电磁场与电磁波(第二版).
- 格式:pdf
- 大小:272.90 KB
- 文档页数:7
2-2 已知真空中有三个点电荷,其电量及位置分别为:)0,1,0( ,4 )1,0,1( ,1 )1,0,0( ,1332211P C q P C q P C q === 试求位于)0,1,0(-P 点的电场强度。
解 令321,,r r r 分别为三个电电荷的位置321,,P P P 到P 点的距离,则21=r ,32=r ,23=r 。
利用点电荷的场强公式r e E 204rq πε=,其中r e 为点电荷q 指向场点P 的单位矢量。
那么,1q 在P 点的场强大小为021011814πεπε==r q E ,方向为()z yr e ee +-=211。
2q 在P 点的场强大小为0220221214πεπε==r q E ,方向为()z y xr e e ee ++-=312。
3q 在P 点的场强大小为023033414πεπε==r q E ,方向为y r e e -=3则P 点的合成电场强度为⎥⎦⎤⎢⎣⎡⎪⎪⎭⎫ ⎝⎛++⎪⎪⎭⎫ ⎝⎛+++-=++=z e e e E E E E y x 312128141312128131211 0321πε2-4 已知真空中两个点电荷的电量均为6102-⨯C ,相距为2cm , 如习题图2-4所示。
试求:①P 点的电位;②将电量为6102-⨯C 的点电荷由无限远处缓慢地移至P 点时,外力必须作的功。
解 根据叠加原理,P 点的合成电位为()V 105.24260⨯=⨯=rq πεϕ因此,将电量为C 1026-⨯的点电荷由无限远处缓慢地移到P 点,外力必须做的功为()J 5==q W ϕ2-6 已知分布在半径为a 的半圆周上的电荷线密度πφφρρ≤≤=0 ,sin 0l ,试求圆心处的电场强度。
解 建立直角坐标,令线电荷位于xy 平面,且以y 轴为对称,如习题图2-6所示。
那么,点电荷l l d ρ在圆心处产生的电场强度具有两个分量E x 和E y 。
由于电荷分布以y 轴为对称,因此,仅需考虑电场强度的y E 分量,即习题图2-4习题图2-6φπερsin 4d d d 20a lE E l y ==考虑到φρρφsin ,d d 0==l a l ,代入上式求得合成电场强度为y y aa e e E 0002008d sin 4ερφφπερπ==⎰2-12 若带电球的内外区域中的电场强度为⎪⎪⎩⎪⎪⎨⎧<>=a r aqr a r r q, ,2r e E 试求球内外各点的电位。
电磁场与电磁波第二版课后答案第一章:电荷和电场1.1 选择题1.电场可以向量形式来表示。
2.使得电体带有不同种类电荷的原子或分子是离子化。
3.在法拉弹规定空气是电介质。
4.电荷量的基本单位是库仑。
5.元电荷是正负电荷的最小电荷量。
6.在电场中电荷所受力的方向完全取决于电荷性质和场的性质和方向。
7.电势能是标量。
8.空间中一点产生的电场是该点电荷所受电场的矢量和。
9.电场E的国际单位是NC−1。
10.电场强度受逼迫电荷的正负种类影响,但与电荷的量无关。
1.2 填空题1.空间中一点产生的电场是该点电荷所受电场的矢量和。
2.计算质点电荷q在某点产生的电场的公式是$\\vec{E}=\\frac{1}{4\\pi\\epsilon_0}\\frac{q}{r^2}\\vec{r}$。
3.计算正半球壳在某点产生的电场的公式是$\\vec{E}=\\frac{1}{4\\pi\\epsilon_0}\\frac{Q}{r^2}\\vec{r}$。
4.位置在球心,能量源是正半球壳带点,正半球在转轴一侧电势能是0。
5.半径为R的均匀带点球壳,带电量为Q,求通过球心的电束强度的公式是$\\frac{Q}{4\\pi\\epsilon_0R^2}$。
1.3 计算题1.两个带电量分别为q1和q2的点电荷之间的相互干扰力公式是$\\vec{F}=\\frac{q_1q_2}{4\\pi\\epsilon_0r^2}\\vec{r}$。
2.一个电荷为q的质点,和一个均匀带有电量Q的半球壳之间的相互干扰力公式是$\\vec{F}=\\frac{1}{4\\pi\\epsilon_0}\\frac{qQ}{r^2}\\vec{r}$。
第二章:电磁感应和电磁波2.1 选择题1.电磁感应是由磁通变化产生的。
2.电磁感应一定要在导电体内才能产生电流是错误的。
√3.在电磁感应现象中,即使磁通量不变时导体电流也会产生改变。
4.电磁感应现象是反过来实现的。
电磁场与电磁波理论第二版徐立勤,曹伟第2章习题解答第2章习题解答2.2已知半径为a 、长为l 的圆柱体内分布着轴对称的体电荷,已知其电荷密度()0Va ρρρρ=,()0a ρ≤≤。
试求总电量Q 。
解:2π200002d d d d π3laV VQ V z la aρρρρρ?ρ===?2.3 半径为0R 的球面上均匀分布着电荷,总电量为Q 。
当球以角速度ω绕某一直径(z 轴)旋转时,试求其表面上的面电流密度。
解:面电荷密度为 204πS QR ρ=面电流密度为 00200sin sin sin 4π4πS S S Q Q J v R R R R ωθρρωθωθ=?=== 2.4 均匀密绕的螺旋管可等效为圆柱形面电流0S S J e J ?=。
