九年级数学下册期中考试题
- 格式:doc
- 大小:212.50 KB
- 文档页数:8
2023年人教版九年级数学下册期中考试卷及参考答案 班级: 姓名:一、选择题(本大题共10小题,每题3分,共30分) 1.若分式211x x -+的值为0,则x 的值为( ) A .0 B .1 C .﹣1 D .±12.关于x 的一元二次方程2(1)210k x x +-+=有两个实数根,则k 的取值范围是( )A .0k ≥B .0k ≤C .0k <且1k ≠-D .0k ≤且1k ≠-3.某钢铁厂一月份生产钢铁560吨,从二月份起,由于改进操作技术,使得第一季度共生产钢铁1850吨,问二、三月份平均每月的增长率是多少?若设二、三月份平均每月的增长率为x ,则可得方程( )A .2560(1)1850x +=B .2560560(1)1850x ++=C .()25601560(1)1850x x +++=D .()25605601560(1)1850x x ++++= 4.已知实数x 满足()()2224120x x x x ----=,则代数式21x x -+的值是( )A .7B .-1C .7或-1D .-5或35.已知平行四边形ABCD ,AC 、BD 是它的两条对角线,那么下列条件中,能判断这个平行四边形为矩形的是( )A .∠BAC=∠DCAB .∠BAC=∠DAC C .∠BAC=∠ABD D .∠BAC=∠ADB6.若一个凸多边形的内角和为720°,则这个多边形的边数为( )A .4B .5C .6D .77.在以下绿色食品、回收、节能、节水四个标志中,是轴对称图形的是( )A .B .C .D .8.如图,点P 在△ABC 的边AC 上,要判断△ABP ∽△ACB ,添加一个条件,不正确的是( )A .∠ABP=∠CB .∠APB=∠ABC C .AP AB AB AC =D .AB AC BP CB= 9.如图,边长为6的大正方形中有两个小正方形,若两个小正方形的面积分别为S 1,S 2,则S 1+S 2的值为( )A .16B .17C .18D .1910.已知0ab <,一次函数y ax b =-与反比例函数ay x =在同一直角坐标系中的图象可能( )A .B .C .D .二、填空题(本大题共6小题,每小题3分,共18分)1.16的平方根是__________.2.分解因式(xy ﹣1)2﹣(x+y ﹣2xy )(2﹣x ﹣y )=_______.3.若实数a ,b 满足(4a +4b)(4a +4b -2)-8=0,则a +b =__________.4.如图,△ABC 中,CD ⊥AB 于D ,E 是AC 的中点.若AD=6,DE=5,则CD 的长等于__________.5.如图,C 为半圆内一点,O 为圆心,直径AB 长为2 cm ,∠BOC=60°,∠BCO=90°,将△BOC 绕圆心O 逆时针旋转至△B ′OC ′,点C ′在OA 上,则边BC 扫过区域(图中阴影部分)的面积为_________cm 2.6.如图,已知Rt △ABC 中,∠B=90°,∠A=60°,AC=23+4,点M 、N 分别在线段AC 、AB 上,将△ANM 沿直线MN 折叠,使点A 的对应点D 恰好落在线段BC 上,当△DCM 为直角三角形时,折痕MN 的长为__________. 三、解答题(本大题共6小题,共72分)1.解方程23111x x x -=--2.先化简,再求值:24211326x x x x -+⎛⎫-÷ ⎪++⎝⎭,其中21x =.3.如图,△ABC 中,AB =AC =1,∠BAC =45°,△AEF 是由△ABC 绕点A 按顺时针方向旋转得到的,连接BE ,CF 相交于点D,(1)求证:BE=CF ;(2)当四边形ACDE为菱形时,求BD的长.4.如图,在△ABC中,点D,E分别在边AB,AC上,∠AED=∠B,射线AG分别交线段DE,BC于点F,G,且AD DF AC CG=.(1)求证:△ADF∽△ACG;(2)若12ADAC=,求AFFG的值.5.我国中小学生迎来了新版“教育部统编义务教育语文教科书”,本次“统编本”教材最引人关注的变化之一是强调对传统文化经典著作的阅读.某校对A 《三国演义》、B《红楼梦》、C《西游记》、D《水浒》四大名著开展“最受欢迎的传统文化经典著作”调查,随机调查了若干名学生(每名学生必选且只能选这四大名著中的一部)并将得到的信息绘制了下面两幅不完整的统计图:(1)本次一共调查了_________名学生;(2)请将条形统计图补充完整;(3)某班语文老师想从这四大名著中随机选取两部作为学生暑期必读书籍,请用树状图或列表的方法求恰好选中《三国演义》和《红楼梦》的概率.6.某商家预测一种应季衬衫能畅销市场,就用13200元购进了一批这种衬衫,面市后果然供不应求.商家又用28800元购进了第二批这种衬衫,所购数量是第一批购进量的2倍,但单价贵了10元.(1)该商家购进的第一批衬衫是多少件?(2)若两批衬衫按相同的标价销售,最后剩下50件按八折优惠卖出,如果两批衬衫全部售完后利润率不低于25%(不考虑其它因素),那么每件衬衫的标价至少是多少元?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、B2、D3、D4、A5、C6、C7、D8、D9、B10、A二、填空题(本大题共6小题,每小题3分,共18分)1、±4.2、(y﹣1)2(x﹣1)2.3、-12或14、8.5、4π6三、解答题(本大题共6小题,共72分)1、2x=2.3、(1)略(2-14、(1)略;(2)1.5、(1)50;(2)见解析;(3)16.6、(1)120件;(2)150元.。
人教版九年级数学下册期中考试题及答案【完整版】班级: 姓名:一、选择题(本大题共10小题, 每题3分, 共30分)1. 的相反数是()A. B. C. D.2.将直线向右平移2个单位, 再向上平移3个单位后, 所得的直线的表达式为()A. B. C. D.3. 抛物线y=3(x﹣2)2+5的顶点坐标是()A. (﹣2, 5)B. (﹣2, ﹣5)C. (2, 5)D. (2, ﹣5)4.我国明代珠算家程大位的名著《直指算法统宗》里有一道著名算题: ”一百馒头一百僧, 大僧三个更无争, 小僧三人分一个, 大小和尚各几丁?”意思是: 有100个和尚分100个馒头, 如果大和尚1人分3个, 小和尚3人分1个, 正好分完, 试问大、小和尚各多少人?设大和尚有x人, 依题意列方程得()A. =100 B. =100C. D.5.体育测试中, 小进和小俊进行800米跑测试, 小进的速度是小俊的1.25倍, 小进比小俊少用了40秒, 设小俊的速度是米/秒, 则所列方程正确的是()A. B.C. D.6.已知直线y1=kx+1(k<0)与直线y2=mx(m>0)的交点坐标为(, m), 则不等式组mx﹣2<kx+1<mx的解集为()A. x>B. <x<C. x<D. 0<x<7.在以下绿色食品、回收、节能、节水四个标志中, 是轴对称图形的是()A. B. C. D.8.如图, 下列条件不能判定△ADB∽△ABC的是()A. ∠ABD=∠ACBB. ∠ADB=∠ABCC. AB2=AD•ACD.9.扬帆中学有一块长, 宽的矩形空地, 计划在这块空地上划出四分之一的区域种花, 小禹同学设计方案如图所示, 求花带的宽度.设花带的宽度为, 则可列方程为()A. B.C. D.10.如图, 二次函数的图象经过点, , 下列说法正确的是()A. B.C. D. 图象的对称轴是直线二、填空题(本大题共6小题, 每小题3分, 共18分)1. 计算( -)×+2 的结果是_____________.2. 分解因式: _______.3. 已知、为两个连续的整数, 且, 则=________.4. 如图, 矩形ABCD面积为40, 点P在边CD上, PE⊥AC, PF⊥BD, 足分别为E,F. 若AC=10, 则PE+PF=__________.5. 如图, 某高速公路建设中需要测量某条江的宽度AB, 飞机上的测量人员在C 处测得A, B两点的俯角分别为和若飞机离地面的高度CH为1200米, 且点H, A, B在同一水平直线上, 则这条江的宽度AB为______米结果保留根号.6. 如图, 在平面直角坐标系中, 已知点A(1, 0), B(1﹣a, 0), C(1+a, 0)(a>0), 点P在以D(4, 4)为圆心, 1为半径的圆上运动, 且始终满足∠BPC=90°, 则a的最大值是__________.三、解答题(本大题共6小题, 共72分)1. 解方程:2. 关于x的方程x2﹣2(k﹣1)x+k2=0有两个实数根x1.x2.(1)求k的取值范围;(2)若x1+x2=1﹣x1x2, 求k的值.3. 如图, 矩形ABCD中, AB=6, BC=4, 过对角线BD中点O的直线分别交AB,CD边于点E, F.(1)求证: 四边形BEDF是平行四边形;(2)当四边形BEDF是菱形时, 求EF的长.4. 如图, 在平面直角坐标系中, 的三个顶点坐标分别为、、, 平分交于点, 点、分别是线段、上的动点, 求的最小值.5. 抚顺某中学为了解八年级学生的体能状况, 从八年级学生中随机抽取部分学生进行体能测试, 测试结果分为A, B, C, D四个等级. 请根据两幅统计图中的信息回答下列问题:(1)本次抽样调查共抽取了多少名学生?(2)求测试结果为C等级的学生数, 并补全条形图;(3)若该中学八年级共有700名学生, 请你估计该中学八年级学生中体能测试结果为D等级的学生有多少名?(4)若从体能为A等级的2名男生2名女生中随机的抽取2名学生, 做为该校培养运动员的重点对象, 请用列表法或画树状图的方法求所抽取的两人恰好都是男生的概率.6. 文美书店决定用不多于20000元购进甲乙两种图书共1200本进行销售.甲、乙两种图书的进价分别为每本20元、14元, 甲种图书每本的售价是乙种图书每本售价的1.4倍, 若用1680元在文美书店可购买甲种图书的本数比用1400元购买乙种图书的本数少10本.(1)甲乙两种图书的售价分别为每本多少元?(2)书店为了让利读者, 决定甲种图书售价每本降低3元, 乙种图书售价每本降低2元, 问书店应如何进货才能获得最大利润?(购进的两种图书全部销售完.)参考答案一、选择题(本大题共10小题, 每题3分, 共30分)1.B2.A3.C4.B5.C6.B7、D8、D9、D10、D二、填空题(本大题共6小题, 每小题3分, 共18分)1.2.3.114.45.6.6三、解答题(本大题共6小题, 共72分)1、x=3.2.(1);(2)3、(1)略;(2).4.5.(1)50;(2)16;(3)56(4)见解析6、(1)甲种图书售价每本28元, 乙种图书售价每本20元;(2)甲种图书进货533本, 乙种图书进货667本时利润最大.。
2022-2023年人教版九年级数学下册期中考试卷及答案【完美版】班级: 姓名:一、选择题(本大题共10小题,每题3分,共30分)1.﹣2020的倒数是( )A .﹣2020B .﹣12020C .2020D .120202.下列分解因式正确的是( )A .24(4)x x x x -+=-+B .2()x xy x x x y ++=+C .2()()()x x y y y x x y -+-=-D .244(2)(2)x x x x -+=+-3.若式子2(m 1)-有意义,则实数m 的取值范围是( ) A .m 2>- B .m 2>-且m 1≠C .m 2≥-D .m 2≥-且m 1≠ 4.已知关于x 的不等式3x ﹣m+1>0的最小整数解为2,则实数m 的取值范围是( )A .4≤m <7B .4<m <7C .4≤m ≤7D .4<m ≤75.已知点A (m ,n )在第二象限,则点B (|m|,﹣n )在( )A .第一象限B .第二象限C .第三象限D .第四象限6.下列性质中,菱形具有而矩形不一定具有的是( )A .对角线相等B .对角线互相平分C .对角线互相垂直D .邻边互相垂直7.如图,在OAB 和OCD 中,,,,40OA OB OC OD OA OC AOB COD ==>∠=∠=︒,连接,AC BD 交于点M ,连接OM .下列结论:①AC BD =;②40AMB ∠=︒;③OM 平分BOC ∠;④MO 平分BMC ∠.其中正确的个数为( ).A .4B .3C .2D .18.如图,正方形ABCD 的边长为2cm ,动点P ,Q 同时从点A 出发,在正方形的边上,分别按A D C →→,A B C →→的方向,都以1/cm s 的速度运动,到达点C 运动终止,连接PQ ,设运动时间为x s ,APQ ∆的面积为2y cm ,则下列图象中能大致表示y 与x 的函数关系的是( )A .B .C .D .9.如图,在平行四边形ABCD 中,点E 在边DC 上,DE :EC=3:1,连接AE 交BD 于点F ,则△DEF 的面积与△BAF 的面积之比为( )A .3:4B .9:16C .9:1D .3:110.如图,抛物线y =ax 2+bx +c(a ≠0)的对称轴为直线x =1,与x 轴的一个交点坐标为(-1,0),其部分图象如图所示,下列结论:①4ac <b 2;②方程ax 2+bx +c =0的两个根是x 1=-1,x 2=3;③3a +c >0;④当y >0时,x 的取值范围是-1≤x <3;⑤当x <0时,y 随x 增大而增大.其中结论正确的个数是( )A.4个B.3个C.2个D.1个二、填空题(本大题共6小题,每小题3分,共18分)1.计算:23a a⋅=______________.2.分解因式:x2-2x+1=__________.3.已知二次函数y=x2,当x>0时,y随x的增大而_____(填“增大”或“减小”).4.把两个同样大小的含45°角的三角尺按如图所示的方式放置,其中一个三角尺的锐角顶点与另一个的直角顶点重合于点A,且另三个锐角顶点B,C,D在同一直线上.若AB=2,则CD=__________.5.现有四张正面分别标有数字﹣1,1,2,3的不透明卡片,它们除数字外其余完全相同,将它们背而面朝上洗均匀,随机抽取一张,记下数字后放回..,背面朝上洗均匀,再随机抽取一张记下数字,前后两次抽取的数字分别记为m,n,则点P(m,n)在第二象限的概率为__________.6.如图,菱形ABCD顶点A在例函数y=3x(x>0)的图象上,函数y=kx(k>3,x>0)的图象关于直线AC对称,且经过点B、D两点,若AB=2,∠DAB=30°,则k 的值为______.三、解答题(本大题共6小题,共72分)1.解方程:2142242x x x x +-+--=12.已知关于x 的一元二次方程(a+c )x 2+2bx+(a ﹣c )=0,其中a 、b 、c 分别为△ABC 三边的长.(1)如果x=﹣1是方程的根,试判断△ABC 的形状,并说明理由;(2)如果方程有两个相等的实数根,试判断△ABC 的形状,并说明理由;(3)如果△ABC 是等边三角形,试求这个一元二次方程的根.3.如图,直线y 1=﹣x +4,y 2=34x +b 都与双曲线y =k x交于点A (1,m ),这两条直线分别与x 轴交于B ,C 两点.(1)求y 与x 之间的函数关系式;(2)直接写出当x >0时,不等式34x +b >k x的解集; (3)若点P 在x 轴上,连接AP 把△ABC 的面积分成1:3两部分,求此时点P 的坐标.4.如图,AB 是圆O 的直径,O 为圆心,AD 、BD 是半圆的弦,且∠PDA=∠PBD .