华杯赛初赛历年真题集(含答案)
- 格式:docx
- 大小:1.06 MB
- 文档页数:86
长沙华杯赛试题及答案一、选择题1. 下列哪个选项是华杯赛的举办地?A. 北京B. 上海C. 长沙D. 广州答案:C2. 华杯赛通常在每年哪个季节举行?A. 春季B. 夏季C. 秋季D. 冬季答案:C二、填空题1. 华杯赛的全称是________。
答案:长沙华杯数学竞赛2. 华杯赛的参赛对象主要是________。
答案:中学生三、解答题1. 已知一个数列的前三项为1, 2, 4,且每一项都是前一项的两倍加1,求数列的第n项。
答案:数列的第n项为2^(n-1)。
2. 一个圆的直径是10cm,求圆的面积。
答案:圆的面积为78.5平方厘米。
四、证明题1. 证明:如果一个三角形的两边之和大于第三边,则这个三角形是锐角三角形。
答案:假设三角形的三边分别为a、b、c,且a+b>c。
根据三角形的内角和定理,三角形的三个内角之和为180度。
由于a+b>c,所以三角形的任意两边之和都大于第三边,这意味着三角形的三个内角都小于90度,因此这个三角形是锐角三角形。
五、应用题1. 一个班级有50名学生,其中30名学生喜欢数学,20名学生喜欢英语,10名学生既喜欢数学又喜欢英语。
问至少有多少名学生喜欢数学或英语?答案:至少有30名学生喜欢数学或英语。
六、计算题1. 计算:(2^3 + 3^2) * 4 - 5答案:(8 + 9) * 4 - 5 = 17 * 4 - 5 = 68 - 5 = 63七、逻辑推理题1. 如果今天是星期一,那么明天是星期几?答案:星期二八、创新题1. 请设计一个简单的数学游戏,要求游戏规则简单明了,且能锻炼逻辑思维能力。
答案:设计一个“24点”游戏,游戏规则是使用四个数字(每个数字只能使用一次),通过加、减、乘、除四种运算,得到结果24。
例如:使用数字2、3、4、6,可以计算(6/(1-(2/3)))*4=24。
以上是长沙华杯赛试题及答案的示例排版。
历届华杯赛数学试题及答案# 历届华杯赛数学试题及答案## 第一届华杯赛数学试题及答案### 试题1. 计算下列表达式的值:\[ 3 + 4 \times 2 \]2. 一个长方形的长是宽的两倍,如果宽增加3米,长减少4米,面积不变,求原长方形的长和宽。
### 答案1. 根据运算顺序,先乘法后加法,所以表达式的值为:\[ 3 + 4\times 2 = 3 + 8 = 11 \]2. 设原长方形的宽为 \( x \) 米,则长为 \( 2x \) 米。
根据题意,有:\[ x \times 2x = (x + 3) \times (2x - 4) \]\[ 2x^2 = 2x^2 - 4x + 6x - 12 \]\[ 0 = 2x - 12 \]\[ x = 6 \]所以原长方形的宽为6米,长为 \( 2 \times 6 = 12 \) 米。
## 第二届华杯赛数学试题及答案### 试题1. 一个数的三倍加上4等于这个数的五倍减去6,求这个数。
2. 一个工厂有A、B两个车间,A车间的人数是B车间的4倍,如果从A车间调100人到B车间,则A车间人数是B车间的2倍,求原来A、B车间各有多少人。
### 答案1. 设这个数为 \( x \),则根据题意有:\[ 3x + 4 = 5x - 6 \]\[ 2x = 10 \]\[ x = 5 \]所以这个数是5。
2. 设B车间原来有 \( x \) 人,则A车间原来有 \( 4x \) 人。
根据题意有:\[ 4x - 100 = 2(x + 100) \]\[ 4x - 100 = 2x + 200 \]\[ 2x = 300 \]\[ x = 150 \]所以B车间原来有150人,A车间原来有 \( 4 \times 150 = 600 \) 人。
## 第三届华杯赛数学试题及答案### 试题1. 一个数的平方减去这个数的两倍再加上1等于0,求这个数。
2. 一个圆的直径增加10%,面积增加了多少百分比?### 答案1. 设这个数为 \( x \),则根据题意有:\[ x^2 - 2x + 1 = 0 \]这是一个完全平方公式,可以写成:\[ (x - 1)^2 = 0 \]所以 \( x = 1 \)。
第八届华杯赛初赛试题及解答1.2002年将在北京召开国际数学家大会,大会会标如下图所示。
它是由四个相同的直角三角形拼成的(直角边长为2和3)。
问:大正方形的面积是多少?2. 从北京到G城的特别快车在2000年10月前需用12.6小时后提速20% .问;提速后,北京到G城的特别快车需要多少小时?3. 右式中不同的汉字代表I 一9中不同的数字,当算式成立时,“中国”这两个汉字所代表的两位数最大是多少?中国新北京+新典运2 0 0 8~4. 两个同样材料做成的球A和B, —个实心,一个空心。
A的直径为7、重量为22, B的直径为10.6、重量为33.3。
问:哪个球是实心球?5. 铁路油罐车由两个半球面和一个圆柱面钢板焊接而成,尺寸如下图所示。
问:该油罐车的容积是多少立方米?( n=3.1416)6. 将左下图中20张扑克牌分成10对,每对红心和黑桃各一张。
问:你能分出几对这样的牌,两张牌上的数的乘积除以的余数是1?(将A看成I)I0145k7. 右上图中五个相同的圆的圆心连线构成一个边长为10厘米的正五边形。
求五边形内阴影部分的面积。
(n =3.14)8. 世界上最早的灯塔于公元270年,塔分三层,每层都高27米,底座呈正四棱柱,中间呈正八棱柱,上部呈正圆锥。
上部的体积是底座的体积的_____ .打开X(A) ■■(B)二(C)--9•将+, -,x,+四个运算符号分别填入下面的四个框中使该式的值最大。
]]]]]10.有码放整齐的一堆球,从上往下看如右图,这堆球共有多少个?11.自行车轮胎安装在前轮上行驶5000千米后报废,若安装在后轮上只能行驶3000千米。
为行驶尽可能多的路,如果采用当自行车行驶一定路程后将前后轮胎调换的方法,那么安装在自行车上的一对轮胎最多可行驶多少千米?12.将一边长为I的正方形二等分,再将其中的一半二等分,又将这一半的一半二等分,这样继续下去……展开想象的翅膀,从这个过程中你能得到什么?12、答案可以是各种各样的1. 【解】中间小正方形的面积为 1,大正方形的面积为 4个三角形与中间小正方形的面积之和,所以,大正方形的面积=1[X 2 X 3X 4+ 1= 13.1002.【解】时间与速度成反比,提速后的时间为 12.6 -( 1 + 20%)= 12.6 X 二「I =10.5 (小时)3. 【解】“新”必为9,千位才能得2,所以“中”应为8.“国”、“京”、“运”之和应为8或18,但当和为18时,(“国”、“京”、“运”分别为 7, 6, 5),“中”、“北”、“奥”之和最大为 15 (“中”、“北”、“奥”分别为8, 4, 3),不能进位2,所以“国”、“京”、“运”之和只能是 8,此时,“北”、“奥”只能分别为7和5,则“国”、“京”、“运”分别为 4、3、1,为使“中国”代表的两位数最大,“国”取4.即“中国”这两个汉字所代表的两位数最大是84.B 的比重为33.3 +(彳 I 2丿),两式均含22 333_所以只需比较 F 与ill 「的大小,二1亍〉1000, ,= 147,可知A 的比重较大,即 A 是实心球. 5. 【解】-XJTX13两个半球合成一个球,体积为」,圆柱部分的高为14- 2= 12,4.【解】显然比重较大的一个是实心球.A 的比重为22十-x^xf 一所以罐的容积为: E +nX 12x 12=(12+ 1 )X n ~ 13.3333 X 3.1416 ~41.888 (立方米)6. 【解】本题实际上是求1到10这些数中,取出2个数(可以重复)相乘,能组成几个个位是1的数.显然,双数不成所以只能是1X 1,3 X 7,7X 3和9X 9,共4对.7. 【解】我们用两条绿线将五边形分成了三个三角形,可以看出,这个五边形的五个角的度数和是180 X 3= 540度,即阴影部分面积相当于 1.5个半径为5的圆的面积,所以阴影部分的面积是n X 52X 1.5 - 3.14 X 25X 1.5 = 111.75 (平方厘米).◎8. 【解】由图可以看出,塔的上部底面圆的直径与底座的一边等长.设底座的一边长为2a,则塔的上部的体积为}X n .■/ -X 27,底座的体积为4:' X 27,所以,塔的上部的体积是底座的体积的,答案为B.9. 【解】题目给出5个数,乘、除之后成3个数,其中减数应尽量小,由两个数合成(相乘或相除)的加数与另一个分数111111 1 1 1 1 1 1 1 1 1一X—二一一乂一 = —一乂一 =——一X-=——-X^ =-相加应尽量大,[一「,人J 「,4 1 :'ii , :〔「.;二一I■,111111111 113 114 115 116-X-=— -X-"—-X-"—一* _=一- 一士一二一一一=一1 一1 , •• 1 二,—二;而「二4 Tj 4 , 1 1 ;其中最小的是:〔二•,而二匚」 - 一_,[匚■- --,1丄1 1 1 1所以2 r :”最大,即答案为:+、*、一、X。