已知导线的直径为d ,导线中的电流为0I ,试求0S J 。
解:每根导线的体电流密度为 00224π(/2)πI I J d d== 由于导线是均匀密绕,则根据定义面电流密度为04πS IJ Jd d ==因此,等效面电流密度为04πS IJ e d=2.6 两个带电量分别为0q 和02q 的点电荷相距为d ,另有一带电量为0q 的点电荷位于其间。
为使中间的点电荷处于平衡状态,试求其位置。
当中间的点电荷带电量为-0q 时,结果又如何?解:设实验电荷0q 离02q 为x ,那么离0q 为x d -。
由库仑定律,实验电荷受02q 的排斥力为实验电荷受0q 的排斥力为要使实验电荷保持平衡,即21F F =,那么由00222114π4π()q q x d x εε=-,可以解得如果实验电荷为0q -,那么平衡位置仍然为d d x 585.0122=+=。
只是这时实验电荷与0q 和02q 不是排斥力,而是吸引力。
2.7 边长为a 的正方形的三个顶点上各放置带电量为0q 的点电荷,试求第四个顶点上的电场强度E 。
解:设点电荷的位置分别为()00,0,0q ,()0,0,0q a 和()00,,0q a ,由库仑定律可得点(),,0P a a 处的电场为2.9半径为0R 的半球面上均匀分布着面电荷,电荷密度为0S ρ,试求球心处的电场强度;若同样的电荷均匀分布在半径为0R 的半球内,再求球心处的电场强度。
《电磁场与电磁波基础教程》(第2版)习题解答第1章1.1 解:(1)==A B=C(2))))23452A x y zB y zC x z ==+-=+=-,,;A a a a a a -a a a a a A(3)()()+2431223x y z x y z =+-+-+=--=+;A B a a a a a a A B (4)()()23411x y z y z ⋅=+-⋅-+=-;A B a a a a a (5)()()234104x y z y z x y z ⨯=+-⋅-+=---;A B a a a a a a a a (6)()()()1045242x y z x z ⨯⋅=-++⋅-=-;A B C a a a a a(7)()()()x 2104522405x y z x z y ⨯⨯=-++⨯-=-+A B C a a a a a a a a 。
1.2解:cos 68.56θθ⋅===︒;A B A BA 在B 上的投影cos 1.37B A θ===A ;B 在A 上的投影cos 3.21A B θ===B 。
1.3 解:()()()()()()()4264280⋅=-++-=正交A B 。
1.4 解:1110x x y y z z x y y z z y ⋅=⋅=⋅=⋅=⋅=⋅=,,;;a a a a a a a a a a a a 0x x y y z z ⨯=⨯=⨯=;a a a a a a x y z y z x z x y ⨯=⨯=⨯=;,a a a a a a a a a 。
1.5 解:(1)111000z z z z ρρϕϕρϕϕρ⋅=⋅=⋅=⋅=⋅=⋅=,,;,,a a a a a a a a a a a a ;000z z z z z ρρϕϕρϕϕρρϕ⨯=⨯=⨯=⨯=⨯=⨯=,,;,,a a a a a a a a a a a a a a a 。
第一章1.1.,,/)102102cos(1026300p y v k f E m V x t y y E E 相速度相位常数度,频率波的传播方向,波的幅的方向,,求矢量设 --⨯+⨯==ππ解:m /V )x 102t 102cos(10y y E z E y E x E E 26300y 0z 0y 0x --⨯π+⨯π==++=∴ 矢量E 的方向是沿Y 轴方向,波的传播方向是-x 方向;波的幅度 m /V 10E E 3y -==。
s /m 10102102k V ;102k ;MHZ 1HZ 1021022f 826P 266=⨯π⨯π=ω=⨯π===π⨯π=πω=--―――1.2 写出下列时谐变量的复数表示(如果可能的话))3sin()6sin()()6(sin 1)()5()21000cos(10)()4(sin 2cos 3)()3(sin 10)()2()6sin(6)()1(πωπωωππωωωπω++=-=-=-=-=+=t t t U t t D t t C t t t A tt I t t V(1)解: 3/2/6/)(πππϕ-=-=z vj j e V j 3333sin 63cos 66)3(-=-==-∴πππ(2)解:)2cos(10)(πω--=t t I2)(πϕν-=zj eI j 10102=-=-∴π(3)解:)t t t A ωωsin 132cos 133(13)(-=j eA j 2313)2(+==-πθ则(4)解:)21000cos(10)(ππ-=t t CjeC j 10102-==∴π(5)(6)两个分量频率不同,不可用复数表示―――1.3由以下复数写出相应的时谐变量)8.0exp(4)2exp(3)3()2.1exp(4)2(43)1(j jC j C jC +=-=+=π(1)解:tt j t j t t j t j e j t j ωωωωωωωsin 4cos 4sin 3cos 3)sin )(cos 