延长PD 交圆的切线BE 于点E(1)判断直线PD 是否为⊙O 的切线,并说明理由;(2)如果∠BED=60°,3,求PA 的长;(3)将线段PD 以直线AD 为对称轴作对称线段DF ,点F 正好在圆O 上,如图2,求证:四边形DFBE为菱形.105阳光体育活动.某中学就“学生体育活动兴趣爱好”的问题,随机调查了本校某班的学生,并根据调查结果绘制成如下的不完整的扇形统计图和条形统计图:(1)在这次调查中,喜欢篮球项目的同学有______人,在扇形统计图中,“乒乓球”的百分比为______%,如果学校有800名学生,估计全校学生中有______人喜欢篮球项目.(2)请将条形统计图补充完整.(3)在被调查的学生中,喜欢篮球的有2名女同学,其余为男同学.现要从中随机抽取2名同学代表班级参加校篮球队,请直接写出所抽取的2名同学恰好是1名女同学和1名男同学的概率.6.我区“绿色科技公司”研发了一种新产品,该产品的成本为每件3000元.在试销期间,营销部门建议:①购买不超过10件时,每件销售价为3600元;②购买超过10件时,每多购买一件,所购产品的销售单价均降低5元,但最低销售单价为3200元.根据以上信息解决下列问题:(1)直接写出:购买这种产品件时,销售单价恰好为3200元;(2)设购买这种产品x件(其中x>10,且x为整数),该公司所获利润为y 元,求y与x之间的函数表达式;(3)在试销期间销售人员发现:当购买产品的件数超过10件时,会出现随着数量的增多,公司所获利润反而减少这一情况.为使销售数量越多,公司所获利润越大,公司应将最低销售单价调整为多少元?(其它销售条件不变)参考答案一、选择题(本大题共10小题,每题3分,共30分)1、B2、C3、D4、A5、D6、C7、B8、A9、B10、B二、填空题(本大题共6小题,每小题3分,共18分) 1、a 52、(x-1)2.3、增大.415、3166、三、解答题(本大题共6小题,共72分)1、x=12、(1) △ABC 是等腰三角形;(2)△ABC 是直角三角形;(3) x 1=0,x 2=﹣1.3、(1)3y x =;(2)x >1;(3)P (﹣54,0)或(94,0) 4、(1)略;(2)1;(3)略.5、(1)5,20,80;(2)图见解析;(3)35.6、(1)90;(2)2200(90)5650(1090)≥⎧=⎨-+<<⎩x x y x x x ;(3)3325元.。
青岛版九年级下册数学期中考试题(附答案)学校:___________姓名:___________班级:___________考号:___________评卷人 得分一、选择题(题型注释) 1.二次函数y=mx 2+x ﹣2m (m 是非0常数)的图象与x 轴的交点个数为( )A .0个B .1个C .2个D .1个或2个2.一天晚上,小丽在清洗两只颜色分别为粉色和白色的有盖茶杯时,突然停电了,小丽只好把杯盖和茶杯随机搭配在一起,则其颜色搭配一致的概率是( )A .B .C .D .13.如图,双曲线y=与直线y=kx+b 交于点M 、N ,并且点M 的坐标为(1,3),点N 的纵坐标为﹣1.根据图象信息可得关于x 的方程=kx+b 的解为( )A .﹣3,1B .﹣3,3C .﹣1,1D .﹣1,34.下列事件中,属于必然事件的是( )A.购买一张彩票,中奖B.打开电视,正在播放广告C.抛掷一枚硬币,正面向上D.通常情况下,水加热到100℃沸腾5.已知二次函数y=ax ²+bx+c(a ≠0)的图像如图所示,则下列结论中正确的是( )A.a >0B.3是方程ax ²+bx+c=0的一个根C.a+b+c=0D.当x <1时,y 随x 的增大而减小6.如图,两个反比例函数y = 1x k 和y = 2xk 在第一象限内的图象依次是C 1和C 2,设点P 在C 1上,PC ⊥x 轴于点C ,交C 2于点A ,PD ⊥y 轴于点D ,交C 2于点B ,则四边形PAOB 的面积为( )A .k 1+k 2B .k 1-k 2C .k 1·k 2 D.12k k 7.已知抛物线2y ax bx c =++的开口向下,顶点坐标为(2,-3) ,那么该抛物线有( )A .最大值 -3B .最小值-3C .最小值2D .最大值28.教室里的饮水机接通电源就进入自动程序,开机加热时每分钟上升10℃,加热到100℃,停止加热,水温开始下降,此时水温(℃)与开机后用时(min )成反比例关系.直至水温降至30℃,饮水机关机.饮水机关机后即刻自动开机,重复上述自动程序.若在水温为30℃时,接通电源后,水温y (℃)和时间(min )的关系如图,为了在上午第一节下课时(8:45)能喝到不超过50℃的水,则接通电源的时间可以是当天上午的( )A .7:20B .7:30C .7:45D .7:509.小明从如图所示的二次函数y=ax 2+bx+c (a≠0)的图象中,观察得出了下面五条信息:①ab >0;②a+b+c <0;③b+2c >0;④a ﹣2b+4c >0;⑤32a b =. 你认为其中正确信息的个数有( )A. 2个B. 3个C. 4个D. 5个10.一台印刷机每年可印刷的书本数量y (万册)与它的使用时间x (年)成反比例关系,当x =2时,y =20.则y 与x 的函数图象大致是( )A .B .C .D .11.若一次函数(1)y m x m =++的图像过第一、三、四象限,则函数2y mx mx =-( ) A.有最大值4m B..有最大值4m - C.有最小值4m D.有最小值4m - 评卷人得分 二、填空题12.某班要从甲、乙、丙、丁四位班干部(两男两女)中任意两位参加学校组织的志愿者服务活动,则恰好选中一男一女的概率是 .13.用配方法将二次函数y =4x 2-24x +26写成y =a(x -h)2+k 的形式是________ .14.在函数20172y x =- 中,自变量x 的取值范围是________.15.如图,已知反比例函数y=k x (k >0)的图象经过Rt△OAB 斜边OB 的中点C ,且与直角边AB 相交于点D ,若B 的坐标为(4,6),则△BOD 的面积为___________.16.点(1a -, 1y )、(1a +, 2y )在反比例函数(0)k y k x=>的图像上,若y y <,则a 的范围是________.评卷人得分 三、解答题17.某电视台为了解本地区电视节目的收视情况,对部分广州开展了“你最喜爱的电视节目”的问卷调查(每人只填写一项),根据收集的数据绘制了下面两幅不完整的统计图,根据要求回答下列问题:(1)本次问卷调查共调查了 名观众;(2)图②中最喜爱“新闻节目”的人数占调查总人数的百分比为 ,“综艺节目”在扇形统计图中所对应的圆心角的度数为 ;(3)补全图①中的条形统计图;(4)现有最喜爱“新闻节目”(记为),“体育节目”(记为),“综艺节目”(记为C ),“科普节目”(记为D )的观众各一名,电视台要从四人中随机抽取两人参加联谊活动,请用列表或画树状图的方法,求出恰好抽到最喜爱“B”和“C”两位观众的概率. 两名进行督查.(1)请补全如下的树状图;(2)求恰好选中两名男学生的概率.19.如图,已知抛物线y=﹣214x+bx+4与x轴相交于A、B两点,与y轴相交于点C,若已知B点的坐标为B(8,0).(1)求抛物线的解析式及其对称轴方程;(2)连接AC、BC,试判断△AOC与△COB是否相似?并说明理由;(3)M为抛物线上BC之间的一点,N为线段BC上的一点,若MN∥y轴,求MN的最大值;(4)在抛物线的对称轴上是否存在点Q,使△ACQ为等腰三角形?若存在,求出符合条件的Q点坐标;若不存在,请说明理由.20.在一个不透明袋子中有1个红球、1 个绿球和n个白球,这些球除颜色外都相同.(1)从袋中随机摸出1个球,记录下颜色后放回袋子中并搅匀.经大量试验,发现摸到白球的频率稳定在0.75左右,求n的值;(2)当n=2时,把袋中的球搅匀后任意摸出2个球,用树状图或列表求摸出的2个球颜评卷人得分四、计算题个乒乓球分成两组,每组3个,每组乒乓球上面分别标有数字1,2,3,将这两组乒乓球分别放入两个盒子中搅匀,再从每个盒子中各随机取出1个乒乓球,请用画树状图(或列表)的方法,求取出的2个乒乓球上面数字之和为偶数的概率.答案1.C.2.B3.A4.D5.B.6.B7.A.8.A.9.D. 10.C 11.B12.2313.y=4(x-3)2-10 14.x≠215.9 16.11a-<<17.(1)200;(2)40%,63°;(3)作图见解析;(4)16.18.(1)树状图见解析;(2)P(恰好选中两名男学生)=319.(1)y=﹣14x2+32x+4,x=3;(2)△AOC∽△COB.理由见解析;(3)4;(4)点Q的坐标为(3,11)或(3,4113,0)20.(1)6;(2)用树状图或列表见解析;(3)P(摸出的2个球颜色不同)=5 621.取出的2个乒乓球上面数字之和为偶数的概率=5 9.。
二〇二三年初中学业水平模拟考试九年级数学试题(时间:120分钟分值:120分)注意事项:1.本试题分第Ⅰ卷和第Ⅱ卷两部分,第Ⅰ卷为选择题,30分;第Ⅱ卷为非选择题,90分;试题共8页。
2.答题卡共4页.答题前,考生务必将姓名、准考证号、座号等填写在试题和答题卡上,考试结束后上交答题卡。
3.第Ⅰ卷每题选出答案后,都必须用2B 铅笔把答题卡上对应题目的答案标号【ABCD】涂黑.如需改动,先用橡皮擦干净,再改涂其他答案.第Ⅱ卷按要求用0.5mm 碳素笔答在答题卡的相应位置上。
第Ⅰ卷(选择题共30分)一、选择题(本大题共10小题,在每小题给出的四个选项中,只有一项是正确的,请把正确的选项选出来.每小题选对得3分,选错、不选或选出的答案超过一个均记0分)1.中国人使用负数最早可追溯到两千多年前的秦汉时期,则12023的相反数为()A.2023-B.2023C.12023D.12023-2.下列运算正确的是()A.326a a a ⋅=B.734a a a ÷=C.()2236a a -=-D.()2211a a -=-3.如图,五边形ABCDE 是正五边形,若12l l ∥,则12∠-∠=()A.72︒B.36︒C.45︒D.47︒4.在数轴上表示不等式215x -≤-的解集,正确的是()A.B.C.D.5.下列说法正确的是()A.为检测一批灯泡的质量,应采取抽样调查的方式B.一组数据“1,2,2,5,5,3”的众数和平均数都是3C.若甲、乙两组数据的方差分别是0.09,0.1,则乙组数据比甲组数据更稳定D.“明天下雨概率为0.5”,是指明天有一半的时间可能下雨6.如图,AB 为⊙O 的直径,,C D 为⊙O 上两点,若40BCD ∠︒=,则ABD ∠的大小为()A.20°B.40°C.50°D.60°7.如图,射线DM 的端点D 在直线AB 上,点C 是射线DM 上不与点D 重合的一点,根据尺规作图痕迹,下列结论中不能体现的是()A.作一条线段等于已知线段B.作MDB ∠的平分线C.过点C 作AB 的平行线D.过点C 作DM 的垂线8.若关于x 的方程21322x m x x x +-+=--的解是正数,则m 的取值范围为()A.7m >-B.7m >-且3m ≠-C.7m <-D.7m >-且2m ≠-9.如图,Rt ABC △中,9034C AC BC ∠=︒==,,,直线l AB ⊥,将直线l 沿AB 方向从A 点平移到B 点,若直线l 交AB 于P ,交AC (或BC )于Q ,设AP x CQ y ==,,则下列图象中,能表示y 关于x 的函数关系的图象大致是()A.B.C.D.10.如图,在矩形ABCD 中,AC ,BD 相交于点O ,过点B 作BF AC ⊥于点M ,交CD 于点F ,过点D 作DE BF ∥交AC 于点N .交AB 于点E ,连接FN ,EM .有下列结论:①图中共有三个平行四边形;②当2BD BC =时,四边形DEBF 是菱形;③BD ME ⊥;④2AD BD CM =⋅.其中,正确结论的序号是()A.①②③B.①②④C.①③④D.②③④第Ⅱ卷(选择题共90分)二、填空题(本大题共8小题,其中11—14题每小题3分,15—18题每小题4分,共28分,只要求填写最后结果)11.春暖花开的四月,2023中国孙子文化园汉服花朝节开始了,做古装游戏,玩现代项目,成为研学圣地。
部编版九年级数学下册期中考试卷(加答案) 班级: 姓名:一、选择题(本大题共10小题,每题3分,共30分)1.﹣2020的倒数是( )A .﹣2020B .﹣12020C .2020D .120202.下列分解因式正确的是( )A .24(4)x x x x -+=-+B .2()x xy x x x y ++=+C .2()()()x x y y y x x y -+-=-D .244(2)(2)x x x x -+=+-3.下列说法正确的是( )A .一个数的绝对值一定比0大B .一个数的相反数一定比它本身小C .绝对值等于它本身的数一定是正数D .最小的正整数是14.夏季来临,某超市试销A 、B 两种型号的风扇,两周内共销售30台,销售收入5300元,A 型风扇每台200元,B 型风扇每台150元,问A 、B 两种型号的风扇分别销售了多少台?若设A 型风扇销售了x 台,B 型风扇销售了y 台,则根据题意列出方程组为( ) A .530020015030x y x y +=⎧⎨+=⎩B .530015020030x y x y +=⎧⎨+=⎩C .302001505300x y x y +=⎧⎨+=⎩D .301502005300x y x y +=⎧⎨+=⎩ 5.如图,数轴上两点A,B 表示的数互为相反数,则点B 表示的( )A .-6B .6C .0D .无法确定6.若关于x 的函数||(1)5m y m x =--是一次函数,则m 的值为( )A .±1B .1-C .1D .27.老师设计了接力游戏,用合作的方式完成分式化简,规则是:每人只能看到前一人给的式子,并进行一步计算,再将结果传递给下一人,最后完成化简.过程如图所示:接力中,自己负责的一步出现错误的是( )A .只有乙B .甲和丁C .乙和丙D .乙和丁8.如图,AD ,CE 分别是△ABC 的中线和角平分线.若AB=AC ,∠CAD=20°,则∠ACE 的度数是( )A .20°B .35°C .40°D .70°9.如图,一把直尺,60︒的直角三角板和光盘如图摆放,A 为60︒角与直尺交点,3AB =,则光盘的直径是( )A .3B .33C .6D .6310.两个一次函数1y ax b 与2y bx a ,它们在同一直角坐标系中的图象可能是( )A .B .C.D.二、填空题(本大题共6小题,每小题3分,共18分)1.64的立方根是____________.2.因式分解:3x3﹣12x=_______.3.若a,b都是实数,b=12a-+21a-﹣2,则a b的值为__________.4.把长方形纸片ABCD沿对角线AC折叠,得到如图所示的图形,AD平分∠B′AC,则∠B′CD=__________.5.如图,路灯距离地面8米,身高1.6米的小明站在距离灯的底部(点O)20米的A处,则小明的影子AM长为__________米.6.如图,将正方形OEFG放在平面直角坐标系中,O是坐标原点,点E的坐标为(2,3),则点F的坐标为__________.三、解答题(本大题共6小题,共72分)1.解分式方程:3213 xx x--=-2.在平面直角坐标系中,已知点()()()1,2.2,3.2,1A B C ,直线y x m =+经过点A .