数学建模选修课第二次作业汇总
- 格式:doc
- 大小:288.00 KB
- 文档页数:14
数学建模作业:学院:计算机科学与技术班级:学号:1.在区域x∈[-2,2],y∈[-2,3]绘制函数z=exp^(-x2-y2)曲面图与等值线图。
解:曲面图如下:>> x=-2:0.5:2;>> y=-2:0.5:3;>> [X,Y]=meshgrid(x,y);>> Z=exp(-X.^2-``Y.^2);>> mesh(X,Y,Z)>>等值线图如下:>> x=-2:0.5:2;>> y=-2:0.5:3;>> [X,Y]=meshgrid(x,y);>> Z=exp(-X.^2-Y.^2);>> mesh(X,Y,Z)>> surf(X,Y,Z)>> surf(X,Y,Z)>> contour(X,Y,Z)>>2.已知一组观测数据,如表1所示.(1)试用差值方法绘制出x ∈[-2,4.9]区间的光滑曲线,并比较各种差值算法的优劣.(2)试用最小二乘多项式拟合的方法拟合表中的数据,选择一个能较好拟合数据点的多项式的阶次,给出相应多项式的系数和偏差平方和.(3)若表中数据满足正态分布函数222/)(21)(σμπσ--=x e x y .试用最小二乘非线性拟合的方法求出分布参数σμ,值,并利用锁求参数值绘制拟合曲线,观察拟合效果.解:(1)分别用最领近插值,分段线性插值(缺省值),分段三次样条插值,保形分段三次插值方法绘制在x ∈[-2,4.9]的光滑曲线,图形如下:样条插值效果最好,其次线性插值,最近点插值效果最差,在这里效果好像不太明显。
最近点插值优点就是速度快,线性插值速度稍微慢一点,但效果好不少。
所以线性插值是个不错的折中方法。
样条插值,它的目的是试图让插值的曲线显得更平滑,为了这个目的,它们不得不利用到周围若干围的点,不过计算显然要比前两种大许多。
4. 根据表1.14 的数据,完成下列数据拟合问题:年份1790 1800 1810 1820 1830 1840 1850 1860 人口 3.9 5.3 7.2 9.6 12.9 17.1 23.2 31.4年份1870 1880 1890 1900 1910 1920 1930 1940 人口38.6 50.2 62.9 76.0 92.0 106.5 123.2 131.7 年份1950 1960 1970 1980 1990 2000人口150.7 179.3 204.0 226.5 251.4 281.4解答:(1):(i)执行程序:t=1790:10:2000;x=[3.9,5.3,7.2,9.6,12.9,17.1,23.2,31.4,38.6,50.2,62.9,76.2,92.0,106.5,123.2,131.7,150.7,179.3,204 .0,226.5,251.4,281.4];f=@(r,t)3.9.*exp(r(1).*(t-1790));r=nlinfit(t,x,f,0.036)sse=sum((x-f(r,t)).^2)plot(t,x,'k+',1790:10:2000,f(r,1790:10:2000),'k')axis([1790,2000,0,300]),legend('测量值','理论值')xlabel('美国人口/(百万)'),ylabel('年份')title('美国人口指数增长模型图II')运行结果:>> Untitledr =0.0212sse =1.7433e+004即,拟合效果:r =0.0212;误差平方和为:1.7433e+004.拟合效果图(i):(ii)由表1.14我们知道,当t=1800时,有5)101(0≈+r x ,所以我们可以猜测,r=0.1,x =2.5.对待定参数0x ,r 进行数据拟合同时进行绘图,其程序如下:t=1790:10:2000;x=[3.9,5.3,7.2,9.6,12.9,17.1,23.2,31.4,38.6,50.2,62.9,76.2,92.0,106.5,123.2,131.7,150.7,179.3,204.0,226.5,251.4,281.4];f=@(r,t)r(1).*exp(r(2).*(t-1790)); r0=[2.5,0.1]; r=nlinfit(t,x,f,r0) sse=sum((x-f(r,t)).^2)plot(t,x,'k+',1790:1:2000,f(r,1790:1:2000),'k')axis([1790,2000,0,300]),legend('测量值','理论值',2) xlabel('美国人口/(百万)'),ylabel('年份') title('美国人口指数增长模型图II')命令窗口显示的计算的结果如下: >> Untitled r =15.0005 0.0142 sse =2.2657e+003即我们知道,拟合结果为:r=r(2)= 0.0142, 0x =r(1)= 15.0005;误差平方和为:2.2657e+003. 拟合效果图(ii ):(iii)由表1.14我们知道,当t=1900时,有()76)-t 1900101(00≈+r x ,所以我们可以猜测,r=0.03,x =19, 0t =1800.对待定参数0t ,0x ,r 进行数据拟合同时进行绘图,其程序如下:t=1790:10:2000;x=[3.9,5.3,7.2,9.6,12.9,17.1,23.2,31.4,38.6,50.2,62.9,76.2,92.0,106.5,123.2,131.7,150.7,179.3,204.0,226.5,251.4,281.4];f=@(r,t)r(1).*exp(r(2).*(t-r(3))); r0=[19,0.03,1800]; r=nlinfit(t,x,f,r0) sse=sum((x-f(r,t)).^2)plot(t,x,'k+',1790:1:2000,f(r,1790:1:2000),'k')axis([1790,2000,0,300]),legend('测量值','理论值',2) xlabel('美国人口/(百万)'),ylabel('年份') title('美国人口指数增长模型图III')命令窗口显示的计算的结果如下:>> UntitledWarning: The Jacobian at the solution is ill-conditioned, and some model parameters may not be estimated well (they are not identifiable). Use caution in making predictions. > In nlinfit at 224 In Untitled at 5 r =1.0e+003 *0.0159 0.0000 1.7939 sse =2.2657e+003即,拟合效果:r =0,0x =7.9,0t =1742.5;误差平方和为:2.2657e+003我们由MATLAB9给出的警告信息,知道这个拟合存在病态条件,所以数据可能拟合的不太好。