43()43(-++=++=+t t Ce RE t C t j ωωωsin 4cos 3)()(-==∴(2)解:)2.1cos(4)4()()(2.1-===-t e e RE Ce RE t C t j j t j ωωω(3)解:)8.0t (j )2t (j t j 8.0j j t j e 4e3e )e 4e3(Ce 2+ωπ+ωωω+=+=π得:)sin(3)8.0cos(4)8.0cos(4)2cos(3)()(t t t t Ce RE t C tj ωωωπωω-+=+++==―――1.4 写出以下时谐矢量的复矢量表示00000)cos(5.0)3()sin (cos 8)sin 4cos 3()()2()2cos(sin 4cos 3)()1(x t kz H z t t x t t t E z t y t x t t V t ωωωωωπωωω-=-++=+++=(1)解:00043)(z i y j x r V+-=(2)解:00)43cos(28)cos(5)(z t x t t V πωϕω--+=00430)88()43(285)(54arcsinz j x j z e x e r V++-=-==-πϕϕ其中 (3)解:00)]sin()[cos(5.05.0)(x kz j kz x e r H kz-==-―――1.6 ]Re[,)22(,)21(000000**⨯⋅⨯⋅-+-=+++=B A B A B A B A z j y j x B z j y j x A ,,,求:假定解:j B A B A B A B A z z y y x x 35-=++=⋅0000000000000025)()22(12113)22()32()31()61(z y x B A RE jj j j z y x B A jB A z j y j x B z j y j x j B B B A A A z y x B A zyxz y x-+=⨯--+=⨯--=⋅+--=--++++-==⨯****得到:则:――――1.7计算下列标量场的梯度xyzu xyy x u xz yz xy u z y x u z y x u =++=++=-+==)5(2)4()3(2)2()1(22222222(1)解:u u grad ∇=)(22022022022202220222222z z y x y yz x x z xy z zz y x y y z y x x x z y x ++=∂∂+∂∂+∂∂=(2)解:u u grad ∇=)( 000224z z y y x x -+=(3) 解:u u grad ∇=)(000)()()(z x y y z x x z y+++++=(4) 解:u u grad ∇=)(00)22()22(y x y x y x+++=(5) 解:u u grad ∇=)(000z xy y xz x yz ++=第二章――2.1.市话用的平行双导线,测得其分布电路参数为: R ’=0.042Ωm -1; L ’=5×10-7Hm -1; G ’=5×10-10Sm -1; C ’=30.5PFm -1. 求传播常数k 与特征阻抗Z c . 答:))((C j G L j R jk '+''+'=ωω)()(C j G L j R Z c '+''+'=ωω代入数据可得:k =(1.385-1.453i) ×10-5; Z c= (1.52 -1.44i) ×103Ω2.2.传输线的特征阻抗Z c = 50Ω,负载阻抗Z L = 75 +75j Ω,用公式和圆图分别求:(1)与负载阻抗对应的负载导纳; (2)负载处的反射系数;(3)驻波系数与离开负载第一驻波最小点的位置Z L解:(1)Y L =Z L1=1501j -(2)ΓL=Z ZZ Z C LCL+-=j j 751257525++=171(7+6j) (3)70863.0)7/6arctan()0(==ψ rad离开负载第一驻波最小点的位置 d min =))0(1(4πψλ+=0.3064λ 2.3min1max min max min 80,50,5/,/4,/2,3/8,,I ,I L C L Z Z Z V d l V V ρλλλλ===参看图,负载电压,求驻波系数,驻波最小点位置传输线长度处的输入阻抗以及。
电磁场与电磁波第二版课后答案本文档为《电磁场与电磁波》第二版的课后答案,包含了所有章节的练习题的答案和解析。
《电磁场与电磁波》是电磁学领域的经典教材,它讲述了电磁场和电磁波的基本原理和应用。
通过学习本书,读者可以深入了解电磁学的基本概念和原理,并且能够解决一些相关问题。
第一章绪论练习题答案1.电磁场是由电荷和电流产生的一种物质性质,具有电场和磁场两种形式。
电磁波是电磁场的振动。
电磁辐射是指电磁波传播的过程。
2.对于一点电荷,其电场是以该点为中心的球对称分布,其强度与距离成反比。
对于无限长直导线产生的电场,其强度与距离呈线性关系,方向垂直于导线轴线。
3.电磁场的本质是相互作用力。
电场力是由于电荷之间的作用产生的,磁场力是由于电流之间的作用产生的。
解析1.电磁场是由电荷和电流产生的物质性质。
当电荷存在时,它会产生一个电场,该电荷周围的空间中存在电场强度。
同时,当电流存在时,它会产生一个磁场,该电流所在的区域存在磁场。