华杯赛初赛试题及答案一、选择题(每题5分,共20分)1. 下列哪个选项是最小的正整数?A. 0B. 1C. 2D. 3答案:B2. 一个数的平方是16,那么这个数是多少?A. 4B. -4C. 4或-4D. 2答案:C3. 一个圆的周长是2πr,那么它的直径是多少?A. πrB. 2rC. rD. 2πr答案:B4. 计算下列表达式的值:(3x^2 - 2x + 1) + (2x^2 + 3x - 4)A. 5x^2 + x - 3B. 5x^2 + x + 5C. 5x^2 + x - 5D. 5x^2 + x + 3答案:A二、填空题(每题5分,共20分)1. 一个数的立方是27,那么这个数是______。
答案:32. 一个三角形的两个内角分别是40度和60度,那么第三个内角是______度。
答案:803. 一个数的绝对值是5,那么这个数可能是______或______。
答案:5或-54. 一个数除以2的结果是3,那么这个数是______。
答案:6三、解答题(每题10分,共20分)1. 已知一个等差数列的前三项分别是2,5,8,求这个数列的第10项。
解答:设数列的首项为a1=2,公差为d=5-2=3,根据等差数列的通项公式an=a1+(n-1)d,代入n=10,得a10=2+(10-1)*3=29。
答案:292. 一个长方形的长是宽的两倍,如果长是10厘米,那么宽是多少厘米?解答:设宽为x厘米,那么长就是2x厘米。
根据题意,2x=10,解得x=5。
答案:5厘米四、证明题(每题10分,共20分)1. 证明:在一个直角三角形中,斜边的平方等于两直角边的平方和。
证明:设直角三角形的两直角边分别为a和b,斜边为c。
根据勾股定理,有a^2 + b^2 = c^2。
答案:证明完毕。
2. 证明:如果一个数的平方等于它的相反数,那么这个数只能是0。
证明:设这个数为x,那么x^2 = -x。
将方程重写为x^2 + x = 0,提取公因式得x(x + 1) = 0。
华赛杯初赛试题及答案一、选择题(每题2分,共20分)1. 以下哪个选项不是华赛杯的参赛条件?A. 年龄在14-18岁之间B. 必须为在校中学生C. 可以是个人参赛D. 必须参加所有比赛项目2. 华赛杯的初赛通常在每年的哪个月份举行?A. 1月B. 3月C. 6月D. 9月3. 华赛杯的决赛通常在哪个国家举行?A. 中国B. 美国C. 英国D. 澳大利亚4. 下列哪个科目不属于华赛杯的竞赛科目?A. 数学B. 物理C. 化学D. 历史5. 华赛杯的参赛者需要提交哪些材料?A. 个人简历B. 学校成绩单C. 竞赛报名表D. 所有以上选项6. 华赛杯的初赛试题通常由哪些专家命题?A. 中学教师B. 大学教授C. 行业专家D. 所有以上选项7. 华赛杯的奖项设置通常包括哪些?A. 一等奖、二等奖、三等奖B. 金银铜奖C. 荣誉证书D. 所有以上选项8. 华赛杯的参赛者在初赛中获得多少分才能进入决赛?A. 60分以上B. 70分以上C. 80分以上D. 90分以上9. 华赛杯的参赛者可以参加几次初赛?A. 1次B. 2次C. 3次D. 无限制10. 华赛杯的参赛者在决赛中获得什么奖项可以被保送至大学?A. 一等奖B. 金银铜奖C. 荣誉证书D. 所有以上选项二、简答题(每题5分,共10分)11. 请简述华赛杯的宗旨是什么?12. 请列举华赛杯对参赛者有哪些要求?三、论述题(每题15分,共30分)13. 论述华赛杯对中学生的学术发展有哪些积极影响?14. 论述参加华赛杯对个人综合素质提升的作用。
四、案例分析题(每题15分,共15分)15. 假设你是华赛杯的组织者,请分析如何提高华赛杯的知名度和影响力?五、答案1-5:D, B, A, D, D6-10:D, A, C, C, A11. 华赛杯的宗旨是激发中学生的学术兴趣,培养他们的创新能力和团队合作精神,同时提供一个展示自己才华的平台。
12. 参赛者要求包括年龄在14-18岁之间,为在校中学生,可以个人或团队参赛,需提交竞赛报名表和学校成绩单。
华杯赛初赛试题及答案华杯赛初赛试题及答案一、选择题1.下列选项中,哪个是所有外国歌曲?A.梅花香自苦寒来B.黄河之水天上来C.Let It GoD.没那么简单答案:C2.中国三大中心城市不包括以下哪个城市?A.北京B.上海C.深圳D.广州答案:D3."世界上最长的河流"指的是哪条河?A.长江B.亚马逊河C.尼罗河D.黄河答案:C4.下面哪个星座是水瓶座?A.1月20日-2月18日B.2月19日-3月20日C.3月21日-4月19日D.4月20日-5月20日答案:A5.以下哪个国家拥有最多的人口?A.印度B.巴西C.美国D.俄罗斯答案:A二、填空题1.请列举五大洲的名称。
答案:______、______、______、______、______。
2.请写出日本首都的名称。
答案:_________。
3.请填写下列成语:一日三秋。
答案:______。
4.下面哪个不是动物的名字?A.猫B.狗C.凳子D.鸟答案:C5.请写出中国古代四大发明中的任意一项。
答案:______。
三、问答题1.请简述中国的国旗和国徽的设计。
答案:中国的国旗背景为红色,中间有五颗黄色的星星,象征着中国共产主义革命的五类人民。
国徽上有天安门的图案以及麦穗和五星。
2.请写出任意一位中国的古代历史人物。
答案:_________。
3.请解释什么是环保。
答案:环保是指保护和改善环境,使人们的生活环境更加美好,并且不对地球造成不可逆转的伤害。
四、判断题判断下列句子的正误,正确的写“对”,错误的写“错”。
1.地球是宇宙中唯一有生命的行星。
答案:错2.北京是中国的首都。
答案:对3.《罗密欧与朱丽叶》是一部古希腊悲剧。
答案:错4."绿水青山就是金山银山"是习近平提出的口号。
答案:对5.手机可以用来打电话和上网。
答案:对五、作文题请根据自己的实际情况,写一篇关于节约用水的作文。
(文章正文内容,请根据个人实际情况进行书写,字数不限)答案:(以下为作文示例)在日常生活中,节约用水对我们每个人都非常重要。
华杯赛历届试题及答案华杯赛,全称“华罗庚数学金杯赛”,是一项面向中学生的数学竞赛,旨在激发学生对数学的兴趣,提高他们的数学素养。
以下是历届华杯赛的部分试题及答案,供参考:一、选择题1. 下列哪个数是最小的正整数?- A. 0- B. 1- C. 2- D. 3答案:B2. 如果一个数除以3的余数是2,除以5的余数是1,那么这个数除以15的余数是多少?- A. 3- B. 4- C. 5- D. 6答案:A二、填空题1. 一个长方体的长、宽、高分别是8cm、6cm和5cm,其体积是________ 立方厘米。
答案:2402. 计算下列数列的第10项:1, 1, 2, 3, 5, 8, 13, 21, 34, ...答案:55三、解答题1. 一个水池有注水口和排水口,单开注水口每小时可注水20吨,单开排水口每小时可排水10吨。
如果同时打开注水口和排水口,水池每小时净增水量是多少吨?如果池中原有水100吨,需要多少时间才能将水排空?答案:同时打开注水口和排水口时,水池每小时净增水量是20吨- 10吨 = 10吨。
要将100吨水排空,需要的时间为100吨÷ 10吨/小时 = 10小时。
2. 一个班级有48名学生,其中1/3是男生,剩下是女生。
问这个班级有多少名女生?答案:班级中有48名学生,其中1/3是男生,即48 * (1/3) = 16名男生。
剩下的学生是女生,所以女生人数为48 - 16 = 32名。
四、证明题1. 证明对于任意的正整数n,n的立方与n的和不小于n的平方与n 的两倍之和。
答案:设n为任意正整数。
我们需要证明n^3 + n ≥ n^2 + 2n。
展开立方项,得到n^3 + n - n^2 - 2n = n(n^2 - n - 1) = n(n - (1 + √5)/2)(n - (1 - √5)/2)。
由于n是正整数,(n - (1 +√5)/2)和(n - (1 - √5)/2)都是负数或零,因此整个表达式是非负的,即n^3 + n ≥ n^2 + 2n。
华杯赛初一组试题及答案一、选择题(每题5分,共40分)1. 下列哪个数是最小的正整数?A. 0B. 1C. 2D. 3答案:B2. 一个等腰三角形的两个底角相等,如果其中一个底角是45度,那么顶角是多少度?A. 45度B. 90度C. 135度D. 180度答案:B3. 如果一个数的平方等于36,那么这个数是多少?A. 6B. ±6C. 36D. ±36答案:B4. 一个长方体的长、宽、高分别是a、b、c,那么它的体积是多少?A. abcB. ab + bc + acC. a + b + cD. a/b + b/c + c/a答案:A5. 下列哪个分数是最简分数?A. 3/4B. 4/6C. 5/8D. 7/9答案:D6. 一个圆的半径是r,那么它的面积是多少?A. πrB. πr^2C. 2πrD. 2πr^2答案:B7. 如果一个数x满足方程x^2 - 5x + 6 = 0,那么x的值是多少?A. 2B. 3C. 2或3D. 以上都不是答案:C8. 一个等差数列的首项是a1,公差是d,那么它的第n项是多少?A. a1 + (n-1)dB. a1 - (n-1)dC. a1 + ndD. a1 - nd答案:A二、填空题(每题5分,共30分)9. 一个数的相反数是-5,那么这个数是______。