中华女子学院成绩2014 — 2015学年第二学期期末考试(论文类)论文题目数学建模算法之蒙特卡罗算法课程代码 01课程名称数学建模学号 9姓名陈可心院系计算机系专业计算机科学与技术考试时间 2015年5月27日一、数学建模十大算法1、蒙特卡罗算法该算法又称随机性模拟算法,是通过计算机仿真来解决问题的算法,同时可以通过模拟可以来检验自己模型的正确性,是比赛时必用的方法。
接下来本文将着重介绍这一算法。
2、数据拟合、参数估计、插值等数据处理算法比赛中通常会遇到大量的数据需要处理,而处理数据的关键就在于这些算法,通常使用Matlab作为工具。
3、线性规划、整数规划、多元规划、二次规划等规划类问题建模竞赛大多数问题属于最优化问题,很多时候这些问题可以用数学规划算法来描述,通常使用Lindo、Lingo软件实现。
这个也是我们数学建模选修课时主要介绍的问题,所以对这方面比较熟悉,也了解了Lindo、Lingo软件的基本用法。
4、图论算法这类算法可以分为很多种,包括最短路、网络流、二分图等算法,涉及到图论的问题可以用这些方法解决,上学期数据结构课程以及离散数学课程中都有介绍。
它提供了对很多问题都很有效的一种简单而系统的建模方式。
5、动态规划、回溯搜索、分治算法、分支定界等计算机算法这些算法是算法设计中比较常用的方法,很多场合可以用到竞赛中6、最优化理论的三大非经典算法:模拟退火法、神经网络、遗传算法这些问题是用来解决一些较困难的最优化问题的算法,对于有些问题非常有帮助,但是算法的实现比较困难,需慎重使用。
7、网格算法和穷举法网格算法和穷举法都是暴力搜索最优点的算法,在很多竞赛题中有应用,当重点讨论模型本身而轻视算法的时候,可以使用这种暴力方案,最好使用一些高级语言作为编程工具。
8、一些连续离散化方法很多问题都是实际来的,数据可以是连续的,而计算机只认的是离散的数据,因此将其离散化后进行差分代替微分、求和代替积分等思想是非常重要的。
数学建模实验P.172 实验二最短电缆长度问题设有九个节点,它们的坐标分别为a(0,15), b(5,20), c(16,24), d(20,20), e(33,25), f(23,11), g(35,7), h(25,0), i(10,3)任意两个节点之间的距离为:问:怎样连接电缆,使每个节点都连通,且所用的总电缆的长度为最短.问题分析:本题研究的是一个最优化问题。
问题中给出了9个节点坐标,需要从复杂的连接方案中选出最短的电缆连接路线。
要设计方案求最短电缆长度,可先求出任意两点间的距离,然后在构造边权矩阵,用prim算法求电缆线的最优连通方案。
符号说明:W:任意两点之间的距离矩阵X:节点的横坐标Y:节点的纵坐标解:先计算出任意两点间的距离;W=[];X = [0 5 16 20 33 23 35 25 10]; Y = [15 20 24 20 25 11 7 0 3]; N=length(X);for i=1:Nfor j=1:N W=[W;(abs(X(i)-X(j))+abs(Y(i)-Y( j)))]endendW'输出结果截图为:将结果整理列表如下:用prim算法求电缆线的最优连通方案;运行结果截图为:分析结果可知:最小生成树的边集合为{(1,2),(2,3),(3,4),(4,6),(6,8),(6,7),(3,5),(8,9)}即用prime算法求出的最优电缆连接方案为:{(a,b),(b,c),(c,d),(d,f),(f,h),(f,g),(c,e),(h,i)}。
P186实验一求最短路问题求图14.9所示有向网络中自点1到点6的最短有向路问题分析:用floyde 算法算出任意两点之间的最短的距离。
符号说明:D:任意两个点之间的最短距离n:迭代次数解:function [D,path]=floyd(a)n=size(a,1);%设置D和Path的初值D=a;path=zeros(n,n);for i=1:nfor j=1:nif D(i,j)~=infpath(i,j)=j; %j是i的后继点endendend%做n次迭代,每次迭代均更新D(i,j)和path(i,j) for k=1:nfor i=1:nfor j=1:nif D(i,k)+D(k,j)<D(i,j)D(i,j)=D(i,k)+D(k,j);path(i,j)=path(i,k);endendendend在MATLAB命令窗口键入:a=[0 5 inf 3 inf inf;inf 0 4 2 inf inf;inf inf 0 2 4 3;inf inf inf 0 5 inf;inf inf inf inf 0 2;inf inf inf inf inf 0];[D,path]=floyd(a)运行结果截图为:D =0 5 9 3 8 10 Inf 0 4 2 7 7 Inf Inf 0 2 4 3 Inf Inf Inf 0 5 7 Inf Inf Inf Inf 0 2 Inf Inf Inf Inf Inf 0 path =1 2 2 4 4 4 0 2 3 4 4 3 0 0 3 4 5 6 0 0 0 4 5 5 0 0 0 0 5 6 0 0 0 0 0 6由运行结果得:因为path(1,6)=4,意味着顶点1的后继点为4, path(4,6)=5,从而顶点4的后继点为5,同理,因path(5,6)=6,从而顶点5的后继点为6,故1→4→5→6便是顶点1到顶点6的最短路径。
高二数学数学建模练习题及答案一、简答题1. 什么是数学建模?数学建模是将现实问题抽象为数学模型,通过数学方法进行分析、求解并得出相应结论的过程。
它将数学知识与实际问题相结合,帮助我们理解问题的本质,预测和优化相关情况。
2. 数学建模的步骤有哪些?数学建模通常包括以下步骤:(1)问题的理解和描述:明确问题的背景、目标和限制条件,并对问题进行适当的简化和抽象。
(2)建立数学模型:将问题转化为数学表达式,建立合适的数学模型。
(3)模型的求解:利用数学方法对模型进行求解,得到定量的结果或结论。
(4)模型的验证和分析:对模型的结果进行检验,分析结果的合理性和可靠性。
(5)结果的解释与应用:解释模型结果,为实际问题提供有效的解决方案,并给出具体的应用建议。
3. 数学建模的意义是什么?数学建模在许多领域都具有重要意义:(1)在科学研究中,数学建模可以帮助解决实际问题,推动科学发展。
(2)在工程技术中,数学建模可以优化设计,提高效率和质量。
(3)在经济管理中,数学建模可以帮助决策者制定合理的策略和政策。
(4)在社会科学中,数学建模可以辅助分析社会问题,提供决策依据。
(5)数学建模还培养了学生的创新思维和解决问题的能力。
