电磁场与电磁波第二章课后答案
- 格式:doc
- 大小:1.06 MB
- 文档页数:29
第二章习题解答【习题2.1】101929=.=101.6102.0810e qR R mq e Cp m Ce e 解:电偶极矩p 其中 1.3可得电偶极矩p 的大小其方向为从负电荷指向正电荷,即从氯离子指向氢离子。
---´== =醋【习题2.2】解1解:由例2.2得,电偶极子所产生的电场为533()1[]4e e P R RP E RRπε=-0()R R << ……………………①其中 0e P qR = ,0R方向从负电荷指向正电荷,R是从电偶极子指向电场中任一点的矢量,起点在正负电荷连线的中点。
(如图)本题 100 1.310R m -=⨯ 1010010R m -=⨯满足 0R R << .将①式整理:32013[()]4e e E P R R P RRπε=-令 ()e m k P R R P =-(23k R=)则 304m E Rπε=…………………………②欲求E的最大值,求出m最大值即可.222222[()]()2()()e e e e e e m k P R R P k P R R P k P R P R =-=+- 2222(2)()e e k R k P R P =-+2224296()()e e R P R P R R=-+ 2223()e e P R P R=+其中 00cos e P R qR R qR R θ== , (θ是0R 和R之间的夹角)易见,当cos 1θ=,即0θ=时,2m可取最大值22222m ax 234e e e m R P P P R=+=则 m=2e P 代入②式得 m a x33m ax042e P mERRπεπε==将习题2.1中的结论 e P=2.082910c m -⨯⋅ 代入得29112103max2.08102 3.148.910(10010)EV m ----⨯=⋅⨯⨯⨯⨯⨯513.710V m-≈⨯⋅距离自由电子处的电场 191712121020 1.6101.41044 3.148.910(10010)e E V mV mRπε-----⨯==⋅≈⨯⋅⨯⨯⨯⨯⨯故 距离电偶极子处的电场最大值为 513.710V m -⨯⋅ 距离自由电子处的电场为 711.410V m -⨯⋅【习题2.2】解2解:设矢量0R e的方向从电荷C L -指向电荷H +R n 是从由C L - H +构成的电偶极子指向电场中的任一点的矢量,起点在正负电荷连线的中点,且0R 〈〈R. ( e , n 为单位矢量,θ是e , n的夹角)(1)003303cos 1[]4qR qR E n e R R θπε=- (41P )由向量减法的三角形法则及余弦定理得:=03024qR R πε⎛⎫⎪⎝⎭E =由上题得290( 2.110)e p qR cm -==⨯因此,当0θ=或θπ=时E有最大值, 03024qR E R πε==50302 3.7104qR V M R πε=⨯ (2)7201() 1.4104q R VE M R R πε==⨯【习题2.3】证明: 电偶极距qRe p =其方向为从负电荷指向正电荷。
第一章习题解答【习题1.1解】222222222222222222222222222222222222cos cos cos cos cos cos 1xx x y z yx y z z x y z x y z x y z x y z x y z x y z x y z 矢径r 与轴正向的夹角为,则同理,矢径r 与y 轴正向的夹角为,则矢径r 与z 轴正向的夹角为,则可得从而得证a a b b g g a b g =++=++=++++=++++++++++==++ 【习题1.2解】924331329(243)54(9)(243)236335x y z x y z x y z x y z x y z x y z x y z x y z A B e e e e e e e e e A B e e e e e e e e e A B e e e e e e A B +=--+-+=-+=----+=---∙=--∙-+=+-=⨯()()-()(9)(243)19124331514x y z x y z x y z x y ze e e e e e e e e e e e =--⨯-+=---=--+【习题1.3解】已知,38,x y z x y z A e be ce B e e e =++=-++ (1)要使A B ⊥,则须散度 0A B =所以从 1380A B b c =-++=可得:381b c +=即只要满足3b+8c=1就可以使向量错误!未找到引用源。
和向量错误!未找到引用源。
垂直。
(2)要使A B ,则须旋度 0A B ⨯= 所以从1(83)(8)(3)0138xy zx y z e e e A B b c b c e c e b e ⨯==--+++=-可得 b=-3,c=-8 【习题1.4解】已知129x y z A e e e =++,x y B ae be =+,因为B A ⊥,所以应有0A B ∙= 即()()1291290xy z x y ee e ae be a b ++∙+=+= ⑴又因为 1B =; 所以221=; ⑵由⑴,⑵ 解得 34,55a b =±=【习题1.5解】由矢量积运算规则123233112()()()x y zx y z x x y y z ze e e A Ca a a a z a y e a x a z e a y a x e xyzB e B e B e B =?=-+-+-=++取一线元:x y z dl e dx e dy e dz =++则有xy z xyz e e e dlB B B dx dy dzB ?