小学数学公式概念大全
- 格式:doc
- 大小:30.04 KB
- 文档页数:6
小学数学公式大全第一部分:概念1,加法交换律:两数相加交换加数的位置,和不变。
2,加法结合律:三个数相加,先把前两个数相加,或先把后两个数相加,再同第三个数相加,和不变。
3,乘法交换律:两数相乘,交换因数的位置,积不变。
4,乘法结合律:三个数相乘,先把前两个数相乘,或先把后两个数相乘,再和第三个数相乘,它们的积不变。
5,乘法分配律:两个数的和同一个数相乘,可以把两个加数分别同这个数相乘,再把两个积相加,结果不变。
如:(2+4)×5=2×5+4×5 6,除法的性质:在除法里,被除数和除数同时扩大(或缩小)相同的倍数,商不变。
0除以任何不是0的数都得0。
简便乘法:被乘数,乘数末尾有0的乘法,可以先把0前面的相乘,零不参加运算,有几个零都落下,添在积的末尾。
7,什么叫等式等号左边的数值与等号右边的数值相等的式子叫做等式。
等式的基本性质:等式两边同时乘以(或除以)一个相同的数,等式仍然成立。
8,什么叫方程式答:含有未知数的等式叫方程式。
9,什么叫一元一次方程式答:含有一个未知数,并且未知数的次数是一次的等式叫做一元一次方程式。
学会一元一次方程式的例法及计算。
即例出代有χ的算式并计算。
10,分数:把单位“1”平均分成若干份,表示这样的一份或几分的数,叫做分数。
11,分数的加减法则:同分母的分数相加减,只把分子相加减,分母不变。
异分母的分数相加减,先通分,然后再加减。
12,分数大小的比较:同分母的分数相比较,分子大的大,分子小的小。
异分母的分数相比较,先通分然后再比较;若分子相同,分母大的反而小。
13,分数乘整数,用分数的分子和整数相乘的积作分子,分母不变。
14,分数乘分数,用分子相乘的积作分子,分母相乘的积作为分母。
15,分数除以整数(0除外),等于分数乘以这个整数的倒数。
16,真分数:分子比分母小的分数叫做真分数。
17,假分数:分子比分母大或分子和分母相等的分数叫做假分数。
小学数学概念及公式大全(完整版) 一部分:概念1、加法交换律:两数相加交换加数的位置,和不变。
2、加法结合律:三个数相加,先把前两个数相加,或先把后两个数相加,再同第三个数相加,和不变。
3、乘法交换律:两数相乘,交换因数的位置,积不变。
4、乘法结合律:三个数相乘,先把前两个数相乘,或先把后两个数相乘,再和第三个数相乘,它们的积不变。
5、乘法分配律:两个数的和同一个数相乘,可以把两个加数分别同这个数相乘,再把两个积相加,结果不变。
如:(2+4)×5=2×5+4×56、除法的性质:在除法里,被除数和除数同时扩大(或缩小)相同的倍数,商不变。
O除以任何不是O的数都得O。
简便乘法:被乘数、乘数末尾有O的乘法,可以先把O前面的相乘,零不参加运算,有几个零都落下,添在积的末尾。
7、么叫等式?等号左边的数值与等号右边的数值相等的式子叫做等式。
等式的基本性质:等式两边同时乘以(或除以)一个相同的数,等式仍然成立。
8、什么叫方程式?答:含有未知数的等式叫方程式。
9、什么叫一元一次方程式?答:含有一个未知数,并且未知数的次数是一次的等式叫做一元一次方程式。
学会一元一次方程式的例法及计算。
即例出代有χ的算式并计算。
10、分数:把单位“1”平均分成若干份,表示这样的一份或几分的数,叫做分数。
11、分数的加减法则:同分母的分数相加减,只把分子相加减,分母不变。
异分母的分数相加减,先通分,然后再加减。
12、分数大小的比较:同分母的分数相比较,分子大的大,分子小的小。
异分母的分数相比较,先通分然后再比较;若分子相同,分母大的反而小。
13、分数乘整数,用分数的分子和整数相乘的积作分子,分母不变。
14、分数乘分数,用分子相乘的积作分子,分母相乘的积作为分母。
15、分数除以整数(0除外),等于分数乘以这个整数的倒数。
16、真分数:分子比分母小的分数叫做真分数。
17、假分数:分子比分母大或者分子和分母相等的分数叫做假分数。
小学数学计算公式大全!(1-六年级的公式)第一部分:概念1、加法交换律:两数相加交换加数的位置,和不变.2、加法结合律:三个数相加,先把前两个数相加,或先把后两个数相加,再同第三个数相加,和不变.3、乘法交换律:两数相乘,交换因数的位置,积不变。
4、乘法结合律:三个数相乘,先把前两个数相乘,或先把后两个数相乘,再和第三个数相乘,它们的积不变。
5、乘法分配律:两个数的和同一个数相乘,可以把两个加数分别同这个数相乘,再把两个积相加,结果不变。
如:(2+4)×5=2×5+4×56、除法的性质:在除法里,被除数和除数同时扩大(或缩小)相同的倍数,商不变. O除以任何不是O的数都得O。
简便乘法:被乘数、乘数末尾有O的乘法,可以先把O前面的相乘,零不参加运算,有几个零都落下,添在积的末尾。
7、什么叫等式?等号左边的数值与等号右边的数值相等的式子叫做等式。
等式的基本性质:等式两边同时乘以(或除以)一个相同的数,等式仍然成立。
8、什么叫方程式?答:含有未知数的等式叫方程式.9、什么叫一元一次方程式?答:含有一个未知数,并且未知数的次数是一次的等式叫做一元一次方程式。
学会一元一次方程式的例法及计算。
即例出代有χ的算式并计算。
10、分数:把单位“1”平均分成若干份,表示这样的一份或几分的数,叫做分数。
11、分数的加减法则:同分母的分数相加减,只把分子相加减,分母不变.异分母的分数相加减,先通分,然后再加减.12、分数大小的比较:同分母的分数相比较,分子大的大,分子小的小。
异分母的分数相比较,先通分然后再比较;若分子相同,分母大的反而小.13、分数乘整数,用分数的分子和整数相乘的积作分子,分母不变。
14、分数乘分数,用分子相乘的积作分子,分母相乘的积作为分母。
15、分数除以整数(0除外),等于分数乘以这个整数的倒数。
16、真分数:分子比分母小的分数叫做真分数.17、假分数:分子比分母大或者分子和分母相等的分数叫做假分数。
