荧光分析法基本概念
- 格式:docx
- 大小:239.13 KB
- 文档页数:23
荧光分析法一、基本原理某些物质的分子能吸收能量而发射出荧光,根据荧光的光谱和荧光强度,对物质进行定性或定量的方法,称为荧光分析法(fluorescence analysis)。
荧光分析法具有灵敏度高、选择性强、需样量少和方法简便等优点,它的测定下限通常比分光光度法低2~4个数量级,在生化分析中的应用较广泛。
在室温下分子大都处在基态的最低振动能级,当受到光的照射时,便吸收与它的特征频率相一致的光线,其中某些电子由原来的基态能级跃迁到第一电子激发态或更高电子激发态中的各个不同振动能级,这就是在分光光度法中所述的吸光现象。
跃迁到较高能级的分子,很快(约10-8s)因碰撞而以热的形式损失部分能量,由所处的激发态能级下降到第一电子激发态的最低振动能级,能量的这种转移形式,称为无辐射跃迁。
由第一电子激发态的最低振动能级下降到基态的任何振动能级,并以光的形式放出它们所吸收的能量,这种光便称为荧光。
荧光分析法是测定物质吸收了一定频率的光以后,物质本身所发射的光的强度。
物质吸收的光,称为激发光;物质受激后所发射的光,称为发射光或荧光。
如果将激发光用单色器分光后,连续测定相应的荧光的强度所得到的曲线,称为该荧光物质的激发光谱(excitation spectrum)。
实际上荧光物质的激发光谱就是它的吸收光谱。
在激发光谱中最大吸收处的波长处,固定波长和强度,检测物质所发射的荧光的波长和强度,所得到的曲线称为该物质的荧光发射光谱,简称荧光光谱(fluorescence spectrum)。
在建立荧光分析法时,需根据荧光光谱来选择适当的测定波长。
激发光谱和荧光光谱是荧光物质定性的依据。
对于某一荧光物质的稀溶液,在一定波长和一定强度的入射光照射下,当液层的厚度不变时,所发生的荧光强度和该溶液的浓度成正比,这是荧光定量分析的基础。
荧光物质的线性范围一般在0.00005-100微克/ml,当荧光物质溶液的吸光度小于或等于0.05时荧光强度和浓度才成线性关系。
化学分析中的荧光分析法基础原理荧光分析法是一种广泛应用于化学分析中的方法。
它利用物质在吸收能量后会发生荧光现象的特性,来测定样品中所含物质的质量浓度、元素组成等信息。
荧光分析法有很多种,其中最常见的是荧光光谱分析法和荧光化学分析法。
本文将重点介绍这两种方法的基本原理及其在化学分析中的应用。
荧光光谱分析法荧光光谱分析法是基于研究物质在吸收外部能量(通常是光能)后所发出的荧光现象。
荧光分析的关键是光谱,而荧光光谱是物质吸收光后所产生的荧光强度与波长之间的关系图。
通常情况下,荧光光谱会产生波峰和波谷,其中波峰对应着荧光峰,荧光峰的位置、强度以及荧光的寿命都可以直接反映出物质的成分、组成、形态等性质。
荧光光谱分析法是一种非破坏性的检测方法,对样品的破坏仅仅是因为光的吸收引起样品的发光。
虽然这种方法与分子的单重态和三重态的能级有关,然而它依然是一种化学分析方法,因为荧光分析法的结果是由物质的成分和结构来决定的。
荧光光谱分析法非常适用于分析质量浓度比较低,并且需要分析多个成分的样品。
荧光化学分析法除了荧光光谱分析法以外,荧光化学分析法也是一种常见的荧光分析方法。
这种方法是利用荧光物质和待测物质结合形成荧光物质-待测物质复合体,进而检测出待测物质的浓度。
荧光化学分析法常用于分析有机化合物、生物大分子以及环境中的污染物等。
荧光化学分析法可以通过两种方式进行:荧光标记法和荧光敏感材料法。
荧光标记法是把荧光酶、荧光染料或者其他荧光探针标记到待测物质上,形成荧光检测体系。
这种检测方式是在分子水平上实现的,因此具有足够高的灵敏度并且避免了直接接触待测物质的问题。
荧光标记法在生物化学、生物医学等领域都得到广泛的应用。