电磁波是电磁场的振动传播。
电磁波是由电磁场的变化引起的,相邻电磁场的振动会相互影响,从而形成了电磁波的传播。
电磁辐射是指电磁波在空间中的传播过程。
当电磁波从一个介质传播到另一个介质时,会发生折射和反射现象。
2.在一点电荷产生的电场中,电场强度与该点到电荷的距离成反比,即\(E = \frac{{k \cdot q}}{{r^2}}\),其中\(E\)为电场强度,\(k\)为电场常数,\(q\)为电荷量,\(r\)为距离。
对于无限长直导线产生的电场,其电场强度与离导线的距离呈线性关系。
当离无限长直导线的距离为\(r\)时,其电场强度可表示为\(E = \frac{{\mu_0 \cdot I}}{{2 \pi \cdot r}}\),其中\(E\)为电场强度,\(\mu_0\)为真空中的磁导率,\(I\)为电流强度。
3.电磁场的本质是相互作用力。
当两个电荷之间有作用力时,这个作用力是由于它们之间的电场力产生的。
电磁场与电磁波第二版课后练习题含答案一、选择题1. 一物体悬挂静止于匀强磁场所在平面内的位置,则这个磁场方向?A. 垂直于所在平面B. 并行于所在平面C. 倾斜于所在平面D. 无法确定答案:B2. 在运动着的带电粒子所在区域内,由于其存在着磁场,因此在该粒子所处位置引入一个另外的磁场,引入后,运动着的电荷将会加速么?A. 会加速B. 不会加速C. 无法确定答案:B3. 一台电视有线播出系统, 将信号源之中所传输的压缩图像和声音还原出来,要利用的是下列过程中哪一个?A. 光速传输B. 超声波传输C. 磁场作用D. 空气振动答案:C4. 一根充足长的长直电导体内有恒定电流I通过,则令曼培尔定律最适宜描述下列哪一项观察?A. 两个直平面电流之间的相互作用B. 当一个直平面电流遇到一个平行于它的磁场时, 会发生什么C. 当两个平行电流直线之间的相互作用D. 当电磁波穿过磁场时会发生什么答案:C5. 电磁波的一个特点是什么?A. 电磁波是一种无质量的相互作用的粒子B. 电磁波的速度跟频率成反比C. 不同波长的电磁波拥有的能量不同D. 电磁波不会穿透物质答案:C二、填空题1. 一个悬挂静止的电子放在一个以5000 G磁场中,它会受到的磁力是____________N. 假设电子的电荷是 -1.6×10^-19 C.答案:-8.0×10^-142. 在一个无磁场的区域内,放置一个全等的圆形和正方形输电线, 则这两个输电线产生的射界是_____________.答案:相同的3. 一个点电荷1.0×10^-6 C均匀带电一个闪电球,当位于该点电荷5.0 cm处时, 该牛顿计的弦向上斜,该牛顿计的尺度读数是4.0N. 该电荷所处场强的大小约为_____________弧度.答案:1.1×10^4三、简答题1. 解释什么是麦克斯韦方程式?麦克斯韦方程式是一组描述经典电磁场的4个偏微分方程式,包括关于电场的高斯定律、关于磁场的高斯定律、安培环路定理和法拉第电磁感应定律。
第一章矢量分析重点和难点关于矢量的定义、运算规则等内容可让读者自学。
应着重讲解梯度、散度、旋度的物理概念和数学表示,以及格林定理和亥姆霍兹定理。
至于正交曲面坐标系一节可以略去。
考虑到高年级同学已学过物理学,讲解梯度、散度和旋度时,应结合电学中的电位、积分形式的高斯定律以及积分形式的安培环路定律等内容,阐述梯度、散度和旋度的物理概念。
详细的数学推演可以从简,仅给出直角坐标系中的表达式即可。
讲解无散场和无旋场时,也应以电学中介绍的静电场和恒定磁场的基本特性为例。
至于格林定理,证明可免,仅给出公式即可,但应介绍格林定理的用途。
前已指出,该教材的特色之一是以亥姆霍兹定理为依据逐一介绍电磁场,因此该定理应着重介绍。
但是由于证明过程较繁,还要涉及δ 函数,如果学时有限可以略去。
由于亥姆霍兹定理严格地定量描述了自由空间中矢量场与其散度和旋度之间的关系,因此应该着重说明散度和旋度是产生矢量场的源,而且也是惟一的两个源。
所以,散度和旋度是研究矢量场的首要问题。
此外,还应强调自由空间可以存在无散场或无旋场,但是不可能存在既无散又无旋的矢量场。
这种既无散又无旋的矢量场只能存在于局部的无源区中。
重要公式 直角坐标系中的矢量表示:z z y y x x A A A e e e A ++= 矢量的标积:代数定义:z z y y x x B A B A B A ++=⋅B A几何定义:θcos ||||B A B A =⋅矢量的矢积:代数定义:zyxz y xz y xB B B A A A e e e B A =⨯几何定义:θsin ||B ||A e B A z =⨯标量场的梯度:zy x z y ∂∂+∂∂+∂∂=∇ΦΦΦΦe e e x矢量场的散度:zA y A x A z y x ∂∂+∂∂+∂∂=⋅∇A 高斯定理:⎰⎰⋅=⋅∇SVV d d S A A矢量场的旋度:zy xz y A A A z y x ∂∂∂∂∂∂=⨯∇e e e A x ;斯托克斯定理:⎰⎰⋅=⋅⨯∇lSd d )(l A S A无散场:0)(=⨯∇⋅∇A ; 无旋场:0)(=∇⨯∇Φ格林定理:第一和第二标量格林定理:⎰⎰⋅∇=∇+∇⋅∇SVV 2d )(d )(S ΦψΦψΦψ()⎰⎰⋅∇-∇=∇-∇SVV 22d d )(S ψΦΦψψΦΦψ第一和第二矢量格林定理:()⎰⎰⋅⨯∇⨯=⨯∇⨯∇⋅-⨯∇⋅⨯∇SVV