立体几何最全教案
- 格式:doc
- 大小:567.00 KB
- 文档页数:21
第一章:空间几何体1.1.1柱、锥、台、球的结构特征一、教学目标1.知识与技能(1)通过实物操作,增强学生的直观感知。
(2)能根据几何结构特征对空间物体进行分类。
(3)会用语言概述棱柱、棱锥、圆柱、圆锥、棱台、圆台、球的结构特征。
(4)会表示有关于几何体以及柱、锥、台的分类。
2.过程与方法(1)让学生通过直观感受空间物体,从实物中概括出柱、锥、台、球的几何结构特征。
(2)让学生观察、讨论、归纳、概括所学的知识。
3.情感态度与价值观(1)使学生感受空间几何体存在于现实生活周围,增强学生学习的积极性,同时提高学生的观察能力。
(2)培养学生的空间想象能力和抽象括能力。
二、教学重点、难点重点:让学生感受大量空间实物及模型、概括出柱、锥、台、球的结构特征。
难点:柱、锥、台、球的结构特征的概括。
三、教学用具(1)学法:观察、思考、交流、讨论、概括。
(2)实物模型、投影仪四、教学思路(一)创设情景,揭示课题1.教师提出问题:在我们生活周围中有不少有特色的建筑物,你能举出一些例子吗?这些建筑的几何结构特征如何?引导学生回忆,举例和相互交流。
教师对学生的活动及时给予评价。
2.所举的建筑物基本上都是由这些几何体组合而成的,(展示具有柱、锥、台、球结构特征的空间物体),你能通过观察。
根据某种标准对这些空间物体进行分类吗?这是我们所要学习的内容。
(二)、研探新知1.引导学生观察物体、思考、交流、讨论,对物体进行分类,分辩棱柱、圆柱、棱锥。
2.观察棱柱的几何物件以及投影出棱柱的图片,它们各自的特点是什么?它们的共同特点是什么?3.组织学生分组讨论,每小组选出一名同学发表本组讨论结果。
在此基础上得出棱柱的主要结构特征。
(1)有两个面互相平行;(2)其余各面都是平行四边形;(3)每相邻两上四边形的公共边互相平行。
概括出棱柱的概念。
4.教师与学生结合图形共同得出棱柱相关概念以及棱柱的表示。
5.提出问题:各种这样的棱柱,主要有什么不同?可不可以根据不同对棱柱分类?请列举身边具有已学过的几何结构特征的物体,并说出组成这些物体的几何结构特征?它们由哪些基本几何体组成的?6.以类似的方法,让学生思考、讨论、概括出棱锥、棱台的结构特征,并得出相关的概念,分类以及表示。
立体几何最全教案doc一、教学目标1. 知识与技能:使学生掌握立体几何的基本概念、性质和判定,提高空间想象能力。
2. 过程与方法:通过观察、操作、思考、交流等活动,培养学生分析问题、解决问题的能力。
3. 情感态度价值观:激发学生对立体几何的兴趣,培养学生的创新意识和团队协作精神。
二、教学内容1. 第一课时:立体几何的基本概念(1)空间点、线、面的位置关系(2)平面、直线、圆锥面、球面的方程2. 第二课时:平面与直线的位置关系(1)平面与直线的交点(2)平面与直线的平行与垂直3. 第三课时:直线与直线的位置关系(1)直线与直线的交点(2)直线与直线的平行与垂直4. 第四课时:空间几何图形的性质与判定(1)空间四边形的性质与判定(2)空间三角形的性质与判定5. 第五课时:立体图形的面积与体积(1)立体图形的面积计算(2)立体图形的体积计算三、教学方法1. 采用问题驱动法,引导学生主动探究立体几何的基本概念和性质。
2. 利用多媒体课件,直观展示立体几何图形,提高学生的空间想象力。
3. 创设实践操作环节,让学生动手制作立体模型,加深对立体几何的理解。
4. 组织分组讨论,培养学生的团队协作能力和交流表达能力。
四、教学评价1. 课堂表现:观察学生在课堂上的参与程度、提问回答情况,了解学生的学习状态。
2. 作业完成情况:检查学生作业的准确性、规范性,评估学生的学习效果。
3. 考试成绩:定期进行立体几何的知识测试,检验学生的掌握程度。
4. 学生反馈:收集学生对立体几何教学的意见和建议,不断优化教学方法。
五、教学资源1. 教材:《立体几何》2. 多媒体课件:立体几何图形展示、动画演示3. 教具:立体模型、几何画板4. 网络资源:相关立体几何的论文、教案、教学视频六、教学策略1. 案例分析:通过分析典型立体几何案例,让学生理解和掌握基本概念和性质。
2. 启发式教学:提问引导学生思考,激发学生探究立体几何问题的兴趣。
高中立体几何教案5篇第一篇:高中立体几何教案高中立体几何教案第一章直线和平面两个平面平行的性质教案教学目标1.使学生掌握两个平面平行的性质定理及应用;2.引导学生自己探索与研究两个平面平行的性质定理,培养和发展学生发现问题解决问题的能力.教学重点和难点重点:两个平面平行的性质定理;难点:两个平面平行的性质定理的证明及应用.教学过程一、复习提问教师简述上节课研究的主要内容(即两个平面的位置关系,平面与平面平行的定义及两个平面平行的判定定理),并让学生回答:(1)两个平面平行的意义是什么?(2)平面与平面的判定定理是怎样的?并用命题的形式写出来?(教师板书平面与平面平行的定义及用命题形式书写平面与平面平行的判定定理)(目的:(1)通过学生回答,来检查学生能否正确叙述学过的知识,正确理解平面与平面平行的判定定理.(2)板书定义及定理内容,是为学生猜测并发现平面与平面平行的性质定理作准备)二、引出命题(教师在对上述问题讲评之后,点出本节课主题并板书,平面与平面平行的性质)师:从课题中,可以看出,我们这节课研究的主要对象是什么?生:两个平面平行能推导出哪些正确的结论.师:下面我们猜测一下,已知两平面平行,能得出些什么结论.(学生议论)师:猜测是发现数学问题常用的方法.“没有大胆的猜想,就作不出伟大的发现.”但猜想不是盲目的,有一些常用的方法,比如可以对已有的命题增加条件,或是交换已有命题的条件和结论.也可通过类比法即通过两个对象类似之处的比较而由已经获得的知识去引出新的猜想等来得到新的命题.(不仅要引导学生猜想,同时又给学生具体的猜想方法)师:前面,复习了平面与平面平行的判定定理,判定定理的结论是两平面平行,这对我们猜想有何启发?生:由平面与平面平行的定义,我猜想:两个平面平行,其中一个平面内的直线必平行于另一个面.师:很好,把它写成命题形式.(教师板书并作图,同时指出,先作猜想、再一起证明)猜想一:已知:平面α∥β,直线a 求证:a∥β.生:由判定定理“垂直于同一条直线的两个平面平行”.我猜想:一条直线垂直于两个平行平面中的一个平面,它也垂直于另一个平面.[教师板书]α,猜想二:已知:平面α∥β,直线l⊥α.求证:l⊥β.师:这一猜想的已知条件不仅是“α∥β”,还加上了“直线l⊥α”.下面请同学们看课本上关于判定定理“垂直于同一直线的两平面平行”的证明.在证明过程中,“平面γ∩α=a,平面γ∩β=a′”.a与a′是什么关系?生:a∥a′.师:若改为γ不是过AA′的平面,而是任意一个与α,β都相交的平面γ.同学们考虑一下是否可以得到一个猜想呢?(学生讨论)生:如果一个平面与两个平行平面中的一个相交,也必与另一个平面相交.” [教师板书] 猜想三:已知:平面α∥β,平面γ∩α=a,求证:γ与β一定相交.师:怎么作这样的猜想呢?生:我想起平面几何中的一个结论:“一条直线与两条平行线中的一条相交,也必与另一条相交.”师:很好,这里实质用的是类比法来猜想.就是把原来的直线类似看作平面.两平行直线类似看作两个平行平面,从而得出这一猜想.大家再考虑,猜想三中,一个平面与两个平行平面相交,得到的交线有什么位置关系?生:平行师:请同学们表达出这个命题.生:如果两个平行平面同时和第三个平面相交,那么它们的交线平行. [教师板书]猜想四:已知:平面α∥β,平面γ∩α=a,γ∩β=b.求证:a∥b.[通过复习定理的证明方法,既发现了猜想三,猜想四,同时又复习了定理的证明方法,也为猜想四的证明,作了铺垫] 师:在得到猜想三时,我们用到了类比法,实际上,在立体几何的研究中,将所要解决的问题与平面几何中的有关问题作类比,常常能给我们以启示,发现立体几何中的新问题.比如:在平面几何中,我们有这样一条定理:“夹在两条平行线间的平行线段相等”,请同学们用类比的方法,看能否得出一个立体几何中的猜想?生:把两条平行线看作两个平行平面,可得猜想:夹在两个平行平面间的平行线段相等. [教师板书] 猜想五:已知:平面α∥β,AA′∥BB′,且A,B∈α,B,B′∈β.