荧光敏感材料法是基于荧光材料敏感性对待测物质的反应来进行的。
这种方法利用化学或生物体系使荧光物质发生特定的荧光变化,从而检测待测物质的浓度。
荧光敏感材料法依靠荧光物质的基质,具有选择性和快速性,并且对待测物质有更加广泛的适用性。
分子荧光分析法物质吸收外界能量后,其电子能级由基态跃迁到激发态,物质的激发态分子以无辐射跃迁的形式释放能量,之后降至第一电子激发单线态的最低振动能级,并以光的形式释放能量回到基态的各个振动能级,此时,分子发射的光即称之为荧光分子荧光分析法:通过测定物质分子所发射荧光的特征和强度,对物质进行定性和定量分析的方法。
(一)基本原理一、分子荧光的产生1. 单线态:当物质处于基态时,电子成对地填充在能量最低的各轨道中,一个给定轨道中的两个电子具有相反的自旋(自旋量子数S分别为1/2和 -1/2),即总自旋量子数S为0,分子中电子能级的多重度M=2S+1=1。
此种状态称为单线态。
• 激发单线态:当物质受到光照射,吸收紫外光或可见光时,物质分子内可发生电子能级的跃迁。
若吸收能量后电子在跃迁过程中不发生自旋方向的变化,即总自旋量子数S为0,分子中电子能级的多重度为1。
则该分子所处的能级状态称为激发单线态。
• 激发三线态:当物质受到光照射,吸收紫外光或可见光时,物质分子内可发生电子能级的跃迁。
若吸收能量后电子在跃迁过程中还伴随自旋方向的变化,即分子具有两个自旋平行的电子,其总自旋量子数S为1,分子中电子能级的多重度M=2S+1=3,则该分子所处的能级状态称为激发三线态。
2. 振动弛豫:同一电子能级内的荧光物质分子与溶剂分子相碰撞,以热能量交换的形式由高振动能级至低振动能级间的跃迁。
3. 内部转移:两个电子能级非常接近时,电子从较高电子能级以非辐射跃迁形式转移至较低电子能级,此过程称为能量的内部转移。
4. 荧光发射:处于激发单线态的电子经过振动弛豫和能量内部转移,回到第一电子激发单线态的最低振动能级,以辐射的形式回到基态的各个振动能级,此过程称为荧光发射。
5. 系间跨越:受激发分子的电子在激发态发生自旋反转,使分子的多重态发生变化的过程。
由第一激发单线态(S1)跃迁至第一激发三线态(T1),使原来两个自旋配对的电子不再配对。
化学分析技术中的荧光法荧光法是化学分析技术中常用的一种方法,其基本原理是利用物质吸收能量后产生的激发态分子的自发辐射。
荧光法具有高灵敏度、高选择性、快速、非破坏性等优点,因此在分析领域中得到了广泛应用。
一、荧光现象荧光现象是很多物质在受激光照射或吸收其他电磁波后,从基态跃迁到激发态,再从激发态衰减到基态时,自然辐射出的光现象。
其光谱分布与吸收光谱不同,一般在较长波长处产生。
荧光的激发带宽度很大(可以从两纳米到上百纳米),且激发光对物质的化学性质影响较小,因此在分析领域中具有独特的优势。
二、荧光分析法1. 直接测量法荧光分析法一般分为直接测量法和间接测量法两类。
直接测量荧光分析法中,荧光物质为测量对象,测量时将激发光辐射到样品中,测量样品发出的荧光强度,然后通过与标准曲线比较,可以计算出样品中荧光物质的浓度。
直接测量荧光分析法具有快速、灵敏度高、稳定性好等优点。
但它也面临着无法消除因测量系统的几何位置和分析效果差异而引起的扰动信号等问题。
2. 间接测量法另一种荧光分析法是间接测量法。
它是通过荧光物质与已知物质的相互作用来测定未知物质的量。
例如,糖类物质可以被邻苯二甲酸酐(PA)酰化成PA-糖酐,这种物质能够与荧光比爱琴素(ANS)结合产生荧光,而且糖酐的数量与荧光信号的强度成正比。
通过对标准曲线的制备,可以计算出未知糖酐的浓度。
间接测量荧光分析法的优点是可以避免测量系统的几何位置和分析效果差异而引起的扰动信号的干扰,但它也存在某种程度上的样品处理和校准难度大的问题。