=则矢量线所满足的微分方程为 x y zd x d y d z B B B == 或写成233112()dx dy dzk a z a y a x a z a y a x==---=常数 求解上面三个微分方程:可以直接求解方程,也可以采用下列方法k xa a y a a z a d z a a x a a y a d y a a z a a x a d =-=-=-323132132231211)()()( (1)k x a y a z zdzz a x a y ydy y a z a x xdx =-=-=-)()()(211332 (2)由(1)(2)式可得)()(31211y a a x a a k x a d -=)()(21322z a a x a a k y a d -= (3))()(32313x a a y a a k z a d -= )(32xy a xz a k xdx -=)(13yz a xy a k ydy -= (4))(21xz a yz a k zdz -=对(3)(4)分别求和0)()()(321=++z a d y a d x a d 0)(321=++z a y a x a d0=++zdz ydy xdx 0)(222=++z y x d所以矢量线方程为1321k z a y a x a =++ 2222k z y x =++【习题1.6解】已知矢量场222()()(2)x y z A axz x e by xy e z z cxz xyz e =++++-+- 若 A 是一个无源场 ,则应有 div A =0即: div A =0y x zA A A A x y z∂∂∂∇⋅=++=∂∂∂ 因为 2x A axz x =+ 2y A by xy =+ 22z A z z cxz xyz =-+- 所以有div A =az+2x+b+2xy+1-2z+cx-2xy =x(2+c)+z(a-2)+b+1=0 得 a=2, b= -1, c= - 2 【习题1.7解】设矢径 r的方向与柱面垂直,并且矢径 r到柱面的距离相等(r =a ) 所以,2sssr ds rds a ds a ah πΦ===⎰⎰⎰=22a h π=【习题1.8解】已知23x y φ=,223y z A x yze xy e =+而 A A A A rot⨯∇+⨯∇=⨯∇=φφφφ)()(2222(6)3203xy zx y ze e e A xy x y e y e xyze x y z x yz xy ∂∂∂∇⨯==--+∂∂∂ 2223[(6)32]x y z A x y xy x y e y e xyze φ∴∇⨯=--+又y x z y x e x e xy ze y e x e 236+=∂∂+∂∂+∂∂=∇φφφφ 232233222630918603xy z x y z e e e A xyx x y e x y e x y ze x yz xy φ∇⨯==-+所以222()3[(6)32]x y z rot A A A x y xy x y e y e xyze φφφ=∇⨯+∇⨯=--+ +z y x e z y x e y x e y x 2332236189+-=]49)9[(3222z y x e xz e y e x x y x+--【习题1.9解】已知 222(2)(2)(22)x y zA y x z e x y z e x z y z e =++-+-+ 所以()()1144(22)0xyzyy x x z z x y z x yzx y z A A A A A A rot A A x y z y z z x x y A A A xz xz y y e e ee e e e e e ∂∂⎛⎫⎛⎫∂∂∂∂∂∂∂⎛⎫=∇⨯==-+-+- ⎪ ⎪ ⎪∂∂∂∂∂∂∂∂∂⎝⎭⎝⎭⎝⎭-++-+-=由于场A 的旋度处处等于0,所以矢量场A 为无旋场。
电磁场与电磁波第二版课后答案第一章:电荷和电场1.1 选择题1.电场可以向量形式来表示。
2.使得电体带有不同种类电荷的原子或分子是离子化。
3.在法拉弹规定空气是电介质。
4.电荷量的基本单位是库仑。
5.元电荷是正负电荷的最小电荷量。
6.在电场中电荷所受力的方向完全取决于电荷性质和场的性质和方向。
7.电势能是标量。
8.空间中一点产生的电场是该点电荷所受电场的矢量和。
9.电场E的国际单位是NC−1。
10.电场强度受逼迫电荷的正负种类影响,但与电荷的量无关。
1.2 填空题1.空间中一点产生的电场是该点电荷所受电场的矢量和。
2.计算质点电荷q在某点产生的电场的公式是$\\vec{E}=\\frac{1}{4\\pi\\epsilon_0}\\frac{q}{r^2}\\vec{r}$。
3.计算正半球壳在某点产生的电场的公式是$\\vec{E}=\\frac{1}{4\\pi\\epsilon_0}\\frac{Q}{r^2}\\vec{r}$。
4.位置在球心,能量源是正半球壳带点,正半球在转轴一侧电势能是0。
5.半径为R的均匀带点球壳,带电量为Q,求通过球心的电束强度的公式是$\\frac{Q}{4\\pi\\epsilon_0R^2}$。
1.3 计算题1.两个带电量分别为q1和q2的点电荷之间的相互干扰力公式是$\\vec{F}=\\frac{q_1q_2}{4\\pi\\epsilon_0r^2}\\vec{r}$。
2.一个电荷为q的质点,和一个均匀带有电量Q的半球壳之间的相互干扰力公式是$\\vec{F}=\\frac{1}{4\\pi\\epsilon_0}\\frac{qQ}{r^2}\\vec{r}$。
第二章:电磁感应和电磁波2.1 选择题1.电磁感应是由磁通变化产生的。
2.电磁感应一定要在导电体内才能产生电流是错误的。
√3.在电磁感应现象中,即使磁通量不变时导体电流也会产生改变。
4.电磁感应现象是反过来实现的。
电磁场与电磁波》(第四版 )答案二章习题解答2.1 一个平行板真空二极管内的电荷体密度为$\rho=-\frac{4\epsilon U}{d}-4\times 10^{-3}x-2\times 10^{-3}$,式中阴极板位于$x=9$,阳极板位于$x=d$,极间电压为$U$。
如果$U=40V$,$d=1cm$,横截面$S=10cm^2$,求:(1)$x$和$x=d$区域内的总电荷量$Q$;(2)$x=d/2$和$x=d$区域内的总电荷量$Q'$。