4. 数学建模过程中需要的数学知识有哪些?数学建模需要的数学知识包括但不限于:(1)数学分析:微分方程、积分、极限等。
(2)线性代数:矩阵运算、特征值与特征向量等。
(3)概率与统计:概率分布、统计推断等。
(4)最优化理论:线性规划、非线性规划等。
(5)图论与网络优化:最短路径、最小生成树等。
二、应用题1. 盒子问题已知一长方体盒子的长为20cm,宽为15cm,高为10cm。
现在要将一个边长为2cm的小正方体放入该盒子中,问最多可以放多少个小正方体?解答:盒子的体积为20 cm × 15 cm × 10 cm = 3000 cm³。
小正方体的体积为2 cm × 2 cm × 2 cm = 8 cm³。
数学建模作业姓名:叶勃学号:班级:024121一:层次分析法1、 分别用和法、根法、特征根法编程求判断矩阵1261/2141/61/41A ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦11/2433217551/41/711/21/31/31/52111/31/5311A ⎡⎤⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎣⎦的特征根和特征向量(1)冪法求该矩阵的特征根和特征向量 程序为:#include<iostream> #include<math.h> using namespace std;#define n 3 //三阶矩阵#define N 20 #define err 0.0001 //幂法求特征值特征向量 void main(){cout<<"**********幂法求矩阵最大特征值及特征向量***********"<<endl; int i,j,k;double A[n][n],X[n],u,y[n],max;cout<<"请输入矩阵:\n"; for(i=0;i<n;i++) for(j=0;j<n;j++)cin>>A[i][j]; //输入矩阵 cout<<"请输入初始向量:\n"; for(i=0;i<n;i++)cin>>X[i]; //输入初始向量 k=1; u=0;while(1){ max=X[0]; for(i=0;i<n;i++) {if(max<X[i]) max=X[i]; //选择最大值 }for(i=0;i<n;i++)y[i]=X[i]/max; for(i=0;i<n;i++)X[i]=0;for(j=0;j<n;j++)X[i]+=A[i][j]*y[j]; //矩阵相乘}if(fabs(max-u)<err){cout<<"A的特征值是 :"<<endl; cout<<max<<endl; cout<<"A的特征向量为:"<<endl; for(i=0;i<n;i++) cout<<X[i]/(X[0]+X[1]+X[2])<<" ";cout<<endl;break;}else{if(k<N) {k=k+1;u=max;} else {cout<<"运行错误\n";break;}}} }程序结果为:(2)和法求矩阵最大特征值及特征向量程序为:#include<stdio.h>#include<iostream>#include<math.h> using namespace std;#define n 3 //三阶矩阵#define N 20void main(){int i,j,k;double A[n][n],w[n],M[n],u[n],W[n][n],max;cout<<"********和法求矩阵的特征根及特征向量*******"<<endl;cout<<"请输入矩阵:\n";for(i=0;i<n;i++)for(j=0;j<n;j++)cin>>A[i][j]; //输入矩阵 //计算每一列的元素和M[0]=0;M[1]=0;M[2]=0;for(i=0;i<n;i++)for(j=0;j<n;j++){M[i]+=A[j][i];}//将每一列向量归一化for(i=0;i<n;i++)for(j=0;j<n;j++){W[j][i]=A[j][i]/M[i];}//输出按列归一化之后的矩阵Wcout<<"按列归一化后的矩阵为:"<<endl;for(i=0;i<n;i++)for(j=0;j<n;j++){cout<<W[i][j]<<" ";if(j==2)cout<<endl;} //求特征向量w[0]=0;w[1]=0;w[2]=0;for(i=0;i<n;i++)for(j=0;j<n;j++){w[i]+=W[i][j];}cout<<"特征向量为:"<<endl; for(i=0;i<n;i++){u[i]=w[i]/(w[0]+w[1]+w[2]);cout<<u[i]<<" "<<endl;}//求最大特征值max=0;for(i=0;i<n;i++){w[i] = 0;for(j=0;j<n;j++){w[i] += A[i][j]*u[j];}}for(i = 0;i < n;i++){max += w[i]/u[i];}cout<<"最大特征根为:"<<endl;cout<<max/n<<endl; }运行结果为:(3)根法求矩阵最大特征值及特征向量:程序为:#include<stdio.h>#include<iostream>#include<math.h>using namespace std;#define n 3 //三阶矩阵#define N 20void main(){int i,j;double A[n][n],w[n],M[n],u[n],W[n][n],max;cout<<"********根法求矩阵的特征根及特征向量*******"<<endl; cout<<"请输入矩阵:\n";for(i=0;i<n;i++)for(j=0;j<n;j++)cin>>A[i][j]; //输入矩阵//计算每一列的元素和M[0]=0;M[1]=0;M[2]=0;for(i=0;i<n;i++)for(j=0;j<n;j++){M[i]+=A[j][i];}//将每一列向量归一化for(i=0;i<n;i++)for(j=0;j<n;j++){W[j][i]=A[j][i]/M[i];}//输出按列归一化之后的矩阵Wcout<<"按列归一化后的矩阵为:"<<endl;for(i=0;i<n;i++)for(j=0;j<n;j++){cout<<W[i][j]<<" ";if(j==2)cout<<endl;}//求特征向量//w[0]=A[0][0];w[1]=A[0][1];w[2]=A[0][2];w[0]=1;w[1]=1;w[2]=1;for(i=0;i<n;i++){for(j=0;j<n;j++){w[i]=w[i]*W[i][j];}w[i]=pow(w[i], 1.0/3);}cout<<"特征向量为:"<<endl;for(i=0;i<n;i++){u[i]=w[i]/(w[0]+w[1]+w[2]);cout<<u[i]<<" "<<endl;}//求最大特征值max=0;for(i=0;i<n;i++){w[i] = 0;for(j=0;j<n;j++){w[i] += A[i][j]*u[j];}}for(i = 0;i < n;i++){max += w[i]/u[i];}cout<<"最大特征值为:"<<endl; cout<<max/n;}运行结果为:2、编程验证n阶随机性一致性指标RI:运行结果:3、考虑景色、费用、居住、饮食、旅途五项准则,从桂林、黄山、北戴河三个旅游景点选择最佳的旅游地。