三、荧光分析在生命科学中的应用荧光分析方法在生命科学领域中已经得到了广泛的应用,例如,在生化学、免疫学、细胞、化学生物学等各个领域。
在免疫学中,荧光抗体标记技术被广泛用于检测蛋白质和微生物。
常用的标记染料包括荧光素和菲罗达胺等。
荧光分析方法还能够用于细胞成像和病理学分析。
蛋白质标记生物发光剂(luciferase)能够被转染到细胞内,进而检测细胞中的信号通路或者探究细胞蛋白质之间的交互作用。
紫外可见吸收光谱一紫外吸收光谱分析基于物质对200-800nm光谱区辐射的吸收特性而建立起来的分析测定方法称为紫外-可见吸收光谱法或紫外-可见分光光度法。
它属于分子吸收光谱,是由于分子电子跃迁而产生的光谱。
二紫外光谱的产生物质分子的能量具有量子化的特征〔即物质分子的能量具有不连续的特征〕。
一个分子有一系列能级,其中包括许多电子能级,分子振动能级以及分子转动能级。
分子吸收特定的波长的光而产生吸收光谱分子的紫外吸收光谱是由于分子中价电子的跃迁而产生的,从化学键的性质上考虑,与电子光谱有关的主要是三种电子:〔1〕形成单键的σ电子;〔2〕形成双键的π电子;〔3〕分子中非键电子即n电子。
化合物不同,所含的价电子类型不同,所产生的电子跃迁类型不同,根据分子轨道理论,分子中这三种电子能级的上下次序大致是:〔σ〕<〔π〕<〔n〕<〔π*〕<〔σ* 〕σ,π是成键轨道,n 是非键轨道,σ* ,π* 是反键轨道由于电子能级间跃迁的同时总伴随有振动和转动能级间的跃迁。
即电子光谱中总包含有振动能级和转动能级间跃迁产生的假设干谱线而呈现宽谱带。
二紫外光谱的表示方法紫外光谱图是由横坐标、纵坐标和吸收曲线组成的。
横坐标表示吸收光的波长,用nm〔纳米〕为单位。
纵坐标表示吸收光的吸收强度,可以用A(吸光度)、T(透射比或透光率或透过率)、1-T(吸收率)、(吸收系数) 中的任何一个来表示。
吸收曲线表示化合物的紫外吸收情况。
曲线最大吸收峰的横坐标为该吸收峰的位置,纵坐标为它的吸收强度。
四、紫外光谱中常用的几个术语1.发色基团和助色基团发色基团:是能导致化合物在紫外及可见光区产生吸收的基团,不管是否显示颜色都称为发色基团。
一般不饱和的基团都是发色基团〔C=C、C=O、N=N 、三键、苯环等〕助色基团:指那些本身不会使化合物分子产生颜色或者在紫外及可见光区不产生吸收的一些基团,但这些基团与发色基团相连时却能使发色基团的吸收带波长移向长波,同时使吸收强度增加。
荧光分析法基本概念荧光分析法是一种基于物质发射和吸收荧光现象的分析技术。
荧光是指物质吸收电磁辐射后,经激发而发出的光辐射。
荧光分析法利用物质在激发射线的激发下产生的荧光进行定性和定量分析。
它具有高灵敏度、高选择性和高准确性等优点,广泛应用于化学、生物、医学、环境等领域。
荧光原理:荧光原理是指物质在吸收电磁波能量后,部分或全部转化为光能并发出荧光。
荧光的激发和发射有两种机制:分子吸收电磁辐射后跃迁到激发态,然后再从激发态返回基态释放能量发光;分子之间发生能量传递,从激发的分子接收能量并转化为荧光发射。
荧光分析原理:荧光分析技术基于物质的荧光性质。
荧光分析法通过测量物质在特定激发光激发下产生的荧光强度或荧光寿命,来获取物质的信息。
荧光分析法包括荧光光谱分析和荧光寿命分析。
荧光光谱分析:荧光光谱分析是指根据物质在激发下发射的荧光光谱特性来进行定性和定量分析。
荧光光谱是物质荧光发射的光波长与相应的荧光强度之间的关系。
通常,物质的荧光光谱有较为特征的波长范围和特定的峰。
荧光寿命分析:荧光寿命是指物质从激发态到基态的转变所需的平均时间,也称为物质的荧光衰减曲线。
荧光寿命分析利用物质的荧光寿命来进行定性和定量分析,可以通过测量荧光寿命来确定物质的存在和浓度等信息。
常见的荧光分析方法有荧光光谱仪、荧光显微镜、荧光染料、荧光标记等。