求证:AA′=BB′.[该命题,在教材中是一道练习题,但也是平面与平面平行的性质定理,为了完整体现平面与平面平行的性质定理,故尔把它放在课堂上进行分析]三、证明猜想师:通过分析,我们得到了五个猜想,猜想的结论往往并不完全可靠.得到猜想,并不意谓着我们已经得到了两个平面平行的性质定理,下面主要来论证我们得到的猜想是否正确.[师生相互交流,共同完成猜想的论证] 师:猜想一是由平面与平面平行的定义得到的,因此在证明过程中要注意应用定义.[猜想一证明] 证明:因为α∥β,所以α与β无公共点.又因为a α,所以 a与β无公共点.故a∥β.师:利用平面与平面平行的定义及线面平行的定义,论证了猜想一的正确性.这便是平面与平面平行的性质定理一.简言之,“面面平行,则线面平行.”[教师擦掉“猜想一”,板书“性质定理一”] [论证完猜想一之后,教师与学生共同研究了“猜想二”,发现,若论证了“猜想四”的正确性质,“猜想二”就容易证了,因而首先讨论“猜想三,猜想四”] 师:“猜想三”是类比平面几何中的结论得到的,还记得初中时,是怎么证明的?[学生回答:反证法] 师:那么,大家可否类比初中的证明方法来证明“猜想三”呢?生:用反证法:假设γ与β不相交,则γ∥β.这样过直线a有两个平面α和γ与β平行.与“过平面外一点有且只有一个平面与已知平面平行”矛盾.故γ与β相交.师:很好.由此可知:不只是发现问题时可用类比法,就是证明方法也可用类比方法.不过猜想三,虽已证明为正确的命题,但教材中并把它作为平面与平面平行的性质定理,大家在今后应用中要注意.[猜想四的证明] 师:猜想四要证明的是直线a∥b,显然a,b共面于平面γ,只需推导出a与b无公共点即可.生:(证法一)因为a∥β,所以 a与β无公共点.又因为a α,b β.所以 a与b无公共点.又因为a γ,b 所以a∥b.师:我们来探讨其它的证明方法.要证线线平行,可以转化为线面平行.生:(证法二)因为a α,又因为α∥β,所以a∥β.又因为a γ,且γ∩β=b,所以a∥b.师:用两种不同证法得出了“猜想四”是正确的.这是平面和平面平行的性质定理二.[教师擦掉“猜想四”,板书“性质定理二”] 师:平面与平面平行的性质定理二给出了在两个平行平面内找一对平行线的方法.即:“作一平面,交两面,得交线,则线线平行.”同时也给我们证明两条直线平行的又一方法.简言之,“面面平行,则线线平行”.[猜想二的证明] 师:猜想二要证明的是直线l⊥β,根据线面垂直的判定定理,就要证明l和平面β内的两条相交直线垂直.那么如何在平面β内作两条相交直线呢?[引导学生回忆:“垂直于同一直线的两个平面平行”的定理的证明] γ,生:(证法一)设l∩α=A,l∩β=B.过AB作平面γ∩α=a,γ∩β=a′.因为α∥β,所以a∥a′.再过AB作平面δ∩α=b,δ∩β=b′.同理b∥b′.又因为l⊥α,所以l⊥a,l⊥b,所以l⊥a′,l⊥b′,又a′∩b′=β,故l⊥β.师:要证明l⊥β,根据线面垂直的定义,就是要证明l和平面β内任何一条直线垂直.生:(证法二)在β内任取一条直线b,经过b作一平面γ,使γ∩α=a,因为α∥β,所以a∥b,因此l⊥α,a α,故l⊥a,所以l⊥b.又因为b为β内任意一条直线,所以l⊥β.[教师擦掉“猜想二”,板书“性质定理三”] [猜想五的证明] 证明:因为AA′∥BB′,所以过AA′,BB′有一个平面γ,且γ∩α=AB,γ∩β=A′B′.因为α∥β,所以AB∥A′B′,因此AA′ B′B为平行四边形.故AA′=BB′.[教师擦掉“猜想五”,板书“性质定理四”] 师:性质定理四,是类比两条平行线的性质得到的.平行线的性质有许多,大家还能类比得出哪些有关平行平面的猜想呢?你能证明吗?请大家课下思考.[因类比法是重要的方法,但平行性质定理已得出,故留作课下思考]四、定理应用师:以上我们通过探索一猜想一论证,得出了平面与平面平行的四个性质定理,下面来作简单的应用.例已知平面α∥β,AB,CD为夹在α,β间的异面线段,E、F分别为AB,CD的中点.求证:EF∥α,EF∥β.师:要证EF∥β,根据直线与平面平行的判定定理,就是要在β内找一条直线与EF平行.证法一:连接AF并延长交β于G.因为AG∩CD=F,所以 AG,CD确定平面γ,且γ∩α=AC,γ∩β=DG.因为α∥β,所以AC∥DG,所以∠ACF=∠GDF,又∠AFC=∠DFG,CF=DF,所以△ACF≌△DFG.所以AF=FG.又 AE=BE,所以EF∥BG,BG 故EF∥β.同理:EF∥α.师:要证明EF∥β,只须过EF作一平面,使该平面与β平行,则根据平面与平面平行性质定理即可证.证法二:因为AB与CD为异面直线,所以A CD.β.在A,CD确定的平面内过A作AG∥CD,交β于G,取AG中点H,连结AC,HF.因为α∥β,所以AC∥DG∥EF.因为DG β,所以HF∥β.又因为 E为AB的中点,因此EH∥BG,所以EH∥β.又EH∩FH=H,因此平面EFH∥β,EF 所以EF∥β.同理,EF∥α.平面EFH,师:从以上两种证明方法可以看出,虽然是解决立体几何问题,但都是通过转化为平面几何的问题来解决的.这是解决立体几何问题的一种技能,只是依据的不同,转化的方式也不同.五、平行平面间的距离师:和两个平行平面同时垂直的直线,叫做这两个平行平面的公垂线,它夹在这两个平行平面间的部分,叫做这两个平行平面的公垂线段.两个平行平面有几条公垂线?这些公垂线的位置关系是什么?生:两个平行平面有无数条公垂线,它们都是平行直线.师:夹在两平行平面之间的公垂线段有什么数量关系?根据是什么?生:相等,根据“夹在两个平行平面间的平行线段相等.”师:可见夹在两个平行平面的公垂线段长度是唯一的.而且是夹在两个平行平面间的所有线段中最短的.因此我们把这公垂线段的长度叫做两个平行平面的距离.显然两个平行平面的距离等于其中一个平面上的任一点到另一个平面的垂线段的长度.六、小结1.由学生用文字语言和符号语言来叙述两个平面平行的性质定理.教师总结本节课是由发现与论证两个过程组成的.简单的说就是:由具体问题具体素材用类比等方法猜想命题,并由转化等方法论证猜想的正确性,得到结论.2.在应用定理解决立体几何问题时,要注意转化为平面图形的问题来处理.大家在今后学习中一定要注意掌握这一基本技能.3.线线平行、线面平行与面面平行的判定定理和性质定理构成一套完整的定理体系.在学习中应发现其内在的科学规律:低一级位置关系判定着高一级位置关系;高一级位置关系一定能推导低一级位置关系.下面以三种位置关系为纲应用转化的思想整理如下:七、布置作业课本:p.38,习题五5,6,7,8.课堂教学设计说明1.本节课的中心是两个平行平面的性质定理.定理较多,若采取平铺直叙,直接地给出命题,那样就绕开了发现、探索问题的过程,虽然比较省事,但对发展学生的思维能力是不利的.在设计本教案时,充分考虑到教学研究活动是由发现与论证这样两个过程组成的.因而把“如何引出命题”和“如何猜想”作为本节课的重要活动内容.在教师的启发下,让学生利用具体问题;运用具体素材,通过类比等具体方法,发现命题,完成猜想.然后在教师的引导下,让学生一一完成对猜想的证明,得到两个平面平行的性质定理.也就在这一“探索”、“发现”、“论证”的过程中,培养了学生发现问题,解决问题的能力.在实施过程中,让学生处在主体地位,教师始终处于引导者的位置.特别是在用类比法发现猜想时,学生根据两条平行线的性质类比得出许多猜想.比如:根据“平行于同一条直线的两条直线平行”得到“平行于同一个平面的两个平面平行.”根据“两条直线平行,同位角相等”等,得到“与两个平行平面都相交的直线与两个平面所成的角相等”等等,当然在这些猜想中,有的是正确的,有的是错误的,这里不一一叙述.这就要求教师在教学过程中,注意变化,作适当处理.学生在整节课中,思维活跃,沉浸在“探索、发现”的思维乐趣中,也正是在这种乐趣中,提高了学生的思维能力.2.在对定理的证明过程中,课上不仅要求证出来,而且还考虑多种证法.对于定理的证明,是解决问题的一些常用方法,也可以说是常规方法,是要学生认真掌握的.因此教师要把定理的证明方法,作为教学的重点内容进行必要的讲解,培养学生解决问题的能力.3.转化是重要的数学思想及数学思维方法.它在立体几何中处处体现.实质上处理空间图形问题的基本思想方法就是把它转化为平面图形的问题,化繁为简.特别是在线线平行,线面平行,面面平行三种平行的关系上转化的思想也有较充分的体现,因而在小结中列出三个平行关系相互转让的关系图,一方面便于学生理解,记忆,同时通过此表,能马上发现三者相互推导的关系,能打开思路,发现线索,得到最佳的解题方案.第二篇:高中立体几何高中立体几何的学习高中立体几何的学习主要在于培养空间抽象能力的基础上,发展学生的逻辑思维能力和空间想象能力。