抛物线21y ax bx =++恰好经过,,ABC 三点中的两点.(1)判断点B 是否在直线y x m =+上.并说明理由;(2)求,a b 的值;(3)平移抛物线21y ax bx =++,使其顶点仍在直线y x m =+上,求平移后所得抛物线与y 轴交点纵坐标的最大值.3.如图,一次函数1y k x b =+的图象与反比例函数2k y x=的图象相交于A 、B 两点,其中点A 的坐标为()1,4-,点B 的坐标为()4,n .(1)根据图象,直接写出满足21k k x b x+>的x 的取值范围; (2)求这两个函数的表达式; (3)点P 在线段AB 上,且:1:2AOP BOP S S ∆∆=,求点P 的坐标.4.如图,在正方形ABCD 中,点E 是BC 的中点,连接DE ,过点A 作AG ED ⊥交DE 于点F ,交CD 于点G .(1)证明:ADG DCE ∆∆≌;(2)连接BF ,证明:AB FB =.5.近几年购物的支付方式日益增多,某数学兴趣小组就此进行了抽样调查.调查结果显示,支付方式有:A微信、B支付宝、C现金、D其他,该小组对某超市一天内购买者的支付方式进行调查统计,得到如下两幅不完整的统计图.请你根据统计图提供的信息,解答下列问题:(1)本次一共调查了多少名购买者?(2)请补全条形统计图;在扇形统计图中A种支付方式所对应的圆心角为度.(3)若该超市这一周内有1600名购买者,请你估计使用A和B两种支付方式的购买者共有多少名?6.某青春党支部在精准扶贫活动中,给结对帮扶的贫困家庭赠送甲、乙两种树苗让其栽种.已知乙种树苗的价格比甲种树苗贵10元,用480元购买乙种树苗的棵数恰好与用360元购买甲种树苗的棵数相同.(1)求甲、乙两种树苗每棵的价格各是多少元?(2)在实际帮扶中,他们决定再次购买甲、乙两种树苗共50棵,此时,甲种树苗的售价比第一次购买时降低了10%,乙种树苗的售价不变,如果再次购买两种树苗的总费用不超过1500元,那么他们最多可购买多少棵乙种树苗?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、B2、C3、D4、C5、B6、B7、D8、B9、D10、C二、填空题(本大题共6小题,每小题3分,共18分)1、22、3x (x+2)(x ﹣2)3、44、30°5、56、(﹣1,5)三、解答题(本大题共6小题,共72分)1、95x = 2、(1)点B 在直线y x m =+上,理由见详解;(2)a=-1,b=2;(3)543、(1)1x <-或04x <<;(2)4y x =-,3y x =-+;(3)27,33P ⎛⎫ ⎪⎝⎭4、(1)略;(2)略.5、(1)本次一共调查了200名购买者;(2)补全的条形统计图见解析,A种支付方式所对应的圆心角为108;(3)使用A和B两种支付方式的购买者共有928名.6、(1)甲种树苗每棵的价格是30元,乙种树苗每棵的价格是40元;(2)他们最多可购买11棵乙种树苗.。
2023年部编版九年级数学下册期中考试卷(及参考答案) 班级: 姓名:一、选择题(本大题共10小题,每题3分,共30分)1.﹣3的绝对值是( )A .﹣3B .3C .-13D .132.已知抛物线24y x bx =-++经过(2,)n -和(4, )n 两点,则n 的值为( )A .﹣2B .﹣4C .2D .43.在实数|﹣3|,﹣2,0,π中,最小的数是( )A .|﹣3|B .﹣2C .0D .π4.如图,数轴上有三个点A 、B 、C ,若点A 、B 表示的数互为相反数,则图中点C 对应的数是( )A .﹣2B .0C .1D .45.“凤鸣”文学社在学校举行的图书共享仪式上互赠图书,每个同学都把自己的图书向本组其他成员赠送一本,某组共互赠了210本图书,如果设该组共有x 名同学,那么依题意,可列出的方程是( )A .x (x+1)=210B .x (x ﹣1)=210C .2x (x ﹣1)=210D .12x (x ﹣1)=210 6.已知二次函数242y x x =-+,关于该函数在﹣1≤x ≤3的取值范围内,下列说法正确的是( )A .有最大值﹣1,有最小值﹣2B .有最大值0,有最小值﹣1C .有最大值7,有最小值﹣1D .有最大值7,有最小值﹣27.如图,△ABC 中,∠A=78°,AB=4,AC=6.将△ABC 沿图示中的虚线剪开,剪下的阴影三角形与原三角形不相似的是( )A .B .B .C .D .8.如图,AB 、是函数12y x=上两点,P 为一动点,作//PB y 轴,//PA x 轴,下列说法正确的是( )①AOP BOP ∆≅∆;②AOP BOP S S ∆∆=;③若OA OB =,则OP 平分AOB ∠;④若4BOP S ∆=,则16ABP S ∆=A .①③B .②③C .②④D .③④9.如图,点E 在CD 的延长线上,下列条件中不能判定AB ∥CD 的是( )A .∠1=∠2B .∠3=∠4C .∠5=∠BD .∠B +∠BDC =180°10.如图,E ,F 是平行四边形ABCD 对角线AC 上两点,AE=CF=14AC .连接DE ,DF 并延长,分别交AB ,BC 于点G ,H ,连接GH ,则ADG BGH S S △△的值为( )A .12B .23C .34D .1二、填空题(本大题共6小题,每小题3分,共18分)1.计算:124503⨯+=_____. 2.分解因式:ab 2﹣4ab+4a=________.3.抛物线23(1)8y x =-+的顶点坐标为____________.4.(2017启正单元考)如图,在△ABC 中,ED ∥BC ,∠ABC 和∠ACB 的平分线分别交ED 于点G 、F ,若FG =4,ED =8,求EB +DC =________.5.如图,路灯距离地面8米,身高1.6米的小明站在距离灯的底部(点O )20米的A 处,则小明的影子AM 长为__________米.6.如图,圆柱形玻璃杯高为12cm 、底面周长为18cm ,在杯内离杯底4cm 的点C 处有一滴蜂蜜,此时一只蚂蚁正好在杯外壁,离杯上沿4cm 与蜂蜜相对的点A 处,则蚂蚁到达蜂蜜的最短距离为___________cm .三、解答题(本大题共6小题,共72分)1.解方程:24111x x x -=--2.先化简,再求值:2(3)(1)(1)2(24)a a a a +-+--+,其中12a =-.3.如图,抛物线212y x bx c =-++过点(3,2)A ,且与直线72y x =-+交于B 、C 两点,点B 的坐标为(4,)m .(1)求抛物线的解析式;(2)点D 为抛物线上位于直线BC 上方的一点,过点D 作DE x ⊥轴交直线BC 于点E ,点P 为对称轴上一动点,当线段DE 的长度最大时,求PD PA +的最小值;(3)设点M 为抛物线的顶点,在y 轴上是否存在点Q ,使45AQM ︒∠=若存在,求点Q 的坐标;若不存在,请说明理由.4.如图,▱ABCD 的对角线AC ,BD 相交于点O .E ,F 是AC 上的两点,并且AE=CF ,连接DE ,BF .(1)求证:△DOE ≌△BOF ;(2)若BD=EF ,连接DE ,BF .判断四边形EBFD 的形状,并说明理由.5.某初级中学数学兴趣小组为了了解本校学生的年龄情况,随机调查了该校部分学生的年龄,整理数据并绘制如下不完整的统计图.依据以上信息解答以下问题:(1)求样本容量;(2)直接写出样本容量的平均数,众数和中位数;(3)若该校一共有1800名学生,估计该校年龄在15岁及以上的学生人数.6.某学校为了改善办学条件,计划购置一批电子白板和台式电脑.经招投标,购买一台电子白板比购买2台台式电脑多3000元,购买2台电子白板和3台台式电脑共需2.7万元.(1)求购买一台电子白板和一台台式电脑各需多少元?(2)根据该校实际情况,购买电子白板和台式电脑的总台数为24,并且台式电脑的台数不超过电子白板台数的3倍.问怎样购买最省钱?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、B2、B3、B4、C5、B6、D7、C8、B9、A10、C二、填空题(本大题共6小题,每小题3分,共18分)1、2、a (b ﹣2)2.3、(1,8)4、125、56、15.三、解答题(本大题共6小题,共72分)1、3x =2、13、(1)抛物线的解析式21722y x x =-++;(2)PD PA +;(3)点Q 的坐标:1(0,2Q 、2(0,2Q .4、(2)略;(2)四边形EBFD 是矩形.理由略.5、(1)样本容量为50;(2)平均数为14(岁);中位数为14(岁),众数为15岁;(3)估计该校年龄在15岁及以上的学生人数为720人.6、(1)购买一台电子白板需9000元,一台台式电脑需3000元;(2)购买电子白板6台,台式电脑18台最省钱.。
班级: 姓名:1.下列二次根式中,最简二次根式的是( )A .B . 0.5C . 5D . 50 52.已知 a 、b 、c 是△ABC 的三条边长,化简|a +b -c|-|c -a -b|的结果为( )A .2a +2b -2cB .2a +2bC .2cD .03.若 x 是 3 的相反数, |y|=4,则 x-y 的值是( )A .-7B .1C .-1 或 7D .1 或-74.今年一季度,河南省对“一带一路”沿线国家进出口总额达 214.7 亿元,数 据“214.7 亿”用科学记数法表示为( )A .2.147×102B .0.2147×103C .2.147×1010D .0.2147×10115.“凤鸣”文学社在学校举行的图书共享仪式上互赠图书,每个同学都把自己 的图书向本组其他成员赠送一本,某组共互赠了 210 本图书,如果设该组共有 x 名同学,那么依题意,可列出的方程是( )A .x (x+1)=210B .x (x ﹣ 1)=210C .2x (x ﹣ 1)=210D . x (x ﹣ 1)=210 26.定义运算: m ☆n = mn 2 一 mn 一 1.例如 : 4☆2 = 4 22 一 4 2 一 1 = 7 .则方程1☆x = 0 的根的情况为( )A .有两个不相等的实数根C .无实数根B .有两个相等的实数根 D .只有一个实数根 7.如图,直线 AB ∥CD ,则下列结论正确的是( )1 1A .∠1=∠2B .∠3=∠4C .∠1+∠3=180°D .∠3+∠4=180° a b( )A .B .C .D .9.如图,在平行四边形 ABCD 中, M 、N 是BD 上两点, BM = DN ,连接 AM 、MC 、CN 、NA ,添加一个条件,使四边形 AMCN 是矩形,这个条件是( )1A . OM = ACB . MB = MOC . BD 」AC D . 三AMB = 三CND 2 10.如图,点 P 是矩形ABCD 的对角线 AC 上一点,过点 P 作 EF∥B C ,分别交 AB ,CD 于E 、F ,连接 PB 、PD .若 AE=2,PF=8.则图中阴影部分的面积为( )A .10B .12C .16D .181.8 的立方根为___________.2.分解因式: 2x 2﹣ 8=_______.8.一次函数 y =ax +b 和反比例函数y = 在同一直角坐标系中的大致图象是 x3.若x2 + 2(m 一3)x + 16 是关于x 的完全平方式,则m = __________.4.如图 1 是一个由 1~28 的连续整数排成的“数阵”.如图 2,用2×2 的方框围住了其中的四个数,如果围住的这四个数中的某三个数的和是 27,那么这三个数是 a,b,c,d 中的__________.5.如图所示,一次函数 y=ax+b 的图象与 x 轴相交于点(2,0),与 y 轴相交于点(0,4),结合图象可知,关于 x 的方程 ax+b=0 的解是__________.46.如图,点 A 是反比例函数 y= (x>0)图象上一点,直线 y=kx+b 过点 A 并x且与两坐标轴分别交于点 B,C,过点 A 作AD⊥x 轴,垂足为 D,连接 DC,若△BOC 的面积是 4,则△DOC 的面积是__________.1.解方程:4xx2一9=1+2x一3一2.已知关于 x 的一元二次方程x2一(m 一3)x 一m = 0 .(1)求证:方程有两个不相等的实数根;(2)如果方程的两实根为x ,x ,且x 2 + x 2 一x x = 7 ,求 m 的值.1 2 1 2 1 23.如图,在 ABCD 中, E 是BC 的中点,连接 AE 并延长交DC 的延长线于点 F.(1)求证: AB=CF;(2)连接 DE,若 AD=2AB,求证: DE⊥AF.4.如图,以Rt△ABC 的AC 边为直径作⊙O 交斜边AB 于点E,连接EO 并延长交BC 的延长线于点D,点F 为BC 的中点,连接EF 和AD.(1)求证:EF 是⊙O 的切线;(2)若⊙O 的半径为 2,∠EAC=60°,求AD 的长.5.为了了解居民的环保意识,社区工作人员在光明小区随机抽取了若干名居民开展主题为“打赢蓝天保卫战”的环保知识有奖问答活动,并用得到的数据绘制了如图条形统计图:请根据图中信息,解答下列问题:(1)本次调查一共抽取了名居民;(2)求本次调查获取的样本数据的平均数、众数和中位数;(3)社区决定对该小区 500 名居民开展这项有奖问答活动,得 10 分者设为“一等奖”,请你根据调查结果,帮社区工作人员估计需准备多少份“一等奖”奖品.6.一商店销售某种商品,平均每天可售出 20 件,每件盈利40 元.为了扩大销售、增加盈利,该店采取了降价措施,在每件盈利不少于 25 元的前提下,经过一段时间销售,发现销售单价每降低 1 元,平均每天可多售出 2 件.(1)若降价 3 元,则平均每天销售数量为________件;(2)当每件商品降价多少元时,该商店每天销售利润为 1200 元?1、C2、D3、D4、C5、B6、A7、D8、A9、A10、C1、2.2、2 (x+2)(x ﹣ 2)3、7 或-14 、a ,b ,d 或a ,c ,d5、x=26、2 3 ﹣ 2.1、x=12、(1)证明见解析(2) 1 或 23、详略.4、(1)略;(2) AD=2 7 .5、(1) 50;(2)平均数是 8.26;众数为 8;中位数为 8;(3)需要一等奖奖品 100 份.6、(1) 26;(2)每件商品降价 10 元时,该商店每天销售利润为 1200 元.。
