⊙O的位置关系,并说明理由;(2)若(1)中的⊙O与AB边的另一个交点为E,AB=6,BD=2 3,求线段BD、BE与劣弧DE所围成的图形面积(结果保留根号和π).五、解答题(本大题共3小题,每小题9分,共27分)20.对于任何实数,我们规定符号⎪⎪⎪ a c ⎪⎪⎪b d 的意义是⎪⎪⎪ ac⎪⎪⎪b d =ad -bc . (1)按照这个规定请你计算⎪⎪⎪ 57⎪⎪⎪68的值; (2)按照这个规定请你计算:当x 2-3x +1=0时,⎪⎪⎪⎪⎪⎪x +1x -23xx -1的值.21.已知:如图,在△ABC 中,BC =AC ,以BC 为直径的⊙O 与边AB 相交于点D ,DE ⊥AC ,垂足为点E .(1)求证:点D 是AB 的中点; (2)判断DE 与⊙O 的位置关系,并证明你的结论;(3)若⊙O 的直径为18,cos B =13,求DE 的长.22.如图,已知二次函数y =-x 2+bx +c 的图象经过A (-2,-1),B (0,7)两点.(1)求该抛物线的解析式及对称轴; (2)当x 为何值时,y >0?(3)在x 轴上方作平行于x 轴的直线l ,与抛物线交于C 、D 两点(点C 在对称轴的左侧),过点C 、D 作x 轴的垂线,垂足分别为F 、E .当矩形CDEF 为正方形时,求C 点的坐标.2015年广东中考数学试卷一参考答案一、选择题1. A2. D3. C4. A5. C 二、填空题6. -17. 38. 59. k <1210. 100三、解答题11.解:原式=1+2+2-2-1=212.解:方程两边同乘最简公分母x (x -1),得x +4=3x ,解得x =2. 经检验:x =2是原方程的根. ∴原方程的解为x =2. 13.解:原式=⎣⎢⎡⎦⎥⎤a -1a -2-a +2aa -÷4-a a=aa -1-a -a +aa -2·a4-a=1a -2. 当a =2-3时,原式=13.14.解:(1)把A (2,0),B (0,-6)代入y =-12x 2+bx +c ,得⎩⎪⎨⎪⎧ -2+2b +c =0c =-6,解得⎩⎪⎨⎪⎧b =4c =-6. ∴这个二次函数的解析式为y =-12x 2+4x -6.(2)∵该抛物线对称轴为直线x =-42×⎝⎛⎭⎫-12=4,∴点C 的坐标为(4,0),∴AC =OC -OA =4-2=2, ∴S △ABC =12×AC ×OB =12×2×6=6.15.解:(1)已知AB =6 m ,∠ABC =45°, ∴AC =BC =AB ·sin45°=6×22=3 2,∵∠ADC =30°,∴AD =2AC =6 2. 答:调整后楼梯AD 的长为6 2m. (2)CD =AD ·cos30°=6 2×32=3 6,∴BD =CD -BC =3 6-3 2. 答:BD 的长为(3 6-3 2)m.16.解:如图,过点P 作PC ⊥AB ,垂足为C ,设PC =x 海里, 在Rt △APC 中,∵tan ∠A =PC AC, ∴AC =PC tan67.5°=5x12.在Rt △PCB 中,∵tan ∠B =PC BC, ∴BC =x tan36.9°=4x3.∵AC +BC =AB =21×5, ∴5x 12+4x3=21×5,解得 x =60. ∵sin ∠B =PCPB,∴PB =PC sin ∠B =60sin36.9°=60×53=100(海里).∴海检船所在B 处与城市P 的距离为100海里.17.解:(1)∵红球有2x 个,白球有3x 个, ∴P (红球)=2x 2x +3x =25, P (白球)=3x 2x +3x =35,∴P (红球)< P (白球), ∴这个办法不公平.(2)取出3个白球后,红球有2x 个,白球有(3x -3)个, ∴P (红球)=2x5x -3,P (白球)=3x -35x -3,x 为正整数, ∴P (红球)- P (白球) =3-x5x -3.①当x <3时,则P (红球)> P (白球), ∴对小妹有利.②当x =3时,则P (红球)= P (白球), ∴对小妹、小明是公平的.③当x >3时,则P (红球)< P (白球), ∴对小明有利.18.解:(1)设安排甲种货车x 辆,则安排乙种货车(8-x )辆,依题意得⎩⎪⎨⎪⎧4x +-x x +-x ,解此不等式组得2≤x ≤4.∵x 是正整数,∴x 可取的值为2,3,4.因此安排甲、乙两种货车有三种方案:甲种货车 乙种货车 方案一 2辆 6辆 方案二 3辆 5辆 方案三4辆4辆(2)方案一所需运费为300×2+240×6=2 040元; 方案二所需运费为300×3+240×5=2 100元; 方案三所需运费为300×4+240×4=2 160元.∴王灿应选择方案一运费最少,最少运费是2 040元. 19.解:(1)如图 (需保留线段AD 中垂线的痕迹).直线BC 与⊙O 相切.理由如下:连接OD ,∵OA =OD ,∴∠OAD =∠ODA . ∵AD 平分∠BAC ,∴∠OAD =∠DAC . ∴∠ODA =∠DAC . ∴OD ∥AC . ∵∠C =90°,∴∠ODB =90°,即OD ⊥BC . 又∵直线BC 过半径OD 的外端, ∴BC 为⊙O 的切线. (2)设OA =OD =r ,在Rt △BDO 中,OD 2+BD 2=OB 2, ∴r 2+(2 3)2=(6-r )2,解得r =2. ∵tan ∠BOD =BDOD =3,∴∠BOD =60°.∴S 扇形ODE =60π·22360=23π.∴所求图形面积为S △BOD -S 扇形ODE =2 3-23π.20.解:(1)⎪⎪⎪ 57⎪⎪⎪68=5×8-6×7=-2. (2)⎪⎪⎪ x +1x -2⎪⎪⎪3x x -1=()x +1()x -1-3x ()x -2 =x 2-1-3x 2+6x =-2x 2+6x -1. 又∵x 2-3x +1=0, ∴x 2-3x =-1,原式=-2(x 2-3x )-1=-2×(-1)-1=1.21.(1)证明:如图,连接CD ,则CD ⊥AB ,又∵AC =BC ,∴AD =BD , 即点D 是AB 的中点. (2)解:DE 是⊙O 的切线.理由是:连接OD ,则DO 是△ABC 的中位线, ∴DO ∥AC . 又∵DE ⊥AC , ∴DE ⊥DO ,又∵OD 是⊙O 的半径, ∴DE 是⊙O 的切线.(3)∵AC =BC ,∴∠B =∠A , ∴cos ∠B =cos ∠A =13.∵cos ∠B =BD BC =13,BC =18,∴BD =6,∴AD =6. ∵cos ∠A =AE AD =13, ∴AE =2.在Rt △AED 中,DE =AD 2-AE 2=4 2.22.解:(1)把A (-2,-1),B (0,7)两点的坐标代入 y =-x 2+bx +c ,得⎩⎪⎨⎪⎧ -4-2b +c =-1c =7,解得⎩⎪⎨⎪⎧b =2c =7. 所以,该抛物线的解析式为y =-x 2+2x +7,又因为y =-x 2+2x +7=-(x -1)2+8,所以对称轴为直线x =1. (2)当函数值y =0时,-x 2+2x +7=0的解为x =1±2 2,结合图象,容易知道1-2 2<x <1+2 2时,y >0.(3)当矩形CDEF 为正方形时,设C 点的坐标为(m ,n ), 则n =-m 2+2m +7,即CF =-m 2+2m +7. 