10. 一个数的绝对值是8,那么这个数可以是______或______。
答案:8或-811. 一个等腰直角三角形的斜边长是10,那么它的直角边长是______。
答案:5√212. 一个数列的前三项是1,2,3,如果每一项都是前一项的两倍,那么第10项是______。
答案:2^9 = 51213. 一个圆的周长是2πr,如果周长是12π,那么半径r是______。
14. 一个长方体的长、宽、高分别是2,3,4,那么它的表面积是______。
答案:5215. 一个数列的前三项是1,3,5,如果每一项都比前一项多2,那么第n项是______。
目录2002年第9届“华罗庚金杯”少年数学邀请赛初赛试卷 (3)2002年第9届“华罗庚金杯”少年数学邀请赛初赛试卷 (5)2004年第10届“华罗庚金杯”少年数学邀请赛初赛试卷 (11)2004年第1届“华罗庚金杯”少年数学邀请赛初赛试卷 (13)2006年第11届“华罗庚金杯”少年数学邀请赛初赛试卷 (19)2006年第11届“华罗庚金杯”少年数学邀请赛初赛试卷 (23)2007年第12届“华罗庚金杯”少年数学邀请赛初赛试卷 (31)2007年第12届“华罗庚金杯”少年数学邀请赛初赛试卷 (33)2008年第13届“华罗庚金杯”少年数学邀请赛初赛试卷 (39)2008年第13届“华罗庚金杯”少年数学邀请赛初赛试卷 (41)2009年第14届“华罗庚金杯”少年数学邀请赛初赛试卷 (47)2009年第14届“华罗庚金杯”少年数学邀请赛初赛试卷 (49)2010年第15届“华罗庚金杯”少年数学邀请赛初赛试卷 (55)2010年第15届“华罗庚金杯”少年数学邀请赛初赛试卷 (57)2011年第16届“华罗庚金杯”少年数学邀请赛初赛试卷 (63)2011年第16届“华罗庚金杯”少年数学邀请赛初赛试卷 (66)2012年第17届“华罗庚金杯”少年数学邀请赛初赛试卷 (73)2012年第17届“华罗庚金杯”少年数学邀请赛初赛试卷 (75)2013年第18届“华罗庚金杯”少年数学邀请赛初赛试卷 (82)2013年第18届“华罗庚金杯”少年数学邀请赛初赛试卷 (84)2002年第9届“华罗庚金杯”少年数学邀请赛初赛试卷一、解答题(共12小题,满分0分)1.“华杯赛”是为了纪念和学习我国杰出的数学家华罗庚教授而举办的全国性大型少年数学竞赛.华罗庚教授生于1910年,现在用“华杯”代表一个两位数.已知1910与“华杯”之和等于2004,那么“华杯”代表的两位数是多少?2.长方形的各边长增加10%,那么它的周长和面积分别增加百分之几?3.如图所示的是一个正方体木块的表面展开图,若在正方体的各面填上数,使其对面两数之和为7,则A、B、C处填的数各是多少?4.在一列数:,,,,,,…中,从哪一个数开始,1与每个数之差都小于?5.“神舟五号”载人飞船载着航天英雄杨利伟于2003年10月16日清晨6时51分从太空返回地球,实现了中华民族的飞天梦.飞船绕地球共飞行14圈,其中后10圈沿离地面343千米的圆形轨道飞行.请计算飞船沿圆形轨道飞行了多少千米(地球半径为6371千米,圆周率π=3.14).6.如图,一块圆形的纸片分成4个相同的扇形,用红、黄两种颜色分别涂满各扇形,问共有几种不同的涂法?7.在9点至10点之间的某一时刻,5分钟前分针的位置与5分钟后时针的位置相同,此时刻是9点几分?8.一副扑克牌有54张,最少要抽取几张牌,方能使其中至少有2张牌有相同的点数?9.任意写一个两位数,再将它依次重复3遍成一个8位数.将此8位数除以该两位数所得到的商再除以9,问:得到的余数是多少?10.一块长方形的木板,长为90厘米,宽为40厘米,将它锯成2块,然后拼成一个正方形,你能做到吗?11.如图,大小两个半圆,它们的直径在同一直线上,弦AB与小圆相切,且与直径平行,弦AB长12厘米.求图中阴影部分的面积(圆周率π=3.14).12.半径为25厘米的小铁环沿着半径为50厘米的大铁环的内侧作无滑动的滚动,当小铁环沿大铁环滚动一周回到原位时,问小铁环自身转了几圈?2002年第9届“华罗庚金杯”少年数学邀请赛初赛试卷参考答案与解析一、解答题(共12小题,满分0分)1.“华杯赛”是为了纪念和学习我国杰出的数学家华罗庚教授而举办的全国性大型少年数学竞赛.华罗庚教授生于1910年,现在用“华杯”代表一个两位数.已知1910与“华杯”之和等于2004,那么“华杯”代表的两位数是多少?考点:竖式数字谜.专题:填运算符号、字母等的竖式与横式问题.分析:根据整数加法的计算方法进行推算即可.解答:解:解法一:个位上:0+“杯”=4,可得“杯”=4;十位上:1+“华”的末尾是0,由1+9=10,可得“华”9,向百位上进1;百位上:9+1=10,向千位上进1;千位上:1+1=2;由以上可得:;因此,“华杯”代表的两位数是94.解法二:已知1910与“华杯”之和等于2004;那么“华杯”=2004﹣1910=94;因此,“华杯”代表的两位数是94.点评:本题非常巧妙地考察了对整数的加法运算法则及数位的进位等知识要点的熟悉掌握程度.2.长方形的各边长增加10%,那么它的周长和面积分别增加百分之几?考点:百分数的实际应用;长方形的周长;长方形、正方形的面积.专题:分数百分数应用题.分析:设长方形的长为a,宽为b,因此各边长增加10%时,则长为(1+10%)a=110%a,长为(1+10%)b=110%b,因此各边长增加10%时,周长增加2(1.1a+1.1b)﹣2(a+b)=2(a+b)×10%,即周长增加10%.面积增加1.1a×1.1b﹣ab=1.21ab﹣ab=ab×21%,即面积增加21%.解答:周长增加10%,面积增加21%解:设长方形的长为a,宽为b,边长增加10%时,则长为(1+10%)a=110%a,长为(1+10%)b=110%b,周长增加:2(110%a+110%b)﹣2(a+b)=220%a+220%b﹣2a﹣2b=2(a+b)×10%;面积增加:110%a×110%b﹣ab=121%ab﹣ab=ab×21%;答:周长增加了10%,面积增加了21%.点评:在求出长宽增加后的长度基础上,根据长方形的周长与面积公式计算是完成本题的关键.3.如图所示的是一个正方体木块的表面展开图,若在正方体的各面填上数,使其对面两数之和为7,则A、B、C处填的数各是多少?考点:正方体的展开图.专题:立体图形的认识与计算.分析:如图,是正方体展开图的“222”结构,把它折叠成正方体后,A面与1面相对,B面与2面相对,C面与4面相对,相使使其对面两数之和为7,A面填6,B面填5,C面填3.解答:解:如图,折成正方体后,A面与1面相对,B面与2面相对,C面与4面相对,要使其对面之各为7,则A面填6,B面填5,C面填3.点评:本题是考查正方体的展开图,关键是弄清把它折叠成正方体后,哪两个面相对.4.在一列数:,,,,,,…中,从哪一个数开始,1与每个数之差都小于?考点:数列中的规律.专题:探索数的规律.分析:这列数的特点是每个数的分母比分子大2,分子为奇数列,要使1﹣<,则n>999.5,即从n=1000开始,带入分数,即可得解.解答:解:这列数的特点是每个数的分母比分子大2,分子为奇数列,1﹣<,n>999.5,从n=1000开始,即从开始,满足条件.答:从开始,1与每个数之差都小于.点评:找出这列数的规律,根据已知列出等式求解.5.“神舟五号”载人飞船载着航天英雄杨利伟于2003年10月16日清晨6时51分从太空返回地球,实现了中华民族的飞天梦.飞船绕地球共飞行14圈,其中后10圈沿离地面343千米的圆形轨道飞行.请计算飞船沿圆形轨道飞行了多少千米(地球半径为6371千米,圆周率π=3.14).考点:有关圆的应用题.专题:平面图形的认识与计算.分析:先圆形轨道的半径,再根据圆的周长公式:C=2πr求出飞船沿圆形轨道飞行1圈的长度,再乘以10即可求出飞船沿圆形轨道飞行了多少千米.解答:解:2×3.14×(6371+343)×10=2×3.14×6714×10=3.14×134280=421639.2(千米);答:飞船沿圆形轨道飞行了421639.2千米.点评:考查了有关圆的应用题,关键是熟练掌握圆的周长公式.6.如图,一块圆形的纸片分成4个相同的扇形,用红、黄两种颜色分别涂满各扇形,问共有几种不同的涂法?考点:染色问题.专题:传统应用题专题.分析:根据四个扇形中有一个红色、两个、三个、四个分类列举即可.