d d ])()[(S Q P Q P Q P⎰⎰⋅⨯∇⨯-⨯∇⨯=⨯∇⨯∇⋅-⨯∇⨯∇⋅SVV d ][ d ]()([S P Q Q P Q P P Q亥姆霍兹定理: )()()(r A r r F ⨯∇+-∇=Φ,式中⎰'''-'⋅∇'=V V d )(41)(r r r F r πΦ V V ''-'⨯∇'=⎰'d )(41)(r r r F r A π三种坐标系中矢量表示式之间的转换关系:⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡z y x z r A A A A A A 100cos sin 0sin cos φφφφφ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡z y x r A A A A A A 0cos sin sin sin cos cos cos cos sin sin cos sin φφθφθφθθφθφθφθ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡z r r A A A A A A φφθθθθθ 010sin 0cos cos 0sin题 解第一章 题 解1-1 已知三个矢量分别为z y e e e A x 32-+=;z y e e e B x 23++=;z e e C x -=2。
第4章习题解答4.1 电导率为σ的均匀、线性、各向同性的导体球,半径为R ,其表面的电位分布为0cos Φθ。
试确定表面上各点的电流密度。
解:由于导体球的外部是空气,所有在导体球的表面只有切向分量,即0t t t 11sin sin J E e e e R R R θϕθσΦΦΦσσΦσθθθϕ⎛⎫∂∂==-∇=-+= ⎪∂∂⎝⎭4.2 如题4.2图所示平板电容器。
板间填充两种不同的导电媒质,其厚度分别为1d 和2d ,两平板的面积均为S 。
若在两极板上加上恒定的电压0U 。
试求板间的电位Φ、电场强度E 、电流密度J 以及各分界面上的自由电荷和电容器的漏电导。
解:理想电容器021==σσ,满足的定解问题为210 Φ∇= 和 220 Φ∇=以及12111112120121200x x d d x d x dx d x d V xxΦΦΦΦΦΦεε==+====∂∂====∂∂由直接积分法可以得到电位的通解为1 Ax B Φ=+ 和 2Cx D Φ=+由100x Φ==和1220x d d V Φ=+=可以确定出0=B 及)(210d d C V D +-=,则上式电位的表达式为1 Ax Φ= 和 2012()Cx V C d d Φ=+-+利用电位在介质分界面的边界条件,则确定出211201211202d d V C d d V A εεεεεε+=+=因此电位分布为2012112V x d d εΦεε=+ 和 102110221122112()V d Vx d d d d εεεΦεεεε-=+++而对应的电场强度和电位移矢量为2101221xE e V d d εεε=-+ 和 1201221xE e V d d εεε=-+以及12101221xD e V d d εεεε=-+ 和 12201221x D e V d d εεεε=-+根据静电比拟法()E ED J εσΦΦ⇔⇔⇔⇔得到对平板电容器内恒定电场的电位为2012112V x d d σΦσσ=+ 和 102110221122112()V d V x d d d d σσσΦσσσσ-=+++ 电场强度为2101221xE e V d d σσσ=-+ 和 1201221x E e V d d σσσ=-+电流密度矢量为12101221xJ e V d d σσσσ=-+ 和 12201221xJ e V d d σσσσ=-+ 此时的电流称为电容器的漏电流,对应的电导称为电容器的漏电导G ,有121221d d d d SSCCJ S E SSIG Vd d E lE lσσσσσ⋅⋅====+⋅⋅⎰⎰⎰⎰S ——极板的面积4.3 如题4.3图所示矩形导体片的电导率为σ,试求导电片上的电位分布以及导电片中各处的电流密度。
2023年电磁场与电磁波第2版(陈抗生著)课后
习题答案下载
电磁场与电磁波第2版(陈抗生著)课后答案下载
本书以“麦克斯韦”作为主线,从一般到具体(由静到动、由无界到有界、由无源到有源),系统地阐述了电磁场与电磁波的基本理论和分析方法,重点突出电磁场的传输特性。
本书主要内容包括电磁理论必要的`数学基础、电磁场的基本问题、静态场、时变电磁场、平面电磁波、导行电磁波、电磁波的辐射。
各章例题具体实用,并配有习题和参考答案。
本书可作为高等院校通信与电子信息类及相关专业本科生的教材,也可供从事电磁场理论、微波技术、天线领域的工程技术人员学习和参考。
电磁场与电磁波第2版(陈抗生著):内容简介
第0章绪论
第1章矢量分析与场论
第2章基本电磁场
第3章静态场
第4章时变场的基本问题
第5章均匀平面电磁波的传播
第6章平面电磁波的反射与折射
第7章导行电磁波
第8章电磁波的辐射
部分习题参考答案
电磁场与电磁波第2版(陈抗生著):图书目录
点击此处下载电磁场与电磁波第2版(陈抗生著)课后答案。