立体几何教案一、教学目标1.理解立体几何的基本概念和术语;2.掌握立体几何的基本性质和定理;3.能够运用所学知识解决立体几何问题。
二、教学内容1.立体几何的基本概念和术语;2.立体几何的基本性质和定理;3.立体几何的应用。
三、教学过程1. 立体几何的基本概念和术语1.立体几何的定义:立体几何是研究空间中的图形、体积和位置关系的数学分支。
2.立体几何的基本术语:点、线、面、体、角、棱、面角、截面等。
3.立体几何的基本图形:球、圆柱、圆锥、棱锥、棱柱、正多面体等。
2. 立体几何的基本性质和定理1.球的性质:球的表面积公式和体积公式;2.圆柱的性质:圆柱的侧面积公式和体积公式;3.圆锥的性质:圆锥的侧面积公式和体积公式;4.棱锥的性质:棱锥的侧面积公式和体积公式;5.棱柱的性质:棱柱的侧面积公式和体积公式;6.正多面体的性质:正多面体的表面积公式和体积公式。
3. 立体几何的应用1.球的应用:求解球的表面积和体积;2.圆柱的应用:求解圆柱的侧面积和体积;3.圆锥的应用:求解圆锥的侧面积和体积;4.棱锥的应用:求解棱锥的侧面积和体积;5.棱柱的应用:求解棱柱的侧面积和体积;6.正多面体的应用:求解正多面体的表面积和体积。
四、教学方法1.讲授法:通过讲解理论知识,让学生掌握立体几何的基本概念和术语;2.实验法:通过实验,让学生了解立体几何的基本性质和定理;3.问题解决法:通过解决问题,让学生掌握立体几何的应用。
五、教学评价1.考试:通过考试,检测学生对立体几何的掌握程度;2.作业:通过作业,巩固学生对立体几何的理解和应用;3.课堂表现:通过课堂表现,评价学生的学习态度和参与度。
六、教学反思立体几何是数学中的一个重要分支,对于学生的数学素养和综合能力的提高具有重要意义。
在教学过程中,应该注重理论与实践相结合,注重培养学生的创新思维和解决问题的能力。
同时,应该注重教学方法的多样化,让学生在轻松愉悦的氛围中学习立体几何知识,提高学生的学习兴趣和学习效果。
高中数学立体几何教案1. 教学目标1.1 知识与技能1. 理解立体几何的基本概念,包括点、线、面的位置关系,以及它们的性质和判定。
2. 掌握立体几何的基本图形,如正方体、长方体、棱柱、棱锥等。
3. 学会使用立体几何的基本工具,如直尺、三角板、量角器等。
1.2 过程与方法1. 通过观察和操作,培养学生的空间想象能力。
2. 学会使用几何语言描述立体图形,培养学生的逻辑表达能力。
3. 运用立体几何的性质和判定,解决实际问题。
1.3 情感态度与价值观1. 培养学生对数学的兴趣和自信心。
2. 培养学生合作交流的能力,发展学生的团队精神。
2. 教学内容2.1 基本概念1. 点、线、面的定义及性质。
2. 点、线、面之间的位置关系,如平行、相交、垂直等。
2.2 基本图形1. 正方体、长方体、棱柱、棱锥的定义及性质。
2. 常见立体图形的分类和识别。
2.3 基本工具1. 直尺、三角板、量角器的使用方法。
2. 立体图形的测量和绘制。
3. 教学过程3.1 导入通过实物模型或图片,引导学生观察和描述立体图形,激发学生的兴趣。
3.2 知识讲解1. 讲解基本概念,如点、线、面的定义及性质。
2. 引导学生通过观察和操作,理解点、线、面之间的位置关系。
3. 讲解基本图形,如正方体、长方体、棱柱、棱锥的定义及性质。
4. 教授立体图形的分类和识别方法。
5. 讲解基本工具的使用方法,如直尺、三角板、量角器等。
3.3 实践操作1. 让学生通过观察和操作,巩固所学知识。
2. 引导学生运用立体几何的性质和判定,解决实际问题。
3.4 总结与拓展1. 总结本节课所学内容,强调重点和难点。
2. 提出拓展问题,激发学生的思考。
4. 教学评价通过课堂表现、作业完成情况和考试成绩,全面评价学生的研究效果。
5. 教学资源1. 实物模型或图片。
2. 直尺、三角板、量角器等工具。
3. 作业纸、练册等。
6. 教学建议1. 注重学生的空间想象能力的培养。
2. 鼓励学生运用几何语言描述立体图形,培养学生的逻辑表达能力。
立体几何最全教案doc一、教案概述1. 教学目标:了解立体几何的基本概念和性质;掌握立体图形的绘制和识别方法;培养学生的空间想象能力和逻辑思维能力。
2. 教学内容:立体几何的基本概念和性质;立体图形的绘制和识别方法;常见立体图形的性质和特征。
二、第一章:立体几何的基本概念1. 教学目标:了解立体几何的基本概念,如点、线、面、体等;掌握立体图形的性质和特征。
2. 教学内容:点、线、面、体等基本概念的定义和性质;立体图形的分类和特征;立体图形的坐标表示方法。
三、第二章:立体图形的绘制和识别1. 教学目标:学会绘制和识别常见立体图形;掌握立体图形的对称性和旋转方法。
2. 教学内容:常见立体图形的绘制方法和解题技巧;立体图形的对称性和旋转方法;立体图形之间的相互转换和组合。
四、第三章:柱体和锥体1. 教学目标:了解柱体和锥体的定义和性质;掌握柱体和锥体的计算方法。
2. 教学内容:柱体和锥体的定义和性质;柱体和锥体的计算方法和解题技巧;柱体和锥体在实际应用中的例子。
五、第四章:球体和环面1. 教学目标:了解球体和环面的定义和性质;掌握球体和环面的计算方法。
2. 教学内容:球体和环体的定义和性质;球体和环体的计算方法和解题技巧;球体和环体在实际应用中的例子。
六、第五章:立体几何中的面积和体积1. 教学目标:学会计算立体几何图形的面积和体积;理解面积和体积在实际问题中的应用。
2. 教学内容:立体图形面积和体积的计算公式;面积和体积的单位及换算;实际问题中面积和体积的计算应用。
七、第六章:立体几何中的角度和距离1. 教学目标:学会计算立体几何图形中的角度和距离;掌握空间直角坐标系中角度和距离的计算方法。
2. 教学内容:立体图形中角度和距离的定义及计算方法;空间直角坐标系中角度和距离的计算;角度和距离在实际问题中的应用。
八、第七章:立体几何中的对称与轴对称1. 教学目标:了解立体几何中的对称性和轴对称性;学会运用对称性和轴对称性解决实际问题。
⽴体⼏何全部教案.第⼀章:空间⼏何体1.1.1柱、锥、台、球的结构特征⼀、教学⽬标1.知识与技能(1通过实物操作,增强学⽣的直观感知。
(2能根据⼏何结构特征对空间物体进⾏分类。
(3会⽤语⾔概述棱柱、棱锥、圆柱、圆锥、棱台、圆台、球的结构特征。
(4会表⽰有关于⼏何体以及柱、锥、台的分类。
2.过程与⽅法(1让学⽣通过直观感受空间物体,从实物中概括出柱、锥、台、球的⼏何结构特征。
(2让学⽣观察、讨论、归纳、概括所学的知识。
3.情感态度与价值观(1使学⽣感受空间⼏何体存在于现实⽣活周围,增强学⽣学习的积极性,同时提⾼学⽣的观察能⼒。
(2培养学⽣的空间想象能⼒和抽象括能⼒。
⼆、教学重点、难点重点:让学⽣感受⼤量空间实物及模型、概括出柱、锥、台、球的结构特征。
难点:柱、锥、台、球的结构特征的概括。
三、教学⽤具(1学法:观察、思考、交流、讨论、概括。
(2实物模型、投影仪四、教学思路(⼀创设情景,揭⽰课题1.教师提出问题:在我们⽣活周围中有不少有特⾊的建筑物,你能举出⼀些例⼦吗?这些建筑的⼏何结构特征如何?引导学⽣回忆,举例和相互交流。
教师对学⽣的活动及时给予评价。
2.所举的建筑物基本上都是由这些⼏何体组合⽽成的,(展⽰具有柱、锥、台、球结构特征的空间物体,你能通过观察。
根据某种标准对这些空间物体进⾏分类吗?这是我们所要学习的内容。
(⼆、研探新知1.引导学⽣观察物体、思考、交流、讨论,对物体进⾏分类,分辩棱柱、圆柱、棱锥。
2.观察棱柱的⼏何物件以及投影出棱柱的图⽚,它们各⾃的特点是什么?它们的共同特点是什么?3.组织学⽣分组讨论,每⼩组选出⼀名同学发表本组讨论结果。