因为C 、D 两点的纵坐标相等,所以C 、D 两点关于对称轴x =1对称, 设点D 的横坐标为p ,则1-m =p -1,所以p =2-m ,所以CD =(2-m )-m =2-2m . 因为CD =CF ,所以2-2m =-m 2+2m +7, 整理,得m 2-4m -5=0,解得m =-1或5.因为点C 在对称轴的左侧,所以m 只能取-1.当m =-1时,n =-m 2+2m +7=-(-1)2+2×(-1)+7=4.于是,点C 的坐标为(-1,4).2015年广东中考数学试卷二考试用时100分钟,满分为120分一、选择题(本大题5小题,每小题3分,共15分)在每小题列出的四个选项中,只有一个是正确的,请把答题卡上对应题目所选的选项涂黑.1.-2的倒数是( )A .2B .-2C . 21D .21- 2.据中新社北京2010年12月8日电,2010年中国粮食总产量达到546 400 000吨,用科学记数法表示为( )A .5.464×107吨B .5.464×108吨C .5.464×109吨D .5.464×1010吨 3.将左下图中的箭头缩小到原来的21,得到的图形是( )4.在一个不透明的口袋中,装有5个红球3个白球,它们除颜色外都相同,从中任意摸出一个球,摸到红球的概率为( )A .51B .31C .85D .83 5.正八边形的每个内角为( )A .120ºB .135ºC .140ºD .144º二、填空题(本大题5小题,每小题4分,共20分)请将下列各题的正确答案填写在答题卡相应的位置上.6.已知反比例函数xk y =的图象经过(1,-2),则=k ____________. 7.使2-x 在实数范围内有意义的x 的取值范围是______ _____.8.按下面程序计算:输入3=x ,则输出的答案是_______________.A .B . D .C . 题3图9.如图,AB 与⊙O 相切于点B ,AO 的延长线交⊙O 于点C .若∠A =40º,则∠C =_____.10.如图(1),将一个正六边形各边延长,构成一个正六角星形AFBDCE ,它的面积为1;取△ABC 和△DEF 各边中点,连接成正六角星形A 1F 1B 1D 1C 1E 1,如图(2)中阴影部分;取△A 1B 1C 1和△D 1E 1F 1各边中点,连接成正六角星形A 2F 2B 2D 2C 2E 2,如图(3)中阴影部分;如此下去…,则正六角星形A 4F 4B 4D 4C 4E 4的面积为_________________.三、解答题(一)(本大题5小题,每小题6分,共30分)11.计算:20245sin 18)12011(-︒+-.12.解不等式组:⎩⎨⎧-≤-->+128,312x x x ,并把解集在数轴上表示出来.输入x 立方 -x ÷2 答案题9图 BC O A 题10图(1) A 1 B CD A FE B C D AF E B C D A F E B 1 C 1 F 1 D 1 E 1 A 1 B 1 C 1 F 1 D 1 E 1 A 2 B 2 C 2 F 2 D 2 E 2 题10图(2) 题10图(3)13.已知:如图,E ,F 在AC 上,AD //CB 且AD =CB ,∠D =∠B .求证:AE =CF .14.如图,在平面直角坐标系中,点P 的坐标为(-4,0),⊙P 的半径为2,将⊙P 沿x轴向右平移4个单位长度得⊙P 1.(1)画出⊙P 1,并直接判断⊙P 与⊙P 1的位置关系;(2)设⊙P 1与x 轴正半轴,y 轴正半轴的交点分别为A ,B ,求劣弧AB 与弦AB 围成的图形的面积(结果保留π).15.已知抛物线c x x y ++=221与x 轴没有交点. (1)求c 的取值范围;(2)试确定直线1+=cx y 经过的象限,并说明理由.题13图 B C D A FE y x -3 O 12 3 1 23 -3 -2 -1 -1 -2 -4 -5 -6 题14图四、解答题(二)(本大题4小题,每小题7分,共28分)16.某品牌瓶装饮料每箱价格26元.某商店对该瓶装饮料进行“买一送三”促销活动,若整箱购买,则买一箱送三瓶,这相当于每瓶比原价便宜了0.6元.问该品牌饮料一箱有多少瓶?17.如图,小明家在A 处,门前有一口池塘,隔着池塘有一条公路l ,AB 是A 到l 的小路. 现新修一条路AC 到公路l . 小明测量出∠ACD =30º,∠ABD =45º,BC =50m . 请你帮小明计算他家到公路l 的距离AD 的长度(精确到0.1m ;参考数据:414.12≈,732.13≈).18.李老师为了解班里学生的作息时间表,调查了班上50名学生上学路上花费的时间,他发现学生所花时间都少于50分钟,然后将调查数据整理,作出如下频数分布直方图的一部分(每组数据含最小值不含最大值).请根据该频数分布直方图,回答下列问题:(1)此次调查的总体是什么?(2)补全频数分布直方图;(3)该班学生上学路上花费时间在30分钟以上(含30分钟)的人数占全班人数的百分比是多少?19.如图,直角梯形纸片ABCD 中,AD //BC ,∠A =90º,∠C =30º.折叠纸片使BC 经过点D ,点C 落在点E 处,BF 是折痕,且BF =CF =8.第17题图 B C lD A 时间(分钟) 题19图 B C ED AF 0 题18图 10 20 30 40 50 1 81324 频数(学生人数)(1)求∠BDF 的度数;(2)求AB 的长.五、解答题(三)(本大题3小题,每小题9分,共27分)20.如下数表是由从1开始的连续自然数组成,观察规律并完成各题的解答.12 3 45 6 7 8 910 11 12 13 14 15 1617 18 19 20 21 22 23 24 2526 27 28 29 30 31 32 33 34 35 36…………………………(1)表中第8行的最后一个数是______________,它是自然数_____________的平方,第8行共有____________个数;(2)用含n 的代数式表示:第n 行的第一个数是___________________,最后一个数是________________,第n 行共有_______________个数;(3)求第n 行各数之和.21.如图(1),△ABC 与△EFD 为等腰直角三角形,AC 与DE 重合,AB =AC =EF =9,∠BAC =∠DEF =90º,固定△ABC ,将△DEF 绕点A 顺时针旋转,当DF 边与AB 边重合时,旋转中止.现不考虑旋转开始和结束时重合的情况,设DE ,DF (或它们的延长线)分别交BC (或它的延长线) 于G ,H 点,如图(2)(1)问:始终与△AGC 相似的三角形有 及 ;(2)设CG =x ,BH =y ,求y 关于x 的函数关系式(只要求根据图(2)的情形说明理由)(3)问:当x 为何值时,△AGH 是等腰三角形.题21图(1) BH F A (D ) G C E C (E ) B F A (D ) 题21图(2)22.如图,抛物线1417452++-=x y 与y 轴交于A 点,过点A 的直线与抛物线交于另一点B ,过点B 作BC ⊥x 轴,垂足为点C (3,0).(1)求直线AB 的函数关系式;(2)动点P 在线段OC 上从原点出发以每秒一个单位的速度向C 移动,过点P 作PN ⊥x轴,交直线AB 于点M ,交抛物线于点N . 设点P 移动的时间为t 秒,MN 的长度为s 个单位,求s 与t 的函数关系式,并写出t 的取值范围;(3)设在(2)的条件下(不考虑点P 与点O ,点C 重合的情况),连接CM ,BN ,当t 为何值时,四边形BCMN 为平行四边形?问对于所求的t 值,平行四边形BCMN 是否菱形?请说明理由.2015年广东中考数学试卷二参考答案一、1-5、DBACB二、6、-27、___ x ≥2__8、___12__9、__25º__ 10、2561 三、O xAMN B P C 题22图11、原式=-6 12、x ≥3 13、由△ADF ≌△CB E ,得AF =C E ,故得:AE=CF14、(1)⊙P 与⊙P 1外切。