电磁场与电磁波课后习题答案(杨儒贵)(第二版)第二章 静电场2-1 若真空中相距为d 的两个电荷q 1及q 2的电量分别为q 及4q ,当点电荷q '位于q 1及q 2的连线上时,系统处于平衡状态,试求q '的大小及位置。
解 要使系统处于平衡状态,点电荷q '受到点电荷q 1及q 2的力应该大小相等,方向相反,即q q q q F F ''=21。
那么,由1222022101244r r r q q r q q =⇒'='πεπε,同时考虑到d r r =+21,求得d r d r 32 ,3121==可见点电荷q '可以任意,但应位于点电荷q 1和q 2的连线上,且与点电荷1q 相距d 31。
2-2 已知真空中有三个点电荷,其电量及位置分别为:)0,1,0( ,4 )1,0,1( ,1 )1,0,0( ,1332211P C q P C q P C q === 试求位于)0,1,0(-P 点的电场强度。
解 令321,,r r r 分别为三个电电荷的位置321,,P P P 到P 点的距离,则21=r ,32=r ,23=r 。
利用点电荷的场强公式r e E 204rq πε=,其中r e 为点电荷q 指向场点P 的单位矢量。
那么,1q 在P 点的场强大小为021011814πεπε==r q E ,方向为()z yr e ee +-=211。
2q 在P 点的场强大小为0220221214πεπε==r q E ,方向为()z y x r e e e e ++-=312。
3q 在P 点的场强大小为023033414πεπε==r q E ,方向为y r e e -=3则P 点的合成电场强度为⎥⎦⎤⎢⎣⎡⎪⎪⎭⎫ ⎝⎛++⎪⎪⎭⎫ ⎝⎛+++-=++=z e e e E E E E y x 312128141312128131211 0321πε2-3 直接利用式(2-2-14)计算电偶极子的电场强度。
电磁场与电磁波(第二版).电磁场与电磁波第二章分章节复习第二章:静电场1、导体在静电平衡下,齐体内的电荷密度(B )。
A.为常数B.为零C.不为零D.不确定2、电介质极化后,其内部存在(D)。
A.自由正电荷 B.自由负电荷C.自由正负电荷D.电偶极子3、在两种导电介质的分界面处,电场强度的(A)保持连续。
A.切向分量B.幅值C. 法向分量D.所有分量4、在相同的场源条件下,真空中的电场强度时电介质的(C)倍。
A.εoεrB.1/εoεrC. εrD.1/εr5.导体的电容大小(B)。
A.与导体的电势有关B.与导体的电势无关C.与导体所带电荷有关D.与导体间点位差有关6、两个点电荷对试验电荷的作用力可表示为两个力的 ( D )。
A.算术和 B.代数和C.平方和 D.矢量和7、介质的极化程度取决于:( D )。
A. 静电场B. 外加电场C. 极化电场D. 外加电场和极化电场之和8、电场强度的方向(A)。
A.与正电荷在电场中受力的方向相同。
B.与负电荷在电场中受力的方向相同。
C.与正电荷在电场中受力的方向垂直。
D.垂直于正负电荷受力的平面。
9、在边长为a正方形的四个顶点上,各放一个电量相等的同性点电荷Q1,几何中心放置一个电荷Q2,那么Q2受力为(D);A.Q1Q2/2πB. Q1Q2/2πaC. Q1Q2/4πaD.010、两个相互平行的导体平板构成一个电容器,其电容与(B D)有关。
A.导体板上的电荷 B.平板间的介质C.导体板的几何形状 D.两个导体板的距离填空题:1、静止电荷所产生的电场,称之为静电场。
2、电场强度的方向与正电荷在电场中受力的方向相同。
3、电位参考点就是指定电位值恒为零的点。
4、在正方形的四顶点上,各放一电量相等的同性点电荷,几何中心放置荷 Q,则 Q 不论取何值,其所受这电场力为零。
5、写出真空中静电场的两个基本方程的微分形式为。
6、电流的方向是指正电荷运动方向。
7、引入电位是根据静电场的电场旋度等于0 特性。
第七章 时变电磁场7-1 设真空中电荷量为q 的点电荷以速度)(c v v <<向正z 方向匀速运动,在t = 0时刻经过坐标原点,计算任一点位移电流。
(不考虑滞后效应)解 选取圆柱坐标系,由题意知点电荷在任意时刻的位 置为),0 ,0(vt ,且产生的场强与角度φ无关,如习题图7-1 所示。
设) , ,(z r P φ为空间任一点,则点电荷在P 点产生的电场强度为304R q πεRE =,其中R 为点电荷到P 点的位置矢量,即)(vt z r z r -+=e e R 。
那么,由tt d ∂∂=∂∂=ED J 0ε,得 ()()()()()()()25222225224243vt z rr vt z qv vt z r vt z qrv zr d -+--+-+-=ππe e J 。
7-2 已知真空平板电容器的极板面积为S ,间距为d ,当外加电压t V V sin 0ω=时,计算电容器中的位移电流,且证明它等于引线中的传导电流。
习题图7-1 P (r ,φ,z )x解 在电容器中电场为t dV E sin 0ω=,则 t dV t D J d cos 00ωωε=∂∂=, 所以产生的位移电流为t dSV S J I d d cos 00ωωε==;已知真空平板电容器的电容为dSC 0ε=,所带电量为t CV CV Q ωsin 0==,则传导电流为t dSV t CV t QI cos cos d d 000ωωεωω===; 可见,位移电流与传导电流相等。