在此基础上得出棱柱的主要结构特征。
(1有两个⾯互相平⾏;(2其余各⾯都是平⾏四边形;(3每相邻两上四边形的公共边互相平⾏。
概括出棱柱的概念。
4.教师与学⽣结合图形共同得出棱柱相关概念以及棱柱的表⽰。
5.提出问题:各种这样的棱柱,主要有什么不同?可不可以根据不同对棱柱分类?请列举⾝边具有已学过的⼏何结构特征的物体,并说出组成这些物体的⼏何结构特征?它们由哪些基本⼏何体组成的?6.以类似的⽅法,让学⽣思考、讨论、概括出棱锥、棱台的结构特征,并得出相关的概念,分类以及表⽰。
立体几何全部教案(人教A版高中数学必修②教案)第一章:空间几何体的结构特征1.1 教学目标了解柱体、锥体、球体的定义及性质。
掌握空间几何体的结构特征,如表面积、体积等。
1.2 教学内容柱体、锥体、球体的定义及性质。
空间几何体的结构特征的计算方法。
1.3 教学步骤1. 引入新课,讲解柱体、锥体、球体的定义及性质。
3. 讲解空间几何体的结构特征的计算方法,如表面积、体积等。
1.4 课堂练习完成课本练习题,巩固所学知识。
1.5 课后作业完成课后作业,加深对空间几何体的结构特征的理解。
第二章:点、线、面的位置关系2.1 教学目标了解点、线、面的位置关系,如平行、垂直等。
掌握点、线、面的位置关系的判定方法。
2.2 教学内容点、线、面的位置关系的定义及判定方法。
2.3 教学步骤1. 引入新课,讲解点、线、面的位置关系的定义及判定方法。
2.4 课堂练习完成课本练习题,巩固所学知识。
2.5 课后作业完成课后作业,加深对点、线、面的位置关系的理解。
第三章:空间角的计算3.1 教学目标了解空间角的定义及性质。
掌握空间角的计算方法。
3.2 教学内容空间角的定义及性质。
空间角的计算方法。
3.3 教学步骤1. 引入新课,讲解空间角的定义及性质。
3.4 课堂练习完成课本练习题,巩固所学知识。
3.5 课后作业完成课后作业,加深对空间角的计算的理解。
第四章:空间向量的应用4.1 教学目标了解空间向量的定义及性质。
掌握空间向量的应用方法。
空间向量的定义及性质。
空间向量的应用方法。
4.3 教学步骤1. 引入新课,讲解空间向量的定义及性质。
4.4 课堂练习完成课本练习题,巩固所学知识。
4.5 课后作业完成课后作业,加深对空间向量的应用的理解。
第五章:立体几何中的综合问题5.1 教学目标培养学生解决立体几何综合问题的能力。
5.2 教学内容立体几何中的综合问题的解题策略。
5.3 教学步骤1. 引入新课,讲解立体几何中的综合问题的解题策略。
《立体几何》序言课【教学目标】1.使学生了解立体几何研究的对象、内容:2.使学生初步理解立体几何中的主要数学思想方法(类比思想、转化思想、展开思想)3.培养学生空间想象能力,初步建立空间概念【教学重点】空间概念的建立与立体几何中的主要数学思想方法【教学难点】空间概念的建立【教学过程】一.引入新课1.请同学们用六根长度相等的火柴搭正三角形,试试看,最多达成几个正三角形?学生动手试验后,教师总结:在平面内最多只能搭成两个,而在空间能搭成四个。
同时,向学生展示正四面体骨架模型,再让学生看图1.2.请同学们想一想,是否存在三条直线两两互相垂直?若存在请举出实际中的例子。
学生讨论后,教师总结:在同一平面内不存在,因为a⊥c,b⊥c,得到a∥b;但在空间是存在的,如教室墙角处的三条直线AB,AC,AD两两互相垂直(如图2)。
请同学们观察正方体(向学生展示正方体模型)中一个顶点处的三条棱之间的关系,也是两两互相垂直的(如图3)3.小结:现实世界中许多问题,只在平面内研究是很不够的,还需要在空间这个更广阔的领域内来考虑,这就是我们将要学习的新课程--立体几何(板书课题)二、讲授新课1.立体几何的研究对象、内容提问1:平面几何的研究对象、内容是什么?答:对象是平面图形,具体说是研究点、线、面;内容是平面图形的画法、形状、位置关系、大小计算及应用。
提问2:立体几何的研究对象、内容又是什么?让学生观察正方体、圆柱、正四面体骨架等,引导学生与平面几何进行类比。
在学生回答的基础上,教师小结为:立体几何的研究对象--空间图形(由空间的点、线、面组成)立体几何的研究内容--空间图形的画法、形状、位置关系、大小计算及应用,是平面几何的推广2.空间图形与平面图形的画法的不同点提问:同学们虽然还没有掌握空间图形的画法,但已经见到了老师画的正方体、圆柱、正四面体的直观图,同学们想一想,空间图形与平面图形的画法有什么不同?经过分析,平面图形的画法是真实的,而空间图形的直观图是不真实的,如正方体的底面本是正方形,但在直观图中都画成平行四边形。
关于学习立体几何的教案教案:关于学习立体几何教学目标:1. 了解立体几何的基本概念和术语。
2. 掌握立体几何中常见的立体图形的名称和性质。
3. 能够应用立体几何的知识解决简单的问题。
教学内容:本课程主要包括以下内容:1. 立体几何的基本概念- 点、线、面的定义- 空间的概念- 立体图形与平面图形的区别2. 立体图形的性质- 立体图形的名称及特点- 立体图形的投影- 立体图形的表面积和体积计算方法3. 立体几何的应用- 空间问题的分析和解决方法- 日常生活中的立体几何应用案例教学步骤:一、导入(约10分钟)1. 利用实物或图片引入立体几何的概念,激发学生的学习兴趣。
2. 通过提出一些日常生活中的问题,引导学生思考与立体几何相关的内容。
二、讲解立体几何的基本概念和术语(约20分钟)1. 讲解点、线、面的定义,引导学生理解立体几何的基本构成要素。
2. 引入空间的概念,让学生了解空间的特点与应用。
3. 对比立体图形和平面图形的区别,帮助学生理解立体图形的特殊性。
三、介绍立体图形的性质(约30分钟)1. 逐一介绍常见的立体图形,如立方体、球体、圆柱体等,并讲解它们的特点和性质。
2. 引导学生观察和探究立体图形的投影规律,帮助他们理解平面上的图形与立体图形的关系。
3. 讲解立体图形的表面积和体积计算方法,通过实例演算加深学生对公式的理解。
四、应用立体几何的知识(约25分钟)1. 提供一些实际问题,要求学生应用所学的立体几何知识进行分析和解决。
2. 学生分组讨论,共同探讨解题思路和方法。
3. 部分学生上台展示解题过程,并与全班讨论优化解题方法。
五、总结与拓展(约15分钟)1. 对本课所学内容进行总结回顾,概括立体几何的关键概念和知识点。
2. 复习重点难点,解答学生提出的疑问。
3. 提供一些拓展问题,激发学生对立体几何的深入思考。
教学资源:1. 实物模型:如立方体、球体、圆柱体等。
2. 幻灯片或投影仪展示的图像:展示立体图形的图片和问题。
人教A版高中数学必修教案:立体几何全部教案第一章:绪论1.1 立体几何的概念教学目标:1. 理解立体几何的概念,掌握立体几何的研究对象和基本元素。
2. 掌握空间点、线、面的位置关系,培养空间想象能力。
教学重点:立体几何的概念,空间点、线、面的位置关系。
教学难点:立体几何的概念的理解,空间点、线、面的位置关系的应用。
教学过程:一、导入:引导学生回顾平面几何的基本概念,引出立体几何的概念。
二、新课:讲解立体几何的研究对象和基本元素,通过实物展示和图形绘制,介绍空间点、线、面的位置关系。
三、练习:学生自主完成练习题,巩固所学知识。
四、小结:总结本节课的主要内容,强调立体几何的概念和空间点、线、面的位置关系的重要性。
第二章:直线与平面2.1 直线与平面的位置关系教学目标:1. 理解直线与平面的位置关系,掌握直线与平面平行和直线与平面垂直的判定方法。
2. 培养空间想象能力和逻辑思维能力。
教学重点:直线与平面的位置关系,直线与平面平行和直线与平面垂直的判定方法。
教学难点:直线与平面平行和直线与平面垂直的判定方法的运用。
教学过程:一、导入:通过实例引入直线与平面的位置关系。
二、新课:讲解直线与平面的位置关系,介绍直线与平面平行和直线与平面垂直的判定方法。
三、练习:学生自主完成练习题,巩固所学知识。
四、小结:总结本节课的主要内容,强调直线与平面的位置关系和判定方法的重要性。
第三章:平面与平面3.1 平面与平面的位置关系教学目标:1. 理解平面与平面的位置关系,掌握平面与平面平行和平面与平面垂直的判定方法。