解答:解:按逆时针方向涂染各扇形:红红红红红红红黄红红黄黄红黄红黄红黄黄黄黄黄黄黄所以,共有6种.点评:本题考查了排列组合知识中的染色问题,还可以列式解答:4×(4﹣1)÷2=6(种).7.在9点至10点之间的某一时刻,5分钟前分针的位置与5分钟后时针的位置相同,此时刻是9点几分?考点:时间与钟面.专题:时钟问题.分析:可设当前是9点x分,则5分钟前分针指向x﹣5的位置,而分针转动的速度是时针的12倍,分针5分钟后指向x+5的位置,时针指向9刻度后刻度处,根据题意列出方程解答即可.解答:解:设当前时刻是9点x分.则5分钟后时针的位置为45+=x﹣5540+x+5=12x﹣6011x=605x=55;答:此时刻是9点55分.点评:本题主要考查钟表问题的实际应用,熟练掌握钟表的特征是解答本题的关键.8.一副扑克牌有54张,最少要抽取几张牌,方能使其中至少有2张牌有相同的点数?考点:抽屉原理.专题:传统应用题专题.分析:建立抽屉:一副扑克牌有54张,大小鬼不相同,那么(54﹣2)÷4=13,所以一共有13+2=15个抽屉;分别是:1、2、3、…K、小鬼、大鬼,由此利用抽屉原理考虑最差情况,即可进行解答.解答:解:建立抽屉:54张牌,根据点数特点可以分别看做15个抽屉,考虑最差情况:每个抽屉都摸出了1张牌,共摸出15张牌,此时再任意摸出一张,无论放到哪个抽屉,都会出现有两张牌在同一个抽屉,即两张牌点数相同,15+1=16(张),答:至少抽取16张扑克牌,方能使其中至少有两张牌有相同的点数.点评:此类问题关键是根据点数特点,建立抽屉,这里要注意考虑最差情况.9.任意写一个两位数,再将它依次重复3遍成一个8位数.将此8位数除以该两位数所得到的商再除以9,问:得到的余数是多少?考点:带余除法.专题:余数问题.分析:先设这个两位数为10a+b,则可用含a、b的代数式表示将它依次重复写3遍成的一个8位数,再将此8位数除以该两位数得到商为1010101,然后将1010101除以9即可求解.解答:解:设这个两位数为10a+b,则将它依次重复3遍成的一个8位数为:1000000(10a+b)+10000(10a+b)+100(10a+b)+10a+b=1010101(10a+b),将此8位数除以该两位数得到的商为:1010101(10a+b)÷(10a+b)=1010101,则1010101÷9=112233…4.答:得到的余数是4.点评:本题考查了带余除法的定义及应用,难度中等,用含a、b的代数式正确表示将(10a+b)这个数依次重复写3遍成的一个8位数是解题的关键.10.一块长方形的木板,长为90厘米,宽为40厘米,将它锯成2块,然后拼成一个正方形,你能做到吗?考点:图形的拆拼(切拼).专题:平面图形的认识与计算.分析:因为这块长方形木板的面积为90×40=3600(平方厘米),又因为3600=60×60,即所求的正方形的边长为60厘米,如下图所示.解答:解:因为90×40=3600,3600=60×60,所求的正方形的边长为60厘米,可以如下图拼成:因此,能拼成一个正方形.点评:先求出总面积,看看是否能分成两个数的平方.11.如图,大小两个半圆,它们的直径在同一直线上,弦AB与小圆相切,且与直径平行,弦AB长12厘米.求图中阴影部分的面积(圆周率π=3.14).考点:组合图形的面积.专题:平面图形的认识与计算.分析:将小圆缩小至0,则AB就是大圆直径,阴影部分就是大圆的一半,利用圆的面积公式即可求解.解答:解:将小圆缩小至0,则AB就是大圆直径,阴影部分就是大圆的一半,所以阴影部分的面积是:×3.14×(12÷2)2=×3.14×36=56.52(平方厘米);答:图中阴影部分的面积是56.52平方厘米.点评:此题可以巧妙地利用“缩小法”,得出阴影部分的面积与直径为AB的圆的面积的关系,问题即可得解.12.半径为25厘米的小铁环沿着半径为50厘米的大铁环的内侧作无滑动的滚动,当小铁环沿大铁环滚动一周回到原位时,问小铁环自身转了几圈?考点:有关圆的应用题.专题:平面图形的认识与计算.分析:由于小铁环的半径为25厘米,大铁环的半径为50厘米,可得小铁环的半径是大铁环半径的一半.根据周长与半径的关系可得大环周长是小环的2倍,即小环沿大环转2个周长时又回到原位,再减去公转的1圈,可得小环自身转动的圈数.解答:解:由于小铁环的半径是大铁环半径的一半,所以大环周长是小环的2倍,即小环沿大环转2个周长时又回到原位,其中有1个周长属于小环公转的,而另一个周长才是小环自身转动的,因此,小环自身转动1圈.点评:本题考查了圆与圆的位置关系,小铁环运动的圈数乘以它的周长就等于大铁环的周长.2004年第10届“华罗庚金杯”少年数学邀请赛初赛试卷一、解答题(共12小题,满分0分)1.2005年是中国伟大航海家郑和首次下西洋600周年,西班牙伟大航海家歌伦布首次远洋航行是在1492年.问这两次远洋航行相差多少年?2.从冬至之日起每九天分为一段,依次称之为一九,二九,…,九九,2004年的冬至为12月21日,2005年的立春是2月4日.问立春之日是几九的第几天?3.如图是一个直三棱柱的表面展开图,其中,黄色和绿色的部分都是边长等于1的正方形.问这个直三棱柱的体积是多少?4.爸爸、妈妈、客人和我四人围着圆桌喝茶.若只考虑每人左邻的情况,问共有多少种不同的入座方法?5.在奥运会的铁人三项比赛中,自行车比赛距离是长跑的4倍,游泳的距离是自行车的,长跑与游泳的距离之差为8.5千米.求三项的总距离.6.如图,用同样大小的正三角形,向下逐次拼接出更大的正三角形.其中最小的三角形顶点的个数(重合的顶点只计一次)依次为:3,6,10,15,21,…问这列数中的第9个是多少?7.一个圆锥形容器甲与一个半球形容器乙,它们圆形口的直径与容器的高的尺寸如图所示.若用甲容器取水来注满乙容器,问:至少要注水多少次?8.100名学生参加社会实践,高年级学生两人一组,低年级学生三人一组,共有41组.问:高、低年级学生各多少人?9.小鸣用48元钱按零售价买了若干练习本.如果按批发价购买,每本便宜2元,恰好多买4本.问:零售价每本多少元?10.不足100名同学跳集体舞时有两种组合:一种是中间一组5人,其他人按8人一组围在外圈;另一种是中间一组8人,其他人按5人一组围在外圈.问最多有多少名同学?11.输液100毫升,每分钟输2.5毫升.请你观察第12分钟时吊瓶图象中的数据,回答整个吊瓶的容积是多少毫升?12.两条直线相交所成的锐角或直角称为两条直线的“夹角”.现平面上有若干条直线,它们两两相交,并且“夹角”只能是30°,60°或90°.问:至多有多少条直线?2004年第1届“华罗庚金杯”少年数学邀请赛初赛试卷参考答案与试题解析一、解答题(共12小题,满分0分)1.2005年是中国伟大航海家郑和首次下西洋600周年,西班牙伟大航海家歌伦布首次远洋航行是在1492年.问这两次远洋航行相差多少年?考点:日期和时间的推算.分析:先求出郑和首次下西洋的时间,再求差.解答:解:2005﹣600=1405(年),1492﹣1405=87(年).答:这两次远洋航行相差87年.点评:本题先根据2005年求出郑和首次下西洋的时间,再用较晚的时间减去较早的时间.2.从冬至之日起每九天分为一段,依次称之为一九,二九,…,九九,2004年的冬至为12月21日,2005年的立春是2月4日.问立春之日是几九的第几天?考点:日期和时间的推算.分析:先求出2004年的12月21日到2005年的2月4日经过了多少天,再求这些天里有几个9天,还余几天,再根据余数推算是几九第几天即可.解答:解:2004年的12月21日到12月31日共有11天,1月份有31天,2月4日是2月的第四天,那么一共经过了:11+31+4=46(天),46÷9=5…1,说明已经经过了5个9天,还余1天,这一天就是六九的第一天.答:立春之日是六九的第1天.点评:本题的是9天为1个周期,先求出经过的天数(注意两头的天数都算),再求这些天里有几个9天,还余几天,再根据余数判断.3.如图是一个直三棱柱的表面展开图,其中,黄色和绿色的部分都是边长等于1的正方形.问这个直三棱柱的体积是多少?考点:规则立体图形的体积.分析:根据棱柱的体积公式:底面积×高,进行计算.解答:解:因为直三棱柱的底面是直角边都为1的直角三角形,高为1,所以直三棱柱的体积=×1×1×1=.答:这个直三棱柱的体积是.故答案为:.点评:本题考查了直三棱柱及展开图的特征和直三棱柱体积计算.直三棱柱是由三个长方形的侧面和上下两个底面组成.4.爸爸、妈妈、客人和我四人围着圆桌喝茶.若只考虑每人左邻的情况,问共有多少种不同的入座方法?考点:加法原理.分析:可先把我放在第一个位置,进而考虑我的左邻的情况,我的左邻的左邻的情况,找到总情况数即可.解答:解:共有6种不同的入座方法.点评:考查用列表法解决问题;把1个人固定位置,进而考虑左邻的情况是解决本题的关键.5.在奥运会的铁人三项比赛中,自行车比赛距离是长跑的4倍,游泳的距离是自行车的,长跑与游泳的距离之差为8.5千米.求三项的总距离.考点:分数除法应用题.