7-3 已知正弦电磁场的频率为100GHz ,试求铜及淡水中位移电流密度与传导电流密度之比。
解 设电场随时间正弦变化,且t E m x sin ωe E =,则位移电流t E tm r x d cos 0ωωεεe DJ =∂∂=, 其振幅值为m r d E J ωεε0=传导电流t E m x ωσσsin e E J ==,振幅为m E J σ=,可见σωεε0r d J J =; 在海水中,81=r ε,m S /4=σ,则5.11241021036181119=⨯⨯⨯⨯=-ππJJ d;在铜中,1=r ε,m S /108.57⨯=σ,则871191058.9108.5102103611--⨯=⨯⨯⨯⨯⨯=ππJ J d。
电磁场与电磁波第二章分章节复习第二章:静电场1、导体在静电平衡下,齐体内的电荷密度(B )。
A.为常数B.为零C.不为零D.不确定2、电介质极化后,其内部存在(D)。
A.自由正电荷 B.自由负电荷C.自由正负电荷D.电偶极子3、在两种导电介质的分界面处,电场强度的(A)保持连续。
A.切向分量B.幅值C. 法向分量D.所有分量4、在相同的场源条件下,真空中的电场强度时电介质的(C)倍。
A.εoεrB.1/εoεrC. εrD.1/εr5.导体的电容大小(B)。
A.与导体的电势有关B.与导体的电势无关C.与导体所带电荷有关D.与导体间点位差有关6、两个点电荷对试验电荷的作用力可表示为两个力的 ( D )。
A.算术和 B.代数和C.平方和 D.矢量和7、介质的极化程度取决于:( D )。
A. 静电场B. 外加电场C. 极化电场D. 外加电场和极化电场之和8、电场强度的方向(A)。
A.与正电荷在电场中受力的方向相同。
B.与负电荷在电场中受力的方向相同。
C.与正电荷在电场中受力的方向垂直。
D.垂直于正负电荷受力的平面。
9、在边长为a正方形的四个顶点上,各放一个电量相等的同性点电荷Q1,几何中心放置一个电荷Q2,那么Q2受力为(D);A.Q1Q2/2πB. Q1Q2/2πaC. Q1Q2/4πaD.010、两个相互平行的导体平板构成一个电容器,其电容与(B D)有关。
A.导体板上的电荷 B.平板间的介质C.导体板的几何形状 D.两个导体板的距离填空题:1、静止电荷所产生的电场,称之为静电场。
2、电场强度的方向与正电荷在电场中受力的方向相同。
3、电位参考点就是指定电位值恒为 零 的点。
4、在正方形的四顶点上,各放一电量相等的同性点电荷,几何中心放置荷 Q,则 Q 不论取何值,其所受这电场力为 零 。
5、写出真空中静电场的两个基本方程的微分形式为 。
6、电流的方向是指 正电荷 运动方向。
7、引入电位是根据 静电场的电场旋度等于0 特性。
8、在自由空间中,点电荷产生的电场强度与其电荷量q成正比,与观察点到电荷所在点的距离的平方成反比 。
10、由相对于观察者精致的,且其电量不随时间变化的电荷产生的电场称为静电场第四章:恒定电流场1、在均匀导电介质中,恒定电流场是(D)。
A.有散有旋B.有散无旋C.有旋无散D.无散无旋2、磁通线的切线方向是()。
A.磁通密度的方向B.磁感应强度方向C.表面线电流方向D.以上都不对3、 在均匀导电介质中,驻立电荷存在(A)。
A.导体表面B.导体内部C.以上两者共存。
4、 在两种导电介质的边界两侧,电流密度矢量的(A)分量是连续的。
A.法向分量B.切线方向C.以上都不对5、电流线()。
A.有起点有终点 B.有起点没有终点C.有终点没有起点D.没有终点也没有起点6、在两种介质的分界面上, 若分界面上存在传导电流, 则边界条件为( B )A. H t 不连续,Bn 不连续B. H t 不连续,Bn连续C. H t 连续,Bn 不连续D. H t 连续,B n连续47、若﹥﹥1 介质属于( A ) 。
A.良导体 B.电介质 C.不良导体8、电流密度的方向与电场强度的方向(C)。
A.不相同B.相同C.可能相同也可能不同9、半径为a的球体分布电荷产生的电场能量储存在(B)A.电荷不为零的区域B.整个空间C.电荷分布为零的区域10、填空题:1、 从场的角度来讲,电流是电流密度矢量场的通量 。
2、 一个微小电流环,设器半径为a、电流为I,则磁偶极矩矢量的大小为 。
3、 电介质中的舒服电荷在外加电场作用下,完全脱离分子的内部束缚力时,我们把这种现象称为击穿。
4、 在理想导体表面,电场强度的切向分量等于0.5、 导体存在恒定电场时,一般情况下,导体表面不是等位面 此说法正确6、 在恒定电流场中,电流密度通过任一闭合面的通量为零 。
7、 电流线总是 垂直 于理想导电体表面。
8、 电导率无限大的导体称为 理想导电体。
9、 由非静电力产生的外电场不是保守场。
10、 在均匀导电介质中,恒定电流场是无旋的。
第五章:恒定磁场1、相同场源条件下,磁媒质中的磁感应强度是真空中磁感应强度的(C )倍。
A. B. 1/ C. D. 1/2、磁介质中的磁场强度由( D )产生.A.自由电流B.束缚电流C.磁化电流D.自由电流和束缚电流共同3、当磁场力的作用于一个电荷使其逆时针转向时,电荷的速度会(C)A.变大B.变小 C不变 D 不能确定4、在真空中,恒定电场的磁通密度是(B)A.有散无旋 B有旋无散 C 有旋有散 D.无旋无散5、分析恒定磁场时, 在无界真空中, 两个基本场变量之间的关系为(A)A. B. C. D.6、下列哪一个不是介质磁性的定义(C)A.抗磁性B.逆磁性C.顺磁性D.铁磁性7、磁感应强度可定义为某一矢量的(D),我们把这个矢量称作为矢量位。