2. 培养空间想象能力和逻辑思维能力。
教学重点:平面与平面的位置关系,平面与平面平行和平面与平面垂直的判定方法。
教学难点:平面与平面平行和平面与平面垂直的判定方法的运用。
教学过程:一、导入:通过实例引入平面与平面的位置关系。
二、新课:讲解平面与平面的位置关系,介绍平面与平面平行和平面与平面垂直的判定方法。
三、练习:学生自主完成练习题,巩固所学知识。
立体图形教案六篇第一篇: 立体图形教案教学内容认识立体图形教学目标1、直观认识长方体、正方体、圆柱和球几种形状的物体和图形。
2、初步培养学生的观察能力和分析能力,建立空间观念。
教学重点教会学生能够辨认和区别长方体、正方体、圆柱和球。
教学难点使学生从动手操作中,建立空间观念。
教具准备PPT课件、正方体、长方体、圆柱、球等模型。
教学过程一、复习巩固,导入新课。
1、教师拿出准备好的物品,让学生认一认。
2、教师拿出正方体模型,让学生拿出自己带来的物品,找出和正方体形状一样的`物品,引出本节要学习的内容。
二、合作交流,探究新知。
1、小组之间合作,通过分一分,摆一摆,了解各立体图形的特点。
(1)教师拿出正方体模型,同学之间以小组为单位,拿出自己从家里带来的物品,先找一找与正方体形状一样的物品,摆放在一起。
说一说正方体的特点。
(2)教师拿出长方体模型,先说一说长方体的特点,有6个平平的面,这些面有大有小,再让学生动手找一找长方体。
(3)教师分别拿出圆柱和球,让学生找一找,并说一说它们之间的区别。
2、教师展示不同的生活用品,让学生们再找一找分别是长方体、正方体、圆柱和球的物体,进一步加深对立体图形的认识。
师生一起总结长方体、正方体、圆柱和球的特点。
3、巩固应用,提升能力。
1、教师指导学生完成教材第37页第1题。
2、回家找一找家里的物品分别是什么形状的。
四、课堂小结,拓展延伸。
1、这节课我们学习了什么?引导学生回顾总结。
2、长方体、正方体、圆柱和球都是立体图形,它们都有各自的特点。
第二篇: 立体图形教案活动目标1、能在游戏中感知平面图形与立方体的不同。
2、能探索、发现正方体、长方体的特征。
3、能认真细致的进行制作活动。
教学准备学具:1、操作卡P1、22、正方形毛巾一张、大正方体积木一块。
活动过程一、活动观察:找不同1、出示一张张方形毛巾和一大块正方体积木,引导幼儿观察,冰大胆谈论这两件东西的外形有什么相似?(毛巾是平面的,积木式立体的.。
立体几何最全教案doc教案章节:一、立体几何的基本概念教学目标:1. 理解立体几何的研究对象和基本概念。
2. 掌握空间点的表示方法。
3. 理解直线、平面和空间几何体的基本性质和判定方法。
教学内容:1. 立体几何的研究对象和基本概念。
2. 空间点的表示方法。
3. 直线、平面和空间几何体的基本性质和判定方法。
教学活动:1. 引入立体几何的研究对象和基本概念,引导学生直观感知立体几何的研究内容。
2. 讲解空间点的表示方法,举例说明其应用。
3. 通过几何模型和图形,引导学生理解和掌握直线、平面和空间几何体的基本性质和判定方法。
教学评价:1. 检查学生对立体几何研究对象和基本概念的理解程度。
2. 评估学生对空间点的表示方法的掌握情况。
3. 考查学生对直线、平面和空间几何体的基本性质和判定方法的运用能力。
教案章节:二、立体几何的基本图形教学目标:1. 掌握立体几何的基本图形,如立方体、球体、圆柱体等。
2. 理解立体几何图形的基本性质和判定方法。
3. 学会绘制和识别立体几何图形。
教学内容:1. 立体几何的基本图形,如立方体、球体、圆柱体等。
2. 立体几何图形的基本性质和判定方法。
3. 绘制和识别立体几何图形的方法。
教学活动:1. 引入立体几何的基本图形,引导学生直观感知其形状和特征。
2. 讲解立体几何图形的基本性质和判定方法,举例说明其应用。
3. 进行实际操作,让学生绘制和识别立体几何图形。
教学评价:1. 检查学生对立体几何基本图形的掌握程度。
2. 评估学生对立体几何图形的基本性质和判定方法的掌握情况。
3. 考查学生绘制和识别立体几何图形的能力。
教案章节:三、立体几何中的角度和距离教学目标:1. 理解立体几何中角度和距离的概念。
2. 学会计算立体几何中的角度和距离。
3. 掌握立体几何中角度和距离的测量方法。
教学内容:1. 立体几何中角度和距离的概念。
2. 计算立体几何中的角度和距离的方法。
3. 立体几何中角度和距离的测量方法。
立体几何全部教案(人教A版高中数学必修②教案)教案章节一:绪论——立体几何的概念与意义教学目标:1. 理解立体几何的概念,认识立体几何的研究对象。
2. 理解空间点、线、面的位置关系,掌握空间中点、线、面的基本性质。
教学重点:立体几何的概念,空间点、线、面的位置关系。
教学难点:立体几何的概念,空间点、线、面的位置关系的理解与运用。
教学准备:多媒体教学设备,立体几何模型。
教学过程:1. 引入:通过实物展示,让学生感受立体几何的存在,激发学生的学习兴趣。
2. 讲解:讲解立体几何的概念,阐述立体几何的研究对象。
3. 演示:利用多媒体教学设备和立体几何模型,展示空间点、线、面的位置关系。
4. 练习:让学生通过观察模型,判断空间点、线、面的位置关系。
教案章节二:立体图形的性质与分类教学目标:1. 了解立体图形的概念,掌握立体图形的基本性质。
2. 学会立体图形的分类,能够识别常见立体图形。
教学重点:立体图形的基本性质,立体图形的分类。
教学难点:立体图形的基本性质的理解与运用,立体图形的分类的掌握。
教学准备:多媒体教学设备,立体图形模型。
教学过程:1. 引入:通过实物展示,让学生感受立体图形的存在,激发学生的学习兴趣。
2. 讲解:讲解立体图形的基本性质,引导学生理解立体图形的特点。
3. 演示:利用多媒体教学设备和立体图形模型,展示立体图形的分类。
4. 练习:让学生通过观察模型,识别常见立体图形。
教案章节三:空间点、线、面的位置关系教学目标:1. 理解空间点、线、面的位置关系,掌握空间中点、线、面的基本性质。
2. 学会运用空间点、线、面的位置关系解决实际问题。
教学重点:空间点、线、面的位置关系,空间中点、线、面的基本性质。
教学难点:空间点、线、面的位置关系的理解与运用。
教学准备:多媒体教学设备,立体几何模型。
教学过程:1. 引入:通过实物展示,让学生感受空间点、线、面的存在,激发学生的学习兴趣。
2. 讲解:讲解空间点、线、面的位置关系,引导学生理解空间点、线、面的基本性质。
直线、平面垂直的判定及其性质一、目标认知学习目标1.了解空间直线和平面的位置关系;2.掌握直线和平面平行的判定定理和性质定理;进一步熟悉反证法的实质及其一般解题步骤.3.通过探究线面平行定义、判定和性质定理及其应用,进一步培养学生观察、发现的能力和空间想象能力.4.通过有关定理的发现、证明及应用,提高学生的空间想象力和类比、转化的能力,提高学生的逻辑推理能力.重点:直线与平面平行的判定、性质定理的应用;难点:线面平行的判定定理的反证法证明,线面平行的判定和性质定理的应用.二、知识要点梳理知识点一、直线和平面垂直的定义与判定1。
直线和平面垂直定义如果直线和平面内的任意一条直线都垂直,我们就说直线与平面互相垂直,记作。
直线叫平面的垂线;平面叫直线的垂面;垂线和平面的交点叫垂足.要点诠释:(1)定义中“平面内的任意一条直线”就是指“平面内的所有直线",这与“无数条直线”不同,注意区别。
(2)直线和平面垂直是直线和平面相交的一种特殊形式。
(3)若,则.2。
直线和平面垂直的判定定理判定定理:一条直线与一个平面内的两条相交直线都垂直,则该直线与此平面垂直.符号语言:特征:线线垂直线面垂直要点诠释:(1)判定定理的条件中:“平面内的两条相交直线”是关键性词语,不可忽视.(2)要判定一条已知直线和一个平面是否垂直,取决于在这个平面内能否找出两条相交直线和已知直线垂直,至于这两条相交直线是否和已知直线有公共点,则无关紧要。
知识点二、斜线、射影、直线与平面所成的角一条直线和一个平面相交,但不和这个平面垂直,这条直线叫做这个平面的斜线。
过斜线上斜足外的一点间平面引垂线,过垂足和斜足的直线叫做斜线在这个平面内的射影。