关于某合成纤维强度与拉伸倍数线性关的系检验————数学建模(2)第二次作业一、问题重述:某合成纤维的强度y(N/mm2)与其拉伸倍数x有关,现测得试验数据如下表(1):某合成纤维的强度y与其拉伸倍数x试验数据表表(1)1.检验y和x之间是否存在显著的线性相关关系。
2.若存在,求y关于x的线性回归方程:y i=a+b x i。
二、求解过程1.强度yi关于拉伸倍数xi的散点图如下图(1):图(1)2.样本相关系数计算 (1).计算公式r =nΣxy −ΣxΣynΣx 22nΣy 22(2)计算结果r =12∗382.17−3771.3612∗428.18−64.802∗ 12∗342.86−58.202=0.9859(3)结果分析r >0.8,说明该合成纤维强度y 与拉伸倍数x 成高度线性正相关关系。
2. 回归方程求解 (1).计算公式β1 =n ∑x i y i n i =1− ∑X i n i =1 ∑y i ni =1n x i2ni =1−∑x i n i =12某纤维强度y 关于拉伸倍数x 的散点图拉伸倍数x强度yβ 0=y −β1x (2).计算结果β 1= 12∗382.17−3771.3612∗428.18−64.802=0.8675β0=4.85−0.8675∗5.40=0.1655 (3).回归方程y i =0.1655+0.8675xi (4).回归前后图像对比图(2)回归系数β1=0.8675,表示拉伸倍数每增加一倍,该合成纤维强度增加0.08675。
三、 线性关系检验(1).提出假设123456789101112该纤维强度y 关于拉伸倍数x 的散点图及其线性回归方程拉伸倍数x强度yH0:β1=0线性关系不显著(2).计算检验统计量FF=SSR/1SSE/(n−2)= MSRMSE~F(1,n-2)F =58.89505/11.695902/(12−2)=347.2786(3).显著性水平α=0.05,根据分子自由度1和分母自由度12-2找出临界值Fα=4.965(4).F>Fα,拒绝H0,线性关系显著。
选修课——数学建模部分习题详细解答【陈文滨】1、在稳定的椅子问题中,如设椅子的四脚连线呈长方形,结论如何?【模型假设】(1)椅子四条腿一样长,椅脚与地面接触处视为一点,四脚的连线呈长方形.(2)地面高度是连续变化的,沿任何方向都不会出现间断 (没有像台阶那样的情况),即从数学的角度看,地面是连续曲面.这个假设相当于给出了椅子能放稳的必要条件.(3)椅子在任何位置至少有三只脚同时着地.为保证这一点,要求对于椅脚的间距和椅腿的长度而言,地面是相对平坦的.因为在地面上与椅脚间距和椅腿长度的尺寸大小相当的范围内,如果出现深沟或凸峰(即使是连续变化的),此时三只脚是无法同时着地的。
【模型建立】在上述假设下,解决问题的关键在于选择合适的变量,把椅子四只脚同时着地表示出来.首先,引入合适的变量来表示椅子位置的挪动.生活经验告诉我们,要把椅子通过挪动放稳,通常有拖动或转动椅子两种办法,也就是数学上所说的平移与旋转变换.然而,平移椅子后问题的条件没有发生本质变化,所以用平移的办法是不能解决问题的.于是可尝试将椅子就地旋转,并试图在旋转过程中找到一种椅子能放稳的情形.注意到椅脚连线呈长方形,长方形是中心对称图形,绕它的对称中心旋转180度后,椅子仍在原地.把长方形绕它的对称中心O旋转,这可以表示椅子位置的改变。
于是,旋转角度θ这一变量就表示了椅子的位置.为此,在平面上建立直角坐标系来解决问题.如下图所示,设椅脚连线为长方形ABCD,以对角线AC所在的直线为x轴,对称中心O为原点,建立平面直角坐标系.椅子绕O点沿逆时针方向旋转角度θ后,长方形ABCD转至A1B1C1D1 的位置,这样就可以用旋转角θ(0≤θ≤π)表示出椅子绕点O旋转θ后的位置.其次,把椅脚是否着地用数学形式表示出来.我们知道,当椅脚与地面的竖直距离为零时,椅脚就着地了,而当这个距离大于零时,椅脚不着地.由于椅子在不同的位置是θ的函数,因此,椅脚与地面的竖直距离也是θ的函数.由于椅子有四只脚,因而椅脚与地面的竖直距离有四个,它们都是θ的函数.而由假设(3)可知,椅子在任何位置至少有三只脚同时着地,即这四个函数对于任意的θ,其函数值至少有三个同时为0.因此,只需引入两个距离函数即可.考虑到长方形ABCD是中心对称图形,绕其对称中心 O沿逆时针方向旋转180°后,长方形位置不变,但A,C和B,D对换了.因此,记A、B两脚与地面竖直距离之和为f(θ),C、D两脚与地面竖直距离之和为g(θ),其中θ∈[0,π],从而将原问题数学化。
城市学院数学建模与实践期末测试论文格式要求●各小组自行组队,至多按三人一组合作完成论文。
●从5个小题中任选一题。
●论文用白色A4纸单面打印;上下左右各留出至少2.5厘米的页边距;从左侧装订。
●论文第一页为封面,具体内容为:我们选择的题号是(1题/2题/3题/4题/5题):小组队员(打印并签名) :1. 专业班级姓名联系电话签名2. 专业班级姓名联系电话签名3. 专业班级姓名联系电话签名●论文题目、摘要和关键词写在论文第二页上,从第三页开始是论文正文,不要目录。
●论文从第二页开始编写页码,页码必须位于每页页脚中部,用阿拉伯数字从“1”开始连续编号。
●论文题目用三号黑体字、一级标题用四号黑体字,并居中;二级、三级标题用小四号黑体字,左端对齐(不居中)。
论文中其他汉字一律采用小四号宋体字,行距用单倍行距。
打印文字内容时,应尽量避免彩色打印(必要的彩色图形、图表除外)。
●提请大家注意:摘要应该是一份简明扼要的详细摘要(包括关键词),在整篇论文评阅中占有重要权重,请认真书写(注意篇幅不能超过一页,且无需译成英文)。
评阅时将首先根据摘要和论文整体结构及概貌对论文进行级别划分。
●论文应该思路清晰,表达简洁(正文不少于1500字,附录不算)。
●在论文纸质版附录中,应给出各小组实际使用的软件名称、命令和编写的全部计算机源程序(若有的话)。
●引用别人的成果或其他公开的资料(包括网上查到的资料) 必须按照规定的参考文献的表述方式在正文引用处和参考文献中均明确列出。
