三.分子动力学的基本过程36页
- 格式:ppt
- 大小:1.76 MB
- 文档页数:18
第六章 分子动力学方法6.1引言对于一个多粒子体系的实验观测物理量的数值可以由总的平均得到。
但是由于实验体系又非常大,我们不可能计算求得所有涉及到的态的物理量数值的总平均。
按照产生位形变化的方法,我们有两类方法对有限的一系列态的物理量做统计平均:第一类是随机模拟方法。
它是实现Gibbs的统计力学途径。
在此方法中,体系位形的转变是通过马尔科夫(Markov)过程,由随机性的演化引起的。
这里的马尔科夫过程相当于是内禀动力学在概率方面的对应物。
该方法可以被用到没有任何内禀动力学模型体系的模拟上。
随机模拟方法计算的程序简单,占内存少,但是该方法难于处理非平衡态的问题。
另一类为确定性模拟方法,即统计物理中的所谓分子动力学方法(Molecular Dynamics Method)。
这种方法广泛地用于研究经典的多粒子体系的研究中。
该方法是按该体系内部的内禀动力学规律来计算并确定位形的转变。
它首先需要建立一组分子的运动方程,并通过直接对系统中的一个个分子运动方程进行数值求解,得到每个时刻各个分子的坐标与动量,即在相空间的运动轨迹,再利用统计计算方法得到多体系统的静态和动态特性, 从而得到系统的宏观性质。
因此,分子动力学模拟方法可以看作是体系在一段时间内的发展过程的模拟。
在这样的处理过程中我们可以看出:分子动力学方法中不存在任何随机因素。
系统的动力学机制决定运动方程的形式:在分子动力学方法处理过程中,方程组的建立是通过对物理体系的微观数学描述给出的。
在这个微观的物理体系中,每个分子都各自服从经典的牛顿力学。
每个分子运动的内禀动力学是用理论力学上的哈密顿量或者拉格朗日量来描述,也可以直接用牛顿运动方程来描述。
这种方法可以处理与时间有关的过程,因而可以处理非平衡态问题。
但是使用该方法的程序较复杂,计算量大,占内存也多。
适用范围广泛:原则上,分子动力学方法所适用的微观物理体系并无什么限制。
这个方法适用的体系既可以是少体系统,也可以是多体系统;既可以是点粒子体系,也可以是具有内部结构的体系;处理的微观客体既可以是分子,也可以是其它的微观粒子。
分子动力学与分子力学不同,它求解的是随时间变化的分子的状态、行为和过程。
分子动力学将原子看作为一连串的弹性球,原子在某一时刻由于运动而发生坐标变化。
在运动的任一瞬间,通过计算每个原子上的作用力和加速度,来测定它们的位置和运动速度。
由于一个原子的位置相对于其他原子的位置不断变化着,同时力也在变化,可用适当的力场方法,通过评价体系的能量,计算出任一特定原子的力。
分子动力学模拟可作瞬时的、通常为皮秒级(10-12s)的分析,由此模拟计算而获得以一定位置和速度存在的原子的运动轨迹。
计算中根据分子体系的大小、特点和要求来决定模拟时间的长短。
分子动力学方法是一通用的全局优化低能构象的方法。
用分子动力学模拟可使分子构象跨越较大的能垒,因此可以通过升温搜寻构象空间,势能的波动对应着分子构象的变化,当总能量出现最小值时,在常温下(300K)平衡,即可求得低能构象。
在常温下的分子动力学模拟需要很长的时间来克服能量势垒,因此分子动力学对分子构象空间的取样相当缓慢。
提高分子体系的温度,可加大样本分子构型空间的取样效率。
分子动力学计算中,常使用蒙特卡洛算法和模拟退火算法。
蒙特卡洛算法:是一种统计抽样方法。
其基本思想是在求解的空间中随机采样并计算目标函数,以在足够多的采样点中找到一个较高质量的最优解作为最终解。
在动力学计算全局优化低能构象时,以经验势函数随机抽样,不断抽取体系构象,使其逐渐趋于热力学平衡。
该方法需要大量采样才能得到较精确的结果,因此收敛速度较慢。
模拟退火算法:退火是将金属或其他固体材料加热至熔化后,再非常缓慢地冷却的过程。