2015 年广东省东莞市中考数学试卷一、选择题:本大题10 小题,每题 3 分,共 30 分。
在每题给出的四个选项中,只有一个是正确的,请把答题卡上对应题目所选的选项涂黑。
1.( 3 分)(2015?东莞) |﹣2|=()A . 2B . ﹣2C .D .2.( 3 分)(2015?东莞)据国家统计局网站 2014 年 12 月 4 日公布的信息, 2014 年广东省粮食总产量约为 13 573 000吨,将 13 573 000 用科学记数法表示为( )A . 1.3573 ×106B . 1.3573 ×10 7C . 1.3573 ×10 8D . 1.3573 ×10 93.( 3 分)(2015?东莞)一组数据 2, 6, 5, 2, 4,则这组数据的中位数是()A . 2B . 4C . 5D . 64.( 3 分)(2015?东莞)如图,直线 a ∥b ,∠1=75 °, ∠2=35 °,则 ∠3 的度数是()A . 75°B . 55°C . 40°D . 35°5.( 3 分)(2015?东莞)以下所述图形中,既是中心对称图形,又是轴对称图形的是()A . 矩形B . 平行四边形C . 正五边形D . 正三角形6.( 3 分)(2015?东莞)(﹣ 4x ) 2=()A . ﹣ 8x2B . 8x2C . ﹣ 16x2D . 16x 27.( 3 分)(2015?东莞)在 0, 2,(﹣ 3) 0,﹣ 5 这四个数中,最大的数是()A . 0B . 2C . (﹣ 3)D . ﹣58.( 3 分)(2015?东莞)若对于 x 的方程 x 2+x ﹣ a+ =0 有两个不相等的实数根,则实数a 的取值范围是()A . a ≥2B . a ≤2C . a > 2D . a < 29.( 3 分)(2015?东莞)如图,某数学兴趣小组将边长为 3 的正方形铁丝框 ABCD 变形为以 A 为圆心, AB 为半径的扇形(忽视铁丝的粗细) ,则所得扇形 DAB 的面积为( )A .6B .7C .8D .910.( 3 分)( 2015?东莞)如图,已知正△ABC的边长为2,E、 F、 G 分别是 AB 、BC、 CA 上的点,且AE=BF=CG,设△EFG 的面积为 y, AE 的长为 x,则 y 对于 x 的函数图象大概是()A.B.C.D.二、填空题:本大题 6 小题,每题 4 分,共 24 分。
2015年广东省初中毕业生学业考试数 学一、选择题 1. 2-=A.2B.2-C.12D.12-【答案】A.2. 据国家统计局网站2014年12月4日发布消息,2014年广东省粮食总产量约为13 573 000吨,将13 573 000用科学记数法表示为A.61.357310⨯B.71.357310⨯C.81.357310⨯D.91.357310⨯ 【答案】B.3. 一组数据2,6,5,2,4,则这组数据的中位数是A.2B.4C.5D.6 【答案】B.4. 如图,直线a ∥b ,∠1=75°,∠2=35°,则∠3的度数是A.75°B.55°C.40°D.35° 【答案】C.5. 下列所述图形中,既是中心对称图形,又是轴对称图形的是A.矩形B.平行四边形C.正五边形D.正三角形【答案】A. 6. 2(4)x -= A.28x -B.28xC.216x -D.216x【答案】D.7. 在0,2,0(3)-,5-这四个数中,最大的数是A.0B.2C.0(3)-D.5-【答案】B.8. 若关于x 的方程2904x x a +-+=有两个不相等的实数根,则实数a 的取值范围是 A.2a ≥ B.2a ≤ C.2a > D.2a < 【答案】C.9. 如题9图,某数学兴趣小组将边长为3的正方形铁丝框ABCD 变形为以A 为圆心,AB 为半径的扇形 (忽略铁丝的粗细),则所得的扇形DAB 的面积为A.6B.7C.8D.9【答案】D.【略析】显然弧长为6,半径为3,则16392S =⨯⨯=扇形.10. 如题10图,已知正△ABC 的边长为2,E ,F ,G 分别是AB ,BC ,CA 上的点,且AE =BF =CG ,设 △EFG 的面积为y ,AE 的长为x ,则y 关于x 的函数图象大致是【答案】D. 二、填空题11. 正五边形的外角和等于 (度). 【答案】360.12. 如题12图,菱形ABCD 的边长为6,∠ABC =60°,则对角线AC 的长是 .【答案】6.13. 分式方程321x x=+的解是 .【答案】2x =.14. 若两个相似三角形的周长比为2:3,则它们的面积比是 . 【答案】4:9.15. 观察下列一组数:13,25,37,49,511,…,根据该组数的排列规律,可推出第10个数是.【答案】1021. 16. 如题16图,△ABC 三边的中线AD ,BE ,CF 的公共点G ,若12ABC S =△,则图中阴影部分面积是.【答案】4. 【略析】由中线性质,可得AG =2GD ,则11212111222232326B G FCGE AB GA B D A B CS S SS S ===⨯=⨯⨯=⨯=△△△△△,∴阴影部分的面积为4;其实图中各个单独小三角形面积都相等本题虽然超纲,但学生容易蒙对的.三、解答题(一)17. 解方程:2320x x -+=. 【答案】解:(1)(2)0x x --=∴10x -=或20x -= ∴11x =,22x =18. 先化简,再求值:21(1)11x x x ÷+--,其中21x =-. 【答案】解:原式=1(1)(1)x x x x x -⋅+-=11x + 当21x =+时,原式=122211=-+.19. 如题19图,已知锐角△AB C.(1) 过点A 作BC 边的垂线MN ,交BC 于点D (用尺规作图法,保留作图痕迹,不要求写作法);(2) 在(1)条件下,若BC =5,AD =4,tan ∠BAD =34,求DC 的长.【答案】(1) 如图所示,MN 为所作;(2) 在Rt △ABD 中,tan ∠BAD =34AD BD =, ∴344BD =, ∴BD =3,∴DC =AD ﹣BD =5﹣3=2.四、解答题(二)20. 老师和小明同学玩数学游戏,老师取出一个不透明的口袋,口袋中装有三张分别标有数字1,2,3的 卡片,卡片除数字个其余都相同,老师要求小明同学两次随机抽取一张卡片,并计算两次抽到卡片上 的数字之积是奇数的概率,于是小明同学用画树状图的方法寻求他两次抽取卡片的所有可能结果,题 20图是小明同学所画的正确树状图的一部分.(1) 补全小明同学所画的树状图;(2) 求小明同学两次抽到卡片上的数字之积是奇数的概率.【答案】(1) 如图,补全树状图;(2) 从树状图可知,共有9种可能结果,其中两次抽取卡片上的数字之积为奇数的有4种结果,∴P (积为奇数)=4921. 