正文引用处用方括号标示参考文献的编号,如[1][3]等;引用书籍还必须指出页码。
参考文献按正文中的引用次序列出,其中书籍的表述方式为:[编号] 作者,书名,出版地:出版社,出版年。
参考文献中期刊杂志论文的表述方式为:[编号] 作者,论文名,杂志名,卷期号:起止页码,出版年。
参考文献中网上资源的表述方式为:[编号] 作者,资源标题,网址,访问时间(年月日)。
●如果评阅小组在审阅论文时发现抄袭现象,将取消该组成绩。
数学建模案例_选修课问题某学校对某年级开设9门选修课,这些选修课之间可能存在学习先后顺序。
学校要求毕业前至少选两门数学课、三门运筹学课和两门计算机课。
在符合学校要求的条件下,考虑以下问题:(1)为了选修课程门数最少,应学习哪些课程?(2)选修课程少,且学分尽量多,应学习哪些课程?选修课程和限制条件如下:问题(1)分析:目标:最少的选课门数决策: 对是否选修某门课做出决策,选或不选.符号说明:对应9个0-1变量,设为i x ,选修第i 门课则取值为1,不选则取值为0.建立数学模型:目标函数明确为∑=91i i x min描述约束(翻译—建模)至少选两门数学课⇔254321≥++++x x x x x至少选三门运筹学课程⇔398653≥++++x x x x x至少选两门计算机课⇔29764≥+++x x x x最优化方法3的先修课程是微积分1⇔13x x ≤最优化方法3的先修课程是线性代数23x x ≤数据结构4的先修课程是计算机编程7⇔74x x ≤应用统计5的先修课程是微积分1,线性代数2;⇔1525,x x x x ≤≤ 计算机模拟6的先修课程是计算机编程7;⇔76x x ≤预测理论8的先修课程是应用统计5;⇔58x x ≤数学实验9的先修课程是微积分1和线性代数2;⇔1929,x x x x ≤≤第一问的数学模型:∑=91min i i x254321≥++++x x x x x398653≥++++x x x x x29764≥+++x x x x13x x ≤,23x x ≤,74x x ≤ 1525,x x x x ≤≤ 76x x ≤58x x ≤ 1929,x x x x ≤≤}1,0{∈i x使用lingo求解:model:sets:kecheng/1..9/:c,x; !c代表学分属性,x代表选或不选决策; endsetsdata:c=5 4 4 3 4 3 2 2 3;enddatamin=@sum(kecheng(i):x(i));x(1)+x(2)+x(3)+x(4)+x(5)>=2;x(3)+x(5)+x(6)+x(8)+x(9)>=3;x(4)+x(6)+x(7)+x(9)>=2;x(3)<=x(1);x(3)<=x(2);x(4)<=x(7);x(5)<=x(1);x(5)<=x(2);x(6)<=x(7);x(8)<=x(5);x(9)<=x(1);x(9)<=x(2);@for(kecheng(i):@bin(x(i)));zongfen=@sum(kecheng(i):c(i)*x(i));!zongfen代表此策略下总学分;end结果解释:满足所有选课限制条件的选课门数最少为6门(但不一定唯一),分别是第1,2,3,6,7,9门课;此时总学分21分。
数学建模第二次作业a学生:陈耿1.产生一个1x10的随机矩阵,大小位于(-5 5),并且按照从大到小的顺序排列好!解:a=10*rand(1,10)-5;b=sort(a,'descend')b =Columns 1 through 84.5013 3.9130 3.2141 2.6210 1.0684 -0.1402 -0.4353 -0.5530Columns 9 through 10-2.6886 -4.81502.请产生一个100*5的矩阵,矩阵的每一行都是[1 2 3 4 5] repmat(1:5,100,1)ans = 1 2 3 4 51 2 3 4 51 2 3 4 51 2 3 4 51 2 3 4 51 2 3 4 51 2 3 4 51 2 3 4 51 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 51 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 51 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 51 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 51 2 3 4 51 2 3 4 51 2 3 4 53. 已知变量:A='ilovematlab';B=’matlab’, 请找出:(A)B在A中的位置。
第一次作业数学建模入门1.冷却定律与破案按照Newton冷却定律,温度为T的物体在温度为To (To<T)的环境中冷却的速度与温差T-To成正比。
你能用该定律确定张某是否是下面案件中的犯罪嫌疑人。
某公安局于晚上7时30分发现一具女尸,当晚8时20分法医测得尸体温度为32.6℃,一小时后,尸体被抬走时又测得尸体温度为31.4℃,,已知室温在几个小时内均为21.1℃,由案情分析得知张某是此案的主要犯罪嫌疑人,但张某矢口否认,并有证人说:“下午张某一直在办公室,下午5时打一个电话后才离开办公室”。
从办公室到案发现场步行需要5分钟,问张某是否能被排除在犯罪嫌疑人之外?解答:首先,牛顿冷却定律为温度为T(t)的物体在温度的环境中冷却的速度与温度差成正比。
所以,得出微分方程 ( ,K为比例常数。
任意时刻t,物体的温度为 ,C为常数根据已知条件,记晚上8时20分为t=0时刻,T(0)=32.6℃,T(1)=31.4℃,=21.1℃:求解函数得,k=-0.11,C=11.5,即假定人的正常体温为37℃,代入公式得t-2.95小时, 即遇害时间为8.33-2.95=5.38≈5时23分。
张某在5时离开办公室,步行需要5分钟到达案发地点,所以张某不能排除作案嫌疑。
2.锻炼想象力、洞察力和判断力的问题(1)某人早8时从山下旅店出发沿一条山路上山,下午5时到达山顶并留宿,次日8时沿同一条路径下山,下午5时回到旅店。
该人必在两天中的同一是可经过路径中的同一地点,为什么?解答:令:A(t)表示此人第一天上山时t时刻离山脚的路程;B(t)表示此人第二天下山时t时刻离山脚的路程。
假设山顶到山下的总路程为S,由已知条件可知:A(8)=0,A(17)= SB(8)= S,B(17)=0令:C(t)= A(t)- B(t);则C(8)=-S,C(17)= S;由于C(t)为连续函数,由零点定理推出结论:在t=[8,17]中间,至少存在一点 t 使C(t)= A(t)- B(t)=0;即A(t)= B(t),可证明这人必在两天中的同一时刻经过路径中的同一地点。