分析:把自行车的距离看成单位“1”,那么长跑的距离就是自行车的,游泳的距离是自行车的,它们的差对应的数量是8.5千米,用除法可以求出自行车的距离,根据自行车的距离求出另外两项的距离,再把三者加起来.解答:解:自行车比赛距离是长跑的4倍,那么长跑的距离就是自行车的,8.5÷()=8.5÷,=40(千米);40×=10(千米);40×=1.5(千米);40+10+1.5=51.5(千米);答:三项的总距离是51.5千米.点评:本题关键是把倍数关系看成一个是另一个的几分之几,找出单位“1”分析出数量关系,再由基本的数量关系求解.6.如图,用同样大小的正三角形,向下逐次拼接出更大的正三角形.其中最小的三角形顶点的个数(重合的顶点只计一次)依次为:3,6,10,15,21,…问这列数中的第9个是多少?考点:事物的简单搭配规律.分析:观察图形,分析数列,发现规律:从第一个数开始,后面的数依次比前一个数多3、4、5、6、7、…据此规律,推出即可.解答:解:6﹣3=3;10﹣6=4;15﹣10=5;21﹣15=6;…从第一个数开始,后面的数依次比前一个数多3、4、5、6、7、…往下写数:3,6,10,15,21,28,36,45,55,…第9个数是55.答:这列数中的第9个是55.点评:观察图形,分析数列,发现规律,然后利用规律解决问题.7.一个圆锥形容器甲与一个半球形容器乙,它们圆形口的直径与容器的高的尺寸如图所示.若用甲容器取水来注满乙容器,问:至少要注水多少次?考点:规则立体图形的体积.分析:根据圆锥的体积公式求出容器甲容积,根据球的体积公式求出容器乙容积,相除即可求解.解答:解:容器甲容积:V甲=×π×()2×1=π;容器乙容积:V乙=×π×13=π,V乙÷V甲=π÷π=8.答:至少要注水8次.点评:考查了圆锥的体积和球的体积.球的体积公式是V=πr3.圆锥的体积是V=sh=πr2h.8.100名学生参加社会实践,高年级学生两人一组,低年级学生三人一组,共有41组.问:高、低年级学生各多少人?考点:鸡兔同笼.分析:可设高年级有学生x人,则低年级的学生有100﹣x人,根据等量关系:高年级组数+低年级组数=41组解答即可.解答:解:高年级有学生x人,则低年级的学生有100﹣x人,由题意得:=41,3x+2(100﹣x)=246,3x+200﹣2x=246,x=46,100﹣46=54(人),答:高年级有46人,低年级有54人.点评:此类题目中一般都有两个等量关系,抓住其中一个等量关系设出一个未知数,从而得出另一个未知数;另一个等量关系用来列方程.9.小鸣用48元钱按零售价买了若干练习本.如果按批发价购买,每本便宜2元,恰好多买4本.问:零售价每本多少元?考点:整数、小数复合应用题;合数与质数;质数与合数问题.分析:先将48分解质因数:48=1×48=2×24=3×16=4×12=6×8,因数全写出来,再找出里面相差分别是2和4的,那么这两个算式就分别为零售价和批发价.解答:解:48=48=1×48=2×24=3×16=4×12=6×8,找出里面相差分别是2和4的,那么这两个算式就分别为零售价和批发价;只有4×12和6×8,12比8多4,4比6少2,则零售价为6元,批发价为4元;答:零售价为6元.点评:解答此题应结合合数和质数的含义进行分析,通过分解质因数,找出符合题意的答案即可.10.不足100名同学跳集体舞时有两种组合:一种是中间一组5人,其他人按8人一组围在外圈;另一种是中间一组8人,其他人按5人一组围在外圈.问最多有多少名同学?考点:最大与最小.分析:设两种组合外圈的组数为a、b,那么第一种的人数是5+8a人,第二种的人数是8+5b人,因为总人数一定相等,求出a与b的关系,根据a和b关系讨论取值.解答:解:设两种组合外圈的组数为a、b,那么第一种的人数是5+8a,第二种的人数是8+5b,则5+8a=8+5b即;8a=5b+3,当b=1时,a=1,总人数为5+8×1=13(人);当b=9时,a=6,总人数为5+8×6=53(人);当b=17时,a=11,总人数为5+8×11=93(人).数字再大就超过100了,所以最多有93人.答:最多有93名同学.点评:本题先找出两种组数之间的关系,然后根据组数是自然数和它们之间的关系讨论取值,找出100以内最大的即可.11.输液100毫升,每分钟输2.5毫升.请你观察第12分钟时吊瓶图象中的数据,回答整个吊瓶的容积是多少毫升?考点:整数、小数复合应用题.分析:水平面的刻度是80毫升,说明空的部分是80毫升;根据每分钟的输液量和输液时间求出已经输出的体积,用100毫升减去已经输出的体积就是瓶内剩下的体积;整个吊瓶的容积就是空的部分加剩下的这部分体积.解答:解:100﹣2.5×12=70(毫升),80+70=150(毫升),答:整个吊瓶的容积是150毫升.点评:本题第12分时瓶子上方没有溶液的容积的等量关系是解决本题的关键.12.两条直线相交所成的锐角或直角称为两条直线的“夹角”.现平面上有若干条直线,它们两两相交,并且“夹角”只能是30°,60°或90°.问:至多有多少条直线?考点:乘法原理.分析:根据题意,“夹角”只能是30°,60°或90°,都是30°的倍数,根据这个倍数,通过旋转的方法,进一步解答即可.解答:解:因为夹角只能是30°、60°或者90°,其均为30°的倍数,所以每画一条直线后,逆时针旋转30°画下一条直线,这样就能够保证两两直线夹角为30°的倍数,即为30°、60°或者90°(因为如果每次旋转度数其他角度,例如15°,则必然会出现两条直线的夹角为15°或15°的其它倍数,如45°这与题目不符);因为该平面上的直线两两相交,也就是说不会出现平行的情况,在画出6条直线时,直线旋转过5次,5×30°=150°,如果再画出第7条直线,则旋转6次,6×30°=180°,这样第七条直线就与第一条直线平行了.如图:所以最多能画出六条.答:至多有6条直线.点评:根据题意,由题目给出的条件,通过旋转的方法进一步解答即可.2006年第11届“华罗庚金杯”少年数学邀请赛初赛试卷一、选择题(共6小题,每小题6分,满分36分)1.(6分)如图所示,将一张正方形纸片先由下向上对折压平,再由右翻起向左对折压平,得到小正方形ABCD.取AB的中点M和BC的中点N,剪掉AMBN得五边形AMNCD.则将折叠的五边形AMNCD纸片展开铺平后的图形是()A.B.C.D.2.(6分)2008006共有()个质因数.A.4B.5C.6D.73.(6分)(2007•北塘区)奶奶告诉小明:“2006年共有53个星期日”.聪敏的小明立刻告诉奶奶:2007年的元旦一定是()A.星期一B.星期二C.星期六D.星期日4.(6分)如图,长方形ABCD小AB:BC=5:4.位于A点的第一只蚂蚁按A→B→C→D→A 的方向,位于C点的第二只蚂蚁按C→B→A→D→C的方向同时出发,分别沿着长方形的边爬行.如果两只蚂蚁第一次在B点相遇,则两只蚂蚁第二次相遇在()边上.A.A B B.B C C.C D D.D A5.(6分)如图,ABCD是个直角梯形(∠DAB=∠ABC=90°).以AD为一边向外作长方形ADEF,其面积为6.36平方厘米,连接BE交AD于P,再连接PC.则图中阴影部分的面积是()平方厘米.A.6.36 B.3.18 C.2.12 D.1.596.(6分)五位同学扮成奥运会吉祥物福娃贝见、晶晶、欢欢、迎迎和妮妮,排成一排表演节目,如果贝贝和妮妮不相邻,共有()种不同的排法.A.48 B.72 C.96 D.120二、填空题(共8小题,每小题3分,满分24分)7.(3分)在算式中,汉字“第、十、一、届、华、杯、赛”代表1,2,3,4,5,6.7,8,9中的7个数字,不同的汉字代表不同的数字,恰使得加法算式成立.则“第、十、一、届、华、杯、赛”所代表的7个数字的和等于_________•8.(3分)全班50个学生,每人恰有三角板或直尺中的一种,28人有直尺,有三角板的人中,男生是14人,若已知全班共有女生31人,那么有直尺的女生有_________人.9.(3分)如图是﹣个直圆柱形状的玻璃杯,一个长为12厘米的直棒状细吸管(不考虑吸管粗细)放在玻璃杯内.当吸管一端接触圆柱下底面时,另一端沿吸管最少可露出上底面边缘2厘米,最多能露出4厘米.则这个玻璃杯的容积为_________立方厘米.(取π=3.14)(提示:直角三角形中“勾6、股8、弦10)10.(3分)有5个黑色和白色棋子围成一圈,规定:将同色的和相邻的两个棋子之间放入一个白色棋子,在异色的和相邻的两个棋子之间放入一个黑色棋子,然后将原来的5个棋子拿掉,如果从图5(1)的初始状态开始依照上述规定操作下去,对于圆圈上呈现5个棋子的情况,圆圈上黑子最多能有_________个.11.(3分)李大爷用一批化肥给承包的麦田施肥.若每亩施6千克,则缺少化肥300千克;若每亩施5千克,则余下化肥200千克.那么李大爷共承包了麦田_________亩,这批化肥有_________千克.12.(3分)将从1开始的到103的连续奇数依次写成﹣个多位数:a=13579111315171921…9799101103.则数a共有_________位,数a除以9的余数是_________.。