如题21图,在边长为6的正方形ABCD 中,E 是边CD 的中点,将△ADE 沿AE 对折至△AFE ,延 长交BC 于点G ,连接AG .(1) 求证:△ABG ≌△AFG ; (2) 求BG 的长.【答案】(1) ∵四边形ABCD 是正方形,∴∠B =∠D =90°,AD =AB , 由折叠的性质可知AD =AF ,∠AFE =∠D =90°, ∴∠AFG =90°,AB =AF , ∴∠AFG =∠B , 又AG =AG ,∴△ABG ≌△AFG ; (2) ∵△ABG ≌△AFG ,∴BG =FG ,设BG =FG =x ,则GC =6x -, ∵E 为CD 的中点, ∴CF =EF =DE =3, ∴EG =3x +,∴2223(6)(3)x x +-=+,解得2x =, ∴BG =2.22. 某电器商场销售A ,B 两种型号计算器,两种计算器的进货价格分别为每台30元,40元. 商场销售5 台A 型号和1台B 型号计算器,可获利润76元;销售6台A 型号和3台B 型号计算器,可获利润 120元.(1) 求商场销售A ,B 两种型号计算器的销售价格分别是多少元?(利润=销售价格﹣进货价格) (2) 商场准备用不多于2500元的资金购进A ,B 两种型号计算器共70台,问最少需要购进A 型号的 计算器多少台?【答案】(1) 设A ,B 型号的计算器的销售价格分别是x 元,y 元,得:5(30)(40)766(30)3(40)120x y x y -+-=⎧⎨-+-=⎩,解得x=42,y=56, 答:A ,B 两种型号计算器的销售价格分别为42元,56元; (2) 设最少需要购进A 型号的计算a 台,得3040(70)2500a a +-≥解得30x ≥答:最少需要购进A 型号的计算器30台.五、解答题(三)23. 如题23图,反比例函数ky x =(0k ≠,0x >)的图象与直线3y x =相交于点C ,过直线上点A (1,3)作 AB ⊥x 轴于点B ,交反比例函数图象于点D ,且AB =3B D.(1) 求k 的值; (2) 求点C 的坐标;(3) 在y 轴上确实一点M ,使点M 到C 、D 两点距离之和d =MC +MD ,求点M 的坐标.【答案】(1) ∵A (1,3),∴OB =1,AB =3, 又AB =3BD , ∴BD =1, ∴B (1,1), ∴111k =⨯=;(2) 由(1)知反比例函数的解析式为1y x=, 解方程组31y xy x =⎧⎪⎨=⎪⎩,得333x y ⎧=⎪⎨⎪=⎩或333x y ⎧=-⎪⎨⎪=-⎩(舍去), ∴点C 的坐标为(33,3); (3) 如图,作点D 关于y 轴对称点E ,则E (1-,1),连接CE 交y 轴于点M ,即为所求.设直线CE 的解析式为y kx b =+,则3331k b k b ⎧+=⎪⎨⎪-+=⎩,解得233k =-,232b =-, ∴直线CE 的解析式为(233)232y x =-+-, 当x =0时,y =232-, ∴点M 的坐标为(0,232-).24. ⊙O 是△ABC 的外接圆,AB 是直径,过BC 的中点P 作⊙O 的直径PG 交弦BC 于点D ,连接AG ,CP ,P B.(1) 如题24﹣1图;若D 是线段OP 的中点,求∠BAC 的度数;(2) 如题24﹣2图,在DG上取一点k,使DK=DP,连接CK,求证:四边形AGKC是平行四边形;(3) 如题24﹣3图;取CP的中点E,连接ED并延长ED交AB于点H,连接PH,求证:PH⊥A B.【答案】(1) ∵AB为⊙O直径,BP PC=,∴PG⊥BC,即∠ODB=90°,∵D为OP的中点,∴OD=1122OP OB=,∴cos∠BOD=12 ODOB=,∴∠BOD=60°,∵AB为⊙O直径,∴∠ACB=90°,∴∠ACB=∠ODB,∴AC∥PG,∴∠BAC=∠BOD=60°;(2) 由(1)知,CD=BD,∵∠BDP=∠CDK,DK=DP,∴△PDB≌△CDK,∴CK=BP,∠OPB=∠CKD,∵∠AOG=∠BOP,∴AG=BP,∴AG=CK∵OP=OB,∴∠OPB=∠OBP,又∠G=∠OBP,∴AG∥CK,∴四边形AGCK是平行四边形;(3) ∵CE=PE,CD=BD,∴DE∥PB,即DH∥PB∵∠G=∠OPB,∴PB∥AG,∴DH∥AG,∴∠OAG=∠OHD,∵OA=OG,∴∠OAG=∠G,∴∠ODH=∠OHD,∴OD=OH,又∠ODB=∠HOP,OB=OP,∴△OBD≌△HOP,∴∠OHP=∠ODB=90°,∴PH⊥A B.25. 如题25图,在同一平面上,两块斜边相等的直角三角板Rt△ABC与Rt△ADC拼在一起,使斜边AC完全重合,且顶点B,D分别在AC的两旁,∠ABC=∠ADC=90°,∠CAD=30°,AB=BC=4cm.(1) 填空:AD= (cm),DC= (cm);(2) 点M,N分别从A点,C点同时以每秒1cm的速度等速出发,且分别在AD,CB上沿A→D,C→B的方向运动,当N点运动到B点时,M,N两点同时停止运动,连结MN,求当M,N点运动了x秒时,点N到AD的距离(用含x的式子表示);(3) 在(2)的条件下,取DC中点P,连结MP,NP,设△PMN的面积为y(cm2),在整个运动过程中,△PMN的面积y存在最大值,请求出这个最大值.(参考数据:sin75°=624+,sin15°=624-)【答案】(1) 26;22;(2) 如图,过点N作NE⊥AD于E,作NF⊥DC延长线于F,则NE=DF.∵∠ACD=60°,∠ACB=45°,∴∠NCF=75°,∠FNC=15°,∴sin15°=FCNC,又NC=x,∴624FC x-=,∴NE=DF=62224x-+.∴点N到AD的距离为62224x-+cm;(3) ∵sin75°=FNNC,∴624FN x+=,∵PD=CP=2,∴PF=6224x-+,∴162621162(26)(22)(26)2(2)244224y x x x x x +--=+-+--⨯-+·62()4x + 即22673222384y x x ---=++, 当732242628x --=--⨯=732262---时,y 有最大值为6673102304246+---.。
2015年广东省初中毕业生学业考试数学一、选择题(本大题10小题,每小题3分,共30分) 1.=-2( A ) A.2 B.-2 C.21 D.21- 2.据国家统计局网站2014年12月4日发布的消息,2014年广东省粮食总产量约为13 573 000,将13 573 000用科学记数法表示为( B ) A.6103573.1⨯ B.7103573.1⨯ C.8103573.1⨯ D.9103573.1⨯3.一组数据2,6,5,2,4,则这组数据的中位数是( B )A.2B.4C.5D.64.如题4图,直线a//b ,1∠=︒75,2∠=︒35,则3∠的度数是( C )A.︒75B.︒55C.︒40D.︒355.下列所述图形中,既是中心对称图形,又是轴对称图形的是( A )A.矩形B.平行四边形C.正五边形D.正三角形6.2)4(x -=( D )A.-82xB.82xC.-162xD.162x7.在0,2,(-3)0,-5,这四个数中,最大的数是( B )A.0B.2C.(-3)0D.-58.若关于x 的方程0942=+-+a x x 有两个不相等的实数根,则实数a 的取值范围是( C ) A.a 2≥ B.a 2≤ C.a >2 D.a 2<9.如题9图,某数学兴趣小组将边长为3的正方形铁丝形状ABCD 变形为以A 为圆心,AB 为半径的扇形(忽略铁丝的粗细),则该扇形DAB 的面积为( D )A.6B.7C.8D.910.如题10图,已知正ABC ∆的边长为2,E,F,G 分别是AB,BC,CA 上的点,且AE=BF=CG,设EFG ∆的面积为y ,AE 的长为x ,则y 关于x 的函数图像大致是( D )二、填空题(本大题6小题,每小题4分,共24分)11.正五边形的外角和等于 360 (度)。