解(1)$Q=\int\limits_{0}^{9}\rhoSdx+\int\limits_{d}^{9}\rho Sdx=-4.72\times 10^{-11}C(3d)$2)$Q'=\int\limits_{d/2}^{d}\rho Sdx=-0.97\times 10^{-11}C$2.2 一个体密度为$\rho=2.32\times 10^{-7}Cm^3$的质子束,通过$1000V$的电压加速后形成等速的质子束,质子束内的电荷均匀分布,束直径为$2mm$,束外没有电荷分布,试求电流密度和电流。
解:质子的质量$m=1.7\times 10^{-27}kg$,电量$q=1.6\times 10^{-19}C$。
由$1/2mv^2=qU$得$v=2mqU=1.37\times 10^6ms^{-1}$,故$J=\rho v=0.318Am^2$,$I=J\pi (d/2)^2=10^{-6}A$2.3 一个半径为$a$的球体内均匀分布总电荷量为$Q$的电荷,球体以匀角速度$\omega$绕一个直径旋转,求球内的电流密度。
解:以球心为坐标原点,转轴(一直径)为$z$轴。
设球内任一点$P$的位置矢量为$r$,且$r$与$z$轴的夹角为$\theta$,则$P$点的线速度为$v=\omega\times r=e_\phi \omegar\sin\theta$。
电磁场与电磁波理论第二版徐立勤,曹伟第2章习题解答第2章习题解答2.2已知半径为a 、长为l 的圆柱体内分布着轴对称的体电荷,已知其电荷密度()0Va ρρρρ=,()0a ρ≤≤。
试求总电量Q 。
解:2π200002d d d d π3laV VQ V z la aρρρρρ?ρ===?2.3 半径为0R 的球面上均匀分布着电荷,总电量为Q 。
当球以角速度ω绕某一直径(z 轴)旋转时,试求其表面上的面电流密度。
解:面电荷密度为 204πS QR ρ=面电流密度为 00200sin sin sin 4π4πS S S Q Q J v R R R R ωθρρωθωθ=?=== 2.4 均匀密绕的螺旋管可等效为圆柱形面电流0S S J e J ?=。
已知导线的直径为d ,导线中的电流为0I ,试求0S J 。
解:每根导线的体电流密度为 00224π(/2)πI I J d d== 由于导线是均匀密绕,则根据定义面电流密度为04πS IJ Jd d ==因此,等效面电流密度为04πS IJ e d=2.6 两个带电量分别为0q 和02q 的点电荷相距为d ,另有一带电量为0q 的点电荷位于其间。
为使中间的点电荷处于平衡状态,试求其位置。
当中间的点电荷带电量为-0q 时,结果又如何?解:设实验电荷0q 离02q 为x ,那么离0q 为x d -。
由库仑定律,实验电荷受02q 的排斥力为实验电荷受0q 的排斥力为要使实验电荷保持平衡,即21F F =,那么由00222114π4π()q q x d x εε=-,可以解得如果实验电荷为0q -,那么平衡位置仍然为d d x 585.0122=+=。
只是这时实验电荷与0q 和02q 不是排斥力,而是吸引力。
2.7 边长为a 的正方形的三个顶点上各放置带电量为0q 的点电荷,试求第四个顶点上的电场强度E 。
解:设点电荷的位置分别为()00,0,0q ,()0,0,0q a 和()00,,0q a ,由库仑定律可得点(),,0P a a 处的电场为2.9半径为0R 的半球面上均匀分布着面电荷,电荷密度为0S ρ,试求球心处的电场强度;若同样的电荷均匀分布在半径为0R 的半球内,再求球心处的电场强度。
电磁场与电磁波第二章课后答案本页仅作为文档封面,使用时可以删除This document is for reference only-rar21year.March第二章 静电场重点和难点电场强度及电场线等概念容易接受,重点讲解如何由物理学中积分形式的静电场方程导出微分形式的静电场方程,即散度方程和旋度方程,并强调微分形式的场方程描述的是静电场的微分特性或称为点特性。
利用亥姆霍兹定理,直接导出真空中电场强度与电荷之间的关系。
通过书中列举的4个例子,总结归纳出根据电荷分布计算电场强度的三种方法。
至于媒质的介电特性,应着重说明均匀和非均匀、线性与非线性、各向同性与各向异性等概念。
讲解介质中静电场方程时,应强调电通密度仅与自由电荷有关。
介绍边界条件时,应说明仅可依据积分形式的静电场方程,由于边界上场量不连续,因而微分形式的场方程不成立。
关于静电场的能量与力,应总结出计算能量的三种方法,指出电场能量不符合迭加原理。
介绍利用虚位移的概念计算电场力,常电荷系统和常电位系统,以及广义力和广义坐标等概念。
至于电容和部分电容一节可以从简。
重要公式真空中静电场方程:积分形式:⎰=⋅SS E 0d εq⎰=⋅ll E 0d微分形式:ερ=⋅∇E0=⨯∇E已知电荷分布求解电场强度:1,)()(r r E ϕ-∇=; ⎰''-'=V Vd )(41)(|r r |r r ρπεϕ2,⎰'''-'-'=V V 3d |4))(()(|r r r r r r E περ3,⎰=⋅SS E 0d εq高斯定律介质中静电场方程:积分形式:q S=⋅⎰ d S D⎰=⋅ll E 0d微分形式:ρ=⋅∇D0=⨯∇E线性均匀各向同性介质中静电场方程:积分形式:εqS=⋅⎰ d S E⎰=⋅ll E 0d微分形式:ερ=⋅∇E0=⨯∇E静电场边界条件:1,t t E E 21=。
电磁场与电磁波第四版第二章部分答案习题二无限长线电荷通过点且平行于z轴,线电荷密度为ρ?,试求点P(x,y,x)处的电场强度E。
解:线电荷沿z方向为无限长,故电场分布与z无关,设P位于z=0的平面上。
则R=ex x?6 +ey y?8 , R = (x?6)2+(y?8)2ex x?6 +ey y?8 ReR== R (x?6)2+(y?8)2则P点的E为ρ?ρ?ex x?6 +ey y?8 RE=eR=?=? 222πε0RR2πε0R2πε0(x?6)+(y?8)2.10半径为a的一个半圆环上均匀分布着线电荷ρ?,如图所示。
试求垂直于半圆环所在轴线的平面上z=a处的电场强度E(0,0,a)。