山东省临沂市罗庄区2023-2024学年九年级下学期期中考试数学试题学校:___________姓名:___________班级:___________考号:___________一、单选题1.2024的相反数是( ) A .2024B .2024-C .12024D .12024-2.光年是天文学中一种计量天体时空距离的长度单位,1光年约为9500000000000千米.将9500000000000千米用科学记数法表示为( ) A .119510⨯千米 B .129510⨯千米 C .139.510⨯千米D .129.510⨯千米3.如图所示标志中,既是轴对称图形,又是中心对称图形的是( )A .B .C .D .4.下列运算正确的是( ) A .236a a a ⋅=B .()2323ab a b =C .22224224b b a a ab ⎛⎫-=-+ ⎪⎝⎭D a =5.不透明的袋子中装有红、绿小球各两个,除颜色外四个小球无其他差别.从中随机摸出一个小球,不放回并摇匀,再从剩下的三个球中随机摸出一个小球,那么第一次摸到红球、第二次摸到绿球的概率是( )A .14B .13C .12D .346.如图,是一个长方体的三视图,若其俯视图为正方形,则这个长方体的高和底面边长分别为( )A .3,3B .2,2C .2,3D .3,27.如图,ABC V 是等边三角形,以点B 为圆心,任意长为半径画弧,交AC 于点E 、F .再分别以E 、F 为圆心,大于12EF 长为半径画弧,两弧交于点D .连接BD 交AC 于点G ,ABG ∠度数为( )A .15︒B .20︒C .25︒D .30︒8.如图1是装了液体的高脚杯示意图(数据如图),用去一部分液体后如图2所示,此时液面直径AB 的长度是( )A .2cmB .2.5cmC .3cmD .4cm9.如图,两个半径长均为1的直角扇形的圆心分别在对方的圆弧上,扇形CFD 的圆心C 是AB n的中点,且扇形CFD 绕着点C 旋转,半径AE CF 、交于点G ,半径BE CD 、交于点H ,则图中阴影面积等于( )A .12π- B .122π-C .1π-D .2π-10.如图,Rt ABC △中,2AC BC ==,正方形CDEF 的顶点D 、F 分别在AC BC 、边上,C 、D 两点不重合,设CD 的长度为x ,ABC V 与正方形CDEF 重叠部分的面积为y ,则下列图象能表示y 与x 之间的函数关系的是( )A .B .C .D .二、填空题11有意义,则a 的取值范围为_____________________. 12.关于x 的分式方程2112x x =-+的解为 . 13.因式分解:2228-=a b .14.如图,将菱形纸片ABCD 沿过点C 的直线折叠,使点D 落在射线CA 上的点E 处,折痕CP 交AD 于点P .若30,2ABC AP ∠=︒=,则PE 的长等于 .15.如图,小红家购置了一台圆形自动扫地机,放置在屋子角落(书柜、衣柜与地面均无缝隙).在没有障碍物阻挡的前提下,扫地机能自动从底座脱离后打扫全屋地面.若这台扫地机能从角落自由进出,则图中的x 至少为(精确到个位,参考数据: 4.58).16..如图一段抛物线:(3)(03)y x x x =--≤≤,记为1C ,它与x 轴交于点O 和1A ;将1C 绕1A 旋转180︒得到2C ,交x 轴于2A ;将2C 绕2A 旋转180︒得到3C ,交x 轴于3A ,如此进行下去,直至得到11C ,若点()2P m ,在第11段抛物线11C 上,则m 的值为 .三、解答题17.(1)计算:()202411()4cos 45132-+︒+- ;(2)解不等式组:()()21112213x x x x ⎧-≥+⎪⎨->-⎪⎩18.创建文明城市,构建美好家园.为提高垃圾分类意识,幸福社区决定采购A,B两种型号的新型垃圾桶.若购买3个A型垃圾桶和4个B型垃圾桶共需要580元,购买6个A型垃圾桶和5个B型垃圾桶共需要860元.(1)求两种型号垃圾桶的单价;(2)若需购买A,B两种型号的垃圾桶共200个,总费用不超过15000元,至少需购买A型垃圾桶多少个?19.随着科技的发展,无人机已广泛应用于生产生活,如代替人们在高空测量距离和高度.圆圆要测量教学楼AB的高度,借助无人机设计了如下测量方案:如图,圆圆在离教学楼底部C处,遥控无人机旋停在点C的正上方的点D处,测得教学楼AB的顶部B处的俯角为30︒,CD长为49.6米.已知目高CE为1.6米.(1)求教学楼AB的高度.(2)若无人机保持现有高度沿平行于CA的方向,以/秒的速度继续向前匀速飞行,求经过多少秒时,无人机刚好离开圆圆的视线EB.20.为庆祝中国共产党建党100周年,某校开展了以“学习百年党史,汇聚团结伟力”为主题A B C D E五个的知识竞赛,竞赛结束后随机抽取了部分学生成绩进行统计,按成绩分成,,,,等级,并绘制了如下不完整的统计图.请结合统计图,解答下列问题:(1)本次调查一共随机抽取了_________名学生的成绩,频数分布直方图中m=__________;(2)补全学生成绩频数分布直方图;(3)所抽取学生成绩的中位数落在________等级;(4)若成绩在80分及以上为优秀,全校共有2000名学生,估计成绩优秀的学生有多少人?21.如图,一次函数y=x+5的图象与反比例函数kyx=(k为常数且k≠0)的图象交于A(﹣2,a),B两点,与x轴交于点C.(1)求此反比例函数的表达式;(2)若点P在x轴上,且S△ACP=52S△BOC,求点P的坐标.(3)直接写出x+5﹣kx<0的解集.22.筒车是我国古代利用水力驱动的灌溉工具,车轮缚以竹简,旋转时低则舀水,高则泻水.如图,水力驱动筒车按逆时针方向转动,竹筒把水引至A 处,水沿射线AD 方向泻至水渠DE ,水渠DE 所在直线与水面PQ 平行;设筒车为O e ,O e 与直线PQ 交于P ,Q 两点,与直线DE 交于B ,C 两点,恰有2AD BD CD =⋅,连接,AB AC .(1)求证:AD 为O e 的切线;(2)若筒车的半径为4m ,,30AC BC C =∠=︒.当水面上升,A ,O ,Q 三点恰好共线时,求此时筒车中心O 到水面的距离(精确到0.1m 1.7≈).23.乒乓球被誉为中国国球.2023年的世界乒乓球锦标赛中,中国队包揽了五个项目的冠军,成绩的取得与平时的刻苦训练和精准的技术分析是分不开的.如图,是乒乓球台的截面示意图,一位运动员从球台边缘正上方以击球高度OA 为28.75cm 的高度,将乒乓球向正前方击打到对面球台,乒乓球的运行路线近似是抛物线的一部分.乒乓球到球台的竖直高度记为y (单位:cm ),乒乓球运行的水平距离记为x (单位:cm ).测得如下数据:(1)①当乒乓球到达最高点时,与球台之间的距离是 cm ,当乒乓球落在对面球台上时,到起始点的水平距离是 cm ; ②求满足条件的抛物线解析式;(2)技术分析:如果只上下调整击球高度OA ,乒乓球的运行轨迹形状不变,那么为了确保乒乓球既能过网,又能落在对面球台上,需要计算出OA 的取值范围,以利于有针对性的训练.如图②.乒乓球台长OB 为274cm ,球网高CD 为15.25cm .现在已经计算出乒乓球恰好过网的击球离度OA 的值约为1.27cm .请你计算出乒乓球恰好落在对面球台边缘点B 处时,击球高度的OA 值(乒乓球大小忽略不计). 24.综合与实践【问题情境】:数学活动课上,老师出示了一个问题:如图1,在正方形ABCD 中,E 是BC 的中点,AE EP ⊥,EP 与正方形的外角DCG ∠的平分线交于P 点.试猜想AE 与EP 的数量关系,并加以证明;(1)【思考尝试】同学们发现,取AB 的中点F ,连接EF 可以解决这个问题.请在图1中补全图形,解答老师提出的问题.(2)【实践探究】希望小组受此问题启发,逆向思考这个题目,并提出新的问题:如图2,在正方形ABCD 中,E 为BC 边上一动点(点E ,B 不重合),AEP △是等腰直角三角形,90AEP ∠=︒,连接CP ,可以求出DCP ∠的大小,请你思考并解答这个问题.(3)【拓展迁移】突击小组深入研究希望小组提出的这个问题,发现并提出新的探究点:如图3,在正方形ABCD 中,E 为BC 边上一动点(点E ,B 不重合),AEP △是等腰直角三角形,90AEP ∠=︒,连接DP .知道正方形的边长时,可以求出ADP △周长的最小值.当4AB =时,请你求出ADP △周长的最小值.。
2024年人教版九年级数学下册期中考试卷(附答案)一、选择题(每题1分,共5分)1.下列哪个数是质数?A. 11B. 12C. 13D. 142.下列哪个图形是轴对称图形?A. 正方形B. 长方形C. 梯形D. 圆3.下列哪个比例是正确的?A. 3:5 = 6:10B. 2:3 = 4:6C. 5:7 = 10:14D. 8:9 = 16:184.下列哪个函数是二次函数?A. y = 3x + 2B. y = x^2 + 2xC. y = 2x^3 + 3D. y = 4x^4 + 55.下列哪个数是实数?A. 3iB. 2iC. 5D. 4i二、判断题(每题1分,共5分)1.一个数的平方根是唯一的。
()2.等腰三角形的底角相等。
()3.分数的分子和分母同时乘以或除以同一个非零数,分数的值不变。
()4.二次函数的图像是抛物线。
()5.平行四边形的对角线互相平分。
()三、填空题(每题1分,共5分)1.一个数的立方根是指这个数的______。
2.两个相似三角形的对应边长之比叫做______。
3.一个数的平方根的平方等于这个数,这个数是______。
4.一个二次函数的一般形式是______。
5.一个实数的平方根有两个,一个是______,另一个是______。
四、简答题(每题2分,共10分)1.简述平行线的性质。
2.简述二次函数的顶点坐标。
3.简述等腰三角形的性质。
4.简述分数的化简方法。
5.简述实数的分类。
五、应用题(每题2分,共10分)1.一个等腰三角形的底边长为8cm,腰长为10cm,求这个三角形的面积。
2.一个二次函数的顶点坐标为(2, 3),求这个函数的一般形式。
3.一个分数的分子为6,分母为8,求这个分数的简化形式。
4.一个实数的平方根为3,求这个实数。
5.一个平行四边形的对角线长度分别为10cm和12cm,求这个平行四边形的面积。
六、分析题(每题5分,共10分)1.分析二次函数的图像特征。
2022-2023年部编版九年级数学下册期中考试题及答案【完整版】班级: 姓名:一、选择题(本大题共10小题,每题3分,共30分)1.下列二次根式中能与 )A B C D 2.已知a =2018x +2018,b =2018x +2019,c =2018x +2020,则a 2+b 2+c 2-ab -ac -bc 的值是( )A .0B .1C .2D .33.关于x 的一元二次方程2(3)0x k x k -++=的根的情况是( )A .有两不相等实数根B .有两相等实数根C .无实数根D .不能确定4.已知整式252x x -的值为6,则整式2x 2-5x+6的值为( ) A .9 B .12 C .18 D .245.已知平行四边形ABCD ,AC 、BD 是它的两条对角线,那么下列条件中,能判断这个平行四边形为矩形的是( )A .∠BAC=∠DCAB .∠BAC=∠DAC C .∠BAC=∠ABD D .∠BAC=∠ADB6.已知:等腰直角三角形ABC 的腰长为4,点M 在斜边AB 上,点P 为该平面内一动点,且满足PC =2,则PM 的最小值为( )A .2B . 2C .+2D .7.如图,某小区计划在一块长为32m ,宽为20m 的矩形空地上修建三条同样宽的道路,剩余的空地上种植草坪,使草坪的面积为570m 2.若设道路的宽为xm ,则下面所列方程正确的是( )A .(32﹣2x )(20﹣x )=570B .32x+2×20x=32×20﹣570C .(32﹣x )(20﹣x )=32×20﹣570D .32x+2×20x ﹣2x 2=5708.如图,已知AB AD =,那么添加下列一个条件后,仍无法判定ABC ADC ∆∆≌的是( )A .CB CD = B .BAC DAC ∠=∠C .BCA DCA ∠=∠D .90B D ∠=∠=︒9.如图,点E 在CD 的延长线上,下列条件中不能判定AB ∥CD 的是( )A .∠1=∠2B .∠3=∠4C .∠5=∠BD .∠B +∠BDC =180°10.如图,矩形ABCD 中,AB=8,BC=4.点E 在边AB 上,点F 在边CD 上,点G 、H 在对角线AC 上.若四边形EGFH 是菱形,则AE 的长是( )A .5B .5C .5D .6二、填空题(本大题共6小题,每小题3分,共18分)1.计算(6-18)×13+26的结果是_____________. 2.分解因式:33a b ab -=___________.3.已知a 、b 为两个连续的整数,且11a b <<,则a b +=__________.4.如图,直线AB ,CD 相交于点O ,EO ⊥AB 于点O ,∠EOD=50°,则∠BOC 的度数为__________.5.如图,△ABC 内接于☉O ,∠CAB=30°,∠CBA=45°,CD ⊥AB 于点D ,若☉O 的半径为2,则CD 的长为__________.6.如图1,点P 从△ABC 的顶点B 出发,沿B →C →A 匀速运动到点A ,图2是点P 运动时,线段BP 的长度y 随时间x 变化的关系图象,其中M 为曲线部分的最低点,则△ABC 的面积是__________.三、解答题(本大题共6小题,共72分)1.解方程23111x x x -=--2.先化简,再求值:222221412()x x x x x x x x-+-+÷-+,且x 为满足﹣3<x <2的整数.3.已知:如图,平行四边形ABCD,对角线AC与BD相交于点E,点G为AD的中点,连接CG,CG的延长线交BA的延长线于点F,连接FD.(1)求证:AB=AF;(2)若AG=AB,∠BCD=120°,判断四边形ACDF的形状,并证明你的结论.4.如图,AB为⊙O的直径,C为⊙O上一点,∠ABC的平分线交⊙O于点D,DE ⊥BC于点E.(1)试判断DE与⊙O的位置关系,并说明理由;(2)过点D作DF⊥AB于点F,若BE=33,DF=3,求图中阴影部分的面积.5.元旦期间,某超市开展有奖促销活动,凡在超市购物的顾客均有转动圆盘的机会(如图),如果规定当圆盘停下来时指针指向8就中一等奖,指向2或6就中二等奖,指向1或3或5就中纪念奖,指向其余数字不中奖.(1)转动转盘中奖的概率是多少?(2)元旦期间有1000人参与这项活动,估计获得一等奖的人数是多少?6.俄罗斯世界杯足球赛期间,某商店销售一批足球纪念册,每本进价40元,规定销售单价不低于44元,且获利不高于30%.试销售期间发现,当销售单价定为44元时,每天可售出300本,销售单价每上涨1元,每天销售量减少10本,现商店决定提价销售.设每天销售量为y本,销售单价为x元.(1)请直接写出y与x之间的函数关系式和自变量x的取值范围;(2)当每本足球纪念册销售单价是多少元时,商店每天获利2400元?(3)将足球纪念册销售单价定为多少元时,商店每天销售纪念册获得的利润w 元最大?最大利润是多少元?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、B2、D3、A4、C5、C6、B7、A8、C9、A10、C二、填空题(本大题共6小题,每小题3分,共18分)12、ab(a+b)(a﹣b).3、74、140°56、12三、解答题(本大题共6小题,共72分)1、2x=2、-53、(1)略;(2)结论:四边形ACDF是矩形.理由略.4、(1)DE与⊙O相切,理由略;(2)阴影部分的面积为25、(1)34;(2)1256、(1)y=﹣10x+740(44≤x≤52);(2)当每本足球纪念册销售单价是50元时,商店每天获利2400元;(3)将足球纪念册销售单价定为52元时,商店每天销售纪念册获得的利润w元最大,最大利润是2640元.。
