白内障生物测量及人工晶体计算公式选择综述
- 格式:ppt
- 大小:169.00 KB
- 文档页数:22
白内障深度对侧眼人工晶体度数计算近年来,随着物理测量手段的不断更新,各种计算公式的应用,以及手术方式的改进,人工晶体度数计算误差越来越小。
尽管如此,仍有5%患者白内障术后屈光度会有目标值1.0D以外的误差。
尤其Toric散光矫正晶体和多焦点晶体,为了达到理想的视觉效果,对术后屈光度要求更高。
眼轴长短和手术后人工晶体位置是是计算误差的主要来源。
随着眼轴测量精确度不断提高,手术后人工晶体位置成为误差的主要来源。
因此,前房深度(ACD,anteriorchamberdepth)对人工晶体度数计算十分重要。
近期,美国JohnsHopkins大学眼科中心探讨了白内障术后前房深度与对侧眼人工晶体度数计算的关系。
该研究测量了白内障术后1天和1个月时的前房深度,并通过该值计算对侧眼人工晶体度数。
研究对象分三组:组1利用术前ACD值计算对侧眼人工晶体度数;组2利用术眼术后第1天ACD值计算对侧眼人工晶体度数;组3利用术眼术后1个月ACD值计算对侧眼人工晶体度数。
结果显示:同一患者双眼的角膜曲率、眼轴、术前术后ACD明显相关(表1)。
术后1个月ACD较术后第1天变浅,ACD变浅的程度与术前眼轴,角膜曲率及ACD值无关。
术后第1天和术后1个月ACD值计算的对侧眼人工晶体度数之间差异有统计学意义。
但二者与Olsen法计算所得对侧眼人工晶体度数之间差异无统计学意义(图1)。
因此,研究者认为应用术后1个月的ACD值计算所得对侧眼人工晶体度数误差更小。
在一些短眼轴、浅前房眼中,利用术前ACD值计算后误差值往往超过0.5D,此种情况下应用术后第1天或术后1个月时ACD值都能获得更加准确的对侧眼人工晶体度数。
以往有学者提出通过术眼术后屈光度和目标屈光度的误差值调整对侧眼人工晶体度数,但是并不能通过此方法降低对侧眼术后屈光度的误差值。
屈光度误差值取决于眼眼轴和角膜曲率测量误差,尽管同一患者双眼眼轴、角膜曲率等参数相关性高,但两眼眼轴和角膜曲率测量误差之间并不对称。
儿童白内障人工晶状体计算公式的研究目的:比较人工晶状体计算公式Holladay1、HofferQ、SRK/T、Haigis、Barrett Universal II(以下简称Barrett)应用于儿童白内障的准确性。
方法:回顾性病例研究。
收集2011年1月至2018年1月于我院行“白内障超声乳化吸除术联合Ⅰ期人工晶状体植入术”的儿童白内障患者,通过术前生物测量数据(眼轴AL、角膜曲率K、前房深度ACD)求得患儿在植入同一屈光力人工晶状体时应用各计算公式的预留屈光力,由术后1-3月验光结果求得实际屈光力,预测误差(PE)=实际屈光力-预留屈光力,绝对预测误差(APE)为预测误差的绝对值,分别对Master测量组和A超测量组进行分析,根据眼轴或角膜曲率进行分组,比较不同组内各公式预测误差与0有无统计学差异;分析不同组内不同计算公式间绝对预测误差有无统计学差异;对各公式预测误差在±0.5D、±1D、±2D范围内的占比进行分析;对不同公式绝对预测误差进行多元回归分析,观察手术年龄、眼轴长度、角膜曲率、测量仪器对各公式计算IOL度数的影响。
结果:A超测量组共45眼,平均手术年龄为6.30±2.99岁(范围2-14岁),当AL≤22mm时,Barrett公式预测误差(PE)显著小于0(Mean=-0.24,Median=-0.27,P=0.014),而AL>22mm时,HofferQ公式预测误差(PE)显著大于0(Mean=0.31,Median=0.33,P=0.039);对于绝对预测误差的比较,当K≤43.5D时,Barrett公式APE显著较Holladay1、HofferQ、SRK/T公式小,(mean=0.29,median=0.17)。