荧光光谱仪是荧光分析的重要工具,可以测量物质的荧光光谱,并通过荧光光谱来判断物质的性质和含量。
荧光显微镜是利用物质的荧光特性来观察样品的工具。
荧光染料是一种通过吸收和发射荧光的物质,常用于生物分子的标记和显色。
荧光标记是一种将荧光染料或荧光物质与分析物相结合,通过测量标记物的荧光特性来进行定性和定量分析。
荧光分析法在化学、生物、医学和环境等领域有广泛应用。
在化学分析中,荧光分析法可以用于分析确定荧光染料的结构、测定荧光染料的含量和纯度等。
在生物和医学领域,荧光分析法可以用于检测和定量分析蛋白质、核酸、细胞和微生物等生物分子和生物体。
紫外可见吸收光谱一紫外吸收光谱分析基于物质对200-800nm光谱区辐射的吸收特性而建立起来的分析测定方法称为紫外-可见吸收光谱法或紫外-可见分光光度法。
它属于分子吸收光谱,是由于分子内电子跃迁而产生的光谱。
二紫外光谱的产生物质分子的能量具有量子化的特征(即物质分子的能量具有不连续的特征)。
一个分子有一系列能级,其中包括许多电子能级,分子振动能级以及分子转动能级。
分子吸收特定的波长的光而产生吸收光谱分子的紫外吸收光谱是由于分子中价电子的跃迁而产生的,从化学键的性质上考虑,与电子光谱有关的主要是三种电子:(1)形成单键的σ电子;(2)形成双键的π电子;(3)分子中非键电子即n电子。
化合物不同,所含的价电子类型不同,所产生的电子跃迁类型不同,根据分子轨道理论,分子中这三种电子能级的高低次序大致是:(σ)<(π)<(n)<(π*)<(σ* )σ,π是成键轨道,n 是非键轨道,σ* ,π* 是反键轨道由于电子能级间跃迁的同时总伴随有振动和转动能级间的跃迁。
即电子光谱中总包含有振动能级和转动能级间跃迁产生的若干谱线而呈现宽谱带。
二紫外光谱的表示方法紫外光谱图是由横坐标、纵坐标和吸收曲线组成的。
横坐标表示吸收光的波长,用nm(纳米)为单位。
纵坐标表示吸收光的吸收强度,可以用A(吸光度)、T(透射比或透光率或透过率)、1-T(吸收率)、?(吸收系数) 中的任何一个来表示。
吸收曲线表示化合物的紫外吸收情况。
曲线最大吸收峰的横坐标为该吸收峰的位置,纵坐标为它的吸收强度。
四、紫外光谱中常用的几个术语1.发色基团和助色基团发色基团:是能导致化合物在紫外及可见光区产生吸收的基团,不论是否显示颜色都称为发色基团。
一般不饱和的基团都是发色基团(C=C、C=O、N=N 、三键、苯环等)助色基团:指那些本身不会使化合物分子产生颜色或者在紫外及可见光区不产生吸收的一些基团,但这些基团与发色基团相连时却能使发色基团的吸收带波长移向长波,同时使吸收强度增加。
助色基团通常是由含有孤对电子的元素所组成(-NH2, -NR2, -OH ,-OR , -Cl等),这些基团借助P-π共轭使发色基团增加共轭程度,从而使电子跃迁的能量下降。
2.红移、蓝移、增色效应和减色效应由于有机化合物分子中引入了助色基团或其他发色基团而产生结构的改变、或者由于溶剂的影响使其紫外吸收带的最大吸收波长向长波方向移动的现象称为红移。
与此相反,如果吸收带的最大吸收波长向短波方向移动,则称为蓝移。
由于化合物分子结构中引入取代基或受溶剂的影响,使吸收带的强度即摩尔吸光系数增大或减少的现象称为增色效应或减色效应、分子荧光分析法一、荧光的产生物质分子的能级包括一系列电子能级、振动能级和转动能级。
分子吸收能量后,从基态最低振动能级跃迁到第一电子激发态或更高电子激发态的不同振动能级(这一过程速度很快,大约10-15s),成为激发单重态分子。
激发态分子不稳定,可以通过以下几种途径释放能量返回基态1. 振动驰豫这一过程只能发生在同一电子能级内,即分子通过碰撞以热的形式损失部分能量,从较高振动能级下降到该电子能级的最低振动能级上。