九年级下册期中测试卷附答案一、选择题(每题3分,共30分)1.若反比例函数y =kx (k ≠0)的图象经过点P (-2,3),则该函数的图象不经过...的点是( ) A .(3,-2)B .(1,-6)C .(-1,6)D .(-1,-6)2.如图,点B 在反比例函数y =2x (x >0)的图象上,过点B 分别向x 轴、y 轴作垂线,垂足分别为A ,C ,则矩形OABC 的面积为( ) A .1B .2C .3D .4(第2题) (第5题) (第6题) (第8题) 3.【教材P 34练习T 3变式】要制作两个形状相同的三角形框架,其中一个三角形框架的三边长分别为5 cm ,6 cm 和9 cm ,另一个三角形框架的最短边长为2.5 cm ,则它的最长边长为( ) A .3 cmB .4 cmC .4.5 cmD .5 cm4.关于反比例函数y =2x ,下列说法正确的是( )A .图象经过点(1,1)B .图象的两个分支位于第二、四象限C .图象的两个分支关于x 轴成轴对称D .当x <0时,y 随x 的增大而减小5.【教材P 48探究变式】如图,在平面直角坐标系xOy 中,以原点O 为位似中心,将△OAB 缩小到原来的12,得到△OA ′B ′.若点A 的坐标是(-2,4),则点A ′的坐标是( ) A .(1,2)B .(1,-2)C .(-1,2)D .(-2,1)6.如图,已知四边形ABCD 是平行四边形,点E 在CD 上,AE ,BD 相交于点F ,若DEEC =23,且DF =4,则BD 的长为( )A.10 B.12 C.14 D.167.【教材P9习题T8改编】在同一直角坐标系中,函数y=kx和y=kx-3的图象大致是()8.如图,△ABC的三个顶点分别为A(1,2),B(4,2),C(4,4).若反比例函数y=kx在第一象限内的图象与△ABC有交点,则k的取值范围是()A.1≤k≤4 B.2≤k≤8 C.2≤k≤16 D.8≤k≤16 9.如图,小明同学用自制的直角三角形纸板DEF测量树的高度AB,他调整自己的位置,设法使斜边DF保持水平,并且边DE与点B在同一直线上,已知纸板的两条直角边DE=40 cm,EF=20 cm,测得边DF离地面的高度AC=1.5 m,CD=8 m,则树高AB是()A.5 m B.5.5 m C.6 m D.6.5 m(第9题)(第10题)10.如图,在四边形ABCD中,∠B=90°,AC=4,AB∥CD,DH垂直平分AC,点H为垂足.设AB=x,AD=y,则y关于x的函数关系用图象大致可以表示为()二、填空题(每题3分,共24分)11.已知y与x+3成反比例,当x=2时,y=3,则y与x的函数关系式为____________.12.【教材P7例4改编】如图所示是反比例函数y=m-2x的图象的一支,则常数m的取值范围是________.(第12题)(第13题)(第14题)(第15题) 13.如图,B(3,-3),C(5,0),以OC,CB为边作▱OABC,则经过点A的反比例函数图象的解析式为__________.14.如图,火焰AC通过纸板EF上的一个小孔O照射到屏幕上形成倒立的实像,像的长度BD=2 cm,OA=60 cm,OB=20 cm,则火焰AC的长为__________.15.如图,在△ABC中,DE∥BC,DB=2AD,△ADE的面积为1,则四边形DBCE 的面积为________.16.如图,在矩形ABCD中,E是边AB的中点,DE交对角线AC于点F.若AB=4,AD=3,则CF=________.(第16题)(第17题)(第18题)17.如图,△AOB是直角三角形,∠AOB=90°,OB=2OA,点A在反比例函数y=1x的图象上.若点B在反比例函数y=kx的图象上,则k的值为________.18.如图,在△ABC中,∠C=90°,AC=6,BC=8,D为AB上任意一点,且DE ⊥BC于点E,DF⊥AC于点F.设DE=x,y为△BDE与△ADF的面积和,则当x=________时,y取最小值,最小值是________.三、解答题(19~21题每题10分,其余每题12分,共66分)19.如图,在△ABC中,D为AC边上一点,∠DBC=∠A.(1)求证△BDC∽△ABC;(2)若BC=4,AC=8,求CD的长.20.如图,一次函数y=-x+5的图象与反比例函数y=kx(k≠0)在第一象限的图象交于A(1,n)和B两点.(1)求反比例函数的解析式;(2)在第一象限内,当一次函数y=-x+5的值大于反比例函数y=kx(k≠0)的值时,求自变量x的取值范围.21.一辆汽车匀速通过某段高速公路,所需时间t(单位:h)与行驶速度v(单位:km/h)满足函数关系式:t=kv,其图象为如图所示的一段曲线,且端点为A(80,2),B(m,1).(1)求k与m的值;(2)受天气影响,若行驶速度不得超过120 km/h,则汽车通过该路段最少需要多长时间?22.如图,点D 在以AB 为直径的⊙O 上,AD 平分∠BAC ,DC ⊥AC ,过点B 作⊙O 的切线交AD 的延长线于点E . (1)求证:直线CD 是⊙O 的切线; (2)求证CD ·BE =AD ·DE .23.如图,直线y =2x +6与反比例函数y =kx (x >0)的图象交于点A (1,m ),与x轴交于点B ,平行于x 轴的直线y =n (0<n <6)交反比例函数的图象于点M ,交AB 于点N ,连接BM .(1)求m 的值和反比例函数的解析式;(2)直线y =n 沿y 轴方向平移,当n 为何值时,△BMN 的面积最大?24.如图,矩形OABC的顶点A,C分别在x轴和y轴上,点B的坐标为(2,3),反比例函数y=kx(x>0)的图象经过BC上的点D,与AB交于点E,E是AB的中点,连接DE.(1)求D点的坐标;(2)点F是OC边上一点,若△FBC和△DEB相似,求直线BF的解析式.答案一、1.D 2.B 3.C 4.D 5.B 6.C 7.B 8.C9.B 点拨:易证△DEF ∽△DCB ,则DE CD =EF BC .∵DE =40 cm =0.4 m ,CD =8 m ,EF =20 cm =0.2 m , ∴0.48=0.2BC ,解得BC =4 m. ∴AB =BC +AC =4+1.5=5.5(m). 即树高AB 是5.5 m.10.D 点拨:∵DH 垂直平分AC ,AC =4,∴DA =DC ,AH =HC =2.∴∠DAC =∠DCH .∵CD ∥AB ,∴∠DCA =∠BAC . ∴∠DAH =∠BAC . 又∵∠DHA =∠B =90°, ∴△DAH ∽△CAB . ∴AD AC =AH AB . ∴y 4=2x .∴y =8x .∵0<AB <AC ,∴0<x <4. ∴图象是D.二、11.y =15x +3 12.m >2 13.y =6x14.6 cm 15.8 16.10317.-4 点拨:过点A ,B 分别作AC ⊥x 轴,BD ⊥x 轴,垂足分别为C ,D .易得△ACO ∽△ODB ,故BD OC =OD AC =OBOA =2.设A 点坐标为(m ,n ), ∴BD =2m , OD =2n .∵点A 在反比例函数y =1x 的图象上,∴mn =1.∵点B 在反比例函数y =kx 的图象上,且B 点的坐标是(-2n ,2m ), ∴k =-2n ·2m =-4mn =-4.18.3;12 点拨:根据条件可知,△BED ∽△BCA ,∴DE AC =BE BC ,即x 6=BE8.∴BE =43x .∴EC =8-43x .∴y =12×6×8-⎝ ⎛⎭⎪⎫8-43x x =43x 2-8x +24(0<x <6).整理,得y =43(x -3)2+12. ∵43>0,∴当x =3时,y 有最小值12.三、19.(1)证明:∠DBC =∠A ,∠BCD =∠ACB ,∴△BDC ∽△ABC . (2)解:∵△BDC ∽△ABC , ∴BC AC =DC BC . ∵BC =4,AC =8, ∴CD =2.20.解:(1)∵一次函数y =-x +5的图象过点A (1,n ),∴n =-1+5=4. ∴点A 的坐标为(1,4).∵反比例函数y =kx (k ≠0)的图象过点A (1,4), ∴k =4.∴反比例函数的解析式为y =4x . (2)联立得方程组⎩⎪⎨⎪⎧y =-x +5,y =4x,解得⎩⎨⎧x =1,y =4或⎩⎨⎧x =4,y =1,即点B 的坐标为(4,1).由题图可知,在第一象限内,当一次函数y =-x +5的值大于反比例函数y =kx (k ≠0)的值时,x 的取值范围为1<x <4.21.解:(1)将点A (80,2)的坐标代入t =k v ,得2=k80,解得k =160.∴t 与v 之间的函数关系式为t =160v . 当t =1时,v =160, ∴m =160.(2)令v =120,得t =160120=43.结合题中函数图象可知,汽车通过该路段最少需要43 h. 22.证明:(1)如图,连接OD .∵AD 平分∠BAC , ∴∠CAD =∠BAD . ∵OA =OD , ∴∠BAD =∠ADO . ∴∠CAD =∠ADO . ∴AC ∥OD .∵CD ⊥AC ,∴CD ⊥OD . ∴直线CD 是⊙O 的切线.(2)如图,连接BD .∵BE 是⊙O 的切线,AB 为⊙O 的直径, ∴∠ABE =∠ADB =∠BDE =90°. ∴∠EAB +∠E =∠DBE +∠E =90°. ∴∠EAB =∠DBE .又∵∠CAD =∠BAD , ∴∠CAD =∠DBE . ∵CD ⊥AC , ∴∠C =∠BDE =90°. ∴△ACD ∽△BDE . ∴CD DE =AD BE . ∴CD ·BE =AD ·DE .23.解:(1)∵直线y =2x +6经过点A (1,m ),∴m =2×1+6=8. ∴A (1,8).∵反比例函数图象经过点A (1,8), ∴8=k1,即k =8.∴反比例函数的解析式为y =8x .(2)由题意知点M ,N 的坐标为M ⎝ ⎛⎭⎪⎫8n ,n ,N ⎝ ⎛⎭⎪⎫n -62,n .∵0<n <6,∴n -62<0.∴S △BMN =12×(|n -62|+|8n |)×n =12×(-n -62+8n )×n =-14(n -3)2+254. ∴当n =3时,△BMN 的面积最大. 24.解:(1)∵四边形OABC 是矩形,∴OA =BC ,AB =OC . ∵B (2,3),E 为AB 的中点,∴AB =OC =3,OA =BC =2,AE =BE =12AB =32. ∴E ⎝ ⎛⎭⎪⎫2,32. ∴k =2×32=3.∴双曲线的解析式为y =3x .∵点D 在双曲线y =3x (x >0)上,∴OC ·CD =3.∴CD =1.∴点D 的坐标为(1,3).(2)∵BC =2,CD =1,∴BD =1.分两种情况:①△FBC 和△DEB 相似,当BD 和BC 是对应边时,BD BE =BC CF ,即132=2CF ,∴CF =3.∴F (0,0),即F 与O 重合.此时设直线BF 的解析式为y =bx ,把点B (2,3)的坐标代入,得b =32,∴直线BF 的解析式为y =32x .②△FBC 和△DEB 相似,当BD 与CF 是对应边时,BD BE =CF BC ,即132=CF 2,∴CF =43.∴OF =3-43=53.∴F ⎝ ⎛⎭⎪⎫0,53. 此时设直线BF 的解析式为y =ax +c ,把B (2,3),F ⎝ ⎛⎭⎪⎫0,53的坐标代入,得⎩⎪⎨⎪⎧2a +c =3,c =53,解得⎩⎪⎨⎪⎧a =23,c =53,∴直线BF 的解析式为y =23x +53.综上所述,若△FBC 和△DEB 相似,则直线BF 的解析式为y =32x 或y =23x +53.。
黑龙江省哈尔滨市巴彦县2023-2024学年九年级下学期数学期中测试题考生须知:1、本试卷满分为120分,考试时间为120分钟。
2、答题前,考生先将自己的“姓名”、“考号”、“考场”、“座位号”在答题卡上填写清楚,将“条形码”准确粘贴在条形码区域内。
3、请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题纸上答题无效。
4、选择题必须使用2B 铅笔填涂:非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。
5、保持卡面整洁,不要折叠、不要弄脏、弄皱,不准使用涂改液、刮纸刀。
(共30分,每题3分)涂卡一、单选题1.下列函数中,y 是x 的反比例函数的是( )A .B .C .D .2y x=3y x =+1y x=2y x=2.下列两个图形一定相似的是( )A .两个正方形B .两个等腰三角形C .两个直角三角形D .两个菱形3.如图,在中,高、相交于点F .图中与一定相似的三角形有( ABC BD CE AEC △)A .1个B .2个C .3个D .4个4.若△ABC ∽△DEF ,且△ABC 与△DEF 的面积比是,则△ABC 与△DEF 的对应高的比为94( )A .B .C .D .23811694325.若反比例函数的图象经过点,则这个反比例函数的图象还经过点( )ky x =()1,2-A .B .C .D .()2,1--1,12⎛⎫- ⎪⎝⎭()2,1-1,12⎛⎫ ⎪⎝⎭6.如图,已知,那么添加下列一个条件后,仍无法判定的是12∠=∠ABC ADE △△∽( )A .B .C .D .B ADE∠=∠AC BCAE DE =AB ACAD AE =C E∠=∠7.的三边长分别为5、12、13,与它相似的的最短边长为15,则的最长ABC DEF DEF 边的长度为( )A .39B .C .36D .231338.若点都在反比例函数的图象上,则a ,b ,c 的大小关(3,),(1,),(2,)A a B b C c --()0<ky k x =系用“<”连接的结果为( )A .B .C .D .b a c<<c b a<<a b c <<c<a<b9.如图,已知,则下列比例式中错误的是( )DE BC EF AB ∥,∥A .B .C .D .AD BFAB BC =EF CEAB CA =CE CACF CB =DE AEBC EC =10.如图,四边形、都是正方形,点G 在线段上,连接、,和ABCD CEFG CD BG DE DE 相交于点O ,设,,下列结论:①;②;③FG 5AB =2CG =BCG DCE △△≌BG DE ⊥;④,其中结论正确的个数是( )DG GO GC CE=49EFO DGO S S =△△A .4个B .3个C .2个D .1个(共30分,每题3分)二、填空题11.点在反比例函数的图像上,则m 的值为.(,2)A m 4y x =12.若,则.3060ABC DEF A B ∠=︒∠=︒ ∽,,D ∠=13.已知两个相似三角形对应角平分线的比为,那么这两个三角形对应高的比是.4:314.若,则的值为.23x y =x y y +15.如图,在中,,,,,则的长.ABC DE BC∥3AD =5BD =12AC =AE 16.如图,中,,,垂足为点D ,,,则的长ABC 90ACB ∠=︒CD AB ⊥4=AD 6CD =BD 为.17.如图,小树AB 在路灯O 的照射下形成投影BC .若树高AB =2m ,树影BC =3m ,树与路灯的水平距离BP =4m .则路灯的高度OP 为m .18.如图,在平行四边形ABCD 中,点E 在DC 上,若,则= .:1:2DE EC =:AF FC19.在平行四边形ABCD 中,AB=10,AD=6,E 是AD 的中点,在直线AB 上取一点F ,使△CBF 与△CDE 相似,则BF 的长为20.如图,四边形ABCD 中,∠ADC =∠ABC =90°,连接AC 、BD ,作DF ⊥AC ,交AC 于点E ,交BC 于点F ,∠ADB =2∠DBC ,若BC DF =AB 的长为.三、解答题(共60分,21,22每题7分,23,24每题8分,25,26,27,每题10分)21.