小学数学所有公式和概念1、每份数×份数=总数总数÷每份数=份数总数÷份数=每份数总数÷总份数=平均数2、1倍数×倍数=几倍数几倍数÷1倍数=倍数几倍数÷倍数=1倍数3、速度×时间=路程路程÷速度=时间路程÷时间=速度4、单价×数量=总价总价÷单价=数量总价÷数量=单价5、工作效率×工作时间=工作总量工作总量÷工作效率=工作时间工作总量÷工作时间=工作效率6、加数+加数=和和-一个加数=另一个加数7、被减数-减数=差被减数-差=减数差+减数=被减数8、因数×因数=积积÷一个因数=另一个因数9、被除数÷除数=商被除数÷商=除数商×除数=被除数小学数学图形计算公式1 、正方形C周长S面积a边长周长=边长×4 C=4a 面积=边长×边长S=a×a2 、正方体V:体积a:棱长表面积=棱长×棱长×6 S表=a×a×6 体积=棱长×棱长×棱长V=a×a×a3 、长方形C周长S面积a边长周长=(长+宽)×2C=2(a+b)面积=长×宽S=ab4 、长方体V:体积s:面积a:长b: 宽h:高(1)表面积(长×宽+长×高+宽×高)×2 S=2(ab+ah+bh)(2)体积=长×宽×高V=abh5 三角形s面积a底h高面积=底×高÷2s=ah÷2三角形高=面积×2÷底三角形底=面积×2÷高6 平行四边形s面积a底h高面积=底×高s=ah7 梯形s面积a上底b下底h高面积=(上底+下底)×高÷2s=(a+b)× h÷28 圆形S面积C周长∏ d=直径r=半径(1)周长=直径×∏=2×∏×半径C=∏d=2∏r(2)面积=半径×半径×∏9 圆柱体v:体积h:高s;底面积r:底面半径c:底面周长(1)侧面积=底面周长×高(2)表面积=侧面积+底面积×2(3)体积=底面积×高(4)体积=侧面积÷2×半径10 圆锥体v:体积h:高s;底面积r:底面半径体积=底面积×高÷3和差问题的公式(和+差)÷2=大数(和-差)÷2=小数和倍问题和÷(倍数-1)=小数小数×倍数=大数(或者和-小数=大数)差倍问题差÷(倍数-1)=小数小数×倍数=大数(或小数+差=大数)植树问题1 非封闭线路上的植树问题主要可分为以下三种情形:⑴如果在非封闭线路的两端都要植树,那么:株数=段数+1=全长÷株距-1全长=株距×(株数-1)株距=全长÷(株数-1)⑵如果在非封闭线路的一端要植树,另一端不要植树,那么: 株数=段数=全长÷株距全长=株距×株数株距=全长÷株数⑶如果在非封闭线路的两端都不要植树,那么:株数=段数-1=全长÷株距-1全长=株距×(株数+1)株距=全长÷(株数+1)2 封闭线路上的植树问题的数量关系如下株数=段数=全长÷株距全长=株距×株数株距=全长÷株数盈亏问题(盈+亏)÷两次分配量之差=参加分配的份数(大盈-小盈)÷两次分配量之差=参加分配的份数(大亏-小亏)÷两次分配量之差=参加分配的份数相遇问题相遇路程=速度和×相遇时间相遇时间=相遇路程÷速度和速度和=相遇路程÷相遇时间追及问题追及距离=速度差×追及时间追及时间=追及距离÷速度差速度差=追及距离÷追及时间流水问题顺流速度=静水速度+水流速度逆流速度=静水速度-水流速度静水速度=(顺流速度+逆流速度)÷2水流速度=(顺流速度-逆流速度)÷2浓度问题溶质的重量+溶剂的重量=溶液的重量溶质的重量÷溶液的重量×100%=浓度溶液的重量×浓度=溶质的重量溶质的重量÷浓度=溶液的重量利润与折扣问题利润=售出价-成本利润率=利润÷成本×100%=(售出价÷成本-1)×100% 涨跌金额=本金×涨跌百分比折扣=实际售价÷原售价×100%(折扣<1)利息=本金×利率×时间税后利息=本金×利率×时间×(1-20%)长度单位换算1千米=1000米1米=10分米1分米=10厘米1米=100厘米1厘米=10毫米面积单位换算1平方千米=100公顷1公顷=10000平方米1平方米=100平方分米1平方分米=100平方厘米1平方厘米=100平方毫米体(容)积单位换算1立方米=1000立方分米1立方分米=1000立方厘米1立方分米=1升1立方厘米=1毫升1立方米=1000升重量单位换算1吨=1000 千克1千克=1000克1千克=1公斤人民币单位换算1元=10角1角=10分1元=100分时间单位换算1世纪=100年1年=12月大月(31天)有:1\3\5\7\8\10\12月小月(30天)的有:4\6\9\11月平年2月28天, 闰年2月29天平年全年365天, 闰年全年366天1日=24小时1时=60分1分=60秒1时=3600秒。
小学数学公式大全(完整版)一、数的概念和认识1.1 整数1.自然数:1, 2, 3, …2.整数:-3, -2, -1, 0, 1, 2, 3, …1.2 分数1.分数的定义:$\\frac{a}{b}$2.假分数:分子大于分母的分数3.真分数:分子小于分母的分数4.基数:分子5.除数:分母二、四则运算2.1 加法加法规律:\[a + b = b + a\]2.2 减法减法规律:\[a - b ≠ b - a\]2.3 乘法乘法公式:\[a \times b = b \times a\]2.4 除法除法:\[a \div b = \frac{a}{b}\]三、计算方法3.1 算式1.算式:由数字和运算符组成的式子2.省略乘号:\[a(b+c) = ab + ac\]3.2 进位与退位1.进位:\[9+3 = 12\]2.退位:\[10-6 = 4\]3.3 整数运算1.两个数的和:\[a + b\]2.两个数的差:\[a - b\]3.两个数的积:\[a \times b\]4.两个数的商:\[a \div b\]四、几何图形4.1 直线1.定义:2.符号:AB4.2 线段1.定义:两个端点的直线就是线段2.书写:$\\overleftrightarrow{AB}$4.3 角角的定义:\(OA\)和\(OB\)的夹角\(AOB\)叫做角。