解:′P(0,0,a)的位置矢量是 =eza,电荷元ρ?dl=ρ?ad?, =eacos?+x′rrρ?eyasin?′′′ ? =ea?eacos??easin? zxy′rr= a2+ acos?′ 2+ asin?′ 2= 2aez? exacos?′+eyasin?′ dE=d?=d?4πε0 2a 3a8 2 πε0ρ?E 0,0,a = dE = =ρ?8 2 aπε0? ρ?a rr′ez? exacos?′+eyasin?′ d? π2π?2ρ?(ezπ?ex2)8 2 aπε0一个很薄的无限大导体带电平面,其上的面电荷密度为ρs。
试证明:垂直于平面的z轴上z=z0处的电场强度中,有一半是平面上半径为 3z0的圆内的电荷产生的。
解:取面积元ds′=r′d?′dr′,dq=ρsds′=ρsr′d?′dr′,电荷元在z=z0处产生的电场强度dE=ρsr′d?′dr′4πε0ezz0+err′ z0322+r′ 2 d?′整个平面在z=z0处的电场强度为E=ρsz0=?ez2ε0当r ∞时,E=exρs2ε0ρs4πε0r2πezz0+err′′′rdr 3002z02+r′ 21 z02+r2ρs1+ez2ε02,当r= 3z0时,E′=ezρs4ε0=E21半径为a的导体球形体积内充满密度为ρ r 的体电荷。
1-1. (1) 叙述库仑定律,并写出数学表达式。
(2)电荷之间的作用力满足牛顿第三定律吗?请给出证明。
解:(1)库仑定律内容为:真空中两个静止的点电荷之间的相互作用力的大小,与它们的电量q 和'q 的乘积成正比,与它们之间距离R 的平方成反比。
作用力的方向沿两者连线的方向。
两点电荷同号时为斥力,异号时为吸力。
所以:(2)电荷之间的作用力不满足牛顿第三定律,请看下面的例证:1q 以速度1v 运动,q 2以速度2v运动。
如图1-2所示。
此时,2q 在1q 处产生有电场2E和磁场2H 。
而1q 在2q 处也产生电场1E和磁场1H 。
但因2q 在1q 处产生的磁场方向与1v 平行。
故由洛仑兹公式知,q 1所受的力为 )(2120112121N E q H v q E q F=⨯+=μ 只有电场力。
但q 1对q 2的作用力为:10221112H v q E q Fμ⨯+= (N) 既有电场力,又有磁场力,所以两者不相等。
1-2 (1) 洛仑磁力表达式中,哪部分做功,哪部分不做功,为什么? (2) 洛仑兹力满足迭加原理吗?为什么? 解: (1) 洛仑磁力公式为H v q E q F0μ⨯+= (N )洛仑兹力做的功为⎰⋅=csd F W,其中dt v s d = 所以有:⎰⋅=cs d F W=⎰∆⋅tdt v F=⎰∆⨯+tdt v H v q E q)(0μ=⎰⎰∆∆⋅⨯+⋅ttdt v H v q dt v E q)(0μ=⎰∆⋅tdt v E q(J)其中使用了矢量恒等式()()BA C CB A ⨯⋅=⨯⋅所以,洛仑兹力作的功为⎰∆⋅=tdt v E q W=)(J sd E qC⎰⋅所以,洛仑兹力中,因为E q 与电荷的做功无关。
而H v q0μ⨯部分总是与电荷的运动方向垂直,故E q 部分做功,而H v q0μ⨯部分不做功。
(2)因为电荷受力与E 和H间都是线性关系,所以,洛仑兹力满足迭加原理。
电磁场与电磁波第2章课后答案2-1.已知真空中有四个点电荷q C 11=,q C 22=,q C 34=,q C 48=,分别位于(1,0,0),(0,1,0),(-1,0,0,),(0,-1,0)点,求(0,0,1)点的电场强度。
解:z y r z x r z y r z xr ??;??;??;??4321+=+=+-=+-=ρρρρ 84?15?6?3)(41024442333222221110πεπεz y xr r q r r q r r q r r q E ++=+++=ρ2-2.已知线电荷密度为ρl 的均匀线电荷围成如图所示的几种形状,求P 点的电场强度。
题2-2图解:(a) 由对称性04321=+++=E E E E E ρρρρρ(b) 由对称性0321=++=E E E E ρρρρ(c) 两条半无限长线电荷产生的电场为yay x y x a E E E ll a ?2)}??()??{(40021περπερ-=+--=+=ρρρ 半径为a 的半圆环线电荷产生的电场为y aE lb ?20περ=ρ总电场为0=+=b a E E E ρρρ2-3.真空中无限长的半径为a 的半边圆筒上电荷密度为ρs ,求轴线上的电场强度。
解:在无限长的半边圆筒上取宽度为?ad 的窄条,此窄条可看作无限长的线电荷,电荷线密度为?ρρad s l =,对?积分,可得真空中无限长的半径为a 的半边圆筒在轴线上的电场强度为y d x y a d r a E ss s ?)?cos ?sin (22?00000??-=--==πππερπερπε?ρρ 题2-3图题2-4图2-4.真空中无限长的宽度为a 的平板上电荷密度为ρs ,求空间任一点上的电场强度。
解: 在平板上'x 处取宽度为'dx 的无限长窄条,可看成无限长的线电荷,电荷线密度为'dx s l ρρ=,在点),(y x 处产生的电场为ρρρπε'?21),(0dx y x E d s =ρ其中 22)'(y x x +-=ρ;22)'(??)'(?yx x y y xx x +-+-=ρ对'x 积分可得无限长的宽度为a 的平板上的电荷在点),(y x 处产生的电场为)}2/2/(2?)2/()2/(ln ?{4),(2222y a x arctg y a x arctg y y a x y a x x y x E s --+++-++=περρ2-5.已知真空中电荷分布为ρ=≤>r a r ar a220;;ρs b r a ==;r 为场点到坐标原点的距离,a ,b 为常数。
第二章习题解答2.1 一个平行板真空二极管内的电荷体密度为43230049U d x ρε--=-,式中阴极板位于0x =,阳极板位于x d =,极间电压为0U 。
如果040V U =、1cm d =、横截面210cm S =,求:(1)0x =和x d =区域内的总电荷量Q ;(2)2x d =和x d =区域内的总电荷量Q '。