缓慢冷却是为了凝固成规则的处于最稳态的坚硬晶体状态。
模拟退火算法用于分子动力学计算时,可有效地求得分子的全局优势构象。
过程为:先使体系升温,在高温下进行分子动力学模拟,使分子体系有足够的能量,克服柔性分子中存在的各种旋转能垒和顺反异构能垒,搜寻全部构象空间,在构象空间中选出一些能量相对极小的构象;然后逐渐降温,再进行分子动力学模拟,此时较高的能垒已无法越过,在极小化后去除能量较高的构象,最后可以得到相应的能量最小的优势构象。
分子动力学方法模拟基本步骤分子动力学方法是一种计算机模拟方法,用于研究原子、分子和粒子的运动行为。
它能够预测和揭示材料、化学物质和生物分子的性质和行为,对于理解和设计材料、药物和生物分子等具有重要意义。
分子动力学方法的模拟过程一般包括以下几个基本步骤。
1.选择模拟系统:首先需要明确要研究的系统,包括所研究系统的化学组成、结构和边界条件。
例如,研究一段DNA链的行为时,需要明确DNA链的序列、结构和周围环境等。
选择合适的模拟系统对于准确预测和理解系统行为至关重要。
2.设定初始构型:在进行分子动力学模拟之前,需要为模拟系统设定一个初始构型。
这个初始构型可以根据实验数据、理论计算结果或者其他模拟方法获得,也可以是人工构建的。
对于分子体系,通常使用分子力场将分子中的原子与键、角和二面角等参数进行描述。
初始构型需要满足系统的化学组成和结构,并且能够代表系统的初始状态。
3.设定运动方程:分子动力学方法通过求解牛顿运动方程来模拟粒子的运动。
这些运动方程与力场势能有关。
在分子动力学方法中,一般使用经验势函数来描述粒子间的相互作用。
这些势函数包括键能、角势能、二面角势能以及相互作用势能等。
4. 进行数值积分:为了在计算机中模拟分子的运动,需要解决运动方程的数值积分问题。
一般采用常用的积分算法,如velocity-Verlet算法、Euler算法等来进行数值积分。
这些算法能够根据物体的初始位置、速度和加速度,预测物体在一段时间后的位置、速度和加速度。
5.模拟运行:设置好模拟参数之后,就可以开始进行分子动力学模拟的运行。
在模拟过程中,按照设定的时间步长,通过数值积分方法求解运动方程,得到粒子在每个时间步长上的位置和速度。
同时,需要计算粒子间相互作用势能,以及其他需要关注的物理性质。
6.数据分析:模拟运行之后,需要对模拟得到的数据进行分析。
可以计算能量、压力、温度等系统的宏观性质,并进行可视化和统计分析。
同时,可以与实验结果进行比较,以验证模拟结果的准确性。
分子动力学模拟及自由能计算一、引言分子动力学模拟是一种重要的计算方法,用于研究分子体系的运动行为和相互作用。
通过模拟分子的运动轨迹,可以获得分子的结构、动力学和热力学性质,从而深入理解分子的行为规律。
自由能计算是分子动力学模拟的重要应用之一,它可以用来研究化学反应、相变等关键过程的稳定性和速率。
二、分子动力学模拟的基本原理分子动力学模拟基于牛顿运动定律,通过求解分子的运动方程来模拟分子的运动过程。
在模拟过程中,分子的位置和速度被更新,并且通过计算分子间的相互作用力来获得分子的加速度。
通过迭代计算,可以得到分子的运动轨迹和相应的物理性质。
三、分子动力学模拟的步骤分子动力学模拟包括准备系统、能量最小化、平衡处理和生产模拟等步骤。
首先,需要准备模拟系统,包括确定分子的结构和初始构型,并设置模拟的温度、压力等条件。
然后,对系统进行能量最小化,以得到一个稳定的初始结构。
接下来,进行平衡处理,使系统达到平衡状态,以便进行后续的模拟。
最后,进行生产模拟,记录分子的运动轨迹和相关的物理性质。
四、自由能计算的基本原理自由能是描述系统稳定性和相互作用强度的重要物理量。
自由能计算可以通过各种方法进行,如Monte Carlo方法、分子力学方法等。