4.4 等腰三角形1.定义:两边相等的三角形2.性质:底边角相等五、面积和周长5.1 长方形1.面积公式:\[A = l \times w\]2.周长公式:\[P = 2(l + w)\]5.2 正方形1.面积公式:\[A = a \times a\]2.周长公式:\[P = 4a\]六、容积和体积6.1 容积1.计算方法:\[V = l \times w \times h\]2.单位:立方米(m³)6.2 体积1.立体图形的体积:\[V = \frac{4}{3}\pi r^3\]七、数学公式7.1 勾股定理勾股定理:直角三角形的两直角边的平方和等于斜边的平方。
小学数学公式和概念大全三角形的面积=底×高÷2。
公式S= a×h÷2正方形的面积=边长×边长公式S= a×a长方形的面积=长×宽公式S= a×b平行四边形的面积=底×高公式S= a×h梯形的面积=(上底+下底)×高÷2 公式S=(a+b)h÷2内角和:三角形的内角和=180度。
长方体的体积=长×宽×高公式:V=abh长方体(或正方体)的体积=底面积×高公式:V=abh正方体的体积=棱长×棱长×棱长公式:V=aaa圆的周长=直径×π 公式:L=πd=2πr圆的面积=半径×半径×π 公式:S=πr2圆柱的表(侧)面积:圆柱的表(侧)面积等于底面的周长乘高。
公式:S=ch=πdh=2πrh圆柱的表面积:圆柱的表面积等于底面的周长乘高再加上两头的圆的面积。
公式:S=ch+2s=ch+2πr2圆柱的体积:圆柱的体积等于底面积乘高。
公式:V=Sh圆锥的体积=1/3底面×积高。
公式:V=1/3Sh分数的加、减法则:同分母的分数相加减,只把分子相加减,分母不变。
异分母的分数相加减,先通分,然后再加减。
分数的乘法则:用分子的积做分子,用分母的积做分母。
分数的除法则:除以一个数等于乘以这个数的倒数。
读懂理解会应用以下定义定理性质公式一、算术方面1、加法交换律:两数相加交换加数的位置,和不变。
2、加法结合律:三个数相加,先把前两个数相加,或先把后两个数相加,再同第三个数相加,和不变。
3、乘法交换律:两数相乘,交换因数的位置,积不变。
4、乘法结合律:三个数相乘,先把前两个数相乘,或先把后两个数相乘,再和第三个数相乘,它们的积不变。
5、乘法分配律:两个数的和同一个数相乘,可以把两个加数分别同这个数相乘,再把两个积相加,结果不变。
人教版小学1至6年级数学概念公式大全一、图形计算公式1、三角形的面积=底×高÷2。
公式S= a×h÷22、正方形的面积=边长×边长公式S= a²或S=a×a3、长方形的面积=长×宽公式S= ab4、平行四边形的面积=底×高公式S= ah5、梯形的面积=(上底+下底)×高÷2 公式S=(a+b)h÷26、内角和:三角形的内角和=180度。
7、长方体的体积=长×宽×高公式:V=abh8、长方体(或正方体)的体积=底面积×高公式:V=Sh9、正方体的体积=棱长×棱长×棱长公式:V=aaa=a310、圆的周长=直径×π公式:L=πd=2πr11、圆的面积=半径×半径×π公式:S=πr212、圆柱的侧面积:圆柱的侧面积等于底面的周长乘高。
公式:S=ch=πdh=2πrh13、圆柱的表面积:圆柱的表面积等于底面的周长乘高再加上两头的圆的面积。
公式:S=ch+2s=ch+2πr214、圆柱的体积:圆柱的体积等于底面积乘高。
公式:V=Sh15、圆锥的体积=1/3底面×积高。
公式:V=1/3Sh二、数量关系1、单价×数量=总价2、单产量×数量=总产量3、速度×时间=路程4、工效×时间=工作总量5、加减乘除加数+加数=和一个加数=和-另一个加数被减数-减数=差减数=被减数-差被减数=减数+差因数×因数=积一个因数=积÷另一个因数被除数÷除数=商除数=被除数÷商被除数=商×除数有余数的除法:被除数=商×除数+余数三、计算法则1、加法交换律:两数相加交换加数的位置,和不变。
2、加法结合律:三个数相加,先把前两个数相加,或先把后两个数相加,再同第三个数相加,和不变。
小学数学常见公式、概念大全(红色为六年级内容)一、小学数学图形计算公式:1、长方形的周长=(长+宽)×2 C=(a+b)×22、正方形的周长=边长×4 C=4a3、长方形的面积=长×宽S=ab4、正方形的面积=边长×边长S=a·a或S= a²5、三角形的面积=底×高÷2 S=ah÷26、平行四边形的面积=底×高S=ah7、梯形的面积=(上底+下底)×高÷2 S=(a+b)h÷28、直径=半径×2 d=2r 半径=直径÷2 r= d÷29、圆的周长=圆周率×直径或圆的周长=圆周率×半径×2C=πd 或 C =2πr10、圆的面积=圆周率×半径×半径S=πr²11、长方体的表面积=(长×宽+长×高+宽×高)×2S=(ab+ah+bh)×212、长方体的体积=长×宽×高V =abh13、正方体的表面积=棱长×棱长×6 S =6a²14、正方体的体积=棱长×棱长×棱长V=a·a·a 或V= a³15、圆柱的侧面积=底面圆的周长×高S=Ch16、圆柱的表面积=上下底面面积+侧面积S=2πr²+ 2πrh或S= 2π(d÷2)²+ 2π(d÷2)h或S=2π(C÷2÷π) + Ch17、圆柱的体积=底面积×高V=ShV=πr²h 或V=π(d÷2)²h 或V=π(C÷2÷π) ²h 18、圆锥的体积=底面积×高÷3V=Sh÷3 或V=πr²h÷3或V=π(d÷2)²h÷3 