如图,,且,求证:.AB AE AD AC ⋅=⋅12∠=∠ABC ADE △△∽22.如图是小明设计用手电来测量某古城墙高度的示意图,点P 处放一水平的平面镜,光线从点A 出发经平面镜反射后刚好射到古城墙的顶端C 处,已知,,且CD AB BD ⊥CD BD ⊥测得米,米,米,求该古城墙的高度.1.2AB = 1.8BP =12PD =23.如图,某公园内有一棵大树,为测量树高,小明C 处用侧角仪测得树顶端A 的仰角为30°,已知侧角仪高DC=1.4m ,BC=30米,请帮助小明计算出树高AB .24.如图,已知一次函数y =kx +b 的图象与反比例函数的图象交于A 、B 两点,且8y x =-点A 的横坐标和点B 的纵坐标都是-2.求:(1)一次函数的解析式; (2)△AOB 的面积.25.某船以每小时36海里的速度向正东方向航行,在点A 测得某岛C 在北偏东60°方向上,航行半小时后到达点B ,测得该岛在北偏东30°方向上,已知该岛周围16海里内有暗礁.(1)试说明点B 是否在暗礁区域外?(2)若继续向东航行有无触礁危险?请说明理由.26.如图:在△AOB 中,∠AOB=90°,OA=12cm ,AB=点P 从O 开始沿OA 边向点A 以2cm/s(厘米/秒)的速度移动;点Q 从点B 开始沿BO 边向点O 以1cm/s 的速度移动,如果P 、Q 同时出发,用x(秒)表示时间(0≤x≤6),那么:(1)点Q 运动多少秒时,△OPQ 的面积为5cm 2;(2)当x 为何值时,以P 、O 、Q 为顶点的三角形与△AOB 相似?27.如图所示,平面直角坐标系中,O 为坐标原点,点A 为x 轴正半轴上的点,点B 为y 轴负半轴上的点,点,,,连接.()0,4C ()6,0A ()0,2B -AB(1)求直线的解析式;AB (2)点P 为线段上一点,分别连接、,设的面积为S ,若点P 的横坐标为OA AC PC APC △t ,试用含t 的代数式表示S ;(3)在(2)的条件下,当时,求S 的值.2OCP OAB ∠=∠九下数学期中答案:1.C2.A3.C4.D5.C6.B7.A8.D10.B ①∵四边形、都是正方形, ABCD CEFG ∴,90BC DC CG CE BCD ECG ==∠=∠=︒,,∴,BCG DCE ∠=∠在和中,BCG DCE △,BC DCBCG DCE CG CE =⎧⎪∠=∠⎨⎪=⎩∴,()SAS BCG DCE ≌故①正确;②延长交于点H ,BGDE ∵,BCG DCE ≌△△∴,CBG CDE ∠=∠又∵,,90CBG BGC ∠+∠=︒BGC DGH ∠=∠∴,90CDE DGH ∠+∠=︒∴,90DHG ∠=︒∴;BH DE ⊥∴.BG DE ⊥故②正确;③∵四边形是正方形,GCEF ∴,GF CE ∥∴,,DGO DCE DOG DEC ∠=∠∠=∠∴,DGO DCE ∽△△∴,DG GO DC CE =∴是错误的.DG GOGC CE =故③错误;④∵,DC EF ∥∴,GDO OEF ∠=∠∵,GOD FOE ∠=∠∴,OGD OFE ∽∵,,四边形、都是正方形,5AB =2CG =ABCD CEFG ∴,5,2CD AB EF CG ====∴,3DG CD CG =-=∴, 222439()()EFO DGO EF S DG S === 故④正确;综上可知,正确的是①③④,故选:B .11.212./30度14.16.917.18.30︒531433:2为平行四边形ABCD ,AB DC ∴∥AB DC =∴ABF ECF ∽△△AF AB FC EC∴=:1:2DE EC = :2:3EC DC ∴=:2:3EC AB ∴=32AB AF EC FC ∴==故3:219.或2095解:∵在平行四边形ABCD 中,AB=10,AD=6,E 是AD 的中点∴AE=DE=3,AB=DC=10,AD=BC=6∵△CBF 与△CDE 相似∴=,或=CB CD BF DE CB ED BF DC∴=,或=6103BF 6310BF 解得:BF=或2095故答案为或20.9520.如图,过D 作DG ⊥AB 于G ,DN ⊥BC 交BC 的延长线于N ,∵∠AGD=∠ABC=90°,∴DG ∥BC ,∴∠DBC=∠BDG ,∵∠ADB=2∠DBC ,∴∠ADG=∠BDG ,∵DG ⊥AB ,∴AG=BG ,∵∠N=∠ABC=∠DGB=90°,∴四边形DGBN 是矩形,∴DN=BG ,设DN=a ,则AB=2a ,∵DF ⊥AC ,∴∠FEC=∠ACB+∠CFE=90°,∵∠ACB+∠CAB=90°,∴∠CFE=∠CAB ,∵∠N=∠ABC=90°,∴△FDN ∽△ACB ,∴,DN FN BC AB =2FN a=Rt△DFN 中,由勾股定理得:DF 2=DN 2+FN 2,∴,222a =+设a 2=b ,则50=b+,24812b 8b 2+81b ﹣4050=0,(b ﹣18)(8b+225)=0,b 1=18,b 2=﹣(舍),2258∴a 2=18,∵a >0,∴,∴故21.证明: ,AB AE AD AC ⋅=⋅ .∴AB ACAD AE =又,12∠=∠ ,即,21BAE BAE ∴∠+∠=∠+∠BAC DAE ∠=∠∴.ABC ADE △△∽22.解:根据题意得,APB CPD ∠=∠∵,,AB BD ⊥CD BD ⊥∴,90ABP CDP ∠=∠=︒∴,Rt Rt ABP CDP ∽△△∴,即,AB BP CD DP = 1.2 1.812CD =解得.8CD =答:该古城墙的高度为8米.23.解:过D 作DE ⊥AB 于E ,∵在C 处用测角仪测得树顶端A 的仰角为30°,∴∠1=30°,ED=CB=30m ,AD=2AE ,在△AED 中,AE 2+ED 2=AD 2,即AE 2+302=(2 AE)2,解得:AE=∵DC=1.4m ,则树高,答:树高AB约为()米.24.解:(1)把代入中,得2A x =-8y x =-4A y =∴ 点()2,4A -把代入中,得2B y =-8y x =-4B x =∴ 点()4,2B -把两点的坐标代入中,得AB 、y kx b =+ 解得42,24.k b k b ⎧⎨-⎩=-+=+1,2.k b ⎧⎨⎩=-=∴ 所求一次函数的解析式为2y x =-+(2)当时,,0y =2x ∽∴与轴的交点为 ,即2y x =-+x ()2,0M 2OM =∴AOB AOM BOM S S S ∆∆∆=+1122A B OM y OM y ⋅⋅⋅⋅=+=611242222⨯⨯⨯⨯=+25.解:(1)作CD ⊥AB 于D 点,设BC 为x 海里,在Rt △BCD 中∠CBD =60°,∴BD =x 海里.CD海里.12在Rt △ACD 中∠CAD =30°tan ∠CAD =CD AD解得x =18.∵18>16,∴点B 是在暗礁区域外;(2)∵CD =∵16,∴若继续向东航行船有触礁的危险.26.解:(1)∵∠AOB=90°∴BO 2=AB 2-AO 2∴BO=6.在Rt △OPQ 中,OQ=6-x ,OP=2x ,OQ·OP=5,12可求得x 1=1,x 2=5.(2)当△OPQ ∽△OAB 时,=,即=,解得x=3秒;OP OA OQ OB 2x 126x6-当△OPQ ∽△OBA,= ,即=,解得x=秒.OP OB OQOA 2x 66x 12-65综上所述,当x=3秒或秒时,以P 、O 、Q 为顶点的三角形与△AOB 相似6527.(1)解:设直线的解析式为,AB y kx b =+将,代入解析式,得:,()6,0A ()0,2B -602k b b +=⎧⎨=-⎩解得:,132k b ⎧=⎪⎨⎪=-⎩直线的解析式为;∴AB 123y x =-(2)解:,,()0,4C ()6,0A ,,4OC ∴=6OA =点P 的横坐标为t ,,OP t ∴=,6AP OA OP t ∴=-=-;()()11642612222S AP OC t t t ∴=⋅=-⨯=-=-(3)解:取中点E ,过点E ,作交轴于点D ,AB DE AB ⊥x ,,,()0,4C ()6,0A ()0,2B -,,,4OC ∴=6OA =2OB =是的垂直平分线,DE AB ,AD BD ∴=,ABD BAD ∴∠=设,则,OD x =6BD AD OA OD x ==-=-由勾股定理得:,222OB OD BD +=,()22226x x ∴+=-解得:,83x =,83OD ∴=,,2ODB ABD BAD BAD ∠=∠+∠=∠Q 2OCP OAB ∠=∠,OCP ODB ∴∠=∠,90COP BOD ∠=∠=︒Q ,COP DOB ∴V V ∽,OC OP OD OB ∴=,42383OC OB OP OD⋅⨯∴===.12236S ∴=-⨯=。
2023年人教版九年级数学下册期中考试卷附答案 班级: 姓名:一、选择题(本大题共10小题,每题3分,共30分)1.一5的绝对值是( )A .5B .15C .15-D .-52.已知a ,b 满足方程组51234a b a b +=⎧⎨-=⎩则a+b 的值为( ) A .﹣4 B .4 C .﹣2 D .23.若x 是3的相反数,|y|=4,则x-y 的值是( )A .-7B .1C .-1或7D .1或-74.直线y x a =+不经过第二象限,则关于x 的方程2210ax x ++=实数解的个数是( ).A .0个B .1个C .2个D .1个或2个5.若长度分别为,3,5a 的三条线段能组成一个三角形,则a 的值可以是( )A .1B .2C .3D .86.已知二次函数242y x x =-+,关于该函数在﹣1≤x ≤3的取值范围内,下列说法正确的是( )A .有最大值﹣1,有最小值﹣2B .有最大值0,有最小值﹣1C .有最大值7,有最小值﹣1D .有最大值7,有最小值﹣2 7.如图,抛物线2144y x =-与x 轴交于A 、B 两点,P 是以点C (0,3)为圆心,2为半径的圆上的动点,Q 是线段PA 的中点,连结OQ .则线段OQ 的最大值是( )A .3B .412C .72D .48.如图,已知BD 是ABC 的角平分线,ED 是BC 的垂直平分线,90BAC ∠=︒,3AD =,则CE 的长为( )A .6B .5C .4D .339.如图,有一块含有30°角的直角三角形板的两个顶点放在直尺的对边上.如果∠2=44°,那么∠1的度数是( )A .14°B .15°C .16°D .17°10.如图,E ,F 是平行四边形ABCD 对角线AC 上两点,AE=CF=14AC .连接DE ,DF 并延长,分别交AB ,BC 于点G ,H ,连接GH ,则ADG BGHS S △△的值为( )A .12B .23C .34D .1二、填空题(本大题共6小题,每小题3分,共18分)1.16的平方根是__________.2.因式分解:x 3﹣4x=_______.3.若函数y=mx 2+2x+1的图象与x 轴只有一个公共点,则常数m 的值是_____.4.如图,在Rt △ACB 中,∠ACB =90°,∠A =25°,D 是AB 上一点,将Rt △ABC沿CD 折叠,使点B 落在AC 边上的B ′处,则∠ADB ′等于______.5.如图,在矩形ABCD 中,AB=3,AD=5,点E 在DC 上,将矩形ABCD 沿AE 折叠,点D 恰好落在BC 边上的点F 处,那么cos ∠EFC 的值是__________.6.如图,在菱形ABCD 中,对角线,AC BD 交于点O ,过点A 作AH BC ⊥于点H ,已知BO=4,S 菱形ABCD =24,则AH =__________.三、解答题(本大题共6小题,共72分)1.计算:(1)sin30°﹣(π﹣3.14)0+(﹣12)﹣2 (2)解方程;13223x x =--2.已知a 、b 、c 满足2225(32)0a b c ---=(1)求a 、b 、c 的值.(2)试问:以a 、b 、c 为三边长能否构成三角形,如果能,请求出这个三角形的周长,如不能构成三角形,请说明理由.3.如图,已知二次函数y=ax2+2x+c的图象经过点C(0,3),与x轴分别交于点A,点B(3,0).点P是直线BC上方的抛物线上一动点.(1)求二次函数y=ax2+2x+c的表达式;(2)连接PO,PC,并把△POC沿y轴翻折,得到四边形POP′C,若四边形POP′C为菱形,请求出此时点P的坐标;(3)当点P运动到什么位置时,四边形ACPB的面积最大?求出此时P点的坐标和四边形ACPB的最大面积.4.如图,已知P是⊙O外一点,PO交圆O于点C,OC=CP=2,弦AB⊥OC,劣弧AB的度数为120°,连接PB.(1)求BC的长;(2)求证:PB是⊙O的切线.5.甲、乙两家快递公司揽件员(揽收快件的员工)的日工资方案如下:甲公司为“基本工资+揽件提成”,其中基本工资为70元/日,每揽收一件提成2元;乙公司无基本工资,仅以揽件提成计算工资.若当日揽件数不超过40,每件提成4元;若当日搅件数超过40,超过部分每件多提成2元.如图是今年四月份甲公司揽件员人均揽件数和乙公司搅件员人均揽件数的条形统计图:(1)现从今年四月份的30天中随机抽取1天,求这一天甲公司揽件员人均揽件数超过40(不含40)的概率;(2)根据以上信息,以今年四月份的数据为依据,并将各公司揽件员的人均揽件数视为该公司各揽件员的揽件数,解决以下问题:①估计甲公司各揽件员的日平均件数;②小明拟到甲、乙两家公司中的一家应聘揽件员,如果仅从工资收入的角度考虑,请利用所学的统计知识帮他选择,井说明理由.6.某校为美化校园,计划对面积为1800m2的区域进行绿化,安排甲、乙两个工程队完成.已知甲队每天能完成绿化的面积是乙队每天能完成绿化的面积的2倍,并且在独立完成面积为400 m2区域的绿化时,甲队比乙队少用4天. (1)求甲、乙两工程队每天能完成绿化的面积分别是多少m2?(2)若学校每天需付给甲队的绿化费用是0.4万元,乙队为0.25万元,要使这次的绿化总费用不超过8万元,至少应安排甲队工作多少天?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、A2、B3、D4、D5、C6、D7、C8、D9、C10、C二、填空题(本大题共6小题,每小题3分,共18分)1、±4.2、x(x+2)(x﹣2)3、0或14、40°.5、.6、24 5三、解答题(本大题共6小题,共72分)1、(1)72;(2)x=32、(1)a=2,b=5,c=2;(2)能;2.3、(1)y=﹣x2+2x+3(2)(2+102,32)(3)当点P的坐标为(32,154)时,四边形ACPB的最大面积值为758 4、(1)2(2)略5、(1)215;(2)39件;仅从工资收入的角度考虑,小明应到乙公司应聘.6、(1)100,50;(2)10.。