12.如题12图,菱形ABCD 的边长为6, 60=∠ABC ,则对角线AC 的长是 6 。
2015年广东省东莞市中考数学试卷解析版一、选择题:本大题10小题,每小题3分,共30分。
在每小题给出的四个选项中,只有一个是正确的,请把答题卡上对应题目所选的选项涂黑。
1.(3分)|﹣2|=( )A .2B .﹣2C .12D .−12【解答】解:根据绝对值的性质可知:|﹣2|=2.故选:A .2.(3分)据国家统计局网站2014年12月4日发布的消息,2014年广东省粮食总产量约为13 573 000吨,将13 573 000用科学记数法表示为( )A .1.3573×106B .1.3573×107C .1.3573×108D .1.3573×109【解答】解:将13 573 000用科学记数法表示为:1.3573×107.故选:B .3.(3分)一组数据2,6,5,2,4,则这组数据的中位数是( )A .2B .4C .5D .6【解答】解:把数据由小到大排列为:2,2,4,5,6,所以这组数据的中位数是4.故选:B .4.(3分)如图,直线a ∥b ,∠1=75°,∠2=35°,则∠3的度数是( )A .75°B .55°C .40°D .35°【解答】解:∵直线a ∥b ,∠1=75°,∴∠4=∠1=75°,∵∠2+∠3=∠4,∴∠3=∠4﹣∠2=75°﹣35°=40°.故选:C .5.(3分)下列所述图形中,既是中心对称图形,又是轴对称图形的是()A.矩形B.平行四边形C.正五边形D.正三角形【解答】解:A、是轴对称图形,也是中心对称图形,故此选项正确;B、不是轴对称图形,因为找不到任何这样的一条直线,沿这条直线对折后它的两部分能够重合;即不满足轴对称图形的定义,是中心对称图形,故此选项错误;C、是轴对称图形,不是中心对称图形,故此选项错误;D、是轴对称图形,不是中心对称图形,因为找不到任何这样的一点,旋转180度后它的两部分能够重合;即不满足中心对称图形的定义,故此选项错误.故选:A.6.(3分)(﹣4x)2=()A.﹣8x2B.8x2C.﹣16x2D.16x2【解答】解:原式=16x2,故选:D.7.(3分)在0,2,(﹣3)0,﹣5这四个数中,最大的数是()A.0B.2C.(﹣3)0D.﹣5【解答】解:在0,2,(﹣3)0,﹣5这四个数中,最大的数是2,故选:B.8.(3分)若关于x的方程x2+x﹣a+94=0有两个不相等的实数根,则实数a的取值范围是()A.a≥2B.a≤2C.a>2D.a<2【解答】解:根据题意得△=12﹣4(﹣a+94)>0,解得a>2.故选:C.9.(3分)如图,某数学兴趣小组将边长为3的正方形铁丝框ABCD变形为以A为圆心,AB为半径的扇形(忽略铁丝的粗细),则所得扇形DAB的面积为()A.6B.7C.8D.9【解答】解:∵正方形的边长为3,∴弧BD的弧长=6,∴S扇形DAB=12lr=12×6×3=9.故选:D.10.(3分)如图,已知正△ABC的边长为2,E、F、G分别是AB、BC、CA上的点,且AE =BF=CG,设△EFG的面积为y,AE的长为x,则y关于x的函数图象大致是()A.B.C.D.【解答】解:根据题意,有AE=BF=CG,且正三角形ABC的边长为2,故BE=CF=AG=2﹣x;故△AEG、△BEF、△CFG三个三角形全等.在△AEG中,AE=x,AG=2﹣x.则S△AEG=12AE×AG×sin A=√34x(2﹣x);故y=S△ABC﹣3S△AEG=√3−3×√34x(2﹣x)=√34(3x2﹣6x+4).故可得其大致图象应类似于抛物线,且抛物线开口方向向上;故选:D .二、填空题:本大题6小题,每小题4分,共24分。
信息卷(一)·数学卷2015年广东省初中毕业生学业考试数学卷说明:1.全卷共8页,考试时间为100分钟,总分120分。
2.答卷前,考生必须将自己的姓名、学校、班级按要求填写在密封线左边的空格内。
3.答案可用黑色或蓝色字迹的钢笔、签字笔按各题要求答在试卷上,不能用铅笔、圆珠笔和红笔。
4.考试结束时,将试卷交回。
一、选择题(本题共5小题,每小题3分,共15分)1.下列运算中,正确的是 ( )A .(a +b)2=a 2+2ab +b 2B .3a 2+2a 3=5a 5C .-5-2=-3D .(2a 2)3=6a 62.下列的正方体表面展开图中,折成正方体后“快”与“乐”相对的是 ( )3.把不等式组⎩⎪⎨⎪⎧4-2x≤0,3+x2<3 的解集在数轴上表示出来,正确的是 ( )4.下列图形中既是中心对称图形又是轴对称图形的是( )5.如图,DE 是△ABC 的中位线,且△ADE 的周长为20,则△ABC 的周长为( )A .30B .40C .50D .无法计算二、填空题(本题共5小题,每小题4分,共20分)6.据有关资料表明,我国因环境污染造成的巨大经济损失,每年高达6800万元,该数据用科学记数法表示为__________元.7.分解因式:3x 3-27x =_____________________.8.数据:1,5,9,x 的众数是5,则这组数据的中位数是___________________.9.如图,在⊙O 中,C 是AB 的中点,∠AOC=40°, 则∠ADB 为__________度.第9题图 第10题图10.如图,在等腰梯形ABCD 中,AD∥BC,∠A=120°,AD =8,BC =14,则梯形的周长为__________.三、解答题(一)(本题共5小题,每小题6分,共30分)11.计算:12+||3-2-3tan30°-(π-1)0+⎝ ⎛⎭⎪⎫-16-2.12.解分式方程:1x -1=1x 2-1.13.如图,在平面直角坐标系中,已知点B(4,2),BA⊥x 轴于点A.(1)作出△OAB 绕原点逆时针方向旋转90°后的图形△OA 1B 1,并写出点B 1的坐标; (2)将△OAB 平移得到△O′A′B′,点A 的对应点是A′,点B 的对应点B′的坐标为(2,-2),在坐标系中作出△O′A′B′.14.如图,已知一次函数y 1=kx +b(k≠0)与反比例函数y 2=mx (m≠0)的图象交于A ,D 两点,且与y 轴交于点C.AB 垂直于y 轴,垂足为B ,CO =BC =1,S △AOB =1. 求这两个函数的表达式.15.如图,在Rt△ABC 中,∠C=90°,∠CAB=45°,∠CAB 的平分线AD 交BC 于点D ,过点D 作DE⊥AB 于E.若CD =5,求BC 的长.四、解答题(二)(本题共4小题,每小题7分,共28分)16.某工厂今年3月份的产值为100万元,由于受国际金融风暴的影响,5月份的产值下降到81万元,求平均每月产值下降的百分率.17.