或V=π(C÷2÷π) ²h÷3*******************************************************************二、数量关系:1、每份数×份数=总数;总数÷每份数=份数;总数÷份数=每份数;平均数=总数÷总份数2、1倍数×倍数=几倍数;几倍数÷1倍数=倍数;几倍数÷倍数=1倍数3、速度×时间=路程;路程÷速度=时间;路程÷时间=速度4、单价×数量=总价;总价÷单价=数量;总价÷数量=单价5、工作效率×工作时间=工作总量;工作总量÷工作效率=工作时间;工作总量÷工作时间=工作效率6、加数+加数=和;加数=和-另一个加数7、被减数-减数=差;减数=被减数-差;被减数=差+减数8、乘数×乘数=积;乘数=积÷另一个乘数9、被除数÷除数=商;除数=被除数÷商;被除数=商×除数10、和差问题:(和+差)÷2=大数;(和-差)÷2=小数11、和倍问题:和÷(倍数-1)=小数小数×倍数=大数(或和-小数=大数)12、差倍问题:差÷(倍数-1)=小数小数×倍数=大数(或小数+差=大数)13、植树问题:1、非封闭线路上的植树问题主要可分为以下三种情形:⑴如果在非封闭线路的两端都要植树,那么:株数=段数+1=全长÷株距-1全长=株距×(株数-1)株距=全长÷(株数-1)⑵如果在非封闭线路的一端要植树,另一端不要植树,那么:株数=段数=全长÷株距全长=株距×株数株距=全长÷株数⑶如果在非封闭线路的两端都不要植树,那么:株数=段数-1=全长÷株距-1全长=株距×(株数+1)株距=全长÷(株数+1)14、相遇问题:相遇路程=速度和×相遇时间相遇时间=相遇路程÷速度和速度和=相遇路程÷相遇时间15、追及问题:追及距离=速度差×追及时间追及时间=追及距离÷速度差速度差=追及距离÷追及时间16、利润与折扣问题:利润=售出价-成本利润率=利润÷成本×100%或利润率=(售出价÷成本-1)×100%涨跌金额=本金×涨跌百分比折扣=实际售价÷原售价×100%(折扣<1)利息=本金×利率×时间税后利息=本金×利率×时间×(1-20%)*****************************************************************三、单位换算:1、时间单位:1世纪=100年1年=12月大月(31天)有:1\3\5\7\8\10\12月小月(30天)的有:4\6\9\11月平年2月28天, 闰年2月29天平年全年365天, 闰年全年366天1日=24小时1时=60分1分=60秒1时=3600秒2、长度单位:1公里=1千米1千米=1000米1米=10分米1分米=10厘米1厘米=10毫米1米=100厘米3、面积单位:1平方千米=100公顷1公顷=10000平方米1亩=666.666平方米1平方米=100平方分米1平方分米=100平方厘米1平方厘米=100平方毫米4、体积和容积单位:1立方米=1000立方分米1立方分米=1000立方厘米1立方厘米=1000立方毫米1升=1000毫升1升=1立方分米1毫升=1立方厘米5、重量单位:1吨=1000 千克1千克=1000克1千克=1公斤=2斤6、人民币单位换算:1元=10角1角=10分1元=100分*****************************************************************四、概念:1、加法交换律:两数相加交换加数的位置,和不变。
小学数学公式概念大全完整版
1.数字概念:0,1,2,3,4,5,6,7,8,9
2.数量概念:多少、几个、多、少、都有、没有等
3.十进制概念:个位、十位、百位
4.数字的大小比较:大于、小于、等于
5.加法:加号(+)、相加、和、求和
6.减法:减号(-)、相减、差、求差
7.乘法:乘号(×)、相乘、积、乘法表
8.除法:除号(÷)、相除、商、余数
9.分数概念:分子、分母、相等的分数
10.数的相反数:正数、负数、相反数
11.小数概念:整数、小数点、小数部分
12.单位转换:长度、重量、容量等
13.圆:圆心、半径、直径、圆周长、圆面积
14.行和列:行、列、表格
15.二维形状:正方形、长方形、三角形、圆形
16.立体形状:正方体、长方体、球体、圆柱体、圆锥体
17.边和顶点:边、顶点、多边形
18.直线和曲线:直线、曲线、弯曲、拐点
19.数轴概念:正数方向、负数方向、原点
20.图形的对称性:轴对称、中心对称
21.连续数:数列、等差数列、等差、等比数列、等比
22.比例:比例关系、比例尺
23.百分数:百分号(%)
24.分数、小数和百分数的关系
25.简单分数的相加、相减、相乘、相除
26.分数和小数之间的转换
27.二元一次方程:未知数、方程
28.逻辑推理:必要条件、充分条件、逻辑连接词(与、或、非)
29.数据统计:图表、表格、平均数、中位数、众数、范围
30.面积和体积:平行四边形、梯形、三角形、长方形、立方体、面积、体积。
小学数学计算公式大全!(1—六年级的公式)第一部分: 概念1、加法交换律:两数相加交换加数的位置,和不变。
2、加法结合律:三个数相加,先把前两个数相加,或先把后两个数相加,再同第三个数相加,和不变。
3、乘法交换律:两数相乘,交换因数的位置,积不变。
4、乘法结合律:三个数相乘,先把前两个数相乘,或先把后两个数相乘,再和第三个数相乘,它们的积不变.5、乘法分配律:两个数的和同一个数相乘,可以把两个加数分别同这个数相乘,再把两个积相加,结果不变。
如:(2+4)×5=2×5+4×56、除法的性质:在除法里,被除数和除数同时扩大(或缩小)相同的倍数,商不变. O除以任何不是O的数都得O。
简便乘法:被乘数、乘数末尾有O的乘法,可以先把O前面的相乘,零不参加运算,有几个零都落下,添在积的末尾。
7、什么叫等式?等号左边的数值与等号右边的数值相等的式子叫做等式。
等式的基本性质:等式两边同时乘以(或除以)一个相同的数,等式仍然成立.8、什么叫方程式?答:含有未知数的等式叫方程式.9、什么叫一元一次方程式?答:含有一个未知数,并且未知数的次数是一次的等式叫做一元一次方程式。
学会一元一次方程式的例法及计算。
即例出代有χ的算式并计算。
10、分数:把单位“1”平均分成若干份,表示这样的一份或几分的数,叫做分数。
11、分数的加减法则:同分母的分数相加减,只把分子相加减,分母不变。
异分母的分数相加减,先通分,然后再加减。
12、分数大小的比较:同分母的分数相比较,分子大的大,分子小的小。