A.方向B.大小C.散度D.旋度8、在磁场介质的边界上磁场强度的切向分量(A),磁通密度的法向分量(B).A.连续B.不连续C.不能确定 D都不对9、给在理想导磁体通入电流I 其中的磁感应强度的大小为(A)A.0B. C D.以上都不对10磁化会导致介质中的合成电场(C)。
A.增大B.减小C.不能确定填空题:1、磁场的两个基本变量是(或磁感应强度)和(或磁场强度) 。
2、无限长电流 I,在空间 r 处产生的磁场强度为3、媒质分界面有面电流分布时,磁场强度的切向分量 不连续 。
4、由恒定电流产生的磁场称为恒定磁场,恒定磁场是无散场 因此,他可以用磁释位函数来表示。
5、理想介质的电导率为 ,理想导体的电导率为 ,欧姆定理的微分形式为 。
6、已知恒定磁场的磁感应强度 ,则常数m=-5第六章:电磁感应1、长度为 L 的长直导线的内自感等于( B )。
A. B. C. D.2、互感的大小(B)A只能为正 B.可正可负 C.只能为负3、真空中的磁导率的数值为 H/mA. B. C. D.4、自由空间的平行双线传输线,导体半径为a,线间距为D,则传输线单位长度的电容为().A. B. C5、磁介质中的磁场强度由( D )产生.A.自由电流B.束缚电流C.磁化电流D.自由电流和束缚电流共同6、填空题:1、恒定磁场中磁感应强度和矢量磁位的关系为 此关系的理论依据为2、已知导体材料的磁导率为,以该材料制成的长直导线单位长度的内自感为 .3、空间有两个载流线圈,相互平行放置时,互感最大;互相垂直放置时,互感最小。
4、互感的正负取决于两个线圈的电流方向 。
5、磁通链是指与电流交链的磁通。
6、在各向同性的介质中,某点磁场能量密度等于该点磁导率与磁场强度平方的乘积之半。
第七章:时变电磁场选择题:1、交变电磁场中,回路感应电动势与回路材料电导率的关系为( D )A.电导率越大,感应电动势越大B.电导率越大,感应电动势越小C.电导率越小,感应电动势越大D.感应电动势大小与电导率无关2、坡印亭矢量与电磁场满足( B )法则。
A.左手B.右手C.亥姆霍兹D.高斯3、时变场中,电场的源包括: (A C)A. 电荷B. 传导电流C. 变化的磁场D. 位移电流4、电位的拉普拉斯方程对于任何区域都是成立的 此说法()A 正确的B 错误的 C不能判断正误5、波长为 0.1 米的场源,自由空间中的频率( C )A. 30MHzB. 300MHzC. 3000MHzD. 3MHz6、坡印亭矢量与电磁场满足( B )法则。
A.左手B.右手C.亥姆霍兹D.高斯7、 下面说法正确的是( )A.凡是有磁场的区域都存在磁场能量B.仅在无源区域存在磁场能量C.仅在有源区域存在磁场能量D.在无源、有源区域均不存在磁场能量填空题:1、 变化的磁场产生电场的现象称作电磁感应定律。
2、 当场量随时间变化的频率较高时,场量几乎仅存在于导体表面附近, 这种现象称这为 集肤 效应。
3、 从无源区域中,变化的电场产生磁场,变化的磁场产生电场,使得电磁场以波的形式传播出去,即电磁波。
4、 随时间变化的电磁场称为 时变场 。
5、 时变电磁场中,坡印廷矢量的数学表达式为 。
6、 导电媒介中,电磁波的相速随着频率变化的现象称为色散 。
第八章:平面电磁波选择题:1、频率为 50Hz 的场源,在自由空间中的波长为( A )。
A.6000kmB.600kmC.60kmD.6km2、真空中均匀平面波的波阻抗为( D )A. 237ΩB. 277ΩC. 327ΩD. 377Ω3、均匀平面波的电场为,则表明此波是( B )A.直线极化波 B.圆极化波 C.椭圆极化波4、均匀平面波在良导体中的穿透深度为( A )A. B C5、沿z轴方向传播的均匀平面波,E x =cos(ωt-kz-90°),E y =cos(ωt -kz-180°),问该平面波是( B )A. 直线极化B. 圆极化C. 椭圆极化D. 水平极化6、电磁波从空气垂直入射到理想导体上,则( B ) 。
A. R=1,T=0 B R=-1, T=0 C. R=0,T=-1B.R=0,T=0填空题:1、 若电磁波的电场强度矢量的方向随时间变化所描绘的轨迹是直线,则波称为线极化。
2、 电磁波从一种媒介入射到理想导体表面是,电磁波将发生全反射。
3、 对横电磁波而言,在波的传播方向上的电场、磁场分量为0.4、 频率为300MHz 的均匀平面波在空气中传播,其阻抗为120 ,波的传播速度为 ,波长为 1 ,相位常数为5、已知平面波电场为 ,其极化方式为 右旋圆极化6、均匀平面波从介质1向介质2垂直入射,反射系数 和投射系数 的关系为 。
7、均匀平面波从理想介质向理想导体表面垂直入射,反射系数 = -1 ,介质空间合成电磁波为 驻波 。
8、均匀平面波从理想介质1向理想介质2斜入射,其入射角为 ,反射角为 ,折射角为 ,两区的相位常数分别为,反射定律为 ,折射定律为 。
9、TEM波的中文名称为 横电磁波。
10、电偶极子是指 几何长度远小于波长、载有等幅同相电流的电流线 , 电偶机子的远区场是指 kr>>1 区域的场 。