小强与小颖两位同学在学习“概率”时,做“抛骰子”(均匀正方体形状)试验,共随机抛了60次,出现向上点数的次数如下图所示:(1)请补全统计图.(2)小强说:“根据试验数据,一次试验中出现向上点数为6的概率最大.”小颖说:“如果抛600 次,则出现向上点数为3的次数正好是100次.”请判断他们说法的对错,并简要说明理由.(3)若小强与小颖各随机抛一枚骰子一次,则P(出现向上点数之和为3的倍数)=______.18.如图,在梯形ABCD中,AB∥CD,点E是BC的中点,AE,DC的延长线相交于点F,连结AC,BF.(1)求证:AB=CF;(2)四边形ABFC是什么四边形?说明你的理由.19.如图,有一段斜坡BC长为10米,坡角∠CBD=12°,为方便残疾人的轮椅车通行,现准备把坡角降为5°.(1)求坡高CD;(2)求斜坡新起点A与原起点B的距离(精确到0.1米).五、解答题(三)(本题共320.取一张矩形的纸,按如下操作过程折叠:第一步:将矩形ABCD沿MN对折,如图1;第二步:把B点叠在折痕MN上,新折痕为AE,点B在MN上的对应点为B′,如图2;第三步:展开,得到图3.(1)你认为∠BAE的度数为__________.(2)利用图3试证明(1)的结论.21.阅读材料,解答下列问题.例:当a>0时,如a =6,则||a =||6=6,故此时||a 是它本身; 当a =0时,||a =0,故此时||a 是零;当a<0时,如a =-6,则||a =||-6=6=-(-6),故此时||a 是它的相反数.综上所述,||a 可分三种情况,即 ||a =⎩⎪⎨⎪⎧,=,-这种分析方法渗透了数学的分类讨论思想.问:(1)请仿照上述分类讨论的方法,分析二次根式a 2的各种展开情况. (2)猜想a 2与||a 的大小关系是a 2____________||a .(3)当1<x<2时,试化简:||x -1+-2.22.如图,在等腰梯形OABC 中,CB∥OA,∠COA=60°,BC =2,OA =4且与x 轴重合.(1)直接写出点A ,B ,C 的坐标.(2)求经过点O ,A ,B 的抛物线解析式,并判断点C 是否在抛物线上.(3)在抛物线的OCB 段,是否存在一点P(不与O 、B 重合),使得四边形OABP 的面积最大,若存在,求出此时P 点的坐标,若不存在,请说明理由.参考答案1.A 2.C 3.D 4.B 5.B 6.6.8×107 7.3x(x +3)(x -3) 8.5 9.40 10.3411.原式=23-3+2-3×33-1+36……4分 =37 ……6分12. x 2-1=x -1……2分x(x -1)=0.∴x 1=0,x 2=1,……4分 经检验,x 2=1是原方程的增根.……5分 ∴原方程的解是x =0.……6分13.(1)如图所示,△O A 1 B 1就是所求作的图形,……2分 B 1(-2,4);……4分(2) △O ′A ′B ′就是所求作的图形.……6分14.依题意有:12AB·OB =12xy =1,即12||m =1,∴m =±2……2分又∵反比例函数的图象在第二、四象限,∴y 2=-2x;……3分 ∵CO =BC =1,∴OB =2,∴AB =1,∴A(-1,2),C(0,1) ……4分∴⎩⎪⎨⎪⎧ -k +b =2b =1 ,解得⎩⎪⎨⎪⎧k =-1b =1 ……5分 ∴y 1=-x +1.……6分15.∵AD 平分∠CAB ,且∠C =90°,DE ⊥AB ,∴CD =DE =5……2分 ∵∠CAB =45°,∠C =∠DEB =90°,∴∠BDE =∠B =45°,∴DE =BE =5,……4分 ∴DB =5 2.∴BC =5+52……6分16.设平均每月产值下降的百分率为x ,得:……1分 100(1-x)2=81……4分解得:x 1=110,x 2=1910(不符题意,舍去)……6分故平均每月产值下降10%.……7分 17.(1)如图.……2分(2)他们的说法是错的.……3分 理由:随机事件的频率是事件发生的次数与试验总次数的比值.概率是反映一个随机事件发生的可能性大小的数值,只有在大量重复试验的前提下得到的频率才可以近似地看作该事件发生的概率.这里试验次数太少,只有60次,所以不能用这次试验的频率估计概率,故他们的说法错误.……5分(3)13……7分18.(1)∵AB ∥CD ,∴∠DFA =∠FAB.∵E 是BC 的中点,∴CE =BE.又∵∠CEF =∠AEB ,∴△ABE ≌△FCE ……3分∴AB =CF.……4分(2)四边形ABFC 是平行四边形.理由:……5分∵AB =CF, AB ∥DF ,∴四边形ABFC 是平行四边形……7分 19.(1)由图可知:CD =sin12°×BC =0.208×10=2.08(米)……2分(2)AD =CD tan5°=2.080.087≈23.91(米),……4分BD =CD tan12°=2.080.213≈9.77(米),……6分∴AB =AD -BD =23.91-9.77=14.14≈14.1(米) ……7分 20.(1)30° ……2分(2)如图(1),过点B ′作B ′F ⊥AD 于F ,……3分图(1)∵矩形ABCD 沿MN 对折,∴AB =2AM ,∠AMB ′=90°.又∵∠MAF =∠B ′FA =90°,∴四边形AFB ′M 是矩形,∴B ′F =AM.∵AB =AB ′=2AM ,∴B ′F =12AB ′……6分∴∠B ′AF =30°.∴∠BAB ′=60°……8分 又∵∠BAE =∠EAB ′,∴∠BAE =30°……9分(其他证法正确,也应按步骤得分.如图(2),延长EB ′到F ,证∠1=∠2=∠3)图(2)21.(1)当a>0时,如a =3,则a 2=32=3,故此时a 2的结果是a 本身;……1分 当a =0时,a 2=0,故此时a 2的结果是零;……2分当a<0时,如a =-3,则a 2=(-3)2=3=-(-3),故此时a 2的结果是a 的相反数.……3分综上所述,a 2的结果可分三种情况,即 a 2=⎩⎪⎨⎪⎧a (a>0)0 (a =0)-a (a<0) ……4分(2) = ……5分(3)∵1<x<2,∴ x -1>0,x -2<0,……6分 ∴||x -1+(x -2)2=x -1+(2-x)……8分 =1.……9分22.(1)A(4,0),B(3,3),C(1,3)……2分(2)依题意设y =ax(x -4),又B(3,3)在该函数图象上,∴-3a =3……3分 解得:a =-33,∴y =-33x 2+433x ……4分 当x =1时,y =3,故点C(1,3)在该函数图象上.……5分(3)如图,连接OB ,在抛物线上取点P ,过P 作PD ⊥OA 交OB 于D ,连接OP 、BP. 则直线OB 的解析式为y =33x.……6分 ∵S △OAB 为定值,∴使S △OPB 最大,则四边形OPBA 的面积最大.……7分 ∵PD =y P -y D =-33x 2+433x -33x =-33x 2+3x =-33⎝⎛⎭⎫x -322+334……8分 ∴当x =32时,PD 最大,将x =32代入y =-33x 2+433x 中,得y =534此时P 点的坐标为P ⎝⎛⎭⎫32,534.……9分。
2015广东中考数学数学一直是中学阶段的重要科目,对于学生而言,参加中考时数学考试也是一项重要的挑战。
2015年广东中考数学试卷同样充满了各种考察点和难题,下面我们将对该试卷进行分析与讨论。