异分母的分数相比较,先通分然后再比较;若分子相同,分母大的反而小。
13、分数乘整数,用分数的分子和整数相乘的积作分子,分母不变。
14、分数乘分数,用分子相乘的积作分子,分母相乘的积作为分母.15、分数除以整数(0除外),等于分数乘以这个整数的倒数。
16、真分数:分子比分母小的分数叫做真分数。
17、假分数:分子比分母大或者分子和分母相等的分数叫做假分数。
小学数学概念及公式大全一部分:概念1、加法交换律:两数相加交换加数的位置,和不变。
2、加法结合律:三个数相加,先把前两个数相加,或先把后两个数相加,再同第三个数相加,和不变。
3、乘法交换律:两数相乘,交换因数的位置,积不变。
4、乘法结合律:三个数相乘,先把前两个数相乘,或先把后两个数相乘,再和第三个数相乘,它们的积不变。
5、乘法分配律:两个数的和同一个数相乘,可以把两个加数分别同这个数相乘,再把两个积相加,结果不变。
如:(2+4)×5=2×5+4×56、除法的性质:在除法里,被除数和除数同时扩大(或缩小)相同的倍数,商不变。
O除以任何不是O的数都得O。
简便乘法:被乘数、乘数末尾有O的乘法,可以先把O前面的相乘,零不参加运算,有几个零都落下,添在积的末尾。
7、么叫等式?等号左边的数值与等号右边的数值相等的式子叫做等式。
等式的基本性质:等式两边同时乘以(或除以)一个相同的数,等式仍然成立。
8、什么叫方程式?答:含有未知数的等式叫方程式。
9、什么叫一元一次方程式?答:含有一个未知数,并且未知数的次数是一次的等式叫做一元一次方程式。
学会一元一次方程式的例法及计算。
即例出代有χ的算式并计算。
10、分数:把单位“1”平均分成若干份,表示这样的一份或几分的数,叫做分数。
11、分数的加减法则:同分母的分数相加减,只把分子相加减,分母不变。
异分母的分数相加减,先通分,然后再加减。
12、分数大小的比较:同分母的分数相比较,分子大的大,分子小的小。
异分母的分数相比较,先通分然后再比较;若分子相同,分母大的反而小。
13、分数乘整数,用分数的分子和整数相乘的积作分子,分母不变。
14、分数乘分数,用分子相乘的积作分子,分母相乘的积作为分母。
15、分数除以整数(0除外),等于分数乘以这个整数的倒数。
16、真分数:分子比分母小的分数叫做真分数。
17、假分数:分子比分母大或者分子和分母相等的分数叫做假分数。
小学数学概念_公式大全一、整数的四则运算公式:1.加法公式:a+b=b+a2.减法公式:a-b=-(b-a)3.乘法公式:a×b=b×a4.除法公式:a÷b=a/b二、分数的运算公式:1. 分数加法公式:a/b + c/d = (ad + bc)/(bd)2. 分数减法公式:a/b - c/d = (ad - bc)/(bd)3. 分数乘法公式:a/b × c/d = ac/bd4.分数除法公式:a/b÷c/d=(a×d)/(b×c)三、小数的运算公式:1.小数加法公式:a+b=a个位+b个位+a十分位+b十分位+a百分位+b 百分位+...2.小数减法公式:a-b=a个位-b个位+a十分位-b十分位+a百分位-b 百分位+...3.小数乘法公式:a×b=将a与b相乘,并将小数点向右移动a和b 的小数位数之和4.小数除法公式:a÷b=将a除以b,并将小数点向右移动a和b的小数位数之差四、平方与立方公式:1. 平方公式:(a + b)² = a² + 2ab + b²2. 平方差公式:(a - b)² = a² - 2ab + b²3. 立方公式:(a + b)³ = a³ + 3a²b + 3ab² + b³4. 立方差公式:(a - b)³ = a³ - 3a²b + 3ab² - b³五、面积和周长公式:1.矩形的面积公式:面积=长×宽2.正方形的面积公式:面积=边长×边长3.三角形的面积公式:面积=底边长×高÷24.圆的面积公式:面积=π×半径²5.圆的周长公式:周长=2×π×半径六、运算性质公式:1.加法结合律:a+(b+c)=(a+b)+c2.乘法结合律:a×(b×c)=(a×b)×c3.加法交换律:a+b=b+a4.乘法交换律:a×b=b×a5.加法分配律:a×(b+c)=a×b+a×c6.乘法分配律:a+(b×c)=(a+b)×(a+c)七、几何图形的公式:1.正方形的周长公式:周长=4×边长2.矩形的周长公式:周长=2×(长+宽)3.三角形的周长公式:周长=边1+边2+边34.圆的直径与周长关系:周长=π×直径5.圆的直径与半径关系:直径=2×半径。
小学数学公式概念大全 HEN system office room 【HEN16H-HENS2AHENS8Q8-HENH1688】小学数学概念大全一、图形计算公式。
三角形的面积=底×高÷2。
公式 S= a×h÷2三角形的高=面积×2÷底公式 h=S×2÷a三角形的底=面积×2÷高公式 a=S×2÷h正方形的周长=边长×4 公式 C=4a长方形的周长=(长+宽)×2 公式 C=(a+b) ×2正方形的面积=边长×边长公式 S= a×a长方形的面积=长×宽公式 S= a×b平行四边形的面积=底×高公式 S= a×h梯形的面积=(上底+下底)×高÷2 公式 S=(a+b)h÷2内角和:三角形的内角和=180度。
长方体的体积=长×宽×高公式 V=abh长方体(或正方体)的体积=底面积×高公式V=abh正方体的体积=棱长×棱长×棱长公式V=aaa=a3长方体的表面积=(长×宽+长×高+宽×高)×2 公式 S表=(a×b+a×h+b×h)×2正方体的表面积=棱长×棱长×6 公式 S表=a×a×6圆的周长=直径×π公式C=πd=2ππ面积=半径×半径×π公式S=ππ2圆柱的侧面积:圆柱的侧面积等于底面的周长乘高。
公式 S=ch=πdh=2ππ h 圆柱的表面积:圆柱的表面积等于底面的周长乘高再加上两头的圆的面积。
公式 S=ch+2s=ch+2ππ2圆柱的体积:圆柱的体积等于底面积乘高公式 V=Sh圆锥的体积=π=底面积×高÷3 公式 V=Sh÷3二、算术方面。