华赛杯初赛试题及答案华赛杯(Hua Sai Cup)是一项面向全国高中生的知识竞赛活动,以激发学生学习兴趣、提升学科素养为目标。
本文将为读者介绍华赛杯初赛试题及答案。
希望通过这些例题,读者能够更好地了解华赛杯的内容和形式,为参与或者备战华赛杯做好准备。
以下是华赛杯初赛的部分试题及答案,供读者参考:1. 英语知识题Which of the following words is spelled correctly?A) AcummulateB) AccomodateC) AccumulateD) Accomodate答案:C) Accumulate2. 数学计算题If x = 4 and y = 2, what is the value of (x + y) * (x - y)?A) 6B) 8C) 10D) 12答案:A) 63. 语文阅读理解题从下面的选项中选择正确的答案来完成这段短文的阅读:根据短文,最可能的标题是:A) 如何做好家务B) 如何保持健康饮食C) 如何有效管理时间D) 如何提高学习效率答案:C) 如何有效管理时间4. 物理应用题一个物体以10m/s的速度水平抛出,以仰角30°抛出的情况下,物体的最大下落深度是多少?(不计空气阻力,重力加速度为10m/s²)A) 0.25mB) 0.5mC) 1mD) 2m答案:B) 0.5m以上只是华赛杯初赛试题的一小部分,参赛者在比赛中还会遇到更多不同学科的题目。
希望以上例题能够帮助读者了解华赛杯的形式和难度,为参赛做好充分准备。
参与华赛杯不仅可以提高个人知识水平,还能够培养思维能力和解决问题的能力。
总之,华赛杯初赛试题涵盖了英语、数学、语文、物理等多个学科领域,题目的形式和难度都具有一定的挑战性。
希望广大学生能够积极参与华赛杯,充分发挥自己的学科能力,提高自身素质。
通过参与华赛杯竞赛,学生不仅能够获取知识,还能够培养团队协作精神和竞争意识,为自己的未来发展打下坚实的基础。
初一华杯赛初赛试题及答案一、选择题(每题3分,共15分)1. 下列哪个选项是正确的数学表达式?A. 2 + 3 = 5B. 4 × 3 = 12C. 5 - 2 = 3D. 6 ÷ 2 = 3答案:A2. 如果一个数的平方等于9,那么这个数是:A. 3B. -3C. 3 或 -3D. 9答案:C3. 一个圆的直径是10厘米,那么这个圆的半径是:A. 5厘米B. 10厘米C. 15厘米D. 20厘米答案:A4. 下列哪个分数是最简分数?A. 4/8B. 5/10C. 3/4D. 6/9答案:C5. 如果一个三角形的两个内角分别是40度和60度,那么第三个角的度数是:A. 40度B. 60度C. 80度D. 100度答案:C二、填空题(每题2分,共10分)6. 一个数的平方根是4,那么这个数是________。
答案:167. 一个数的立方根是2,那么这个数是________。
答案:88. 如果一个长方形的长是6厘米,宽是4厘米,那么它的周长是________厘米。
答案:209. 一个数的倒数是1/5,那么这个数是________。
答案:510. 一个直角三角形的两条直角边分别是3厘米和4厘米,那么它的斜边长是________厘米。
答案:5三、计算题(每题5分,共20分)11. 计算下列表达式的值:(3 + 2) × (5 - 1)答案:2512. 计算下列分数的和:1/2 + 1/3 + 1/4答案:13/1213. 计算下列代数式的值,当x = 2时:2x² - 3x + 1答案:314. 解下列方程:2x + 5 = 11答案:x = 3四、解答题(每题10分,共30分)15. 一个班级有40名学生,其中1/4是男生,其余是女生。
请问这个班级有多少名男生和女生?答案:男生有10名,女生有30名。
16. 一个长方体的长、宽、高分别是5厘米、4厘米和3厘米,求这个长方体的体积。
华罗庚金杯少年数学邀请赛(简称“华杯赛”)是为了纪念我国杰出数学家华罗庚教授,于1986年始创的全国性大型少年数学竞赛活动,由中国少年报社(现为中国少年儿童新闻出版社)、中国优选法、统筹法与经济数学研究会、中央电视台青少中心等单位联合发起主办的。
华杯赛堪称国内小学阶段规模最大、最正式也是难度最高的比赛。
对一个对于学校课堂内容学有余力的学生来讲,适当学习小学奥数能够有以下方面的好处
1、促进在校成绩的全面提高,培养良好的思维习惯;
2、使学生获得心理上的优势,培养自信;
3、有利于学生智力的开发;
4、数学是理科的基础,学习奥数对于这个学生进入初中后的学习物理化学都非常有好处(很多重点中学就是因为这个原因招奥数好的学生)。
5、很多重点中学招生要看学生的奥数成绩是否优秀。
您可能还感兴趣的有:。
第四届华杯赛初赛试题1.请将下面算式结果写成带分数:2.一块木板上有13枚钉子(如左下图)。
用橡皮筋套住其中的几枚钉子,可以构成三角形,正方形,梯形,等等(如右下图)。
请回答:可以构成多少个正方形?3.这里有一个圆柱和一个圆锥(如右图),它们的高和底面直径都标在图上,单位是厘米。
请回答:圆锥体积与圆柱体积的比是多少?4.这里有5个分数:,,,,,如果按大小顺序排列,排在中间的是哪个数?5.现在流行的变速自行车,在主动轴和后轴分别安装了几个齿数不同的齿轮。
用链条连接不同搭配的齿轮,通过不同的传动比获得若干档不同的车速。
“希望牌”变速自行车主动轴上有三个齿轮,齿数分别是48,36,24;后轴上有四个齿轮,齿数分别是36,24,16,12。
问:“这种变速车一共有几档不同的车速?6.右图中的大正方形ABCD的面积是 1,其它点都是它所在的边的中点。
请问:阴影三角形的面积是多少?7.在右边的算式中,被加数的数字和是和数的数字和的三倍。
问:被加数至少是多少?8.筐中有60个苹果,将它们全部都取出来,分成偶数堆,使得每堆的个数相同。
问:有多少种分法?9.小明玩套圈游戏,套中小鸡一次得9分,套中小猴得5分,套中小狗得2分。
小明共套了10次,每次都套中了,每个小玩具都至少被套中一次。
小明套10次共得了61分。
问:小鸡至少被套中多少次?10.车库中停放若干辆双轮摩托车和四轮小卧车,车的辆数与车的轮子数之比是2∶5。
问:摩托车的辆数与小卧车的辆数之比是多少?11.有一个时钟,它每小时慢25秒,今年3月21日中午十二点它的指示正确。
请问:这个时钟下一次指示正确的时间是几月几日几点钟?12.某人由甲地去乙地。
如果他从甲地先骑摩托车行12小时,再换骑自行车9小时,恰好到达乙地。
如果他从甲地先骑自行车行21小时,再换骑摩托车行8小时,也恰好到达乙地。
问:全程骑摩托车需要几小时到达乙地?13.右图的二个圆只有一个公共点A,大圆直径48厘米,小圆直径30厘米。
第八届“华杯赛”初赛试题1.2002年将在北京召开国际数学家大会,大会会标如右图所示,它是由四个相同的直角三角形拼成的(直角边长为2和3)。
问大正方形的面积是多少?2.从北京到G城的特别快车在2000年10月前需要12.6小时,后提速20%。
问提速后,北京到G城的特别快车要用多少小时?3. 下式中不同的汉字代表1—9中不同的数字,问当算式成立时,表示“中国”这个两位数最大是多少?4.两个同样材料做成的球A和B,一个实心,一个空心,A的直径为7、重量为22,B的直径为10.6、重量为33.3,问哪个球是实心球?5.铁路油罐车由两个半球面和一个圆柱面钢板焊接而成,尺寸如下图所示,问:该油罐车的容积是多少立方米?(π=3.1416)6.将下图中20张扑克牌分成10对,每对红心和黑桃各一张。
问:你能分出几对这样的牌,两张牌上的数的乘积除以10的余数是1?(将A 看成1)7.下图中五个相同的圆的圆心连线构成一个边长为10厘米的正五边形,求五边形内红色部分的面积。
(π=3.14)8.世界上最早的灯塔建于公元前270年,塔分三层,每层都高27米,底座呈正四棱柱、中间呈正八棱柱、上部呈正圆锥。
问上部的体积是底座的体积的()。
9.将+、-、×、÷四个运算符号分别填入下面的四个框中使该式的值最大。
10.下边这堆球共有多少个?11.自行车轮胎安装在前轮上能行驶5000千米后报废,若安装在后轮上只能行驶3000千米,为行驶尽可能多的路,如果采用当自行车行驶一定路程后将前后轮胎调换的方法,问安装在自行车上的一对轮胎最多可行驶多少千米?12.将边长为1的正方形二等分,再将其中的一半二等分,又将这一半的一半二等分这样继续下去,……展开想象的翅膀,从这个过程你能得到什么?第八届“华杯赛”初赛答案1.大正方形的面积是13。
2.北京到G 城的特别快车要用10.5小时。
3.844.A 是实心球。
5.油罐车的容积是41.888立方米。