一、选择题部分1. 某个函数的图象如下图所示,问该函数是关于x轴对称还是关于原点对称?解析:观察图象可知,该函数关于x轴对称,因为对于任何一点(x,y),其对称点为(x,-y)。
2. 已知a,b为正数,且a>b,若81a=9b,求“a与b的倍数关系”是?解析:将81a和9b都分解质因数,并得到81a可写成(3^4)×a9b可写成(3^2)×b由于81a=9b,所以(3^4)×a=(3^2)×b即3^2 ×3^2 ×a=3^2 ×b两边同时除以3^2,得到a=b即a和b的倍数关系是a=b。
二、填空题部分1. 化简下列含有开平方的式子:√(16^3) ×√(4^-2) ×16^(-1)÷2^5解析:首先化简根号表达式,即√(16^3)=√(16)^(3×2)=16^2=256然后化简指数表达式,即4^-2=1/4^2=1/16最后化简带分数表达式,即16^(-1)/2^5=1/16^1/2/2^5=1/4/2^5=1/4/32=1/128将以上三个结果相乘,得到256×(1/16)×(1/128)=12. 若直线y=ax+1与点(−3,1)有唯一交点,则实数a的值范围是__________。
解析:将点(-3,1)代入直线方程y=ax+1中,得到1=a(-3)+1即1=-3a+1移项得到3a=0所以实数a的值范围是a=0。
三、解答题部分1. 下图中,点A(2,5)、B(-2,3),请画出直线AB的图象,并写出直线方程y=解析:首先连接点A和点B,得到直线AB的图象如图所示,然后确定直线方程。
2015年广东省中考数学试卷一、选择题:本大题10小题,每小题3分,共30分。
在每小题给出的四个选项中,只有一个是正确的,请把答题卡上对应题目所选的选项涂黑。
1.(3分)|﹣2|=()A.2 B.﹣2 C.D.2.(3分)据国家统计局网站2014年12月4日发布的消息,2014年广东省粮食总产量约为13 573 000吨,将13 573 000用科学记数法表示为()A.1.3573×106B.1.3573×107C.1.3573×108D.1.3573×1093.(3分)一组数据2,6,5,2,4,则这组数据的中位数是()A.2 B.4 C.5 D.64.(3分)如图,直线a∥b,∠1=75°,∠2=35°,则∠3的度数是()A.75° B.55° C.40° D.35°5.(3分)下列所述图形中,既是中心对称图形,又是轴对称图形的是()A.矩形B.平行四边形 C.正五边形D.正三角形6.(3分)(﹣4x)2=()A.﹣8x2B.8x2 C.﹣16x2D.16x27.(3分)在0,2,(﹣3)0,﹣5这四个数中,最大的数是()A.0 B.2 C.(﹣3)0D.﹣58.(3分)若关于x的方程x2+x﹣a+=0有两个不相等的实数根,则实数a的取值范围是()A.a≥2 B.a≤2 C.a>2 D.a<29.(3分)如图,某数学兴趣小组将边长为3的正方形铁丝框ABCD变形为以A为圆心,AB为半径的扇形(忽略铁丝的粗细),则所得扇形DAB的面积为()A.6 B.7 C.8 D.910.(3分)如图,已知正△ABC的边长为2,E、F、G分别是AB、BC、CA上的点,且AE=BF=CG,设△EFG的面积为y,AE的长为x,则y关于x的函数图象大致是()A.B. C.D.二、填空题:本大题6小题,每小题4分,共24分。
2015年广东省中考数学试卷一、选择题:本大题10小题,每小题3分,共30分。
在每小题给出的四个选项中,只有一个是正确的,请把答题卡上对应题目所选的选项涂黑。
1.(3分)|﹣2|=()A.2B.﹣2C.D.2.(3分)据国家统计局网站2014年12月4日发布的消息,2014年广东省粮食总产量约为13 573 000吨,将13 573 000用科学记数法表示为()A.1.3573×106B.1.3573×107C.1.3573×108D.1.3573×109 3.(3分)一组数据2,6,5,2,4,则这组数据的中位数是()A.2B.4C.5D.64.(3分)如图,直线a∥b,∠1=75°,∠2=35°,则∠3的度数是()A.75°B.55°C.40°D.35°5.(3分)下列所述图形中,既是中心对称图形,又是轴对称图形的是()A.矩形B.平行四边形C.正五边形D.正三角形6.(3分)(﹣4x)2=()A.﹣8x2B.8x2C.﹣16x2D.16x27.(3分)在0,2,(﹣3)0,﹣5这四个数中,最大的数是()A.0B.2C.(﹣3)0D.﹣58.(3分)若关于x的方程x2+x﹣a+=0有两个不相等的实数根,则实数a的取值范围是()A.a≥2B.a≤2C.a>2D.a<29.(3分)如图,某数学兴趣小组将边长为3的正方形铁丝框ABCD变形为以A为圆心,AB为半径的扇形(忽略铁丝的粗细),则所得扇形DAB的面积为()A.6B.7C.8D.910.(3分)如图,已知正△ABC的边长为2,E、F、G分别是AB、BC、CA上的点,且AE =BF=CG,设△EFG的面积为y,AE的长为x,则y关于x的函数图象大致是()A.B.C.D.二、填空题:本大题6小题,每小题4分,共24分。
请将下列各题的正确答案填写在答题卡相应的位置上。
2015年广东省中考数学试卷一、选择题:本大题10小题,每小题3分,共30分。
在每小题给出的四个选项中,只有一个是正确的,请把答题卡上对应题目所选的选项涂黑。
1.(3分)|﹣2|=()A.2 B.﹣2 C .D .考点:难易度:绝对值M113 容易题.分析:根据一个负数的绝对值是其相反数得|﹣2|=2.故答案为A.解答:A.点评:此题考查了去绝对值符号,要求学生掌握一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.2.(3分)据国家统计局网站2014年12月4日发布的消息,2014年广东省粮食总产量约为13 573 000吨,将13 573 000用科学记数法表示为()A.1.3573×106B.1.3573×107C.1.3573×108D.1.3573×109考点:难易度:科学记数法M11C 容易题分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.所以13 573 000用科学记数法表示为:1.3573×107故答案为B解答:B.点评:此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a 的取值范围以及n的大小与正负.3.(3分)一组数据2,6,5,2,4,则这组数据的中位数是()A.2 B.4 C.5 D.6考点:中位数、众数M214难易度:容易题.分析:根据中位数的定义,将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数.如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数先把数据由小到大排列为:2,2,4,5,6,共有奇数个数所以这组数据的中位数是4.故答案为B解答:B.点评:本题为基本计算题,要求学生掌握中位数的求法,第一步先将数据排序,第1页(共19页)第2页(共19页)第二步判断数据个数的奇偶性,第三步,计算(偶数取中间两位的平均值,奇数直接去中间一位即可),特别注意要排序防止计算失误。
2015年东莞市中考数学试卷
一、选择题(共10小题;共50分)