解 (1) 43230004d ()d 9dQ U d x S x τρτε--==-=⎰⎰110044.7210C 3U S dε--=-⨯ (2)4320024d ()d 9dd Q U d x S x τρτε--''==-=⎰⎰11004(10.9710C 3U S d ε--=-⨯ 2.2 一个体密度为732.3210C m ρ-=⨯的质子束,通过1000V 的电压加速后形成等速的质子束,质子束内的电荷均匀分布,束直径为2mm ,束外没有电荷分布,试求电流密度和电流。
解 质子的质量271.710kg m -=⨯、电量191.610C q -=⨯。
由21mv qU = 得 61.3710v ==⨯ m s 故 0.318J v ρ== 2A m26(2)10I J d π-== A2.3 一个半径为a 的球体内均匀分布总电荷量为Q 的电荷,球体以匀角速度ω绕一个直径旋转,求球内的电流密度。
解 以球心为坐标原点,转轴(一直径)为z 轴。
设球内任一点P 的位置矢量为r ,且r 与z 轴的夹角为θ,则P 点的线速度为sin r φωθ=⨯=v r e ω球内的电荷体密度为343Qa ρπ=故 333sin sin 434Q Q r r a aφφωρωθθππ===J v e e 2.4 一个半径为a 的导体球带总电荷量为Q ,同样以匀角速度ω绕一个直径旋转,求球表面的面电流密度。
解 以球心为坐标原点,转轴(一直径)为z 轴。
设球面上任一点P 的位置矢量为r ,且r 与z 轴的夹角为θ,则P 点的线速度为sin a φωθ=⨯=v r e ω球面的上电荷面密度为24Q a σπ=故 2sin sin 44S Q Q a a aφφωσωθθππ===J v e e 2.5 两点电荷18C q =位于z 轴上4z =处,24C q =-位于y 轴上4y =处,求(4,0,0)处的电场强度。
静电场 恒定电场习题解答主要问题: 1) 矢量标量书写不加区分(忘记在矢量顶部加箭头) 2) 机械抄袭标准答案,不理解其含义3)不理解极化电荷面密度和极化电荷体密度含义:极化电荷面密度仅仅存在于介质表面,静电场情形下导体表面没有极化电荷面密度(题2-15) 4)所谓验证边界条件对静电场而言有两种方法(题2-13),一是从电位着手判断电位是否连续(12?Φ=Φ)法向电位条件如何?(1212s n nεερ∂Φ∂Φ-+=∂∂,这里格外需要注意说明边界上有没有电荷?s ρ=)二是判断切向电场是不是连续,法向电通密度是不是相等,要是不等,面电荷密度是多少 这两种方法等价。
5)2-2题很多人和标准答案中的坐标图不一致,答案却一样,明显错误2-1、半径为a 的球内充满介电常数为1ε的均匀介质,球外是介电常数为2ε的均匀介质。
若已知球内和球外的电位分别为:122(,) ()(,) ()r Ar r a Aa r r a rθθθθΦ=≤⎧⎪⎨Φ=≥⎪⎩ 式中A 为常数。
求1) 两种介质中的E 和D ;2) 两种介质中的自由电荷密度。
解:1) 在r < a 区域内:111111111A Ar r A A θθεεθε∂Φ∂Φ=-∇Φ=--=--∂∂==--rθr θ1r θE e e e e D E e e , 在r > a 区域内:()()2222222121Aa r r rAarθθεεθ∂Φ∂Φ=-∇Φ=--=-∂∂==-2r θr θ22r θE e e e e D E e e 2) 在r < a 区域内:。
()()()21112111sin sin 2cot r r D D r r r Arθρθθθεθθ∂∂=∇⋅=+∂∂=-+1D在r > a 区域内:()()2222222311sin sin cot r r D D r r r Aa rθρθθθεθ∂∂=∇⋅=+∂∂=-2D 在球面r = a 上,电荷面密度()()()12s r a r a A ρεεθ===⋅-=⋅-=+21r 21n D D e D D2-2一个半径为a 的半圆环上均匀分布线电荷ρl ,求垂直于半圆环平面的轴线z =a 处的电场强度。
第二章静电场重点和难点电场强度及电场线等概念容易接受,重点讲解如何由物理学中积分形式的静电场方程导出微分形式的静电场方程,即散度方程和旋度方程,并强调微分形式的场方程描述的是静电场的微分特性或称为点特性。
利用亥姆霍兹定理,直接导出真空中电场强度与电荷之间的关系。
通过书中列举的4个例子,总结归纳出根据电荷分布计算电场强度的三种方法。
至于媒质的介电特性,应着重说明均匀和非均匀、线性与非线性、各向同性与各向异性等概念。
讲解介质中静电场方程时,应强调电通密度仅与自由电荷有关。
介绍边界条件时,应说明仅可依据积分形式的静电场方程,由于边界上场量不连续,因而微分形式的场方程不成立。
关于静电场的能量与力,应总结出计算能量的三种方法,指出电场能量不符合迭加原理。
介绍利用虚位移的概念计算电场力,常电荷系统和常电位系统,以及广义力和广义坐标等概念。
至于电容和部分电容一节可以从简。
重要公式真空中静电场方程:E d S q积分形式: E d l 0S l微分形式:E E 0已知电荷分布求解电场强度:1,E(r)( r ) ;1( r) ( r ) d V4 0V | r r|(r)( r r)2,E(r) d VV 4 0| r r|33,E d S q高斯定律S介质中静电场方程:积分形式:D d S q E d l0S l微分形式:D E0线性均匀各向同性介质中静电场方程:积分形式:E d S qE d l 0S l微分形式:E E0静电场边界条件:1,E1 t E 2 t。
对于两种各向同性的线性介质,则D1t D2 t122,D2 n D 1n s 。
在两种介质形成的边界上,则D1 n D2 n对于两种各向同性的线性介质,则1 E1 n 2E2 n3,介质与导体的边界条件:e n E0 ;e n D S若导体周围是各向同性的线性介质,则E n S;Sn 静电场的能量:1 Q21孤立带电体的能量: W e Q2 C2离散带电体的能量: W e n1i Q i i 12分布电荷的能量:W e11S d S1V 2d V l d lS 2l 21静电场的能量密度:w e D E212对于各向同性的线性介质,则w e E2电场力:库仑定律: Fq q2err4常电荷系统: Fd W eq 常数d ldW e常电位系统: F常数d l题解2-1 若真空中相距为d的两个电荷q1及q2的电量分别为q点电荷q 位于q1及q2的连线上时,系统处于平衡状态,试求及 4 q ,当q的大小及位置。