平面的一条斜线和它在平面上的射影所成的锐角,叫做这条直线和这个平面所成的角.要点诠释:(1)直线与平面平行,直线在平面由射影是一条直线.(2)直线与平面垂直射影是点.(3)斜线任一点在平面内的射影一定在斜线的射影上.(4)一条直线垂直于平面,它们所成的角是直角;一条直线和平面平行或在平面内,它们所成的角是知识点三、二面角1.二面角定义平面内的一条直线把平面分成两部分,这两部分通常称为半平面。
立体几何最全教案doc教案章节一:立体几何的基本概念教学目标:1. 了解立体几何的研究对象和基本概念;2. 掌握空间点的表示方法;3. 理解空间直线、平面和立体图形的性质。
教学内容:1. 立体几何的研究对象和基本概念;2. 空间点的表示方法;3. 空间直线、平面和立体图形的性质。
教学活动:1. 引入立体几何的研究对象和基本概念;2. 讲解空间点的表示方法,举例说明;3. 通过实物展示和几何画板演示,引导学生理解空间直线、平面和立体图形的性质;4. 练习题巩固所学知识。
教学评价:1. 学生能准确描述立体几何的研究对象和基本概念;2. 学生能正确表示空间点;3. 学生能理解空间直线、平面和立体图形的性质,并能够运用到实际问题中。
教案章节二:立体图形的面积和体积教学目标:1. 掌握立体图形的面积和体积的计算方法;2. 能够运用面积和体积的概念解决实际问题。
教学内容:1. 立体图形的面积和体积的定义;2. 常见立体图形的面积和体积计算方法;3. 面积和体积的应用。
教学活动:1. 引入立体图形的面积和体积的概念;2. 讲解常见立体图形的面积和体积计算方法,举例说明;3. 运用面积和体积的概念解决实际问题;4. 练习题巩固所学知识。
教学评价:1. 学生能准确计算常见立体图形的面积和体积;2. 学生能运用面积和体积的概念解决实际问题。
教案章节三:立体图形的对称性教学目标:1. 理解对称性的概念;2. 掌握立体图形的对称性质;3. 能够运用对称性解决实际问题。
教学内容:1. 对称性的定义和分类;2. 立体图形的对称性质;3. 对称性在实际问题中的应用。
教学活动:1. 引入对称性的概念;2. 讲解立体图形的对称性质,举例说明;3. 运用对称性解决实际问题;4. 练习题巩固所学知识。
教学评价:1. 学生能理解对称性的概念和分类;2. 学生能掌握立体图形的对称性质;3. 学生能运用对称性解决实际问题。
教案章节四:立体图形的公理和定理教学目标:1. 理解立体图形的公理和定理的概念;2. 掌握立体图形的公理和定理的证明方法;3. 能够运用公理和定理解决实际问题。
直线、平面垂直的判定及其性质一、目标认知学习目标1.了解空间直线和平面的位置关系;2.掌握直线和平面平行的判定定理和性质定理;进一步熟悉反证法的实质及其一般解题步骤.3.通过探究线面平行定义、判定和性质定理及其应用,进一步培养学生观察、发现的能力和空间想象能力.4.通过有关定理的发现、证明及应用,提高学生的空间想象力和类比、转化的能力,提高学生的逻辑推理能力.重点:直线与平面平行的判定、性质定理的应用;难点:线面平行的判定定理的反证法证明,线面平行的判定和性质定理的应用.二、知识要点梳理知识点一、直线和平面垂直的定义与判定1.直线和平面垂直定义如果直线和平面内的任意一条直线都垂直,我们就说直线与平面互相垂直,记作.直线叫平面的垂线;平面叫直线的垂面;垂线和平面的交点叫垂足.要点诠释:(1)定义中“平面内的任意一条直线”就是指“平面内的所有直线”,这与“无数条直线”不同,注意区别.(2)直线和平面垂直是直线和平面相交的一种特殊形式.(3)若,则.2.直线和平面垂直的判定定理判定定理:一条直线与一个平面内的两条相交直线都垂直,则该直线与此平面垂直.符号语言:特征:线线垂直线面垂直要点诠释:(1)判定定理的条件中:“平面内的两条相交直线”是关键性词语,不可忽视.(2)要判定一条已知直线和一个平面是否垂直,取决于在这个平面内能否找出两条相交直线和已知直线垂直,至于这两条相交直线是否和已知直线有公共点,则无关紧要.知识点二、斜线、射影、直线与平面所成的角一条直线和一个平面相交,但不和这个平面垂直,这条直线叫做这个平面的斜线.过斜线上斜足外的一点间平面引垂线,过垂足和斜足的直线叫做斜线在这个平面内的射影.平面的一条斜线和它在平面上的射影所成的锐角,叫做这条直线和这个平面所成的角.要点诠释:(1)直线与平面平行,直线在平面由射影是一条直线.(2)直线与平面垂直射影是点.(3)斜线任一点在平面内的射影一定在斜线的射影上.(4)一条直线垂直于平面,它们所成的角是直角;一条直线和平面平行或在平面内,它们所成的角是0°的角.知识点三、二面角1.二面角定义平面内的一条直线把平面分成两部分,这两部分通常称为半平面.从一条直线出发的两个半平面所组成的图形叫做二面角.这条直线叫二面角的棱,这两个半平面叫做二面角的面.表示方法:棱为、面分别为的二面角记作二面角.有时为了方便,也可在内(棱以外的半平面部分)分别取点,将这个二面角记作二面角.如果棱记作,那么这个二面角记作二面角或.2.二面角的平面角在二面角的棱上任取一点,以该点为垂足,在两个半平面内分别作垂直于棱的射线,则这两条构成的角叫做二面角的平面角.二面角的大小可以用它的平面角来度量,二面角的平面角是多少度,就说这个二面角是多少度.平面角是直角的二面角叫做直二面角.知识点四、平面与平面垂直的定义与判定1.平面与平面垂直定义两个平面相交,如果它们所成的二面角是直二面角,就说这两个平面垂直.表示方法:平面与垂直,记作.画法:两个互相垂直的平面通常把直立平面的竖边画成与水平平面的横边垂直.如图:2.平面与平面垂直的判定定理判定定理:一个平面过另一个平面的垂线,则这两个平面垂直.符号语言:图形语言:特征:线面垂直面面垂直要点诠释:平面与平面垂直的判定定理告诉我们,可以通过直线与平面垂直来证明平面与平面垂直.通常我们将其记为“线面垂直,则面面垂直”.因此,处理面面垂直问题处理线面垂直问题,进一步转化为处理线线垂直问题.以后证明平面与平面垂直,只要在一个平面内找到两条相交直线和另一个平面垂直即可.知识点五、直线与平面垂直的性质1.基本性质一条直线垂直于一个平面,那么这条直线垂直于这个平面内的所有直线.符号语言:图形语言:2.性质定理垂直于同一个平面的两条直线平行.符号语言:图形语言:知识点六、平面与平面垂直的性质性质定理:两个平面垂直,则一个平面内垂直于交线的直线与另一个平面垂直.符号语言:图形语言:三、规律方法指导垂直关系的知识记忆口诀:线面垂直的关键,定义来证最常见,判定定理也常用,它的意义要记清,平面之内两直线,两线交于一个点,面外还有一条线,垂直两线是条件,面面垂直要证好,原有图中去寻找,若是这样还不好,辅助线面是个宝,先作交线的垂线,面面转为线和面,再证一步线和线,面面垂直即可见,借助辅助线和面,加的时候不能乱,以某性质为基础,不能主观凭臆断,判断线和面垂直,线垂面中两交线,两线垂直同一面,相互平行共伸展,两面垂直同一线,一面平行另一面,要让面和面垂直,面过另面一垂线,面面垂直成直角,线面垂直记心间.经典例题透析类型一、直线和平面垂直的定义1.下列命题中正确的个数是( )①如果直线与平面内的无数条直线垂直,则;②如果直线与平面内的一条直线垂直,则;③如果直线不垂直于,则内没有与垂直的直线;④如果直线不垂直于,则内也可以有无数条直线与垂直.A.0B.1C.2D.3答案:B解析:当内的无数条直线平行时,与不一定垂直,故①不对;当与内的一条直线垂直时,不能保证与垂直,故②不对;当与不垂直时,可能与内的无数条直线垂直,故③不对;④正确.故选B.总结升华:注意直线和平面垂直定义中的关键词语.举一反三:【变式1】下列说法中错误的是( )①如果一条直线和平面内的一条直线垂直,该直线与这个平面必相交;②如果一条直线和平面的一条平行线垂直,该直线必在这个平面内;③如果一条直线和平面的一条垂线垂直,该直线必定在这个平面内;④如果一条直线和一个平面垂直,该直线垂直于平面内的任何直线.A.①②B.②③④C.①②④D.①②③答案:D解析:如图所示,直线,面ABCD,显然,∴①错;由于,,但,∴②错;,,但,∴③错.由直线与平面垂直的定义知④正确,故选D.总结升华:本题可以借助长方体来验证结论的正误.