其中,基于分子动力学模拟的自由能计算方法较为常用。
自由能计算可以通过计算系统的配分函数来实现,配分函数是描述系统状态的统计量,可以用来计算系统的热力学性质。
五、自由能计算的方法常见的自由能计算方法包括自由能差计算、自由能梯度计算和自由能表面计算等。
自由能差计算通过比较两个系统的自由能差来研究化学反应的稳定性和速率。
自由能梯度计算可以用来研究相变、界面等关键过程的稳定性和速率。
自由能表面计算可以用来研究分子的构象变化和反应路径等。
六、自由能计算的应用自由能计算在化学和材料科学等领域有广泛的应用。
例如,可以通过自由能计算来研究催化剂的活性和选择性,以指导催化反应的设计和优化。
此外,自由能计算还可以用来研究药物分子的结合机制和亲和力,以辅助药物设计和筛选。
分子动力学模拟步骤和意义摘要:一、分子动力学简介二、分子动力学模拟步骤1.准备模型和初始条件2.计算相互作用力3.更新位置和速度4.检查收敛性及输出结果5.重复步骤2-4,直至达到预定模拟时间三、分子动力学模拟意义1.增进对分子结构和性质的理解2.预测分子间相互作用3.优化化学反应条件4.辅助药物设计和材料研究正文:分子动力学是一种计算化学方法,通过模拟分子间的相互作用和运动轨迹,以揭示分子的结构和性质。
这种方法在许多领域具有广泛的应用,如生物化学、材料科学和药物设计等。
分子动力学模拟的主要步骤如下:1.准备模型和初始条件:在进行分子动力学模拟之前,首先需要构建分子模型,包括原子类型、原子间相互作用力等。
同时,为模拟设定初始条件,如温度、压力和分子位置等。
2.计算相互作用力:根据分子模型,利用力学原理(如牛顿第二定律)计算分子间相互作用力。
这些力包括范德华力、氢键、静电相互作用等,对分子的运动和相互作用起关键作用。
3.更新位置和速度:根据相互作用力,对分子的位置和速度进行更新。
通常采用Verlet积分法或Leap-Frog算法等数值方法进行计算。
4.检查收敛性及输出结果:在每次迭代过程中,需要检查模拟的收敛性。
若达到预设的收敛标准,则输出当前时刻的分子结构和性质。
否则,继续进行下一次迭代。
5.重复步骤2-4,直至达到预定模拟时间:分子动力学模拟通常需要进行大量迭代,以获得足够准确的结果。
在达到预定模拟时间后,可得到完整的分子动力学轨迹。
分子动力学模拟在科学研究和实际应用中具有重要意义。
通过模拟,我们可以更好地理解分子的结构和性质,预测分子间的相互作用,从而为实验设计和理论研究提供有力支持。
此外,分子动力学模拟还有助于优化化学反应条件,为药物设计和材料研究提供理论依据。
分子动理论的三个基本内容分子动力学是研究物质分子和原子等微观结构在受到物理和化学外力作用时的动态过程的一个学科。
它既涉及分子的构造,又涉及分子的动力学运动。
它的研究对熔体、液体、固体以及更复杂的现象有着极为深入的理解和推理。
从某种意义上看,分子动力学可以被认为是实验物理学的一个分支,但它也与数学物理学有着密切的联系。
分子动力学可以细分为三大块内容:(1)分子构造(2)分子运动学(3)分子能量学。
二、分子构造分子构造是分子动力学的基础。
它涉及对分子的架构和结构的全面考察,以及它们的空间构成和空间结构,以及分子的活动性和可活动性。
它还涉及对分子的立体形状的描述,包括其空间分布和性质,以及描述分子的轨道构造、结合能和能量状态。
三、分子运动学分子运动学是分子动力学中最重要的一部分。
它主要涉及对分子在物理和化学外力作用下的动态过程,如电磁场中的分子行为,以及分子受固定外力作用时的受力情况。
分子运动学要求根据分子的电子构造和库伦力(Coulomb force),建立运动学方程,用于解释由外力诱导的动态过程,以及受力机理和行为。