一到六年级数学概念公式大全一到六年级常用数学概念和公式大全,是考好数学的学生必须掌握的知识,为了让大家更好地备考,小编在这里为大家整理了小学一到六年级数学概念公式大全,快来学习学习吧!算术1、四则运算加数+加数=和,一个加数=和-另一个加数被减数-减数=差,减数=被减数-差,被减数=减数+差因数×因数=积,一个因数=积÷另一个因数被除数÷除数=商,除数=被除数÷商,被除数=商×除数有余数的除法:被除数=商×除数+余数2、加法交换律:两数相加交换加数的位置,和不变。
3、加法结合律:三个数相加,先把前两个数相加,或先把后两个数相加,再同第三个数相加,和不变。
4、乘法交换律:两数相乘,交换因数的位置,积不变。
5、乘法结合律:三个数相乘,先把前两个数相乘,或先把后两个数相乘,再和第三个数相乘,它们的积不变。
6、乘法分配律:两个数的和同一个数相乘,可以把两个加数分别同这个数相乘,再把两个积相加,结果不变。
如:(2+4)×5=2×5+4×57、除法的性质:在除法里,被除数和除数同时扩大(或缩小)相同的倍数,商不变。
O除以任何不是O的数都得O。
简便乘法:被乘数、乘数末尾有O的乘法,可以先把O前面的相乘,零不参加运算,有几个零都落下,添在积的末尾。
8、什么叫等式?等号左边的数值与等号右边的数值相等的式子叫做等式。
等式的基本性质:等式两边同时乘以(或除以)一个相同的数,等式仍然成立。
9、什么叫方程式?答:含有未知数的等式叫方程式。
10、什么叫一元一次方程式?答:含有一个未知数,并且未知数的次数是一次的等式叫做一元一次方程式。
学会一元一次方程式的列法及计算。
即列出代有χ的算式并计算。
11、分数:把单位“1”平均分成若干份,表示这样的一份或几分的数,叫做分数。
12、分数的加减法则:同分母的分数相加减,只把分子相加减,分母不变。
一部分:概念1、加法交换律:两数相加交换加数的位置,和不变。
2、加法结合律:三个数相加,先把前两个数相加,或先把后两个数相加,再同第三个数相加,和不变。
3、乘法交换律:两数相乘,交换因数的位置,积不变.4、乘法结合律:三个数相乘,先把前两个数相乘,或先把后两个数相乘,再和第三个数相乘,它们的积不变。
5、乘法分配律:两个数的和同一个数相乘,可以把两个加数分别同这个数相乘,再把两个积相加,结果不变。
如:(2 +4)×5=2×5+4×56、除法的性质:在除法里,被除数和除数同时扩大(或缩小)相同的倍数,商不变. O除以任何不是O的数都得O。
简便乘法:被乘数、乘数末尾有O的乘法,可以先把O前面的相乘,零不参加运算,有几个零都落下,添在积的末尾。
7、么叫等式?等号左边的数值与等号右边的数值相等的式子叫做等式.等式的基本性质:等式两边同时乘以(或除以)一个相同的数,等式仍然成立。
8、什么叫方程式?答:含有未知数的等式叫方程式。
9、什么叫一元一次方程式?答:含有一个未知数,并且未知数的次数是一次的等式叫做一元一次方程式。
学会一元一次方程式的例法及计算。
即例出代有χ的算式并计算.10、分数:把单位“1”平均分成若干份,表示这样的一份或几分的数,叫做分数。
11、分数的加减法则:同分母的分数相加减,只把分子相加减,分母不变。
异分母的分数相加减,先通分,然后再加减。
12、分数大小的比较:同分母的分数相比较,分子大的大,分子小的小。
异分母的分数相比较,先通分然后再比较;若分子相同,分母大的反而小。
13、分数乘整数,用分数的分子和整数相乘的积作分子,分母不变。
14、分数乘分数,用分子相乘的积作分子,分母相乘的积作为分母。
15、分数除以整数(0除外),等于分数乘以这个整数的倒数。
16、真分数:分子比分母小的分数叫做真分数。
17、假分数:分子比分母大或者分子和分母相等的分数叫做假分数。
假分数大于或等于1。
⼈教版⼩学1⾄6年级数学概念公式⼤全⼈教版⼩学1⾄6年级数学概念公式⼤全⼀、图形计算公式1、三⾓形的⾯积=底×⾼÷2。
公式S= a×h÷22、正⽅形的⾯积=边长×边长公式S= a2或S=a×a3、长⽅形的⾯积=长×宽公式S= ab4、平⾏四边形的⾯积=底×⾼公式S= ah5、梯形的⾯积=(上底+下底)×⾼÷2 公式S=(a+b)h÷26、内⾓和:三⾓形的内⾓和=180度。
7、长⽅体的体积=长×宽×⾼公式:V=abh8、长⽅体(或正⽅体)的体积=底⾯积×⾼公式:V=Sh9、正⽅体的体积=棱长×棱长×棱长公式:V=aaa=a310、圆的周长=直径×π公式:L=πd=2πr11、圆的⾯积=半径×半径×π公式:S=πr212、圆柱的侧⾯积:圆柱的侧⾯积等于底⾯的周长乘⾼。
公式:S=ch=πdh=2πrh13、圆柱的表⾯积:圆柱的表⾯积等于底⾯的周长乘⾼再加上两头的圆的⾯积。
公式:S=ch+2s=ch+2πr214、圆柱的体积:圆柱的体积等于底⾯积乘⾼。
公式:V=Sh15、圆锥的体积=1/3底⾯×积⾼。
公式:V=1/3Sh⼆、数量关系1、单价×数量=总价2、单产量×数量=总产量3、速度×时间=路程4、⼯效×时间=⼯作总量5、加减乘除加数+加数=和⼀个加数=和-另⼀个加数被减数-减数=差减数=被减数-差被减数=减数+差因数×因数=积⼀个因数=积÷另⼀个因数被除数÷除数=商除数=被除数÷商被除数=商×除数有余数的除法:被除数=商×除数+余数三、计算法则1、加法交换律:两数相加交换加数的位置,和不变。
2、加法结合律:三个数相加,先把前两个数相加,或先把后两个数相加,再同第三个数相加,和不变。
小学数学计算公式大全!(1—六年级的公式)第一部分:概念1、加法交换律:两数相加交换加数的位置,和不变。
2、加法结合律:三个数相加,先把前两个数相加,或先把后两个数相加,再同第三个数相加,和不变。
3、乘法交换律:两数相乘,交换因数的位置,积不变。
4、乘法结合律:三个数相乘,先把前两个数相乘,或先把后两个数相乘,再和第三个数相乘,它们的积不变。