华杯赛初一初赛试题及答案一、选择题(每题3分,共30分)1. 下列哪个选项是最小的正整数?A. -1B. 0C. 1D. 2答案:C2. 计算下列表达式的值:\( 3^2 - 2 \times 3 + 1 \)A. 1B. 4C. 7D. 9答案:A3. 如果 \( a \) 和 \( b \) 是两个连续的自然数,且 \( a > b \),那么 \( a - b \) 的值是:A. 1B. 2C. 3D. 4答案:A4. 下列哪个分数是最接近1的?A. \( \frac{1}{2} \)B. \( \frac{3}{4} \)C. \( \frac{4}{3} \)D. \( \frac{5}{6} \)答案:B5. 如果一个圆的半径是 \( r \),那么它的面积是:A. \( \pi r^2 \)B. \( 2\pi r \)C. \( \pi r \)D. \( \pi \)答案:A6. 一个长方体的长、宽、高分别是 \( l \)、\( w \) 和 \( h \),那么它的体积是:A. \( l \times w \)B. \( w \times h \)C. \( l \times w \times h \)D. \( l + w + h \)答案:C7. 如果一个数的平方根是 \( x \),那么这个数是:A. \( x^2 \)B. \( 2x \)C. \( x + x \)D. \( x - x \)答案:A8. 一个直角三角形的两条直角边分别是3和4,那么斜边的长度是:A. 5B. 6C. 7D. 8答案:A9. 一个数的绝对值是它本身,这个数可能是:A. 正数B. 零C. 负数D. 所有选项答案:D10. 如果一个数的立方是 \( -27 \),那么这个数是:A. 3B. -3C. 9D. -9答案:B二、填空题(每题2分,共20分)11. 一个数的相反数是 \( -a \),那么这个数是 ______ 。
第十五届华杯赛初赛试卷参考答案1、A【解析】每个空白正六边形能分成六个相同的正三角形,所以空白部分总共包含12个这样的正三角形;而整个大平行四边形能分成24个这样的正三角形,所以空白部分占整个平行四边形的一半,那么阴影部分也占整个平行四边形的一半。
所以选A。
2、B【解析】设剪下的长度为x厘米则可以列出不等式:23-x≥2(15-x),整理得x≥7所以剪下的长度至少是7厘米。
3、B【解析】此题出的不严谨,本题原意为两人捞第二个水池内的金鱼,亮亮与红红捞到得金鱼数之比为3:4,共捞了7份;这样,第一个水池内涝完后水池内的,亮亮和红红所捞到的金鱼数目比是5:3,共捞了8份;由于两个水池内的鱼的量是相等的,则找[]7,856=。
两个水池内的总份数,均统一为56份,则在捞第一个水池时,亮亮和红红所捞到的金鱼数目之比为:3:4=24:32;捞第二个水池时,亮亮和红红所捞到的金鱼数目之比为:5:3=35:21。
亮亮第一次捞了24份,第二次捞了35份,差了11份,为33条,则1份为3条。
所以原来每隔水池内的金鱼为:3×56=168。
4、D【解析】1119453461260111201512473456060111115524612601115225660++==++++==++==++=本题不是计算最大,而是计算哪个与67接近,再找分母的最小公倍数比较大小,[]7,60420=, 则以上分式分别可以写成:305420,329420,385420,364420,67可以写成360420,显然364420最接近。
5、B【解析】20=20=2×10=4×5=2×2×5四种情况下的最小自然数分别为:192、923⨯、4323⨯、4235⨯⨯,其中最小的是最后一个,为240。
(第十五届华罗庚金杯少年数学邀请赛初赛)6、C【解析】先找一个能够面积为3的点,比如A 点,然后根据等积变换,底相等,高相等,即面积相等。
第七届华杯赛初赛试题及解答1.将l999表示为两年质数之和:l999=口+口,在口中填入质数。
共有多少种表示法2.澳门是世界上人口密度最大的地区之一,它由一个半岛和两个小岛组成,已知澳门的人口为43万人,其中90%居住在半岛上,半岛的面积为7平方千米。
问:半岛上平均每平方千米有多少万人(取两位小数)3.某人年初买了一种股票,该股票当年下跌了20%,第二年应上涨多少才能保持原值4.某个月里有三个星期日的日期为偶数,请你推算出这个月的15日是星期几。
5.“火树银花楼七层,层层红灯倍加增,共有红灯三八一,试问四层几红灯”6.下图是由9个等边三角形拼成的六边形,已知中间最小的等边三角形的边长是1,问:这个六边形的周长是多少7.一个正六边形的苗圃,用平行干苗圃边缘的直线把它分成许多相等的正三角形,在三角形的顶点上都栽种树苗,已知苗圃的最外面一圈栽有90棵。
问:苗圃中共栽树苗多少棵8.甲、乙、丙三所小学学生人数的总和为l999,已知甲校学生人数的2倍,乙校学生人数减3、丙校学生人数加4都是相等的。
问:甲、乙、丙各校学生人数是多少9.小明爷爷的年龄是一个二位数,将此二位数的数字交换得到的数就是小明爸爸的年龄,又知道他们年龄之差是小明年龄的4倍,求小明的年龄。
10.用l0块长7厘米、宽5厘米、高3厘米的长方体积木堆拼成一个长方体,这个长方体的表面积最小是多少11.时钟的时针和分针在6点钟反向成一直线,问:它们下—次反向成—直线是在什么时间(准确到秒)12.1998年夏天长江洪水居高下不,8月22日武汉关水位高达2932米,已知武汉离长江入海口1125千米,而九江离武汉关269千米。
假设从武汉到入海口的长江江面搬相同,请计算当天九江的水位是多少米。
(取二位小数)第七届华杯赛复赛试题1.(-1.125+)÷+×2.1999年2月份,我国城乡居民储蓄存款月末佘额是56767亿元,比月初佘额增长l8%.请问:我国城乡居民储蓄存款2月初余额是多少亿元(精确到时亿元)3.环形跑道周长400米,甲、乙两名运动员同时顺时针自起点出发,甲每分钟跑400米,乙每分钟跑375米.问:多少时间后甲、乙再次相遇4.两个整数的最小公倍数是1925,这两个整数分别除以它们的最大公约数,得到两个商的和是16,写出这两个整数。
2023年第六届华教杯全国大学生数学竞赛初赛真题(非数学类专业组)一、选择题(10题、3分/题)1.已知xxx +-=11)(α,333)(x x -=β,则当1→x 时().A .)(x α是关于)(x β的2阶无穷小B .)(x α与)(x β是高阶无穷小C .)(x β与)(x α是等价无穷小D .)(x α与)(x β是同阶无穷小,但不是等价无穷小2.=+-⎰dx xx e x2211(().A .Cx e x++1B .C x e x++21C .C x e x++212D .C xe x++2213.=++-⎰dx n x x n x x e x]2sin )sin (cos 2cos)cos [sin ππ().A .C n x e x ++)2cos(πB .Cn x e x++-)2cos(πC .Cn x e x ++-)2tan(πD .C n x e x++-)tan(π4.=++∑∑==∞→n i n j n j i ji n 11221lim ().A .2ln 2+πB .2ln 2+πC .3ln 2+πD .3ln 2+π5.=+⎰πn dx x 0)2sin(1().A .nB .n2C .n 3D .n226.=++∞→nn n n 12)1(lim ().A .0B .1C .2D .37.=+⎰-xdx x x 22322cos )sin (ππ().A .2πB .4πC .6πD .8π8.∑∞==≤≤-=022,,cos n na x nx ax ππ().A .0B .1C .2D .39.=++++++∞→(nn n n nn n n 1221212lim n 21().A .ln2B .ln3C .2ln 1D .3ln 110.设0022>->=b ac a R D ,,,=>+++=⎰⎰)0)2(222p cy bxy ax p dxdyI D ().A .2b ac p -πB .bac p -πC .bac p -2πD .bac p -2π二、填空题(7题、4分/题)1.=--→1cos )sec(sin )sec(tan lim20x x x x .2.=-+⎰dx xe x e x x 2)1()1(.3.点)2,2,2(0M 关于直线32431:-=+=-z y x L 的对称点1M 的坐标为.4.()()()⎰⎰=---Ddxdy xy x y y x 4122.其中y x x y D ==;:及)21,0(,.4122∈=--+y x y x y x 所围成的区域.5.正方形的边长L 以2m/s 的速度增大,当L=4m 时,其内接圆的面积的变化速率为.6.=⎪⎭⎫ ⎝⎛6sin)2023(π.7.设1321242n n x n-=⋅⋅⋅⋅,则=∞→n xn e lim .三、解答题(3题、14分/题)1.设函数)(x f 在][b a ,上具有连续导数,若μλ,为实数且)()(21)(22a b a b dx x f ba-+-=⎰μλ,)(21)(31)(2233a b a b dx x xf ba-+-=⎰μλ,证明:存在)(b a ,∈ξ,使得λξ=)('f .2.