Master测量组共26眼,平均手术年龄为7.19±2.86岁(范围4-13岁),在各组中,Barrett公式预测误差均显著小于0(P=0.031,P=0.008,P=0.023,P=0.019);当AL≤22mm或AL>22mm或K>43.5D时,Haigis公式预测误差也显著小于0(P=0.022,P=0.015,P=0.045);对于绝对预测误差的比较,不同AL组或K组,不同公式间APE均无统计学差异。
人工晶体屈光力计算公式
人工晶体屈光力计算公式是根据屈光度的定义推导出来的。
屈光度(diopter)是指当光线从无穷远处(无需调节)进射到眼
镜或人工晶体表面的时候,使得光线在屈光介质中汇聚或发散的能力。
常见的计算公式如下:
屈光度= 1 /焦距(F)
其中,焦距是指光线通过人工晶体后,聚焦在视网膜上所需的距离。
人工晶体的焦距计算可以通过以下公式得到:
焦距= (n - 1) * (1 / R1 - 1 / R2)
其中,n代表的是人工晶体的折射率,R1和R2分别代表人工晶体
两侧曲率半径。
公式的适用范围包括球面镜片(R1 = R2)和非球面镜片(R1 ≠
R2)。
在实际计算中,还需要考虑到角膜的屈光力(即角膜曲率)以及术前的屈光度。
因此,人工晶体屈光力的计算还需要综合考虑这些因素。
此外,人工晶体的种类和设计也会影响到屈光力的计算方法。
不同类型的人工晶体(如单焦点、多焦点、散光矫正人工晶体等)可能有不同的计算公式或调整参数。
最准确的人工晶体屈光力计算应该由专业的眼科医生或验光师在详细的眼部检查和测量数据的基础上进行评估和订制。
因此,在选择和使用人工晶体时,最好咨询专业医生的意见。
高度近视白内障患者人工晶状体计算公式的研究进展张弛(综述);叶子;李朝辉(审校)【期刊名称】《中华实验眼科杂志》【年(卷),期】2022(40)5【摘要】高度近视合并白内障患者数量日益增长,复明性白内障手术逐渐向屈光性白内障手术转变,良好的术后视力是高度近视白内障患者术后的目标。
由于眼轴长度测量误差、术后有效晶状体位置变化和人工晶状体(IOL)计算公式选择不当等因素,高度近视白内障术后屈光预测准确性欠佳,严重影响患者视觉质量和满意度。
随着IOL计算公式的不断发展,SRK/T和Holladay1等薄晶状体会聚公式中眼轴长度、角膜曲率等不断优化,以Barrett UniversalⅡ公式为代表的厚晶状体会聚公式应用逐渐广泛,基于人工智能的Hill-RBF公式、基于光线追踪的Olsen公式和OKULIX 软件以及结合多种理论的Kane公式和EVO公式等新型IOL计算公式陆续问世,白内障术后屈光预测有了更多的选择和保障。
本文总结不同种类IOL计算公式的优化与进展,为提高高度近视白内障患者IOL度数计算的准确性提供更多的选择。
【总页数】4页(P466-469)【作者】张弛(综述);叶子;李朝辉(审校)【作者单位】解放军总医院第一医学中心眼科【正文语种】中文【中图分类】R47【相关文献】1.高度近视LASlK术后白内障患者不同人工晶状体计算公式的比较2.白内障合并高度近视人工晶状体计算公式的选择3.外伤性晶状体不全脱位合并高度近视白内障患者人工晶体计算公式的选择4.角膜曲率对人工晶状体屈光度计算公式在高度近视伴后巩膜葡萄肿白内障中的影响研究5.角膜屈光度数对高度近视合并白内障患者人工晶状体计算公式选择的影响因版权原因,仅展示原文概要,查看原文内容请购买。
白内障生物测量及人工晶体计算公式选择白内障是一种常见的眼部疾病,其特征是眼睛的晶状体变得不透明。
对于患有白内障的患者来说,唯一的治疗方法就是通过手术将不透明的晶状体取出并替换为人工晶体。
而为了确保手术能够取得良好的效果,准确的生物测量和人工晶体计算公式的选择就显得尤为重要。
生物测量是指通过测量患者眼球尺寸和形态来确定人工晶体的适宜参数。
在过去,由于技术水平的限制,常采用的生物测量手段主要是超声生物测量术。
然而,随着技术的不断发展,现在的测量方法已经多种多样,包括超声生物测量术、光学生物测量术和激光干涉生物测量术等。
每种生物测量方法都有其自身的优缺点。
超声生物测量术是最常用的方法,其优点在于简便易行、成本较低。
然而,该方法在测量后的晶状体计算中存在一定的误差,可能导致手术结果不尽如人意。