课时作业(五十一) 数学建模案例(二):距离问题1.春节期间,佳怡去探望奶奶,她到商店买了一盒点心.为了美观起见.售货员对点心盒做了一个捆扎(如图1),并在角上配了一个花结.售货员说:“这样的捆扎不仅美丽,而且比一般的十字捆扎方式(如图2)包装更节约彩绳.你同意这种说法吗?请给出你的理由.(注:长方体点心盒的高小于长、宽)2.如图,广场上有一盏路灯挂在高10 m的电线杆上,记电线杆的底部为A,顶部为S.把路灯看作一个点光源,身高1.5 m的女孩站在离点A5 m的点B处.回答下面的问题:(1)若女孩以5 m为半径围着电线杆走一个圆圈,人影扫过的是什么图形,求这个图形的面积;(2)若女孩向点A前行4 m到达点D,然后从点D动身,沿着以BD为对角线的正方形走一圈,画出女孩走一圈时头顶影子的轨迹,说明轨迹的形态.课时作业(五十一) 数学建模案例(二):距离问题1.解析:假如不考虑花结用绳,或者认为两种捆扎方法中花结的用绳长度相同,推理过程可以表述如下:设长方体点心盒子的长、宽、高分别为x ,y ,z ,依据图2的捆扎方式,把彩绳的长度记作l ,因为长方体每个面上的那一段绳都与相交的棱垂直,所以l =2x +2y +4z .依据图1的捆扎方式,可以想象将长方体盒子绽开在—个平面上,则彩绳的平面绽开图是一条由A 到A 的折线.在“扎紧”的状况下,彩绳的平面绽开图是一条由A 到A 的线段,记为A ′A ″(如图3).这时用绳最短,绳长记作m ,在△A ′BA ″中,由三角形中两边之和大于第三边,得m =|A ′A ″|<|A ′B |+|A ″B |=2y +2z +2x +2z =2x +2y +4z ,即l >m ,因此,图1所示的捆扎方式节约材料.2.解析:(1)如题图所示,S 为路灯位置,C 为女孩头顶部,女孩的影子为线段BP .女孩围着电线杆走—个圆圈,人影扫过的是—个圆环.已知SA =10m ,AB =5m .BC =1.5m .设BP =x m .则由BC ∥SA ,得BP AP =BC SA ,即xx +5=1.510,解得x =1517.因此圆环面积为π(AP 2-AB 2)=π[(x +5)2-52]=2775289π≈30.15(m 2) (2)如图1,女孩头顶运动的轨迹是以CE 为对角线的正方形(CE 与BD 平行且相等),且该正方形平行于地面,则在点光源S 的投射下,投影应与原图形相像,因此女孩头顶影子的轨迹也是一个正方形.。
数学建模作业一、回答以下问题1.什么是数学模型?答:所谓数学模型,是指针对或参照现实世界中某类事物系统的主要特征、主要关系,经过简化与抽象,用形式化的数学语言概括或近似地加以表述的一种数学结构.一般表现为数理逻辑的逻辑表达式、各种数学方程(如代数方程、微分方程、积分方程等)及反映量与量之间相互关系的图形、表格等形式.它或者能解释特定现象的现实状态,或者能预测对象的未来状态,或者能提供处理对象的最优决策与控制.好的数学模型应具备可靠性和可解性(也叫适用性)两方面的特性:可靠性指在允许的误差范围内,能反映出该系统有关特性的内在联系;可解性指易于数学处理与计算.数学模型方法将复杂的研究对象简单化、抽象化,撇开对象的一些具体特征,减少其参数,只抽取其主要量、量的变化及量与量之间的相互关系,在“纯粹”的形态上进行研究,突出主要矛盾,忽略次要矛盾,用数学语言刻画出客观对象量的规律性,简洁明了地描述现实原形,揭示出其本质的规律,并在对模型修正、求解的基础上使原问题得以解决.可以说,数学模型是对现实原形的一种理想化处理是一个科学的抽象过程,因而具有高度的抽象性与形式化特征.这一特征使其成为一种经典的数学方法,并随着科学技术的数学化趋势,超越数学范畴,广泛地应用于自然2013数学建模选修课第二次作业科学、工程技术和社会科学的一切领域.。
2.数学模型是如何分类的?答:用字母、数字和其他数学符号构成的等式或不等式,或用图表、图像、框图、数理逻辑等来描述系统的特征及其内部联系或与外界联系的模型。
它是真实系统的一种抽象。
数学模型是研究和掌握系统运动规律的有力工具,它是分析、设计、预报或预测、控制实际系统的基础。
3.建立数学模型一般应遵循什么原则?答:模型假设是整个建模的起点,是模型建立的基础,不同的人对同一事物的认识因其角度及深度不一致而产生不同的假设条件,从而导致不同的模型建立恰当进行模型假设是极为重要的。
同时模型假设和模型建立是一个不易分离的整体过程。
第二次大作业题目【问题1】一家有80000订户的地方日报计划提高其订阅价格。
现在的价格为每周1.5美元。
据估计如果每周提高订价10美分,就会损失5000订户。
问题:(1)求使利润最大的订阅价格?(2)对(1)中所得结论讨论损失5000订户这一参数的灵敏性。
分别假设这个参数值为:3000、4000、5000、6000及7000,计算最优订阅价格。
(3)设n=5000为提高定价10美分而损失的订户数。
求最优订阅价格p作为n的函数关系。
并用这个公式来求灵敏性S(p,n)。
(4)这家报纸是否应该改变其订阅价格?用通俗易懂的语言说明你的结论。
【问题2】一个汽车制造商售出一辆某品牌的汽车可获利1500美元。
估计每100美元的折扣可以使销售额提高15%。
(1)多大的折扣可以使利润最高?(2)对你所得的结果,求关于所做的15%假设的灵敏性。
分别考虑折扣量和相应的收益。
(3)假设实际每100美元的折扣仅可以使销售额提高10%,对结果会有什么影响?如果每100美元折扣的提高量为10%到15%之间的某个值,结果又如何?(4)什么情况下折扣会导致利润的降低?【问题3】一家个人计算机制造厂商现在每个月售出10000台基本机型的计算机。
生产成本为700美元/台。
批发价为950美元/台。
在上一个季度中,制造厂商在几个座位试验的市场将价格降低了100美元,其结果是销售量提高了50%。
公司在全国为其产品做广告的费用为每个月50000美元。
广告代理商宣称若将广告预算每个月提高10000美元,会使每个月的销售量增加200台。
管理部门同意考虑提高广告预算到最高不超过100000美元/月。
(1)利用有约束最优化模型和拉格朗日乘子发求使利润达到最高的价格和广告预算。
(2)讨论决策变量(价格和广告费)关于价格弹性系数(数据50%)的灵敏性。
(3)讨论据决策变量关于广告商估计的每增加10000美元/月的广告费,可多售200台这一数据的灵敏性。
数学建模选修课作业作业要求:1、三人一组,在下面四个题目中任选一题作答;2、采用Word文档编辑,按格式要求完成数学建模论文,不少于10页,(格式附后);3、请于2012年6月14日星期四晚上课程结束时按组上交打印稿,并同时上交电子文档,二者缺一均不给分;4、不按时上交者不给分;5、如有雷同,绝对零分。
A题血流系数问题用放射性同位素测量大脑局部血流量的方法如下:由受试者吸入含有某种放射性同位素的气体,然后将探测器置于受试者头部某固定处,定时测量该处的放射性记数率(简称记数率)同时测量他呼出气的记数率。