电磁场与电磁波(第三版)课后答案第2章第⼆章习题解答⼀个平⾏板真空⼆极管内的电荷体密度为43230049U d x ρε--=-,式中阴极板位于0x =,阳极板位于x d =,极间电压为0U 。
如果040V U =、1cm d =、横截⾯210cm S =,求:(1)0x =和x d =区域内的总电荷量Q ;(2)2x d =和x d =区域内的总电荷量Q '。
解(1) 43230004d ()d 9dQ U d x S x τρτε--==-=??110044.7210C 3U S dε--=-? (2)4320024d ()d 9dd Q U d x S x τρτε--''==-=?11004(10.9710C 3U S d ε--=-? ⼀个体密度为732.3210C m ρ-=?的质⼦束,通过1000V 的电压加速后形成等速的质⼦束,质⼦束内的电荷均匀分布,束直径为2mm ,束外没有电荷分布,试求电流密度和电流。
解质⼦的质量271.710kg m -=?、电量191.610C q -=?。
由21mv qU = 得 61.3710v ==? m s故 0.318J v ρ== 2A m26(2)10I J d π-== A⼀个半径为a 的球体内均匀分布总电荷量为Q 的电荷,球体以匀⾓速度ω绕⼀个直径旋转,求球内的电流密度。
解以球⼼为坐标原点,转轴(⼀直径)为z 轴。
设球内任⼀点P 的位置⽮量为r ,且r 与z 轴的夹⾓为θ,则P 点的线速度为sin r φωθ=?=v r e ω球内的电荷体密度为343Qa ρπ=故 333sin sin 434Q Q r r a a φφωρωθθππ===J v e e ⼀个半径为a 的导体球带总电荷量为Q ,同样以匀⾓速度ω绕⼀个直径旋转,求球表⾯的⾯电流密度。
解以球⼼为坐标原点,转轴(⼀直径)为z 轴。
设球⾯上任⼀点P 的位置⽮量为r ,且r 与z 轴的夹⾓为θ,则P 点的线速度为sin a φωθ=?=v r e ω球⾯的上电荷⾯密度为24Q a σπ=故 2sin sin 44S Q Q a a aφφωσωθθππ===J v e e 两点电荷18C q =位于z 轴上4z =处,24C q =-位于y 轴上4y =处,求(4,0,0)处的电场强度。
第二章 静电场重点和难点电场强度及电场线等概念容易接受,重点讲解如何由物理学中积分形式的静电场方程导出微分形式的静电场方程,即散度方程和旋度方程,并强调微分形式的场方程描述的是静电场的微分特性或称为点特性。
利用亥姆霍兹定理,直接导出真空中电场强度与电荷之间的关系。
通过书中列举的4个例子,总结归纳出根据电荷分布计算电场强度的三种方法。
至于媒质的介电特性,应着重说明均匀和非均匀、线性与非线性、各向同性与各向异性等概念。
讲解介质中静电场方程时,应强调电通密度仅与自由电荷有关。
介绍边界条件时,应说明仅可依据积分形式的静电场方程,由于边界上场量不连续,因而微分形式的场方程不成立。
关于静电场的能量与力,应总结出计算能量的三种方法,指出电场能量不符合迭加原理。
介绍利用虚位移的概念计算电场力,常电荷系统和常电位系统,以及广义力和广义坐标等概念。
至于电容和部分电容一节可以从简。
重要公式真空中静电场方程:积分形式:⎰=⋅SS E 0d εq⎰=⋅ll E 0d微分形式:ερ=⋅∇E0=⨯∇E已知电荷分布求解电场强度:1,)()(r r E ϕ-∇=; ⎰''-'=V Vd )(41)(|r r |r r ρπεϕ2,⎰'''-'-'=V V 3d |4))(()(|r r r r r r E περ3,⎰=⋅SS E 0d εq高斯定律介质中静电场方程:积分形式:q S=⋅⎰ d S D⎰=⋅ll E 0d微分形式:ρ=⋅∇D0=⨯∇E线性均匀各向同性介质中静电场方程:积分形式:εqS=⋅⎰ d S E⎰=⋅ll E 0d微分形式:ερ=⋅∇E0=⨯∇E静电场边界条件:1,t t E E 21=。
对于两种各向同性的线性介质,则2211εεttD D =2,s n n D D ρ=-12。
在两种介质形成的边界上,则n n D D 21=对于两种各向同性的线性介质,则n n E E 2211εε=3,介质与导体的边界条件:0=⨯E e n ; S n D e ρ=⋅若导体周围是各向同性的线性介质,则ερS n E =;ερϕS n -=∂∂静电场的能量:孤立带电体的能量:Q C Q W e 21212Φ== 离散带电体的能量:∑==ni i i e Q W 121Φ分布电荷的能量:l S V W l l S S Ve d 21d 21d 21ρϕρϕρϕ⎰⎰⎰===静电场的能量密度:E D ⋅=21e w 对于各向同性的线性介质,则2 21E w e ε=电场力:库仑定律:rrq q e F 2 4πε'=常电荷系统:常数=-=q e lW F d d常电位系统:常数==ϕlW F e d d题 解2-1 若真空中相距为d 的两个电荷q 1及q 2的电量分别为q 及4q ,当点电荷q '位于q 1及q 2的连线上时,系统处于平衡状态,试求q '的大小及位置。
第2章习题2-1.已知真空中有四个点电荷q C 11=,q C 22=,q C 34=,q C 48=,分别位于(1,0,0),(0,1,0),(-1,0,0,),(0,-1,0)点,求(0,0,1)点的电场强度。
解:z y r z x r z y r z xr ˆˆ;ˆˆ;ˆˆ;ˆˆ4321+=+=+-=+-=84ˆ15ˆ6ˆ3)ˆˆˆˆ(41024442333222221110πεπεz y xr r q r r q r r q r r q E ++=+++=2-2.已知线电荷密度为ρl 的均匀线电荷围成如图所示的几种形状,求P 点的电场强度。
