两独立样本和配对样本T检验
- 格式:docx
- 大小:14.23 KB
- 文档页数:3
两独立样本T检验
目的:利用来自两个总体的独立样本,推断两个总体的均值是否存在显著差异。
检验前提:
样本来自的总体应服从或近似服从正态分布;
两样本相互独立,样本数可以不等。
两独立样本T检验的基本步骤:
提出假设
原假设H_0:μ_1-μ_2=0
备择假设H_1:μ_1-μ_2≠0
建立检验统计量
如果两样本来自的总体分别服从N(μ_1,σ_1^2 )和N(μ_2,σ_2^2 ),则两样本均值差(x_1 ) ?-x ?_2应服从均值为μ_1-μ_2、方差为σ_12^2的正态分布。
第一种情况:当两总体方差未知且相等时,采用合并的方差作为两个总体方差的估计,为:s^2=((n_1-1) s_1^2+(n_2-1) s_2^2)/(n_1+n_2-2)
则两样本均值差的估计方差为:
σ_12^2=s^2 (1/n_1 +1/n_2 )
构建的两独立样本T检验的统计量为:
t= ((x_1 ) ?-x ?_2)/√(s^2 (1/n_1 +1/n_2 ) )
此时,T统计量服从自由度为n_1+n_2-2个自由度的t分布。
第二种情况:当两总体方差未知且不相等时,两样本均值差的估计方差为:
σ_12^2=(s_1^2)/n_1 +(s_2^2)/n_2
构建的两独立样本T检验的统计量为:
t= ((x_1 ) ?-x ?_2)/√((s_1^2)/n_1 +(s_2^2)/n_2 )
此时,T统计量服从修正自由度的t分布,自由度为:
f= ((s_1^2)/n_1 +(s_2^2)/n_2 )^2/(((s_1^2)/n_1 )^2/n_1 +((s_2^2)/n_2 )^2/n_2 )
可见,两总体方差是否相等是决定t统计量的关键。所以在进行T检验之前,要先检验两总体方差是否相等。SPSS中使用方差齐性检验(Levene F检验)判断两样本方差是否相等近而间接推断两总体方差是否有显著差异。
三、计算检验统计量的观测值和p值
将样本数据代入,计算出t统计量的观测值和对应的概率p值。
四、在给定显著性水平上,做出决策
首先,利用F统计量判断两总体方差是否相等,Levene F检验的原假设为两独立总体方差相等。概率p<0.05时,有充分理由拒绝原假设,说明方差不齐;否则,两样本方差无显著性差异。
其次,将设定的显著性水平α与检验统计量的p值比较,如果t统计量的p值小于α,落入拒绝域内,则我们有充分理由拒绝原假设,认为两总体均值有显著差异。
SPSS实现过程:
菜单:Analyze -> Compare Means-> Independent Samples T test
Test Variable(s):待检验的变量(一般是定距或定序变量)
Grouping Variable :分组变量(只能比较两个样本)
结果中比较有用的值:方差齐次性检验F统计量对应的P值和方差相等或不相等T统计量对应的P值。
例:利用pkustedu.sav数据,检验不同性别学生的平均月生活费是否存在差异。
扩展案例:
独立样本T检验只能比较两个总体的均值是否相等,这要求自量恰好分成两组,但更多时候,自变量的分类超过两类,或是自变量是连续时,这时我们要对自变量进行处理后,才能进行T检验。
如,要分析不同身高儿童的体重是否有显著差异,此时做为分组变量的身高就是连续变量。SPSS中使用cut point功能重新处理自变量。
例:现有一组儿童身高、体重的调查资料,数据见data08-01.sav,试分析身高高于1.55m的儿童与身高不足155cm的儿童体重是否有显著差异。
SPSS实现过程:在cut point单选框中,输入1.55即可。
配对样本T检验
配对样本与独立样本的区别,
独立样本中两个样本来自两个独立的总体,而配对样本实际上来自一个总体,是对同一个体前后不同观测的分析,如同一组喝某品牌减肥茶的人群,比较他们喝茶前与喝茶后的体重是否有显著差异。
SPSS实现过程:
菜单:Analyze -> Compare Means-> Paired Samples T test
例:利用st2004.sav,检验1995年人均国民生产总值与2004年人均国民生产总值是否存在显著差异?
练习:
通过st2004.sav数据,检验东部地区和西部地区人均国民生产总值是否存在差异。
通过jobsat1.sav数据,分析收入(income1)低于3000元和收入高于3000元的职工的工作快乐感是否有显著差异。
问卷调查分析:
影响学习成绩的因素分析:
学习成绩的综合评价:高考成绩、四六级成绩、是否有其他考试证书;影响因素分析:
个人因素:学习时间安排、学习效率、学习动力
外部因素:
家庭因素:父母文化程度,家庭和睦,学生生活来源,
学校因素:社团活动、辅导班。