由于动脉血将肺部的放射性同位素输送到大脑,使脑部同位素增加,而脑血流量又将同位素带离,使同位素减少。
实验证明脑血流引起局部地区记数率下降的速度与当时该处的记数率成正比。
其比例系数反映该处的脑血流量,被称为血流量系数。
只要确定该系数即可推算出脑血流量。
动脉血从肺部输送同位素至大脑引起脑部记数率上升的速度与当时呼出的记数率成正比。
试建立确定血流系数的数学模型并计算上述受试者的脑血流系数。
B 题 摩托车选购问题你已经去过几家主要的摩托车商店,基本确定将从三种车型中选购一种。
你选择的标准主要有:价格、耗油量大小、舒适程度和外表美观情况。
经反复思考比较,构造了它们之间的成对比较矩阵⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=13151131517155118731A 三种车型(记为a ,b ,c )关于价格、耗油量、舒适程度及你对它们表观喜欢程度的成对比较矩阵为(价格) (耗油量) c b a c b ac b a ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡121312121321 c b a ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡171271521511(舒适程度) (外表)c b a c b ac b a ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡1411411531 c b a ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡17131715311 试建立模型解决下面问题:(1)根据上述矩阵可以看出四项标准在你心目中的比重是不同的,请按由重到轻的顺序将它们排出。
数学建模作业一、回答以下问题1.什么是数学模型?答:所谓数学模型,是指针对或参照现实世界中某类事物系统的主要特征、主要关系,经过简化与抽象,用形式化的数学语言概括或近似地加以表述的一种数学结构.一般表现为数理逻辑的逻辑表达式、各种数学方程(如代数方程、微分方程、积分方程等)及反映量与量之间相互关系的图形、表格等形式.它或者能解释特定现象的现实状态,或者能预测对象的未来状态,或者能提供处理对象的最优决策与控制.好的数学模型应具备可靠性和可解性(也叫适用性)两方面的特性:可靠性指在允许的误差范围内,能反映出该系统有关特性的内在联系;可解性指易于数学处理与计算.数学模型方法将复杂的研究对象简单化、抽象化,撇开对象的一些具体特征,减少其参数,只抽取其主要量、量的变化及量与量之间的相互关系,在“纯粹”的形态上进行研究,突出主要矛盾,忽略次要矛盾,用数学语言刻画出客观对象量的规律性,简洁明了地描述现实原形,揭示出其本质的规律,并在对模型修正、求解的基础上使原问题得以解决.可以说,数学模型是对现实原形的一种理想化处理是一个科学的抽象过程,因而具有高度的抽象性与形式化特征.这一特征使其成为一种经典的数学方法,并随着科学技术的数学化趋势,超越数学范畴,广泛地应用于自然2013数学建模选修课第二次作业科学、工程技术和社会科学的一切领域.。
2.数学模型是如何分类的?答:用字母、数字和其他数学符号构成的等式或不等式,或用图表、图像、框图、数理逻辑等来描述系统的特征及其内部联系或与外界联系的模型。
它是真实系统的一种抽象。
数学模型是研究和掌握系统运动规律的有力工具,它是分析、设计、预报或预测、控制实际系统的基础。
3.建立数学模型一般应遵循什么原则?答:模型假设是整个建模的起点,是模型建立的基础,不同的人对同一事物的认识因其角度及深度不一致而产生不同的假设条件,从而导致不同的模型建立恰当进行模型假设是极为重要的。
同时模型假设和模型建立是一个不易分离的整体过程。
. 在进行模型假设和模型建立的过程中,我们应遵从以下两个基本原则,并按两个基本原则的顺序进行反复的操作。
(1)分割原则分割成若干个独立的研究对象并说明对象间应有联系可用图来表示对象间联系。
(2)联系原则构造出对象之间的联系的具体方式或细节分割的复杂性在于不存在绝对的客观分割的标准因为任何一个分割方式都带有一定的主观性,分割问题不单纯是数学问题,还需要有其他学科的观点,这就构成模型假设的复杂性。
对其复杂性我们有必要作深入探讨和研究。
24.建立数学模型一般都有什么方法?答:建模的一般方法:①机理分析:根据对现实对象特性的认识,分析其因果关系,找出反映内部机理的规律,所建立的模型常有明确的物理或现实意义。
②测试分析方法:将研究对象视为一个“黑箱”系统,内部机理无法直接寻求,通过测量系统的输入输出数据,并以此为基础运用统计分析方法,按照事先确定的准则在某一类模型中选出一个数据拟合得最好的模型。
测试分析方法也叫做系统辩识。
将这两种方法结合起来使用,即用机理分析方法建立模型的结构,用系统测试方法来确定模型的参数,也是常用的建模方法。
在实际过程中用那一种方法建模主要是根据我们对研究对象的了解程度和建模目的来决定建立数5.建立数学模型的一般步骤是什么?答:建模的具体步骤大致如下:1、实际问题通过抽象、简化、假设,确定变量、参数;2、建立数学模型并数学、数值地求解、确定参数;3、用实际问题的实测数据等来检验该数学模型;二、多项式插值由函数y=sin x在三点0,π/4,π/2处的函数值,构造二次插值多项式P2(x),计算sin(π/8)的近似值,并估计截断误差。
32013数学建模选修课第二次作业4解:令12/,785398.04/,0210==≈==ππx x x ,则1,707107.02/2,0210=≈==y y y2120210121012002010212))(())(())(())(())(())(()(y x x x x x x x x y x x x x x x x x y x x x x x x x x x p ----+----+----=405330.0)8/sin(=π))()((6)cos())()((!3)()(2102102x x x x x x x x x x x x f x R ----=---'''=ζζ(1)程序代码:clear all;clc;x=[0 pi/4 pi/2];%%计算各个插值点的x 的值y=sin(x);%%sin 中一定要带括号p=polyfit(x,y,2);%%构造二次插值多项式f=inline('sinx');%%将sinx 定义成内联函数以便使用fprintf('运行结果为:\n\n')%%输出语句disp('构造的二次插值多项式P2(x)为:')%%输出语句f=poly2str(p,'x')%%将拟合后的多项式系数(双精度数组)转换为字符形式的函数poly2sym(p);%%将该向量转换为多项式fprintf('sin(π/8)的近似值为:\n')m=polyval(p,pi/8)%%用于对已经拟合后的多项式系数,%%当给出某个点时求其函数值;计算插值多项式在pi/8处的值 fprintf('sin(π/8)的真实值为:\n')n=sin(pi/8)fprintf('截断误差Rn(x)为:\n')%%输出语句R=abs(n-m)(2)运行结果:运行结果为:构造的二次插值多项式P2(x)为:f =-0.33575 x^2 + 1.164 x - 2.8824e-016sin(π/8)的近似值为:m =0.4053sin(π/8)的真实值为:n =0.3827截断误差Rn(x)为:R =0.0226(3)结果分析:在编写程序时用了poly2str和poly2sym函数,开始时没有运用第二个将该向量转换为多项式的函数,即无法计算,经查资料后修改得到结果如上。