题2-2图解:(a) 由对称性04321=+++=E E E E E(b) 由对称性0321=++=E E E E(c) 两条半无限长线电荷产生的电场为yay x y x a E E E ll a ˆ2)}ˆˆ()ˆˆ{(40021περπερ-=+--=+=半径为a 的半圆环线电荷产生的电场为y a E lb ˆ20περ=总电场为0=+=b a E E E2-3.真空中无限长的半径为a 的半边圆筒上电荷密度为ρs ,求轴线上的电场强度。
解:在无限长的半边圆筒上取宽度为ϕad 的窄条,,电荷线密度为ϕρρad s l =,对ϕ积分,可得真空中无限长的半径为a 的半边圆筒在轴线上的电场强度为y d x y a d r a E ss s ˆ)ˆcos ˆsin (22ˆ00000⎰⎰-=--==πππερϕϕϕπερπεϕρ题2-3图 题2-4图2-4.真空中无限长的宽度为a 的平板上电荷密度为ρs ,求空间任一点上的电场强度。
解: 在平板上'x 处取宽度为'dx 'dx s l ρρ=,在点),(y x 处产生的电场为ρρρπε'ˆ21),(0dx y x E d s =其中22)'(y x x +-=ρ;22)'(ˆˆ)'(ˆyx x y y xx x +-+-=ρ对'x 积分可得无限长的宽度为a 的平板上的电荷在点),(y x 处产生的电场为)}2/2/(2ˆ)2/()2/(ln ˆ{4),(22220y a x arctg y a x arctg y ya x y a x x y x E s --+++-++=περ 2-5.已知真空中电荷分布为r a ,b 为常数。
第二章 静电场重点和难点电场强度及电场线等概念容易接受,重点讲解如何由物理学中积分形式的静电场方程导出微分形式的静电场方程,即散度方程和旋度方程,并强调微分形式的场方程描述的是静电场的微分特性或称为点特性。
利用亥姆霍兹定理,直接导出真空中电场强度与电荷之间的关系。
通过书中列举的4个例子,总结归纳出根据电荷分布计算电场强度的三种方法。
至于媒质的介电特性,应着重说明均匀和非均匀、线性与非线性、各向同性与各向异性等概念。
讲解介质中静电场方程时,应强调电通密度仅与自由电荷有关。
介绍边界条件时,应说明仅可依据积分形式的静电场方程,由于边界上场量不连续,因而微分形式的场方程不成立。
关于静电场的能量与力,应总结出计算能量的三种方法,指出电场能量不符合迭加原理。
介绍利用虚位移的概念计算电场力,常电荷系统和常电位系统,以及广义力和广义坐标等概念。
至于电容和部分电容一节可以从简。
重要公式真空中静电场方程:积分形式:⎰=⋅SS E 0d εq⎰=⋅llE 0d微分形式: 0ερ=⋅∇E 0=⨯∇E已知电荷分布求解电场强度:1,)()(r r E ϕ-∇=; ⎰''-'=V V 0d )(41)(|r r |r r ρπεϕ2,⎰'''-'-'=V V 3d |4))(()(|r r r r r r E περ3,⎰=⋅SS E 0d εq高斯定律介质中静电场方程:积分形式:q S=⋅⎰ d SD⎰=⋅llE 0d微分形式: ρ=⋅∇D0=⨯∇E线性均匀各向同性介质中静电场方程:积分形式:εqS=⋅⎰ d S E⎰=⋅llE 0d微分形式: ερ=⋅∇E0=⨯∇E静电场边界条件:1,t t E E 21=。
对于两种各向同性的线性介质,则2211εεttD D =2,s n n D D ρ=-12。
在两种介质形成的边界上,则n n D D 21=对于两种各向同性的线性介质,则n n E E 2211εε=3,介质与导体的边界条件:0=⨯E e n ; S n D e ρ=⋅若导体周围是各向同性的线性介质,则ερS n E =;ερϕS n-=∂∂静电场的能量:孤立带电体的能量:Q C Q W e 21212Φ==离散带电体的能量:∑==ni i i e Q W 121Φ分布电荷的能量:l S V W llSS Ve d 21d 21d 21ρϕρϕρϕ⎰⎰⎰===静电场的能量密度:E D ⋅=21e w对于各向同性的线性介质,则221E w e ε=电场力:库仑定律:r rq q e F 24πε'=常电荷系统:常数=-=q e lW F d d常电位系统:常数==ϕlW F e d d题 解2-1 若真空中相距为d 的两个电荷q 1及q 2的电量分别为q 及4q ,当点电荷q '位于q 1及q 2的连线上时,系统处于平衡状态,试求q '的大小及位置。
解 要使系统处于平衡状态,点电荷q '受到点电荷q 1及q 2的力应该大小相等,方向相反,即q q q q F F ''=21。
那么,由1222022101244r r r q q r q q =⇒'='πεπε,同时考虑到d r r =+21,求得 d r d r 32 ,3121==可见点电荷q '可以任意,但应位于点电荷q 1和q 2的连线上,且与点电荷1q 相距d 31。
2-2 已知真空中有三个点电荷,其电量及位置分别为:)0,1,0( ,4 )1,0,1( ,1 )1,0,0( ,1332211P C q P C q P C q === 试求位于)0,1,0(-P 点的电场强度。
解 令321,,r r r 分别为三个电电荷的位置321,,P P P 到P 点的距离,则21=r ,32=r ,23=r 。
利用点电荷的场强公式r e E 204rq πε=,其中r e 为点电荷q 指向场点P 的单位矢量。
那么,1q 在P点的场强大小为021011814πεπε==r q E ,方向为()z yr e ee +-=211。
2q 在P点的场强大小为0220221214πεπε==r q E ,方向为()z y xr e e ee ++-=312。
3q 在P 点的场强大小为023033414πεπε==r q E ,方向为y r e e -=3则P 点的合成电场强度为⎥⎦⎤⎢⎣⎡⎪⎪⎭⎫⎝⎛++⎪⎪⎭⎫ ⎝⎛+++-=++=z e e e E E E E y x 312128141312128131211 0321πε2-3 直接利用式(2-2-14)计算电偶极子的电场强度。
解 令点电荷q -位于坐标原点,r 为点电荷q -至场点P 的距离。