由于这一部分能量以热的形式释放,而不是以光辐射形式发出,故振动驰豫属于无辐射跃迁。
2. 内转换即激发态分子将多余的能量转变为热能,从较高电子能级降至较低的电子能级。
内转换也属于无辐射跃迁3. 系间窜跃有些物质的激发态分子通过振动驰豫和内转换下降到第一电子激发态的最低振动能级后,有可能经过另一个无辐射跃迁转移至激发三重态,这一过程伴随着自旋方向的改变,称为系间窜跃。
对于大多数物质,系间窜跃是禁阻的。
如果分子中有重原子(如I、Br等)存在,由于自旋-轨道的强偶合作用,电子自旋方向可以改变,系间窜跃就变得容易了4. 磷光经系间窜跃的分子再通过振动驰豫降至激发三重态的最低振动能级,停留一段时间(10-4~10 s,称作磷光寿命),然后以光辐射形式放出能量返回到基态各振动能级,这时发出的光称为磷光(phosphorescence)。
由于激发三重态能量比激发单重态最低振动能级能量低,故磷光辐射的能量比荧光更小,即磷光的波长比荧光更长。
5. 荧光较高激发态分子经无辐射跃迁降至第一电子激发单重态的最低振动能级后,仍不稳定,停留较短时间后(约10-8 s,称作荧光寿命),以光辐射形式放出能量,回到基态各振动能级,这时所发射的光称为荧光。
当然也可以无辐射跃迁形式返回基态二、激发光谱和荧光光谱荧光检测光源发出的紫外可见光通过激发单色器分出不同波长的激发光,照射到样品溶液上,激发样品产生荧光。
样品发出的荧光为宽带光谱,需通过发射单色器分光后再进入检测器,检测不同发射波长下的荧光强度F。
由于激发光不可能完全被吸收,可透过溶液,为了防止透射光对荧光测定的干扰,常在与激发光垂直的方向检测荧光(因荧光是向各个方向发射的)。
激发光谱与荧光发射光谱的形成任何荧光物质,都具有两种特征光谱,即激发光谱(excitation spectrum)和荧光发射光谱(fluorescence emission spectrum)。
1. 激发光谱保持荧光发射波长不变(即固定发射单色器),依次改变激发光波长(即调节激发单色器),测定不同波长的激发光激发下得到的荧光强度F(即激发光波长扫描)。
然后以激发光波长为横坐标,以荧光强度F为纵坐标作图,就可得到该荧光物质的激发光谱。
激发光谱上荧光强度最大值所对应的波长就是最大激发波长,是激发荧光最灵敏的波长。
物质的激发光谱与它的吸收光谱相似,所不同的是纵坐标。
2. 荧光光谱荧光光谱,又称发射光谱。
保持激发光波长不变(即固定激发单色器),依次改变荧光发射波长,测定样品在不同波长处发射的荧光强度F。
以发射波长为横坐标,以荧光强度F为纵坐标作图,得到荧光发射光谱。
荧光发射光谱上荧光强度最大值所对应的波长就是最大发射波长发射光谱与激发光谱的关系1.发射光谱形状与激发光波长无关由于荧光是分子从第一电子激发态的最低振动能级返回到基态的各振动能级时释放的光辐射,与分子被激发至哪一个电子激发态无关。
2.发射光谱比激发光谱波长为长由于分子吸收激发光被激发至较高激发态后,先经无辐射跃迁(振动驰豫、内转换)损失掉一部分能量,到达第一电子激发态的最低振动能级,再由此发出荧光。
因此,荧光发射能量比激发光能量低,发射光谱波长比激发光波长长。
3.镜像对称对于高度对称的有机分子,其荧光发射光谱与吸收光谱呈镜像对称关系。
解释:能级结构相似性荧光为第一电子激发单重态的最低振动能级跃迁到基态的各个振动能级而形成,即其形状与基态振动能级分布有关。
激发光谱是由基态最低振动能级跃迁到第一电子激发单重态的各个振动能级而形成,即其形状与第一电子激发单重态的振动能级分布有关。
由于激发态和基态的振动能级分布具有相似性,因而呈镜像对称。
三、影响荧光产生及荧光强度的因素1.物质产生荧光的必要条件一种物质能否发荧光以及荧光强度的高低,与它的分子结构及所处的环境密切相关。