类型二、直线和平面垂直的判定2.如图所示,已知Rt△ABC所在平面外一点S,且SA=SB=SC,点D为斜边AC的中点.(1)求证:SD⊥平面ABC;(2)若AB=BC,求证:BD⊥平面SAC.证明:(1)因为SA=SC,D为AC的中点,所以SD⊥AC.连接BD.在Rt△ABC中,有AD=DC=DB,所以△SDB≌△SDA,所以∠SDB=∠SDA,所以SD⊥BD.又AC∩BD=D,所以SD⊥平面ABC.(2)因为AB=BC,D是AC的中点,所以BD⊥AC.又由(1)知SD⊥BD,所以BD垂直于平面SAC内的两条相交直线,所以BD⊥平面SAC.总结升华:挖掘题目中的隐含条件,利用线面垂直的判定定理即可得证.举一反三:【变式1】如图所示,三棱锥的四个面中,最多有________个直角三角形.答案:4解析:如图所示,PA⊥面ABC.∠ABC=90°,则图中四个三角形都是直角三角形.故填4.总结升华:注意正确画出图形.【变式2】如图所示,直三棱柱中,∠ACB=90°,AC=1,,侧棱,侧面的两条对角线交点为D,的中点为M.求证:CD⊥平面BDM.证明:如右图,连接、、,则.∵,∴为等腰三角形.又知D为其底边的中点,∴.∵,,∴.又,∴.∵为直角三角形,D为的中点,∴,.又,,∴..即CD⊥DM.∵、为平面BDM内两条相交直线,∴CD⊥平面BDM.类型三、直线和平面所成的角3.如图所示,已知∠BOC在平面内,OA是平面的斜线,且∠AOB=∠AOC=60°,OA=OB=OC=,BC=,求OA和平面所成的角.解析:∵,∠AOB=∠AOC=60°,∴△AOB、△AOC为正三角形,∴.∵,∴,∴△ABC为直角三角形.同理△BOC也为直角三角形.过A作AH垂直平面于H,连接OH,∵AO=AB=AC,∴OH=BH=CH,H为△BOC的外心.∴H在BC上,且H为BC的中点.∵Rt△AOH中,,∴,∴∠AOH=45°.即AO和平面所成角为45°.总结升华:(1)确定点在平面内的射影的位置,是解题的关键,因为只有确定了射影的位置,才能找到直线与平面所成的角,才能将空间的问题转化为平面的问题来解.(2)求斜线与平面所成的角的程序:①寻找过直线上一点与平面垂直的直线;②连接垂足和斜足得出射影,确定出所求解;③把该角放入三角形计算.(3)直线和平面所成的角,也应考虑到直线和平面垂直、直线和平面平行或在平面内诸情况,也就是直线和平面成90°角和0°角的情况,所以求线面所成角时,应想到以上两种情况.举一反三:【变式1】如图所示,在正三棱柱中,侧棱长为,底面三角形的边长为1,则与侧面所成的角是________.答案:解析:如右图.由题取AC中点O,连接BO.则BO⊥平面.故为与平面所成角.又在中,,.∴,∴.类型四、二面角4.如图所示,在四面体ABCD中,△ABD、△ACD、△BCD、△ABC都全等,且,,求以BC为棱,以面BCD和面BCA为面的二面角大小.解析:取BC的中点E,连接AE、DE,∵AB=AC,∴AE⊥BC.又∵△ABD≌△ACD,AB=AC,∴DB=DC,∴DE⊥BC.∴∠AED为二面角的平面角.又∵△ABC≌△BDC,∴AD=BC=2,在Rt△DEB中,DB=,BE=1,∴,同理.在△AED中,∵,,∴,∴∠AED=90°.∴以面BCD和面ABC为面的二面角大小为90°.总结升华:确定二面角的平面角,常常用定义来确定.举一反三:【变式1】已知D、E分别是正三棱柱的侧棱和上的点,且.求过D、E、C1的平面与棱柱的下底面所成的二面角的大小.解析:如图,在平面内延长DE和交于点F,则F是面与面的公共点,为这两个平面的交线,∴所求二面角就是的平面角.∵,且,∴E、分别DF和A1F的中点.∵,∴.又面,面,∴面,而面.∴.∴是二面角的平面角,由已知,∴.总结升华:当所求的二面角没有给出它的棱时,找出二面角的两个面的两个公共点,从而找出它的棱,进而求其平面角的大小即可.类型五、平面与平面垂直的判定5.在四面体ABCD中,,AB=AD=CB=CD=AC=,如图所示.求证:平面ABD⊥平面BCD.证明:∵△ABD与△BCD是全等的等腰三角形,∴取BD的中点E,连接AE、CE,则AE⊥BD,BD⊥CE,∴∠AEC为二面角A-BD-C的平面角.在△ABD中,,,∴.同理.在△AEC中,,,由于,∴AE⊥CE,即∠AEC=90°,即二面角A-BD-C的平面角为90°.∴平面ABD⊥平面BCD.总结升华:利用两个平面互相垂直的定义可以直接判定两个平面垂直,判定的方法是(1)找出两个相交平面的平面角;(2)证明这个平面角是直角;(3)根据定义,这两个平面互相垂直.举一反三:【变式1】如图所示,在空间四边形ABCD中,AB=BC,CD=DA,E、F、G分别为CD、DA和对角线AC的中点,求证:平面BEF⊥平面BGD.证明:∵AB=BC,CD=AD,G是AC的中点,∴BG⊥AC,DG⊥AC,∴AC⊥平面BGD.又EF∥AC,∴EF⊥平面BGD.∵EF平面BEF,∴平面BDG⊥平面BEF.总结升华:证面面垂直的方法:(1)证明两平面构成的二面角的平面角为90°;(2)证明一个平面经过另一个平面的一条垂线,将证明“面面垂直”的问题转化为证明线面垂直的问题.【变式2】如图所示,在Rt△AOB中,,斜边AB=4.Rt△AOC可以通过Rt△AOB以直线AO为轴旋转得到,且二面角B-AO-C是直二面角.D是AB的中点.求证:平面COD⊥平面AOB;证明:由题意,CO⊥AO,BO⊥AO,∴∠BOC是二面角B-AO-C的平面角.又∵二面角B-AO-C是直二面角.∴CO⊥BO.又∵AO∩BO=O,∴CO⊥平面AOB.又CO平面COD,∴平面COD⊥平面AOB.【变式3】过点P引三条长度相等但不共面的线段PA、PB、PC,有∠APB=∠APC=60°,∠BPC=90°,求证:平面ABC⊥平面BPC.证明:如图,已知PA=PB=PC=a,由∠APB=∠APC=60°,△PAC,△PAB为正三角形,则有:PA=PB=PC=AB=AC=a,取BC中点为E直角△BPC中,,,由AB=AC,AE⊥BC,直角△ABE中,,,,在△PEA中,,,∴,平面ABC⊥平面BPC.类型六、综合应用6.如图所示,△ABC为正三角形,CE⊥平面ABC,BD∥CE,且CE=AC=2BD,M是AE的中点,求证:(1)DE=DA;(2)平面BDM⊥平面ECA;(3)平面DEA⊥平面ECA.证明:(1)取EC的中点F,连接DF.∵CE⊥平面ABC,∴CE⊥BC.易知DF∥BC,CE⊥DF.∵BD∥CE,∴BD⊥平面ABC.在Rt△EFD和Rt△DBA中,∵,,∴Rt△EFD≌Rt△DBA.故DE=AD.(2)取AC的中点N,连接MN、BN,MN CF.∵BD CF,∴MN BD.N平面BDM.∵EC⊥平面ABC,∴EC⊥BN.又∵AC⊥BN,∴BN⊥平面ECA.又∵BN平面MNBD,∴平面BDM⊥平面ECA.(3)∵DM∥BN,BN⊥平面ECA,∴DM⊥平面ECA.又∵DM平面DEA,∴平面DEA⊥平面ECA.总结升华:本题涉及线面垂直、面面垂直的性质和判定,这里证明的关键是BN⊥平面ECA,应充分体会线线垂直、线面垂直与面面垂直的关系.7.如图所示,已知PA⊥矩形ABCD所在平面,M、N分别是AB、PC的中点.(1)求证:MN∥平面PAD;(2)求证:MN⊥CD;(3)若∠PDA=45°,求证:MN⊥平面PCD.思路点拨:要证明MN∥平面PAD,须证MN平行于平面PAD内某一条直线.注意到M、N分别为AB,PC 的中点,可取PD的中点E,从而只须证明MN∥AE即可.证明如下.证明:(1)取PD的中点E,连接AE、EN,则,故AMNE为平行四边形,∴MN∥AE.∵AE平面PAD,MN平面PAD,∴MN∥平面PAD.(2)要证MN⊥CD,可证MN⊥AB.由(1)知,需证AE⊥AB.∵PA⊥平面ABCD,∴PA⊥AB.又AD⊥AB,∴AB⊥平面PAD.∴AB⊥AE.即AB⊥MN.又CD∥AB,∴MN⊥CD.(3)由(2)知,MN⊥CD,即AE⊥CD,再证AE⊥PD即可.∵PA⊥平面ABCD,∴PA⊥AD.又∠PDA=45°,E为PD的中点.∴AE⊥PD,即MN⊥PD.又MN⊥CD,∴MN⊥平面PCD.总结升华:本题是涉及线面垂直、线面平行、线线垂直诸多知识点的一道综合题.