A. C.
2. 据国家统计局网站年月日发布的消息,年广东省粮食总产量约为吨,
将用科学记数法表示为
A. B. C. D.
3. 一组数据,,,,,这组数据的中位数是
A. B. C. D.
4. 如图,直线,,,则的度数是
A. B. C. D.
5. 下列所述图形中,既是中心对称图形,又是轴对称图形的是
A. 矩形
B. 平行四边形
C. 正五边形
D. 正三角形
6.
A. B. C. D.
7. 在,,这四个数中,最大的数是
A. B. C.
8. 若关于的方程有两个不相等的实数根,则实数的取值范围是
A. B. C. D.
9. 如图,某数学兴趣小组将边长为的正方形铁丝框变形为以为圆心,为半径的扇
形(忽略铁丝的粗细),则所得扇形的面积为
A. B. C. D.
10. 如图,已知正的边长为,,,分别是,,上的点,且
,设的面积为,的长为,则关于的函数图象大致是
A. B.
C. D.
二、填空题(共6小题;共30分)
11. 正五边形的外角和等于(度).
12. 如图,菱形的边长为,,则对角线的长是.
13. 分式方程的解是.
14. 若两个相似三角形的周长比为,则它们的面积比是.
15. 观察下列一组数:,,,,根据该组数的排列规律,可推出第个数
是.
16. 如图,三边的中线,,的公共点为,若,则图中阴影部
分的面积是.
三、解答题(共9小题;共117分)
17. 解方程:.
18. ,其中.
19. 如图,已知锐角.
(1)过点作边的垂线,交于点(用尺规作图法,保留作图痕迹,不要求写作法);
(2)在(1)条件下,若,,,求的长.
20. 老师和小明同学玩数学游戏,老师取出一个不透明的口袋,口袋中装有三张分别标有数字,,
的卡片,卡片除数字外其余都相同,老师要求小明同学两次随机抽取一张卡片,并计算两次抽到卡片上的数字之积是奇数的概率,于是小明同学用画树状图的方法寻求他两次抽取卡片的所有可能结果,如图是小明同学所画的正确树状图的一部分.
(1)补全小明同学所画的树状图;
(2)求小明同学两次抽到卡片上的数字之积是奇数的概率.
21. 如图,在边长为的正方形中,是边的中点,将沿翻折得到
,延长交边于点,连接.
(1)求证:;
(2)求的长.
22. 某电器商场销售,两种型号计算器,两种计算器的进货价格分别为每台元,元.商
场销售台型号和台型号计算器,可获利润元;销售台型号和台型号计算器,可获利润元.
(1)求商场销售,两种型号计算器的销售价格分别是多少元?(利润销售价格进货价格)
(2)商场准备用不多于元的资金购进,两种型号计算器共台,问最少需要购进型号的计算器多少台?
23. 如图,反比例函数的图象与直线相交于点,过直线上点
作于点,交反比例函数图象于点,且.
(1)求的值;
(2)求点的坐标;
(3)在轴上确定一点,使点到,两点距离之和最小,求点的坐标.
24. 是的外接圆,是直径,过的中点作的直径交弦于点,
连接,,.
(1)如图1,若是线段的中点,求的度数;
(2)如图2,在上取一点,使,连接,求证:四边形是平行四边形;
(3)如图3,取的中点,连接并延长交于点,连接,求证:.
25. 如图,在同一平面上,两块斜边相等的直角三角板和拼在一起,使斜边
完全重合,且顶点,分别在的两旁,,,,
(1)填空:,;
(2)点,分别从点,点同时以每秒的速度出发,且分别在,上沿
,方向运动,求点到的距离(用含的式子表示);
(3)在()的条件下,取中点,连接,,设的面积为,在整个运动过程中,的面积存在最大值,请求出的最大值.
(参考数据:,)
答案
第一部分
1. A
2. B
3. B
4. C
5. A
6. D
7. B
8. C
9. D 【解析】正方形的边长为,
弧的弧长为,
.
10. D
【解析】因为,且正三角形的边长为,
则,,
故,,三个三角形全等,
在中,,,
则,
故,
则此函数的图象是开口向上的抛物线.
第二部分
11.
12.
13.
14.
15.
【解析】分母为奇数,分子为自然数,所以,它的规律为,将代入可得.
16.
【解析】的三条中线,,交于点,
,.
,
,.
.
第三部分
17. 因式分解,得
于是得
18.
当时,.
19. (1)如图所示,为所作.
(2)在中,,
,
,
.
20. (1)如图,补全树状图.
(2)从树状图可知,共有种可能结果,其中两次抽取卡片上的数字之积为奇数的有种结果,
.
21. (1)四边形是正方形,
,.
由折叠的性质可知,,
,.
.
又,
.
(2),
.
设,则.
点为的中点,
.
.
在中,由勾股定理,得:
,解得.
.
22. (1)设,型号的计算器的销售价格分别是元,元.得
解得
答:,两种型号计算器的销售价格分别为元,元.(2)设最少需要购进型号的计算器台.
得
解得
答:最少需要购进型号的计算器台.
23. (1),
,,
,
,
将坐标代入反比例解析式得:
(2)由()知,,
反比例函数的解析式为:,
解:
解得:或
,
;
(3)如图,
作关于轴的对称点,连接交轴于,则最小,
,
设直线的解析式为:,
,
当时,,
.
24. (1)为直径,,
,
即.
为的中点,
,
,
.
为直径,
,
,
,
.
(2)由(1)知,,
,,
,
,.
,
,
.
,
.
又,
,
四边形是平行四边形.
(3),,
,
即.
,
,
,
.
,
,
,
.
又,,
,
,
.
25. (1);
【解析】,,
,
,,
,
.
(2)过点作于,作,交的延长线于,如图所示:
则,
,,,
,,
,,
,设,
,
,
点到的距离为.
(3),
,
为的中点,
,
,
即是的二次函数,
,
有最大值,
当时,
.。