光学生物测量术则是通过高端光学设备对眼球进行测量,具有更高的准确性。
然而,光学生物测量术所需要的设备较为昂贵,且操作较为复杂。
激光干涉生物测量术则是一种较新的方法,其优点在于测量结果的准确性较高,操作相对简单。
然而,该技术的商业设备尚未普及,价格较高。
除了生物测量的准确性,人工晶体计算公式的选择也是十分重要的因素。
人工晶体计算公式是通过眼轴长度等参数来确定人工晶体的度数,从而保证手术效果。
目前常用的有SRK/T、Holladay II和Haigis等计算公式。
SRK/T是一种常用而且准确度较高的计算公式,适用于大部分表面较平坦的眼睛。
Holladay II计算公式是一种新一代的计算公式,相比SRK/T在一些特殊情况下具有更高的准确性。
Haigis计算公式则主要适用于曲率较高的眼睛,具有一定的优势。
根据患者的具体情况和测量结果,医生可以选择适合的人工晶体计算公式。
在选择计算公式时,医生还应该考虑到患者的个体差异以及手术的目标。
例如,对于需要进行多焦点人工晶体植入的患者,需要选择适用于多焦点人工晶体的计算公式,以确保患者能够获得理想的视觉效果。
白内障生物测量及人工晶体计算公式选择白内障手术是一种常见的眼科手术,旨在恢复患者视力,并提升其生活质量。
而白内障生物测量和人工晶体计算是手术的重要步骤,它们的准确性直接影响手术效果和患者的视觉回复。
本文将介绍白内障生物测量的相关原理和方法,并探讨在选择人工晶体计算公式时应考虑的因素。
一、白内障生物测量原理和方法白内障生物测量是指测量眼球相关参数的过程,如角膜曲率半径、玻璃体长度、前房深度等,以便计算正确的人工晶体度数。
目前,常用的白内障生物测量方法包括角膜地形图、超声生物测量和光学生物测量等。
1. 角膜地形图角膜地形图是通过计算机辅助的角膜曲率测量方法,可以测量角膜中心和边缘的曲率半径。
根据测量结果,可以推算出眼球的屈光度和角膜曲率半径,为计算人工晶体提供基础数据。
2. 超声生物测量超声生物测量是利用超声波测量眼球前后房的深度、晶状体厚度和玻璃体长度等参数。
这种方法直接测量眼球内部结构,准确度较高,是白内障手术中常用的生物测量方式之一。
3. 光学生物测量光学生物测量是通过光学原理测量眼球的相关参数,如前房深度、角膜曲率半径等。
常用的光学生物测量设备包括光斑图像测量仪、光源分析仪等。
二、人工晶体计算公式选择的因素在白内障手术中,选择正确的人工晶体度数是保证手术成功的关键之一。
而选择人工晶体计算公式则是确定度数的主要方法。
以下是一些影响人工晶体计算公式选择的因素:1. 患者个体差异每个患者的眼球形态和参数都存在一定的个体差异,因此选择人工晶体计算公式时,需要充分考虑患者的个体特点。
例如,年龄、角膜屈光度、晶状体位置等因素都可能影响计算结果。
2. 人工晶体类型不同类型的人工晶体,如单焦点晶体、多焦点晶体等,其度数计算公式也存在差异。
因此,在选择人工晶体计算公式时,需要根据所使用的人工晶体类型进行合理选择。
3. 手术方法和术前测量方法手术方法和术前测量方法也会对人工晶体计算公式的选择产生影响。
例如,激光辅助白内障手术中使用的估计屈光度公式与传统手术方法中使用的公式可能会有所不同。
短眼轴白内障公式
白内障是常见的致盲性眼病之一,眼轴是选择白内障手术人工晶状体计算公式时的重要参考因素。
通常将眼轴长度分为短眼轴(小于22mm)、正常眼轴(22mm至24.5mm)、中长眼轴(24mm至26mm)以及长眼轴(大于26mm)。
对于短眼轴的白内障患者,可以考虑使用新型的人工晶状体计算公式,如Barrett Universal II、Haigis、RBF-Hill、Olsen等公式,其次是Hoffer Q公式。
对于正常眼轴和中长眼轴的患者,第三代以后的人工晶状体计算公式均可适用,并没有很大的差异性。
在选择人工晶状体计算公式时,需要考虑患者的眼部情况和手术医生的经验,并根据具体情况进行个性化的方案设计。
如果需要更详细的信息,请咨询专业的眼科医生。