5、乘法分配律:两个数的和同一个数相乘,可以把两个加数分别同这个数相乘,再把两个积相加,结果不变。
如:(2+4)×5=2×5+4×56、除法的性质:在除法里,被除数和除数同时扩大(或缩小)相同的倍数,商不变。
O除以任何不是O的数都得O。
简便乘法:被乘数、乘数末尾有O的乘法,可以先把O前面的相乘,零不参加运算,有几个零都落下,添在积的末尾。
7、什么叫等式?等号左边的数值与等号右边的数值相等的式子叫做等式。
等式的基本性质:等式两边同时乘以(或除以)一个相同的数,等式仍然成立。
8、什么叫方程式?答:含有未知数的等式叫方程式。
9、什么叫一元一次方程式?答:含有一个未知数,并且未知数的次数是一次的等式叫做一元一次方程式。
学会一元一次方程式的例法及计算。
即例出代有χ的算式并计算。
10、分数:把单位“1”平均分成若干份,表示这样的一份或几分的数,叫做分数。
11、分数的加减法则:同分母的分数相加减,只把分子相加减,分母不变。
异分母的分数相加减,先通分,然后再加减。
12、分数大小的比较:同分母的分数相比较,分子大的大,分子小的小。
异分母的分数相比较,先通分然后再比较;若分子相同,分母大的反而小。
13、分数乘整数,用分数的分子和整数相乘的积作分子,分母不变。
14、分数乘分数,用分子相乘的积作分子,分母相乘的积作为分母。
15、分数除以整数(0除外),等于分数乘以这个整数的倒数。
16、真分数:分子比分母小的分数叫做真分数。
17、假分数:分子比分母大或者分子和分母相等的分数叫做假分数。
'.小学数学概念大全一、图形计算公式。
三角形的面积=底×高÷2。
公式S= a×h÷2三角形的高=面积×2÷底公式h=S×2÷a三角形的底=面积×2÷高公式a=S×2÷h正方形的周长=边长×4 公式C=4a长方形的周长=(长+宽)×2 公式C=(a+b) ×2正方形的面积=边长×边长公式S= a×a长方形的面积=长×宽公式S= a×b平行四边形的面积=底×高公式S= a×h梯形的面积=(上底+下底)×高÷2 公式S=(a+b)h÷2内角和:三角形的内角和=180度。
长方体的体积=长×宽×高公式V=abh长方体(或正方体)的体积=底面积×高公式V=abh3V=aaa=a公式正方体的体积=棱长×棱长×棱长长方体的表面积=(长×宽+长×高+宽×高)×2 公式S=(a×b+a×h+b×h)×2 表××6 公式S=a ×棱长a×正方体的表面积=棱长6 表圆的周长=直径×公式C=πd=2S=公式面积=半径×半径×圆柱的侧面积:圆柱的侧面积等于底面的周长乘高。
公式S=ch=dh=2 h圆柱的表面积:圆柱的表面积等于底面的周长乘高再加上两头的圆的面积。
公式S=ch+2s=ch+2圆柱的体积:圆柱的体积等于底面积乘高公式V=Sh 圆锥的体积= 3 ÷V=Sh 公式 3 底面积×高÷;.'.二、算术方面。
1.加法交换律:两数相加交换加数的位置,和不变。
2.加法结合律:三个数相加,先把前两个数相加,或先把后两个数相加,再同第三个数相加,和不变。
3.乘法交换律:两数相乘,交换因数的位置,积不变。
4.乘法结合律:三个数相乘,先把前两个数相乘,或先把后两个数相乘,再和第三个数相乘,它们的积不变。
5.乘法分配律:两个数的和同一个数相乘,可以把两个加数分别同这个数相乘,再把两个积相加,结果不变。
如:(2+4)×5=2×5+4×56.除法的性质:在除法里,被除数和除数同时扩大(或缩小)相同的倍数,商不变。
O除以任何不是O的数都得O。
简便乘法:被乘数、乘数末尾有O的乘法,可以先把O前面的相乘,零不参加运算,有几个零都落下,添在积的末尾。
7.么叫等式?等号左边的数值与等号右边的数值相等的式子叫做等式。
等式的基本性质:等式两边同时乘以(或除以)一个相同的数,等式仍然成立。
8.什么叫方程式?含有未知数的等式叫方程式。
9. 什么叫一元一次方程式?含有一个未知数,并且未知数的次数是一次的等式叫做一元一次方程式。
学会一元一次方程式的例法及计算。
即例出代有χ的算式并计算。
10.自然数:用来表示物体个数的1、2、3、4、5、6、7、8、9、10……叫做自然数。
11.整数:零和自然数叫做整数。
(这里仅对小学范围内而言)12.自然数:用来表示物体个数的整数,叫做自然数。
0是最小的自然数,是正整数与负整数的分界线。
自然数也是整数。
13.循环小数:一个小数,从小数部分的某一位起,一个数字或几个数字依次不断的重复出现,这样的小数叫做循环小数。
如3. 141414…1414 或3.33333…14.不循环小数:一个小数,从小数部分起,没有一个数字或几个数字依次不断的重复出现,这样的小数叫做不循环小数。
如圆周率:π=3.1415926546…15.无限不循环小数:一个小数,从小数部分起到无限位数,没有一个数字或几个数字依次不断的重复出现,这样的小数叫做无限不循环小数。
如圆周率:π=3.14159265462616;.'.16.偶数和奇数:能被2整除的数叫做偶数。
不能被2整除的数叫做奇数。
偶数中除了2以外的数都是合数。
4是最小的合数。
17.质数(素数):一个数,如果只有1和它本身两个约数,这样的数叫做质数(或素数)。
最小的素数是2,也是素数中唯一的偶数,其余的素数均是奇数。
18.合数:一个数,如果除了1和它本身还有别的约数,这样的数叫做合数。
1不是质数,也不是合数。
19.能被2整除数的特征:个位上的数字是0,2,4,6,8。
20.能被3整除数的特征:各位上的数字之和是3的倍数。
21.能被5整除数的特征:个位上的数字是0,5 。
22.分数:把单位“1”平均分成若干份,表示这样的一份或几分的数,叫做分数。
把单位“1”平均分成若干份,表示其中一份的数叫做分数单位。
23.分数的加减法则:同分母的分数相加减,只把分子相加减,分母不变。
异分母的分数相加减,先通分,然后再加减。
24.分数大小的比较:同分母的分数相比较,分子大的大,分子小的小。