九年级数学下册期中考试题及答案【完整】班级: 姓名:一、选择题(本大题共10小题, 每题3分, 共30分)1.比较2, , 的大小, 正确的是()A. B.C. D.2.若点A(1+m, 1﹣n)与点B(﹣3, 2)关于y轴对称, 则m+n的值是()A. ﹣5B. ﹣3C. 3D. 13. 下列计算正确的是()A. a2+a3=a5B.C. (x2)3=x5D. m5÷m3=m24.已知一个多边形的内角和为1080°, 则这个多边形是()A. 九边形B. 八边形C. 七边形D. 六边形5.将抛物线y=﹣5x2+1向左平移1个单位长度, 再向下平移2个单位长度, 所得到的抛物线为()A. y=﹣5(x+1)2﹣1B. y=﹣5(x﹣1)2﹣1C. y=﹣5(x+1)2+3D. y=﹣5(x﹣1)2+36.已知二次函数y=x2﹣x+ m﹣1的图象与x轴有交点, 则m的取值范围是()A. m≤5B. m≥2C. m<5D. m>27.如图, 将矩形ABCD沿GH折叠, 点C落在点Q处, 点D落在AB边上的点E 处, 若∠AGE=32°, 则∠GHC等于()A. 112°B. 110°C. 108°D. 106°8.如图, 点P是边长为1的菱形ABCD对角线AC上的一个动点, 点M, N分别是AB, BC边上的中点, 则MP+PN的最小值是()A. B. 1 C. D. 29.如图, 将正方形OABC放在平面直角坐标系中, O是原点, 点A的坐标为(1, ), 则点C的坐标为()A. (-, 1)B. (-1, )C. ( , 1)D. (-, -1) 10.下列所给的汽车标志图案中, 既是轴对称图形, 又是中心对称图形的是()A. B.C. D.二、填空题(本大题共6小题, 每小题3分, 共18分)1. 计算: 的结果是__________.2. 因式分解: __________.3. 已知、为两个连续的整数, 且, 则=________.4.如图, 矩形ABCD中, AB=3, BC=4, 点E是BC边上一点, 连接AE, 把∠B沿AE折叠, 使点B落在点处, 当为直角三角形时, BE的长为________.5. 如图, 直线l为y= x, 过点A1(1, 0)作A1B1⊥x轴, 与直线l交于点B1, 以原点O为圆心, OB1长为半径画圆弧交x轴于点A2;再作A2B2⊥x轴,交直线l于点B2, 以原点O为圆心, OB2长为半径画圆弧交x轴于点A3;……, 按此作法进行下去, 则点An的坐标为__________.6.如图, 在矩形ABCD中, 对角线AC、BD相交于点O, 点E、F分别是AO、AD的中点, 若AB=6cm, BC=8cm, 则AEF的周长=__________cm.三、解答题(本大题共6小题, 共72分)1. 解分式方程:2. 已知A-B=7a2-7ab, 且B=-4a2+6ab+7.(1)求A等于多少?(2)若|a+1|+(b-2)2=0, 求A的值.3. 已知: 如图, 点A.D.C.B在同一条直线上, AD=BC, AE=BF, CE=DF, 求证:AE∥BF.4. 如图, 甲、乙两座建筑物的水平距离为, 从甲的顶部处测得乙的顶部处的俯角为, 测得底部处的俯角为, 求甲、乙建筑物的高度和(结果取整数).参考数据: , .5. 某区域为响应“绿水青山就是金山银山”的号召, 加强了绿化建设. 为了解该区域群众对绿化建设的满意程度, 某中学数学兴趣小组在该区域的甲、乙两个片区进行了调查, 得到如下不完整统计图.请结合图中信息, 解决下列问题:(1)此次调查中接受调查的人数为多少人, 其中“非常满意”的人数为多少人;(2)兴趣小组准备从“不满意”的4位群众中随机选择2位进行回访, 已知这4位群众中有2位来自甲片区, 另2位来自乙片区, 请用画树状图或列表的方法求出选择的群众来自甲片区的概率.6. 小刚去超市购买画笔, 第一次花60元买了若干支A型画笔, 第二次超市推荐了B型画笔, 但B型画笔比A型画笔的单价贵2元, 他又花100元买了相同支数的B型画笔.(1)超市B型画笔单价多少元?(2)小刚使用两种画笔后, 决定以后使用B型画笔, 但感觉其价格稍贵, 和超市沟通后, 超市给出以下优惠方案:一次购买不超过20支, 则每支B型画笔打九折;若一次购买超过20支, 则前20支打九折, 超过的部分打八折. 设小刚购买的B型画笔x支, 购买费用为y元, 请写出y关于x的函数关系式.(3)在(2)的优惠方案下, 若小刚计划用270元购买B型画笔, 则能购买多少支B型画笔?参考答案一、选择题(本大题共10小题, 每题3分, 共30分)1、C2、D3、D4、B5、A6、A7、D8、B9、A10、B二、填空题(本大题共6小题, 每小题3分, 共18分)122、()2 x x y-3、114.3或.5、2n﹣1, 06、9三、解答题(本大题共6小题, 共72分)1.x=32.(1)3a2-ab+7;(2)12.3、略.4.甲建筑物的高度约为, 乙建筑物的高度约为.5、(1)50, 18;(2)选择的市民均来自甲区的概率为.6、(1)超市B型画笔单价为5元;(2), 其中x是正整数;(3)小刚能购买65支B型画笔.。
2023年人教版九年级数学下册期中考试卷及答案(1)班级: 姓名:一、选择题(本大题共10小题, 每题3分, 共30分)1. -2的倒数是()A. -2B.C.D. 22.已知a, b满足方程组则a+b的值为()A. ﹣4B. 4C. ﹣2D. 23.在一次酒会上, 每两人都只碰一次杯, 如果一共碰杯55次, 则参加酒会的人数为()A. 9人B. 10人C. 11人D. 12人4.用配方法解方程时, 配方结果正确的是()A. B.C. D.5.关于x的不等式x-b>0恰有两个负整数解, 则b的取值范围是()A. B. C. D.6.已知x1, x2是方程x2﹣3x﹣2=0的两根, 则x12+x22的值为()A. 5B. 10C. 11D. 137.如图, 把一块含有45°角的直角三角板的两个顶点放在直尺的对边上.如果∠1=20°, 那么∠2的度数是()A. 30°B. 25°C. 20°D. 15°8.如图, 已知, 以两点为圆心, 大于的长为半径画圆, 两弧相交于点, 连接与相较于点, 则的周长为()A. 8B. 10C. 11D. 139.如图, 在平面直角坐标系中, 点在第一象限, ⊙P与x轴、y轴都相切,且经过矩形的顶点C, 与BC相交于点D, 若⊙P的半径为5, 点的坐标是, 则点D的坐标是()A. B. C. D.10.如图, ⊙O中, 弦BC与半径OA相交于点D, 连接AB, OC, 若∠A=60°,∠ADC=85°, 则∠C的度数是()A. 25°B. 27.5°C. 30°D. 35°二、填空题(本大题共6小题, 每小题3分, 共18分)1. 2的相反数是__________.2. 因式分解: _____________.3. 已知二次函数y=x2, 当x>0时, y随x的增大而_____(填“增大”或“减小”).4.如图, 在Rt△ACB中, ∠ACB=90°, ∠A=25°, D是AB上一点, 将Rt△ABC沿CD折叠, 使点B落在AC边上的B′处, 则∠ADB′等于______.5. 如图, 在扇形AOB中, ∠AOB=90°, 点C为OA的中点, CE⊥OA交于点E, 以点O为圆心, OC的长为半径作交OB于点D, 若OA=2, 则阴影部分的面积为__________.6. 已知抛物线的对称轴是直线, 其部分图象如图所示, 下列说法中: ①;②;③;④当时, , 正确的是__________(填写序号).三、解答题(本大题共6小题, 共72分)1. 解方程:=22. 已知关于x的一元二次方程x2+(2m+3)x+m2=0有两根α, β.(1)求m的取值范围;(2)若, 则m的值为多少?3. 已知: 如图, 四边形ABCD中, AD∥BC, AD=CD, E是对角线BD上一点, 且EA=EC.(1)求证: 四边形ABCD是菱形;(2)如果BE=BC, 且∠CBE:∠BCE=2:3, 求证:四边形ABCD是正方形.4. 如图, ▱ABCD的对角线AC, BD相交于点O. E, F是AC上的两点, 并且AE=CF, 连接DE, BF.(1)求证: △DOE≌△BOF;(2)若BD=EF, 连接DE, BF.判断四边形EBFD的形状, 并说明理由.5. 某校为了解学生对中国民族乐器的喜爱情况, 随机抽取了本校的部分学生进行调查(每名学生选择并且只能选择一种喜爱乐器), 现将收集到的数据绘制如下的两幅不完整的统计图.(1)这次共抽取学生进行调查, 扇形统计图中的 .(2)请补全统计图;(3)在扇形统计图中“扬琴”所对扇形的圆心角是度;(4)若该校有3000名学生, 请你估计该校喜爱“二胡”的学生约有名.6. 小明大学毕业回家乡创业, 第一期培植盆景与花卉各50盆售后统计, 盆景的平均每盆利润是160元, 花卉的平均每盆利润是19元, 调研发现:①盆景每增加1盆, 盆景的平均每盆利润减少2元;每减少1盆, 盆景的平均每盆利润增加2元;②花卉的平均每盆利润始终不变.小明计划第二期培植盆景与花卉共100盆, 设培植的盆景比第一期增加x盆, 第二期盆景与花卉售完后的利润分别为W1, W2(单位: 元)(1)用含x的代数式分别表示W1, W2;(2)当x取何值时, 第二期培植的盆景与花卉售完后获得的总利润W最大, 最大总利润是多少?参考答案一、选择题(本大题共10小题, 每题3分, 共30分)1、B2、B3、C4、A5、A6、D7、B8、A9、A10、D二、填空题(本大题共6小题, 每小题3分, 共18分)1、﹣22、3.增大.4、40°.5、3212π+.6.①③④.三、解答题(本大题共6小题, 共72分)1.x=7.2、(1);(2)m的值为3.3.(1)略;(2)略.4.(2)略;(2)四边形EBFD是矩形. 理由略.5、(1)200, 15%;(2)统计图如图所示见解析;(3)36;(4)900.6、(1)W1=-2x²+60x+8000, W2=-19x+950;(2)当x=10时, W总最大为9160元.。
2023年部编版九年级数学下册期中考试卷及答案【完整版】班级: 姓名:一、选择题(本大题共10小题,每题3分,共30分)1.-2的倒数是( )A .-2B .12-C .12D .22.已知a ,b 满足方程组51234a b a b +=⎧⎨-=⎩则a+b 的值为( ) A .﹣4 B .4 C .﹣2 D .23.已知α、β是方程x 2﹣2x ﹣4=0的两个实数根,则α3+8β+6的值为( )A .﹣1B .2C .22D .304.用配方法解方程2890x x ++=,变形后的结果正确的是( )A .()249x +=-B .()247x +=-C .()2425x +=D .()247x += 5.《九章算术》是我国古代数学名著,卷七“盈不足”中有题译文如下:今有人合伙买羊,每人出5钱,会差45钱;每人出7钱,会差3钱.问合伙人数、羊价各是多少?设合伙人数为x 人,所列方程正确的是( )A .54573x x -=-B .54573x x +=+C .45357x x ++=D .45357x x --= 6.若关于x 的函数||(1)5m y m x =--是一次函数,则m 的值为( )A .±1B .1-C .1D .27.如图,快艇从P 处向正北航行到A 处时,向左转50°航行到B 处,再向右转80°继续航行,此时的航行方向为( )A .北偏东30°B .北偏东80°C .北偏西30°D .北偏西50°8.如图,在ABC ∆中,2AC =,4BC =,D 为BC 边上的一点,且CAD B ∠=∠.若ADC ∆的面积为a ,则ABD ∆的面积为( )A .2aB .52aC .3aD .72a 9.如图,在平行四边形ABCD 中,点E 在边DC 上,DE :EC=3:1,连接AE 交BD 于点F ,则△DEF 的面积与△BAF 的面积之比为( )A .3:4B .9:16C .9:1D .3:110.如图,E ,F 是平行四边形ABCD 对角线AC 上两点,AE=CF=14AC .连接DE ,DF 并延长,分别交AB ,BC 于点G ,H ,连接GH ,则ADG BGHS S △△的值为( )A .12B .23C .34D .1二、填空题(本大题共6小题,每小题3分,共18分)1.9的算术平方根是__________.2.因式分解:3269a a a -+=_________.3.若代数式1﹣8x 与9x ﹣3的值互为相反数,则x =__________.4.已知二次函数22y x x m =-++的部分图象如图所示,则关于x 的一元二次方程220x x m -++=的根为________.5.如图所示,在四边形ABCD 中,AD ⊥AB ,∠C=110°,它的一个外角∠ADE=60°,则∠B 的大小是__________.6.PM2.5是指大气中直径小于或等于0.0000025m 的颗粒物,将0.0000025用科学计数法表示为___________.三、解答题(本大题共6小题,共72分)1.解方程:2142242x x x x +-+--=12.先化简,再求值:2443(1)11m m m m m -+÷----,其中22m =.3.如图,矩形ABCD 中,AB =6,BC =4,过对角线BD 中点O 的直线分别交AB ,CD 边于点E ,F .(1)求证:四边形BEDF 是平行四边形;(2)当四边形BEDF 是菱形时,求EF 的长.4.如图,AB为⊙O的直径,C为⊙O上一点,∠ABC的平分线交⊙O于点D,DE ⊥BC于点E.(1)试判断DE与⊙O的位置关系,并说明理由;(2)过点D作DF⊥AB于点F,若BE=33,DF=3,求图中阴影部分的面积.485的选修情况,学校采取随机抽样的方法进行问卷调查(每个被调查的学生必须选择而且只能选择其中一门).对调查结果进行了整理,绘制成如下两幅不完整的统计图,请结合图中所给信息解答下列问题:(1)本次调查的学生共有人,在扇形统计图中,m的值是;(2)将条形统计图补充完整;(3)在被调查的学生中,选修书法的有2名女同学,其余为男同学,现要从中随机抽取2名同学代表学校参加某社区组织的书法活动,请直接写出所抽取的2名同学恰好是1名男同学和1名女同学的概率.5.某文具店购进一批纪念册,每本进价为20元,出于营销考虑,要求每本纪念册的售价不低于20元且不高于28元,在销售过程中发现该纪念册每周的销售量y(本)与每本纪念册的售价x(元)之间满足一次函数关系:当销售单价为22元时,销售量为36本;当销售单价为24元时,销售量为32本.(1)求出y与x的函数关系式;(2)当文具店每周销售这种纪念册获得150元的利润时,每本纪念册的销售单价是多少元?(3)设该文具店每周销售这种纪念册所获得的利润为w元,将该纪念册销售单价定为多少元时,才能使文具店销售该纪念册所获利润最大?最大利润是多少?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、B2、B3、D4、D5、B6、B7、A8、C9、B10、C二、填空题(本大题共6小题,每小题3分,共18分)1、3.2、2(3)a a -3、24、1-或35、40°6、2.5×10-6三、解答题(本大题共6小题,共72分)1、x=12、22m m-+ 1.3、(1)略;(2)3.4、(1)DE 与⊙O 相切,理由略;(2)阴影部分的面积为25、(1)50、30%.(2)补图见解析;(3)35.6、(1)y=﹣2x+80(20≤x≤28);(2)每本纪念册的销售单价是25元;(3)该纪念册销售单价定为28元时,才能使文具店销售该纪念册所获利润最大,最大利润是192元.。