四、分子能量学分子能量学研究分子间能量分布和能量交换的动态特性,以及分子能量变换的规律。
它涉及对分子能量的仔细测量,以及分子外壳能量和极化能量的分析。
它还涉及对分子受固定外力作用下的能量变换等进行模拟,以及分子间分子共振结构的仿真。
总结总之,分子动力学是一个非常有趣的学科,它的研究贯穿了分子的构造、运动学和能量学等领域,是现代物理学研究的重要基础。
分子动力学的运用已经深入到化学、物理、生物学等其他学科的研究中,也为其他学科的发展提供了重要的理论支持。
只有彻底理解和深入研究分子动力学的各个方面,才能更好地应用它来解决实际问题。
分子动力学模拟一.分子动力学的基本原理在分子动力学模拟中,体系原子的一系列位移是通过对牛顿运动方程积分得到的,结果是一条运动轨迹,它表明了系统内原子的位置与速度如何随时间而发生变化。
通过解牛犊第二定律的微分方程,可以获得原子的运动轨迹。
方程如下:这个方程描述了质量为m i的原子i在力Fi的作用下,位置矢量为r i时的运动方程。
其中,Fi可以由势函数U的梯度给出:系统的温度则与系统中全部原子的总动能K通过下式相联系:N是原子数,Nc是限制条件,k B是波尔兹曼常数。
二. MD模拟的积分算法为了得到原子的运动轨迹,可以采用有限差分法来求解运动方程。
有限差分法的基本思想就是将积分分成很多小步,每一小步的时间固定为δt。
用有限差分解运动方程有许多方法,所有的算法都假定位置与动态性质(速度、加速度等)可以用Taylor级数展开来近似:在分子动力学模拟中,常用的有以下的几中算法:1. Verlet算法运用t时刻的位置和速度及t-δt时刻的位置,计算出t+δt时刻的位置:两式相加并忽略高阶项,可以得到:速度可以通过以下方法得到:用t+δt时刻与t-δt时刻的位置差除以2δt:同理,半时间步t+δt时刻的速度也可以算:Verlet算法执行简单明了,存储要求适度,但缺点是位置r(t+δt)要通过小项与非常大的两项2r(t)与r(t-δt)的差相加得到,容易造成精度损失。
另外,其方程式中没有显示速度项,在没有得到下一步的位置前速度项难以得到。
它不是一个自启动算法:新位置必须由t时刻与前一时刻t-δt的位置得到。
在t=0时刻,只有一组位置,所以必须通过其它方法得到t-δt的位置。
一般用Taylor级数:2. Velocity-Verlet算法3. Leap-frog算法为了执行Leap-frog算法,必须首先由t-0.5δt时刻的速度与t时刻的加速度计算出速度v(t+δt),然后由方程计算出位置r(t+δt)。
T时刻的速度可以由:得到。
分子反应动力学一、引言分子反应动力学是化学中一个重要的分支领域,它研究的是化学反应过程中分子之间相互作用的规律性以及反应速率与温度、压力等因素之间的关系。
本文将从以下几个方面对分子反应动力学进行详细阐述。
二、分子反应速率常数1.定义分子反应速率常数是指在一定温度下,单位时间内单位体积内发生化学反应的物质量。
通常用k表示。
2.影响因素(1)温度:在一定范围内,温度升高会加快分子运动速度和碰撞频率,从而增加反应速率常数。
(2)催化剂:催化剂可以降低活化能,提高反应速率常数。
(3)浓度:浓度越高,碰撞频率越高,从而增加反应速率常数。
(4)光照:某些光敏化合物在光照下会发生光解或其他光化学反应,从而增加反应速率常数。
三、碰撞理论1.基本概念碰撞理论是描述气相分子之间碰撞引起化学变化的理论。
它假设反应发生需要分子之间的碰撞,并且只有在足够高的能量下才能发生反应。
2.基本公式碰撞理论中,反应速率常数可以用下式表示:k = Z * f * P其中,Z为分子碰撞数,f为反应因子,P为活化因子。
四、过渡态理论1.基本概念过渡态理论是描述气相分子之间化学反应的另一种理论。
它认为在反应过程中会形成一个高能量的过渡态,只有通过这个过渡态才能完成反应。