(1)的关键是选取PD的中点E,所作的辅助线使问题处理的方向明朗化.线线垂直→线面垂直→线线垂直是转化规律.学习成果测评基础达标1.平面外的一条直线与内的两条平行直线垂直,那么( ).A. B. C.与相交 D.与的位置关系不确定2.已知直线a、b和平面,下列推论错误的是( ).A. B.C. D.3.若直线a⊥直线b,且a⊥平面,则有( ).A. B. C. D.或4.若P是平面外一点,则下列命题正确的是( ).A.过P只能作一条直线与平面相交B.过P可作无数条直线与平面垂直C.过P只能作一条直线与平面平行D.过P可作无数条直线与平面平行5.设是直二面角,直线,直线,且a不垂直于,b不垂直于,那么( ).A.a与b可能垂直,但不能平行B.a与b可能垂直,也可能平行C.a与b不可能垂直,但可能平行D.a与b不可能平行,也不能垂直6.设、为两个不同的平面,、m为两条不同的直线,且,有如下两个命题:①若,则;②若,则届那么( ).A.①是真命题,②是假命题B.①是假命题,②是真命题C.①②都是真命题D.①②都是假命题7.关于直线m、n与平面与,有下列四个命题:①若且,则m∥n;②若且,则;③若且,则;④若且,则m∥n.其中真命题的序号是( ).A.①②B.③④C.①④D.②③8.已知直线m⊥平面,直线,给出下列四个命题,其中正确的命题是( ).①若,则;②若,则m∥n;③若m∥n,则;④若,则.A.③④B.①③C.②④D.①②9.下面四个命题:①两两相交的三条直线只可能确定一个平面;②经过平面外一点,有且仅有一个平面垂直这个平面;③平面内不共线的三点到平面的距离相等,则;④两个平面垂直,过其中一个平面内一点作它们交线的垂线,则此垂线垂直于另一个平面其中真命题的个数是( ).A.0个B.1个C.2个D.3个10.设有不同的直线a、b和不同的平面、、,给出下列三个命题:①若,,则;②若,,则;③若,则.其中正确的个数是( )A.0B.1C.2D.311.已知直线⊥平面,直线平面,有四个命题:①;②;③;④.其中正确的命题是__________.(把所有正确命题的序号都填上)12.长方体中,MN在平面内,MN⊥BC于M,则MN与AB的位置关系是_______.13.如图所示,直角△ABC所在平面外一点S,且SA=SB=SC,点D为斜边AC的中点.(1)求证:SD⊥平面ABC;(2)若AB=BC.求证:BD⊥面SAC.能力提升1.下面四个命题:①若直线a∥平面,则内任何直线都与a平行;②若直线a⊥平面,则内任何直线都与a垂直;③若平面∥平面,则内任何直线都与平行;④若平面⊥平面,则内任何直线都与垂直.其中正确的两个命题是( )A.①与②B.②与③C.③与④D.②与④2.一个二面角的两个面分别垂直于另一个二面角的两个面,那么这两个二面角( ).A.相等B.互补C.关系无法确定D.相等或互补3.、是两个不同的平面,m、n是平面、外的两条不同直线,给出四个结论:①m⊥n;②⊥;③n⊥;④m⊥.以其中三个论断作为条件,余下一个论断作为结论,写出你认为正确的一个命题________________.4.已知直线PA与平面内过点A的三条直线AB、AC、AD成等角,求证:PA⊥平面.5.已知ABCD为矩形,SA⊥平面ABCD,过点A作AE⊥SB于点E,过点E作EF⊥SC于点F,如图所示.(1)求证:AF⊥SC;(2)若平面AEF交SD于点G,求证:AG⊥SD.综合探究1.已知:如图所示,平面PAB⊥平面ABC,平面PAC⊥平面ABC,AE⊥平面PBC,E为垂足.(1)求证:PA⊥平面ABC;(2)当E为△PBC的垂心时,求证:△ABC是直角三角形.2.如图所示,在四棱锥P-ABCD中,底面ABCD是正方形,侧棱PD⊥底面ABCD,PD=DC,E是PC的中点,作EF⊥PB交PB于点F.(1)证明:PA∥平面EDB;(2)证明:PB⊥平面EFD.参考答案基础达标1.D 内两条直线若相交则;若平行则不能确定与的位置关系.2.D a与b位置关系不能确定.3.D4.D 过P能作无数条直线与平行,这些直线均在过P与平行的平面内.5.C 若,如图,在内可作,则.∴,则,与已知矛盾.∴a与b不可能垂直;当a、b均与平行时,a∥b,故选C.6.D7.D8.B9.B 面面垂直的性质定理对于④显然成立;在①中应考虑两两相交的几种情况,对于三条直线交于一点时,且不在同一平面时,显然不成立;在②中,平面外一点只能引一条直线与平面垂直,但过这条直线的平面有无数个,不是真命题;对于③,若与相交,在两侧且在内一定存在不共线的三点到的距离相等,故不是真命题.10.B 平行于同一平面的两直线可能平行,也可能相交或异面,故①错.平行于同一直线的两平面可能平行,也可能相交,故②也错.11.①③①∵,,∴.∴①正确.②设,,且m∥d时,.故命题②错.③∵,,∴.又,∴.故③正确.④由②知④不正确.12.MN⊥AB 如下图,由长方体的性质知,平面平面ABCD,交线为BC.因为MN在平面内,且MN⊥BC,所以MN⊥平面ABCD.AB平面ABCD,∴MN⊥AB.13.证明:(1)∵SA=SC,D为AC的中点,∴SD⊥AC.连接BD.在Rt△ABC中,则AD=DC=BD.∴△ADS≌△BDS.∴SD⊥BD.又AC∩BD=D,∴SD⊥面ABC.(2)∵AB=BC,D为AC中点,∴BD⊥AC.又由(1)知SD⊥面ABC,∴SD⊥BD.∵SD∩AC=D,∴BD⊥平面SAC.能力提升1.B ①是错误的,a与内的一簇平行线平行.②③由线面垂直,面面平行的性质可判断出是正确的.④是错误的.2.C 可类比“空间中一个角的两条边分别垂直于另一个角的两条边”可知,这两个角关系不确定.3.①③④②或②③④①假设①③④为条件,即,,成立,如图.过m上一点P作PB∥n,则PB⊥m,PB⊥.设垂足为点B,又设,垂足为点A,过PA、PB的平面与、的交线交于点C.∵⊥PA,⊥PB,∴⊥平面PAB.∴⊥AC.⊥BC.∴∠ACB是二面角的平面角.由m⊥n,显然PA⊥PB.∴∠ACB=90°.∴.由①③④②成立.反过来,如果②③④成立,与上面证法类似可得①成立.4.证明:如图,在AB、AC、AD上分别取点E、F、G,使AE=AF=AG,连接PE、PF、PG、EF、FG,设EF、FG的中点分别为H、I.由已知可得△PAE≌△PAF.∴PE=PF.∵H是EF中点,∴PH⊥EF,AH⊥EF.∴EF⊥平面PAH.∴EF⊥PA.同理可证FG⊥PA.又EF∩FG=F,∴PA⊥平面EFG,即PA⊥平面.5.证明:(1)∵SA⊥平面ABCD,BC平面ABCD,∴SA⊥BC.又BC⊥AB,SA∩AB=A,∴BC⊥平面SAB,AE平面SAB.∴BC⊥AE.又AE⊥SB,BC∩SB=B.∴有AE⊥平面SBC,又SC平面SDC,∴AE⊥SC.又EF⊥SC,AE∩EF=E,∴SC⊥平面AEF,AE平面AEF,∴AF⊥SC.(2)∵SC⊥平面AEF,AG平面AEF,∴SC⊥AG,又CD⊥AD,CD⊥SA,AD∩SA=A.∴CD⊥平面SAD,AG平面SAD.∴CD⊥AG,又SC∩CD=C,∴AG⊥平面SDC.又SD平面SDC,∴AG⊥SD.综合探究1.证明:(1)在平面ABC内取一点D,作DF⊥AC于点F.∴平面PAC⊥平面ABC,且交线为AC,∴DF⊥平面PAC.PC平面PAC,∴DF⊥AP.作DG⊥AB于点G.同理可证DG⊥AP.又DG、DF都在平面ABC内.∴PA⊥平面ABC.(2)连接BE并延长交PC于H.∵E是△PBC的垂心,∴PC⊥BE.又已知AE是平面PBC的垂线.∴PC⊥BH.∴PC⊥平面ABE.∴PC⊥AB.又∵PA⊥平面ABC,∴PA⊥AB.∴AB⊥平面PAC.∴AB⊥AC,即△ABC是直角三角形.2.证明:(1)连接AC,AC交BD于点D.连接EO,如图.∵底面ABCD是正方形.∴点O是AC的中点.在△PAC中,EO是中位线,∴PA∥EO.而EO平面EDB且PA平面EDB.所以PA∥平面EDB.(2)∵PD⊥底面ABCD且DC底面ABCD.∴PD⊥DC.∵PD=DC,可知△PDC是等腰直角三角形,而DE是斜边PC的中线,∴DE⊥PC.同样由PD⊥底面ABCD,得PD⊥BC.∵底面ABCD是正方形,有DC⊥BC,∴BC⊥平面PDC。