九年级数学下册期中考试卷(附答案) 班级: 姓名: 一、选择题(本大题共10小题,每题3分,共30分)1.下列二次根式中,最简二次根式的是( )A .15B .0.5C .5D .502.下列说法中正确的是 ( )A .若0a <,则20a <B .x 是实数,且2x a =,则0a >C .x -有意义时,0x ≤D .0.1的平方根是0.01±3.互联网“微商”经营已成为大众创业新途径,某微信平台上一件商品标价为200元,按标价的五折销售,仍可获利20元,则这件商品的进价为( )A .120元B .100元C .80元D .60元4.如果一次函数y=kx+b (k 、b 是常数,k ≠0)的图象经过第一、二、四象限,那么k 、b 应满足的条件是( )A .k >0,且b >0B .k <0,且b >0C .k >0,且b <0D .k <0,且b <05.关于x 的不等式2(1)40x a x ><-⎧⎨-⎩的解集为x >3,那么a 的取值范围为( ) A .a >3 B .a <3 C .a ≥3 D .a ≤36.若关于x 的一元一次方程x −m +2=0的解是负数,则m 的取值范围是( )A .m ≥2B .m >2C .m <2D .m ≤27.如图,等边三角形ABC 中,AD ⊥BC ,垂足为D ,点E 在线段AD 上,∠EBC=45°,则∠ACE 等于( )A .15°B .30°C .45°D .60°8.按如图所示的运算程序,能使输出y 值为1的是( )A .11m n ==,B .10m n ==,C .12m n ==,D .21m n ==,9.如图,两个较大正方形的面积分别为225、289,且中间夹的三角形是直角三角形,则字母A 所代表的正方形的面积为( )A .4B .8C .16D .6410.如图,在▱ABCD 中,对角线AC 的垂直平分线分别交AD 、BC 于点E 、F ,连接CE ,若△CED 的周长为6,则▱ABCD 的周长为( )A .6B .12C .18D .24二、填空题(本大题共6小题,每小题3分,共18分)1.计算:3816-+=_____.2.因式分解:2()4()a a b a b ---=_______.3.函数132y x x =--+中自变量x 的取值范围是__________. 4.如图,在正五边形ABCDE 中,AC 与BE 相交于点F ,则∠AFE 的度数为__________.5.抛物线y =ax 2+bx +c (a ≠0)的部分图象如图所示,其与x 轴的一个交点坐标为(﹣3,0),对称轴为x =﹣1,则当y <0时,x 的取值范围是________.6.如图是一张长方形纸片ABCD ,已知AB=8,AD=7,E 为AB 上一点,AE=5,现要剪下一张等腰三角形纸片(△AEP ),使点P 落在长方形ABCD 的某一条边上,则等腰三角形AEP 的底边长是_____________.三、解答题(本大题共6小题,共72分)1.解分式方程:241244x x x x -=--+2.先化简,再求值:822224x x x x x +⎛⎫-+÷ ⎪--⎝⎭,其中12x =-.3.在□ABCD ,过点D 作DE ⊥AB 于点E ,点F 在边CD 上,DF =BE ,连接AF ,BF.(1)求证:四边形BFDE 是矩形;(2)若CF =3,BF =4,DF =5,求证:AF 平分∠DAB .4.某市为节约水资源,制定了新的居民用水收费标准.按照新标准,用户每月缴纳的水费y(元)与每月用水量x(m3)之间的关系如图所示.(1)求y关于x的函数解析式;(2)若某用户二、三月份共用水40m3(二月份用水量不超过25m3),缴纳水费79.8元,则该用户二、三月份的用水量各是多少m3?5.益马高速通车后,将桃江马迹塘的农产品运往益阳的运输成本大大降低.马迹塘一农户需要将A,B两种农产品定期运往益阳某加工厂,每次运输A,B产品的件数不变,原来每运一次的运费是1200元,现在每运一次的运费比原来减少了300元,A,B两种产品原来的运费和现在的运费(单位:元∕件)如下表所示:品种 A B原来的运45 25费现在的运30 20费(1)求每次运输的农产品中A,B产品各有多少件;(2)由于该农户诚实守信,产品质量好,加工厂决定提高该农户的供货量,每次运送的总件数增加8件,但总件数中B产品的件数不得超过A产品件数的2倍,问产品件数增加后,每次运费最少需要多少元.6.某商店销售A型和B型两种电脑,其中A型电脑每台的利润为400元,B型电脑每台的利润为500元.该商店计划再一次性购进两种型号的电脑共100台,其中B型电脑的进货量不超过A型电脑的2倍,设购进A型电脑x台,这100台电脑的销售总利润为y元.(1)求y关于x的函数关系式;(2)该商店购进A型、B型电脑各多少台,才能使销售总利润最大,最大利润是多少?(3)实际进货时,厂家对A型电脑出厂价下调a(0<a<200)元,且限定商店最多购进A型电脑60台,若商店保持同种电脑的售价不变,请你根据以上信息,设计出使这100台电脑销售总利润最大的进货方案.参考答案一、选择题(本大题共10小题,每题3分,共30分)1、C2、C3、C4、B5、D6、C7、A8、D9、D10、B二、填空题(本大题共6小题,每小题3分,共18分)1、22、()()()22a b a a -+-3、23x -<≤4、72°5、﹣3<x <16、5三、解答题(本大题共6小题,共72分)1、4x =2、3.3、(1)略(2)略4、(1) 1.8(015)2.49(15)x x x x >≤≤⎧⎨-⎩(2)该用户二、三月份的用水量各是12m 3、28m 3 5、(1)每次运输的农产品中A 产品有10件,每次运输的农产品中B 产品有30件,(2)产品件数增加后,每次运费最少需要1120元.6、(1) =﹣100x+50000;(2) 该商店购进A 型34台、B 型电脑66台,才能使销售总利润最大,最大利润是46600元;(3)见解析.。
2023年人教版九年级数学下册期中考试卷及答案 班级: 姓名: 一、选择题(本大题共10小题,每题3分,共30分)1.2-的相反数是( )A .2-B .2C .12D .12- 2.若实数m 、n 满足 402n m -+=-,且m 、n 恰好是等腰△ABC 的两条边的边长,则△ABC 的周长是 ( )A .12B .10C .8或10D .6 3.等式33=11x x x x --++成立的x 的取值范围在数轴上可表示为( ) A .B .C .D . 4.如图,数轴上有三个点A 、B 、C ,若点A 、B 表示的数互为相反数,则图中点C 对应的数是( )A .﹣2B .0C .1D .45.若点1(),6A x -,2(),2B x -,32(),C x 在反比例函数12y x=的图像上,则1x ,2x ,3x 的大小关系是( ) A .123x x x << B .213x x x << C .231x x x << D .321x x x <<6.对于一个函数,自变量x 取a 时,函数值y 也等于a ,我们称a 为这个函数的不动点.如果二次函数y =x 2+2x +c 有两个相异的不动点x 1、x 2,且x 1<1<x 2,则c 的取值范围是( )A .c <﹣3B .c <﹣2C .c <14D .c <17.如图,点B ,C ,D 在⊙O 上,若∠BCD =130°,则∠BOD 的度数是( )A .50°B .60°C .80°D .100°8.如图,已知∠ABC=∠DCB ,下列所给条件不能证明△ABC ≌△DCB 的是( )A .∠A=∠DB .AB=DC C .∠ACB=∠DBCD .AC=BD9.如图,已知⊙O 的直径AE =10cm ,∠B =∠EAC ,则AC 的长为( )A .5cmB .52cmC .53cmD .6cm10.如图,矩形ABCD 的对角线AC ,BD 交于点O ,6AB =,8BC =,过点O 作OE AC ⊥,交AD 于点E ,过点E 作EF BD ⊥,垂足为F ,则OE EF +的值为( )A .485B .325C .245D .125二、填空题(本大题共6小题,每小题3分,共18分)181__________.2.分解因式:2x 3﹣6x 2+4x =__________.3.若代数式1﹣8x 与9x ﹣3的值互为相反数,则x =__________.4.如图,将周长为8的△ABC 沿BC 方向向右平移1个单位得到△DEF ,则四边形ABFD 的周长为_____________.5.如图,AB 为△ADC 的外接圆⊙O 的直径,若∠BAD=50°,则∠ACD=_____°.6.PM2.5是指大气中直径小于或等于0.0000025m 的颗粒物,将0.0000025用科学计数法表示为___________.三、解答题(本大题共6小题,共72分)1.解方程:11322x x x -=---2.先化简,再求值:233()111a a a a a -+÷--+,其中2+1.3.如图,已知点A (﹣1,0),B (3,0),C (0,1)在抛物线y=ax 2+bx+c 上.(1)求抛物线解析式;(2)在直线BC 上方的抛物线上求一点P ,使△PBC 面积为1;(3)在x 轴下方且在抛物线对称轴上,是否存在一点Q ,使∠BQC=∠BAC ?若存在,求出Q 点坐标;若不存在,说明理由.4.如图,正方形ABCD中,M为BC上一点,F是AM的中点,EF⊥AM,垂足为F,交AD的延长线于点E,交DC于点N.(1)求证:△ABM∽△EFA;(2)若AB=12,BM=5,求DE的长.5.老师随机抽查了本学期学生读课外书册数的情况,绘制成条形图(图1)和不完整的扇形图(图2),其中条形图被墨迹遮盖了一部分.(1)求条形图中被遮盖的数,并写出册数的中位数;(2)在所抽查的学生中随机选一人谈读书感想,求选中读书超过5册的学生的概率;(3)随后又补查了另外几人,得知最少的读了6册,将其与之前的数据合并后,发现册数的中位数没改变,则最多补查了人.6.山西特产专卖店销售核桃,其进价为每千克40元,按每千克60元出售,平均每天可售出100千克,后来经过市场调查发现,单价每降低2元,则平均每天的销售可增加20千克,若该专卖店销售这种核桃要想平均每天获利2240元,请回答:(1)每千克核桃应降价多少元?(2)在平均每天获利不变的情况下,为尽可能让利于顾客,赢得市场,该店应按原售价的几折出售?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、B2、B3、B4、C5、B6、B7、D8、D9、B10、C二、填空题(本大题共6小题,每小题3分,共18分)1、±32、2x(x﹣1)(x﹣2).3、24、10.5、406、2.5×10-6三、解答题(本大题共6小题,共72分)1、无解2、3、(1)抛物线的解析式为y=﹣13x2+23x+1;(2)点P的坐标为(1,43)或(2,1);(3)存在,理由略.4、(1)略;(2)4.95、(1)条形图中被遮盖的数为9,册数的中位数为5;(2)选中读书超过5册的学生的概率为512;(3)36、(1)4元或6元;(2)九折.。
初三数学期中考试试题
一.填空题(每空2分共36分) 1.当_____x 时,式子
x
x
-2有意义. 2.
3.比较大小:
--(填“>”“<”或“=” )
4.
是整数,则正整数a 的最小值是 ;
5.计算:
20082009(1(1= ;
6.若
21x +的平方根是5±_____=.
8.若
0xy ≠=-成立的条件是_____. 9.若y x ,是实数,且3
2
9922+--+-=
x x x y ,则y x 65+=_____
10.若3的整数部分是a ,小数部分是b ,则=-b a 3 . 11.如图,E为正方形ABCD边BC延长线上的一点, 且CE=BD,AE交CD于F。
则∠AFC =_________.
12.方程9)2)(2()1(3+-+=-x x x x 一次项系数是 .
13.关于x 的一元二次方程0322=+++m m x mx 有一个根为零,则m = ,另一根为
14.某制药厂生产的某种药品,通过两次降价,售价变为原来的81%,则平均每次降价的百分率为 。
15.若一个三角形的三边长是方程0862=+-x x 的根,则此三角形的
周长为________。
二.选择题(每题3分共36分)
16.若二次根式在实数范围内没有意义,则x 的取值范围是
( )
A :2x ≥
B :2x ≤
C :2x >
D :2x >- 17. ()2
2
2)3(-+-x x 的结果是( )
A.-1
B.5-2x
C.2x-5
D.1
18.若0,0a b <> )
(A )-(B )-(C )(D )a 19.在3
,
8,2,2,54,322c
y a a b a +中,最简二次根式的个数是( )
A.2个
B. 3个
C. 4个
D.5个 20.把()
1
1
1--x x 根号外面的因式移到根号内得( ) A.x -1 B. 1-x C. x --1 D. 1--x 21.若1x 2x ,1
212+--=
则x 等于( )
A .2 B. 12- C. 22+ D.2
22.若则m 的值为( ) (A )
203 (B )5126 (C )138 (D )158
23.下列方程中,一元二次方程是( ) A. 2
21x
x +
=2 B. bx ax +2
+c=0 C.()()121=+-x x D. 052322=--y xy x
24.如果关于x 的方程ax 2+x –1= 0有实数根,则a 的取值范围是( )
A .a >–14
B .a ≥–14
C .a ≥–14 且a ≠0
D .a >–1
4
且a ≠0
25.用配方法解下列方程时,配方有错误的是( )
A.x 2-2x -99=0化为(x -1)2=100
B.x 2+8x +9=0化为(x +4)2=25
C.2t 2-7t -4=0化为16
81
)47
(2=-t D.3y 2-4y -2=0化为910)32(2=-y
26.已知m,n
244n n +=,则m n 的值为( )
A
:
1
4 C :12
D :1 27.要在一幅长是90厘米、宽是40厘米的风景画四周外围,镶上一条宽度相同的金色纸边,制成一幅挂图,使风景画的面积是整个挂图
面积的54%。
设金色纸边的宽度是x 厘米,根据题意所列方程是 ( )
(A )4090%54)40)(90(⨯=⋅++x x (B )4090%54)240)(290(⨯=⋅++x x (C )4090%54)240)(90(⨯=⋅++x x (D )4090%54)40)(290(⨯=⋅++x x 三、解答题 28
、
(8
分
)
观
察
下
列
各
式
:
5
1
4
513;413412;312311=+=+=+
……,请你将猜想:
= , = .
(2) 计算(请写出推导过程)
(3) 请你将猜想到的规律用含有自然数n (n ≥1)的代数式表达出来:
29.解下列方程 ( 4分×2=8分)
0672=+-x x 0362=+-x x
.30计算( 4分×2=8分)
(1⎛ ⎝;
(23a
30. 应用一元二次方程解答问题(8分×2=16分)
(1)在一次足球联赛中,组委会将若干球队平均分成8小组,首先在小组中进行单循环赛(每两队赛一场),每组的前两名产生16强,然后在16强中进行淘汰赛(每两对淘汰一对),最后产生冠、亚、季军(季军的产生要多赛一场)。
组委会共需组织96场比赛(淘汰赛共16场),你知道有多少支球队参赛了吗?
(2)读下列诗句,回答问题:“大江东去浪淘尽,千古风流数周瑜,而立之年督东吴,早逝英年两位数,十位恰小个位三,个位平方与寿符,那位学子算得快,多少年华数周瑜?”
31.(8分)已知矩形ABCD中,AB=16cm,AD= 6cm,动点P、Q分别从点A、C同时出发,点P以3cm/s的速度向点B移动,到达点B停止。
点Q 以2cm/s的速度向点D移动
(1)P、Q两点从出发开始几秒时,四边形PBCQ的
面积是33cm2?
(2)P、Q两点从出发开始几秒时,PQ长10cm?。