异分母的分数相比较,先通分然后再比较;若分子相同,分母大的反而小。
25.分数乘整数:用分数的分子和整数相乘的积作分子,分母不变。
(分数的乘法则)26.分数乘分数:用分子相乘的积作分子,分母相乘的积作为分母。
(分数的除法则)27.分数除以整数(0除外):等于分数乘以这个整数的倒数。
28.真分数:分子比分母小的分数叫做真分数。
真分数小于1.29.假分数:分子比分母大或者分子和分母相等的分数叫做假分数。
假分数大于或等于1。
30.带分数:把假分数写成整数和真分数的形式,叫做带分数。
31.分数的基本性质:分数的分子和分母同时乘以或除以同一个数(0除外),分数的大小不变。
32.通分:把异分母分数的分别化成和原来分数相等的同分母的分数,叫做通分。
(通分用最小公倍数)33.约分:把一个分数化成同它相等,但分子、分母都比较小的分数,叫做约分。
(约分用最大公约数)34.最简分数:分子、分母是互质数的分数,叫做最简分数。
分数计算到最后,得数必须化成最简分数。
个位上是0、2、4、6、8的数,都能被2整除,即能用2进行约分。
个位上是0或者5的数,都能被5整除,即能用5进行约分。
在约分时应注意利用。
;.'.35.分数的加、减法则:同分母的分数相加减,只把分子相加减,分母不变。
异分母的分数相加减,先通分,然后再加减。
36.分数的乘法则:用分子的积做分子,用分母的积做分母。
37.分数的除法则:除以一个数等于乘以这个数的倒数。
38.倒数:一个数除以分数,等于这个数乘以分数的倒数。
甲数除以乙数(0除外),等于甲数乘以乙数的倒数。
39.什么叫比:两个数相除就叫做两个数的比。
如:2÷5或3:6。
比的前项和后项同时乘以或除以一个相同的数(0除外),比值不变。
40.什么叫比例:表示两个比相等的式子叫做比例。
如3:6=9:1841.比例的基本性质:在比例里,两外项之积等于两内项之积。
42.解比例:求比例中的未知项,叫做解比例。
如3:χ=9:1843正比例:两种相关联的量,一种量变化,另一种量也随着化,如果这两种量中相对应的的比值(也就是商k)一定,这两种量就叫做成正比例的量,它们的关系就叫做正比例关系。
如:x y =k( k一定)或kx=y44反比例:两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的积一定,这两种量就叫做成反比例的量,它们的关系就叫做反比例关系。
如:x×y = k( k一定)或x k= y 百分数:表示一个数是另一个数的百分之几的数,叫做百分数。
百分数也叫做百分率或百分比。
45.把小数化成百分数,只要把小数点向右移动两位,同时在后面添上百分号。
其实,把小数化成百分数,只要把这个小数乘以100%就行了。
把百分数化成小数,只要把百分号去掉,同时把小数点向左移动两位。
46.把分数化成百分数,通常先把分数化成小数(除不尽时,通常保留三位小数),再把小数化成百分数。
其实,把分数化成百分数,要先把分数化成小数后,再乘以100%就行了。
把百分数化成分数,先把百分数改写成分数,能约分的要约成最简分数。
要学会把小数化成分数和把分数化成小数的化法。
47.最大公约数:几个数都能被同一个数一次性整除,这个数就叫做这几个数的最大公约数。
(或几个数公有的约数,叫做这几个数的公约数。
其中最大的一个,叫做最大公约数。
)48.互质数:公约数只有1的两个数,叫做互质数。
;.'.49.最小公倍数:几个数公有的倍数,叫做这几个数的公倍数,其中最小的一个叫做这几个数的最小公倍数。
29.利息:利息=本金×利率×时间(时间一般以年或月为单位,应与利率的单位相对应)50.利率:利息与本金的比值叫做利率。
一年的利息与本金的比值叫做年利率。
一月的利息与本金的比值叫做月利率。
51.什么叫代数? 代数就是用字母代替数。
52.什么叫代数式?用字母表示的式子叫做代数式。
如:3x =(a+b)*c53.小数: 先弄清什么是“十进分数”。
分母是10n的(n为自然数)分数叫做“十进分数”。
由于任何一个“十进分数”都能写成小数的形式,例如:=0.7,=0.07等等,所以一般而言,小数是特殊形式的分数。
但是不能说小数就是分数!54.混小数(带小数): 小数的整数部分不为零的小数叫混小数,也叫带小数。
55.纯小数: 小数的整数部分为零的小数,叫做纯小数。
56.纯循环小数: 与纯小数有实质性的区别,指循环节从十分位就开始的循环小数,叫做纯循环小数。
例如:6.88888888…。
57.混循环小数: 与纯循环小数有唯一区别:不是从十分位开始循环的循环小数,叫混循环小数。
例如:3.84848484 (8484)58.有限小数: 小数的小数部分只有有限个数字的小数(不全为零)叫做有限小数。
59.无限小数: 小数的小数部分有无数个数字(不包含全为零)的小数,叫做无限小数。
循环小数都属于无限小数的范围,但不是仅指循环小数而言。
例如,圆周率π也是无限小数(就现阶段而言,还没有发现其规律性)。
60.互素数:只有公因数“1”的两个数叫互素数。
61.公因数:两个数公有的因数叫做公因数.其中最大的一个叫最大公因数。
62.公倍数:两个数公有的倍数叫做公倍数。
其中最小的一个叫最小公倍数。
63.素因数:把一个合数分解成几个素数相乘的形式,这几个素数叫做这个合数的素因数。
64.分解素因数:把一个合数分解成几个素数相乘的形式,这个过程叫做分解素因数。
;.'.三、数量关系计算公式方面。
1. 单价×数量=总价单产量×数量=总产量2. 速度×时间=路程工效×时间=工作总量3. 加数+加数=和一个加数=和+另一个加数4. 被减数-减数=差减数=被减数-差被减数=减数+差5. 因数×因数=积一个因数=积÷另一个因数6. 被除数÷除数=商除数=被除数÷商被除数=商×除数7. 有余数的除法:被除数=商×除数+余数8. 一个数连续用两个数除,可以先把后两个数相乘,再用它们的积去除这个数,结果不变。