2.基本公式过渡态理论中,反应速率常数可以用下式表示:k = k0 * e^(-Ea/RT)其中,k0为频率因子,Ea为活化能,R为气体常数,T为绝对温度。
五、动力学模型1.单分子反应模型单分子反应模型指的是只有一个分子参与反应的情况。
此时,反应速率常数与浓度无关。
2.双分子反应模型双分子反应模型指的是两个分子参与反应的情况。
此时,反应速率常数与浓度平方成正比。
3.多分子反应模型多分子反应模型指的是三个或以上分子参与反应的情况。
此时,反应速率常数与浓度的n次幂成正比。
六、结论本文从分子反应速率常数、碰撞理论、过渡态理论和动力学模型四个方面对分子反应动力学进行了详细介绍。
通过对这些理论和模型的研究,可以更好地了解化学反应过程中分子之间相互作用的规律性,为实际化学工业生产提供指导。
分子动力学分子动力学方法是一种计算机模拟实验方法,是研究凝聚态系统的有力工具。
该技术不仅可以得到原子的运动轨迹,还可以观察到原子运动过程中各种微观细节。
它是对理论计算和实验的有力补充。
分子动力学总是假定原子的运动服从某种确定的描述,这种描叙可以牛顿方程、拉格朗日方程或哈密顿方程所确定的描述,也就是说原子的运动和确定的轨迹联系在一起。
在忽略核子的量子效应和Born-Oppenheimer绝热近似下,分子动力学的这一种假设是可行的[1]。
所谓绝热近似也就是要求在分子动力学过程中的每一瞬间电子都处于原子结构的基态。
要进行分子动力学模拟就必须知道原子间的相互作用势。
在分子动力学模拟中,我们一般采用经验势来代替原子间的相互作用势,如Lennard-Jones势、Mores势、EAM原子嵌入势、F-S多体势。
然而采用经验势必然丢失了局域电子结构之间存在的强相关作用信息,即不能得到原子动力学过程中的电子性质[1]。
事实上,分子动力学就是模拟原子系统的趋衡过程。
实际上,分子动力学方法就是确定某一描述与初始条件、边值关系的数值解。
我们假定系统经过M步长之后达到稳定,而这一稳定状态正是我们所求的。
1、分子动力学的算法分析首先,我们假定我们研究的系统服从 Newton 方程所确定的描述,即:)(1)(..t F mt r =(1) 式中r(t)表征原子在t 时刻的位置矢量F(t)表征原子在t 时刻所受到的力,它与所有原子的位置矢有关m 表征原子的质量。
如果我们给定初始条件,即方程(1)的定解条件r(0)和v(0),那么方程(1)的解就可以确定。
60年代中期发展了大量的分子动力学算法,如两步差分算法[2]、预测-校正算法[3]、中心差分算法[4]、蛙跳算法[5]等等。
为了方便导出它们,我们以Euler 一步法[6]来讨论之。
我们令)()(..t r t v =(表征粒子的速度),则有:)()()(1)()(....t v t r t F m t r t v === (2)记⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎦⎤⎢⎣⎡=)()(1)()()()(.t v t F m t f t r t v t w (3)则有)()(.t f t w = ?????? (4) 欧拉一步法就是用向前差商来替代一阶导数,即:)()()1(.t w hk w k w =-+,其中h 是时间步长,将之代入(4)则有:)()()1(t hf k w k w =-+ (5)即:⎥⎥⎦⎤⎢⎢⎣⎡=⎥⎦⎤⎢⎣⎡-+-+)()(1)()1()()1(k v k F m h k r k r k v k v )()()1()(1)()1(k hv k r k r k F mhk v k v +=++=+ (6) 对于(6)式,因为给定了r(0)和v(0),故r(k+1) 和v(k+1)可以确定。