再令点电荷q +位于+z 坐标轴上,1r 为点电荷q +至场点P 的距离。
两个点电荷相距为l ,场点P 的坐标为(r,θ,φ)。
根据叠加原理,电偶极子在场点P 产生的电场为⎪⎪⎭⎫⎝⎛-=31134r r q r r E πε考虑到r >> l ,1r e = e r ,θcos 1l r r -=,那么上式变为r r r r r r r r qr r r r q e e E ⎪⎪⎭⎫⎝⎛+-=⎪⎪⎭⎫⎝⎛-=2121102122210))((44πεπε式中()2122212211cos 211cos 2---⎪⎪⎭⎫ ⎝⎛-+=-+=θθr lr l r rl l r r以r l为变量,并将2122cos 21-⎪⎪⎭⎫ ⎝⎛-+θr lr l 在零点作泰勒展开。
由于r l <<,略去高阶项后,得θθcos 1cos 11211r l rr l r r +=⎪⎭⎫ ⎝⎛+=- 利用球坐标系中的散度计算公式,求出电场强度为θr e e E 3030204sin 2cos 1cos 14r ql r ql r r l r q πεθπεθθπε+=⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛∇-⎪⎭⎫ ⎝⎛+∇-=2-4 已知真空中两个点电荷的电量均为6102-⨯C ,相距为2cm , 如习题图2-4所示。
试求:①P 点的电位;②将电量为6102-⨯C 的点电荷由无限远处缓慢地移至P 点时,外力必须作的功。
原理,P 点的解 根据叠加合成电位为()V 105.24260⨯=⨯=rq πεϕ因此,将电量为C 1026-⨯的点电荷由无限远处缓慢地移到P 点,外力习题图2-4必须做的功为()J 5==q W ϕ2-5 通过电位计算有限长线电荷 的电场强度。
解 建立圆柱坐标系。
令先电 荷沿z 轴放置,由于结构以z 轴对称,场强与φ无关。
为了简单起见,令场点位于yz 平面。
设线电荷的长度为L ,密度为l ρ,线电荷的中点位于坐标原点,场点P 的坐标为⎪⎭⎫⎝⎛z r ,2,π。
利用电位叠加原理,求得场点P 的电位为⎰-=224LL lr περϕ式中()220rl z r +-=。
故()2222222202222ln 4 ln 4rL z L z rL z L z r l z l z lLL l+⎪⎭⎫ ⎝⎛-+-+⎪⎭⎫ ⎝⎛+++=⎥⎦⎤⎢⎣⎡+-+--=-περπερϕ因ϕ-∇=E ,可知电场强度的z 分量为22222222ln 4rL z L z rL z L z zzE lz +⎪⎭⎫ ⎝⎛-+-+⎪⎭⎫ ⎝⎛+++∂∂-=∂∂-=περϕyy⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛+⎪⎭⎫ ⎝⎛--+⎪⎭⎫ ⎝⎛+-=222221214rL z rL z l περ ⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛⎪⎭⎫ ⎝⎛-+-⎪⎭⎫ ⎝⎛++-=2202112114r L z r L z r l περ ()()⎪⎪⎭⎫⎝⎛-+-++-=22220224L z rr L z rr r lπερ ()120sin sin 4θθπερ-=rl电场强度的r 分量为22222222ln 4rL z L z rL z L z rrE lr +⎪⎭⎫ ⎝⎛-+-+⎪⎭⎫ ⎝⎛+++∂∂-=∂∂-=περϕ()() ⎝⎛-⎪⎭⎫ ⎝⎛++++++-=22222224r L z L z r L z rl περ()()⎪⎪⎪⎪⎭⎫⎪⎭⎫ ⎝⎛+-+-+-2222222r L z L z r L z r-⎝⎛⎪⎪⎭⎫⎝⎛⎪⎭⎫ ⎝⎛++++⎪⎭⎫ ⎝⎛++-=2202122114r L z r L z r L z r l περ⎪⎪⎪⎪⎪⎪⎪⎭⎫⎪⎪⎭⎫⎝⎛⎪⎭⎫ ⎝⎛-++-⎪⎭⎫ ⎝⎛-+22212211r L z r L z r L z⎝⎛-⎪⎪⎭⎫⎝⎛+++-=121120tan 11tan 1tan 1114θθθπερr l⎪⎪⎪⎪⎪⎪⎭⎫⎪⎪⎭⎫ ⎝⎛+++22222tan 11tan 1tan 111θθθ ()()()210cos 1cos 14θθπερ----=rl()210cos cos 4θθπερ-=rl式中2t a na r c ,2t a na r c 21L z r L z r-=+=θθ,那么,合成电强为()()[]r z lre e E 12120cos cos sin sin 4θθθθπερ---=当L →∞时,πθθ→→ ,021,则合成电场强度为r lre E 02περ=可见,这些结果与教材2-2节例4完全相同。
2-6 已知分布在半径为a的半圆周上的电荷线密度πφφρρ≤≤=0 ,sin 0l ,试求圆心处的电场强度。
解 建立直角坐标,令线电荷位于xy 平面,且以y 轴为对称,如习题点电荷ll d ρ图2-6所示。
那么,在圆心处产生的电场强度具有两个分量E x 和E y 。
由于电荷分布以y 轴为对称,因此,仅需考虑电场强度的y E 分量,即φπερsin 4d d d 20al E E l y ==考虑到φρρφsin ,d d 0==l a l ,代入上式求得合成电场强度为y y aae e E 0002008d sin 4ερφφπερπ==⎰2-7 已知真空中半径为a 的圆环上均匀地分布的线电荷密度为l ρ,试求通过圆心的轴线上任一点的电位及电场强度。
解 建立直角坐标,令圆环位于坐标原点,如习题图点电荷ll d ρ2-7所示。
那么,在z 轴上P 点产生的电位为rl l 04d περϕ=根据叠加原理,圆环线电荷在P 点产生的合成电位为()2220202d 4d 41za a l rl rz l al al +===⎰⎰ερπερρπεϕππ习题图2-6习题图2-7y因电场强度ϕ-∇=E ,则圆环线电荷在P 点产生的电场强度为()()232202za az zz l zz+=∂∂-=ερϕe e E2-8 设宽度为W ,面密度为S ρ的带状电荷位于真空中, 试求空间任一点的电场强度。