三、数值积分轮船的甲板成近似半椭圆面形,为了得到甲板的面积,首先测得横向最大相间8.534米,然后等距离的测得纵向高度,自左向右分别为0.914,5.060,7.772,8.717,9.083,9.144,9.083,8.992,8.687,7.376,2.073米,计算甲板的面积。
52013数学建模选修课第二次作业解:(1)程序代码:x=linspace(0,8.534,13)%由0到8.534将其分为13等份计算其相应的坐标点y=[0 0.914 5.060 7.772 8.717 9.083 9.144 9.083 8.992 8.687 7.376 2.073 0];x0=0:0.001:8.534;y1=interp1(x,y,x0);%%一维线性插值函数fprintf('梯形积分结果为:\n\n')%%输出语句x=[x,fliplr([x(1),x,x(end)])];y=[y/2,fliplr([y(1)/2,-y/2,y(end)/2])];subplot(1,2,1);plot(x,y,'-r')%,x0,y1,'-r')S=trapz(y1)*0.001%%积分函数title('用梯形积分结果图');xlabel('x');ylabel('y');y=[0.914,5.060,7.772,8.717,9.083,9.144,9.083,8.992,8.687,7.376,2.073];n=length(y)x=linspace(0,8.534,n);pp=spline(x,y);%%求样条函数表达式fprintf('辛普森积分结果为:\n\n')%%输出语句S2=quadl(@ppval,0,8.534,[],[],pp)%%高阶法数值积分%%%绘制甲板的图形subplot('position',[200,150,900,400])%%subplot('Position',[left bottom %width height])%figure的位置和大小,距离屏幕左边200,底部150,宽900,高400,默认单位是像素xx=[x,fliplr([x(1),x,x(end)])];%%把x矩阵的第1个到最后一个元素沿垂直轴左右翻转yy=[y/2,fliplr([y(1)/2,-y/2,y(end)/2])];%实现矩阵的左右翻转subplot(1,2,2)plot(xx,yy)title('用辛普森积分结果图');xlabel('x');ylabel('y');6(2)运行结果:x =Columns 1 through 110 0.7112 1.4223 2.1335 2.8447 3.5558 4.2670 4.9782 5.6893 6.4005 7.1117Columns 12 through 137.8228 8.5340梯形积分结果为:S =54.6894n =72013数学建模选修课第二次作业11辛普森积分结果为:S2 =65.2824(3)结果分析:上面结果是用两种方法来进行计算的,第一个是一维线性插值,第二个是辛普森积分,运行结果如上图,但是无法再给图像命名时再给两个图填充颜色,原因未知。
结果是第一个的结果没有第二个结果好。
四、多项式拟合对于以下实验数据x=(1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6 7 8 9 10 11)y=(4 4.6 8 8.4 9.28 9.5 9.7 9.86 10 10.2 10.32 10.30 10.24 10.18 10.00 9.40)给出拟合多项式,计算x=6.5,12处的值,并绘制相应曲线图。
解:(1)程序代码:clear all;clc;x=[1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6 7 8 9 10 11];y=[4 4.6 8 8.4 9.28 9.5 9.7 9.86 10 10.2 10.32 10.30 10.24 10.18 10.00 9.40];a=polyfit(x,y,5); % 拟合出的五次函数的系数fprintf('运行结果为:\n\n')%%输出语句disp('构造的二次插值多项式P2(x)为:')%%输出语句f=poly2str(a,'x')%%将拟合后的多项式系数(双精度数组)转换为字符形式的函数poly2sym(a);%%将该向量转换为多项式fprintf('x=6.5的近似值为:\n')m=polyval(a,6.5)%%用于对已经拟合后的多项式系数,fprintf('x=12的近似值为:\n')n=polyval(a,12)%%用于对已经拟合后的多项式系数,8xx=linspace(min(x),max(x)); % 绘图用到的点的横坐标yy=polyval(a,xx); % 拟合曲线的纵坐标%subplot(2,2,4);plot(x,y,'m.',xx,yy,'b'); % 绘图,原始数据+拟合曲线xlabel('x');ylabel('y');legend('原始数据','拟合曲线'); % 图示title('五次多项式拟合曲线');hold on;x=[6.5 12];y=[m n];plot(x,y,'gs')(2)运行结果:92013数学建模选修课第二次作业运行结果为:构造的二次插值多项式P2(x)为:f =0.00038416 x^5 - 0.01707 x^4 + 0.28271 x^3 - 2.2403 x^2 + 8.6685 x- 3.1048x=6.5的近似值为:m =10.2120x=12的近似值为:n =8.458510(3)结果分析:开始时我用了四个不同次数多项式来进行拟合结果如第一个图,但是由于最后要计算x=6.5,12处的值,我取了误差最小的四次多项式来进行计算,拟合,结果如第二个图。