能够发射荧光的物质都应同时具备两个条件:1. 物质分子必须有强的紫外吸收(有?~?*跃迁);2. 物质具有较高的荧光效率(fluorescence efficiency)。
荧光效率也称荧光量子产率,用?f 表示。
可见,凡是使k F增加,使其它去活化常数降低的因素均可增加荧光量子产率。
通常,k F由分子结构决定(内因),而其它参数则由化学环境和结构共同决定。
2.影响荧光及其强度的因素跃迁类型:如上所述,物质必须在紫外可见区有强吸收和高荧光效率才能产生荧光。
具有?—?* 跃迁的分子才有强吸收。
?—?* 跃迁的?大。
共轭效应:大多数能产生荧光的物质都含有芳香环或杂环,具有共轭的?~?* 跃迁。
其共轭程度愈大,荧光效率也愈大,且最大激发和发射波长都向长波长方向移动,如苯、萘、蒽三种物质。
刚性平面结构:当荧光分子共轭程度相同时,分子的刚性和共平面性越大,荧光效率越大。
荧光物质(荧光素)非荧光物质(酚酞)芴(Ф=1.0)联苯(Ф=0.2)有些物质本身不发荧光或荧光较弱,但和金属离子形成配合物后,如果刚性和共平面性增加,就可以发荧光或增强荧光。
如8-羟基喹啉是弱荧光物质,与Mg2+、Al3+等金属离子形成的配合物的荧光增强,利用这一特点可以间接测定金属离子。
8-羟基喹啉 8-羟基喹啉-铝取代基团荧光分子上的各种取代基对分子的荧光光谱和荧光强度都有很大影响。
给电子取代基如—NH2、—OH、—OCH3、—CN、—NHR、—NR2等,能增加分子的π电子共轭程度,使荧光效率提高。
而-COOH、—NO2、—C=O、—F、—Cl等吸电子取代基,可减弱分子π电子共轭性,使荧光减弱甚至熄灭。
还有一类取代基则对荧光的影响不明显,如—R、—SO3H、—NH3等。
苯萘蒽维生素A205nm286nm356nm327nm278nm321nm404nm510nm ?0.110.290.36温度温度对被测溶液的荧光强度有明显的影响。
当温度升高时,介质粘度减小,分子运动加快,分子间碰撞几率增加,从而使分子无辐射跃迁增加,荧光效率降低。
故降低温度有利于提高荧光效率及荧光强度。
由于荧光仪器光源的光强度大、温度较高,容易引起溶液温度升高,加之分析过程中室温可能发生变化,从而导致荧光强度改变。
另外,有些荧光物质的溶液在激发光较长时间的照射下,还会发生光分解,使荧光强度下降。
因此,试样不应长时间受光照射,只在测定荧光强度时才打开光闸,其余时间应关闭。
在较高档的荧光分光光度计中,样品室四周设有冷却水套或配有恒温装置,以使溶液的温度在测定过程中保持恒定。
溶剂:同一种荧光物质在不同的溶剂中,其荧光光谱的位置和荧光强度可能会有一定的差别,尤其是那些分子中含有极性取代基的荧光物质,它们的荧光光谱易受溶剂的影响。
溶剂的影响可以分为一般溶剂效应和特殊溶剂效应。
一般溶剂效应是指溶剂极性的影响。
通常情况下,随着溶剂极性增大,?~?* 跃迁所需的能量差?E减小,跃迁几率增加,从而使荧光波长长移,荧光强度增大。
一般而言,探针激发态的偶极矩大于基态偶极矩,当荧光基团被激发后,溶剂的偶极子在激发态的荧光基团的周围重新定向而降低激发态的能量,溶剂的极性越大,荧光团激发态能量降低的越多,因而从激发态跃迁回基态时发射的能量越低,发射的波长就越长特殊溶剂效应是指溶剂与荧光物质形成化合物,或溶剂使荧光物质的电离状态改变,使荧光峰的波长和荧光强度都发生较大变化。
如在萘胺的乙醇溶液中加入盐酸,随着溶液中盐酸浓度的增加,萘胺的—NH2基逐渐被—NH3Cl基所代替,而—NH3Cl基对萘环特征频率的影响小于—NH2,因此溶液的荧光光谱趋近于萘的荧光光谱。
pH值:溶液的酸度(pH值)对荧光物质的影响可以分两个方面:1.若荧光物质本身是弱酸或弱碱时,溶液pH值改变,物质分子和其离子间的平衡也随之发生变化,而不同形体具有其各自特定的荧光光谱和荧光效率。