若!!21)(2n x x x x f nn ++++= ,其中n 为自然数,求方程0)()(1=+x f x f n n 在)(∞+-∞,内实根的个数.3.曲线],2[,sin ππ∈=x x y 绕y 轴旋转一周,求所得几何体的体积.2023年第六届华教杯全国大学生数学竞赛初赛真题(非数学类专业组)参考答案一、选择题1、D 2、B 3、B 4、B 5、D 6、B 7、D8、B9、C10、A二、填空题1、1-2、C xex+-113、)6,6,6(-4、614415、π46、23-7、1三、解答题1、【参考解析】考虑积分dx x f x b a x ba⎰---))()()(('λ,利用分布积分及)()(21)(22a b a b dx x f ba-+-=⎰μλ,)(21)(31)(2233a b a b dx x xf b a -+-=⎰μλ,有⎰⎰-++-----+b ab a badxx f x a b x f x b a x dx x ab ax bx )()2()())(()(2λ⎰⎰-++-=b a b a dxx xf dx x f b a a b )(2)()()(63λ))(21)(31(2))()(21)(()(62233223a b a b a b a b b a a b -+---+-++-=μλμλλ0=由积分中值定理知,存在)(b a ,∈ξ,使得λξ=)('f .2、【参考解析】由题设知)(x f n 在)(∞+-∞,内连续,当n 为偶数时,,)(lim ,)(lim -∞=+∞=-∞→+∞→x f x f n n n n 故)(x f n 存在极小点0x ,则由()(),!!0000n x n x x f x f nn n n =+'=又(),10=n f 从而(),0>x f n 即()x f n 在()∞+∞-,内无实根.当n 为奇数时,()(),,-∞=+∞=-∞→+∞→x f x f n n n n lim lim 知()x f n 在区间()∞+∞-,内有实根.由()(),1x f x f n n -='而1-n 为偶数,则()0>'x f ,知()x f n 在区间()∞+∞-,严格单增,故其有唯一实根.从而()x f n ()x f n 1+无论n 为奇数还是偶数,它在()∞+∞-,内有唯一实根.3、【参考解析】曲线],2[,sin ππ∈=x x y 的反函数为]1,0[,arcsin ∈-=y y x π,所以所得几何体的体积为:⎰-=12)arcsin (dy y V ππ,设则即,sin ,arcsin u y u y ==⎰⎰-=-=202102cos )()arcsin (πππππudu u dy y V =)88(42-π+ππ.。
目录2002年第9届“华罗庚金杯”少年数学邀请赛初赛试卷 (3)2002年第9届“华罗庚金杯”少年数学邀请赛初赛试卷 (5)2004年第10届“华罗庚金杯”少年数学邀请赛初赛试卷 (11)2004年第1届“华罗庚金杯”少年数学邀请赛初赛试卷 (13)2006年第11届“华罗庚金杯”少年数学邀请赛初赛试卷 (19)2006年第11届“华罗庚金杯”少年数学邀请赛初赛试卷 (23)2007年第12届“华罗庚金杯”少年数学邀请赛初赛试卷 (30)2007年第12届“华罗庚金杯”少年数学邀请赛初赛试卷 (32)2008年第13届“华罗庚金杯”少年数学邀请赛初赛试卷 (38)2008年第13届“华罗庚金杯”少年数学邀请赛初赛试卷 (40)2009年第14届“华罗庚金杯”少年数学邀请赛初赛试卷 (46)2009年第14届“华罗庚金杯”少年数学邀请赛初赛试卷 (48)2010年第15届“华罗庚金杯”少年数学邀请赛初赛试卷 (53)2010年第15届“华罗庚金杯”少年数学邀请赛初赛试卷 (55)2011年第16届“华罗庚金杯”少年数学邀请赛初赛试卷 (60)2011年第16届“华罗庚金杯”少年数学邀请赛初赛试卷 (63)2012年第17届“华罗庚金杯”少年数学邀请赛初赛试卷 (70)2012年第17届“华罗庚金杯”少年数学邀请赛初赛试卷 (72)2013年第18届“华罗庚金杯”少年数学邀请赛初赛试卷 (79)2013年第18届“华罗庚金杯”少年数学邀请赛初赛试卷 (81)2002年第9届“华罗庚金杯”少年数学邀请赛初赛试卷一、解答题(共12小题,满分0分)1.“华杯赛”是为了纪念和学习我国杰出的数学家华罗庚教授而举办的全国性大型少年数学竞赛.华罗庚教授生于1910年,现在用“华杯”代表一个两位数.已知1910与“华杯”之和等于2004,那么“华杯”代表的两位数是多少?2.长方形的各边长增加10%,那么它的周长和面积分别增加百分之几?3.如图所示的是一个正方体木块的表面展开图,若在正方体的各面填上数,使其对面两数之和为7,则A、B、C处填的数各是多少?4.在一列数:,,,,,,…中,从哪一个数开始,1与每个数之差都小于?5.“神舟五号”载人飞船载着航天英雄杨利伟于2003年10月16日清晨6时51分从太空返回地球,实现了中华民族的飞天梦.飞船绕地球共飞行14圈,其中后10圈沿离地面343千米的圆形轨道飞行.请计算飞船沿圆形轨道飞行了多少千米(地球半径为6371千米,圆周率π=3.14).6.如图,一块圆形的纸片分成4个相同的扇形,用红、黄两种颜色分别涂满各扇形,问共有几种不同的涂法?7.在9点至10点之间的某一时刻,5分钟前分针的位置与5分钟后时针的位置相同,此时刻是9点几分?8.一副扑克牌有54张,最少要抽取几张牌,方能使其中至少有2张牌有相同的点数?9.任意写一个两位数,再将它依次重复3遍成一个8位数.将此8位数除以该两位数所得到的商再除以9,问:得到的余数是多少?10.一块长方形的木板,长为90厘米,宽为40厘米,将它锯成2块,然后拼成一个正方形,你能做到吗?11.如图,大小两个半圆,它们的直径在同一直线上,弦AB与小圆相切,且与直径平行,弦AB长12厘米.求图中阴影部分的面积(圆周率π=3.14).12.半径为25厘米的小铁环沿着半径为50厘米的大铁环的内侧作无滑动的滚动,当小铁环沿大铁环滚动一周回到原位时,问小铁环自身转了几圈?2002年第9届“华罗庚金杯”少年数学邀请赛初赛试卷参考答案与解析一、解答题(共12小题,满分0分)1.“华杯赛”是为了纪念和学习我国杰出的数学家华罗庚教授而举办的全国性大型少年数学竞赛.华罗庚教授生于1910年,现在用“华杯”代表一个两位数.已知1910与“华杯”之和等于2004,那么“华杯”代表的两位数是多少?考点:竖式数字谜.专题:填运算符号、字母等的竖式与横式问题.分析:根据整数加法的计算方法进行推算即可.解答:解:解法一:个位上:0+“杯”=4,可得“杯”=4;十位上:1+“华”的末尾是0,由1+9=10,可得“华”9,向百位上进1;百位上:9+1=10,向千位上进1;千位上:1+1=2;由以上可得:;因此,“华杯”代表的两位数是94.解法二:已知1910与“华杯”之和等于2004;那么“华杯”=2004﹣1910=94;因此,“华杯”代表的两位数是94.点评:本题非常巧妙地考察了对整数的加法运算法则及数位的进位等知识要点的熟悉掌握程度.2.长方形的各边长增加10%,那么它的周长和面积分别增加百分之几?考点:百分数的实际应用;长方形的周长;长方形、正方形的面积.专题:分数百分数应用题.分析:设长方形的长为a,宽为b,因此各边长增加10%时,则长为(1+10%)a=110%a,长为(1+10%)b=110%b,因此各边长增加10%时,周长增加2(1.1a+1.1b)﹣2(a+b)=2(a+b)×10%,即周长增加10%.面积增加1.1a×1.1b﹣ab=1.21ab﹣ab=ab×21%,即面积增加21%.解答:周长增加10%,面积增加21%解:设长方形的长为a,宽为b,边长增加10%时,则长为(1+10%)a=110%a,长为(1+10%)b=110%b,周长增加:2(110%a+110%b)﹣2(a+b)=220%a+220%b﹣2a﹣2b=2(a+b)×10%;面积增加:110%a×110%b﹣ab=121%ab﹣ab=ab×21%;答:周长增加了10%,面积增加了21%.点评:在求出长宽增加后的长度基础上,根据长方形的周长与面积公式计算是完成本题的关键.3.如图所示的是一个正方体木块的表面展开图,若在正方体的各面填上数,使其对面两数之和为7,则A、B、C处填的数各是多少?考点:正方体的展开图.专题:立体图形的认识与计算.分析:如图,是正方体展开图的“222”结构,把它折叠成正方体后,A面与1面相对,B面与2面相对,C 面与4面相对,相使使其对面两数之和为7,A面填6,B面填5,C面填3.解答:解:如图,折成正方体后,A面与1面相对,B面与2面相对,C面与4面相对,要使其对面之各为7,则A面填6,B面填5,C面填3.点评:本题是考查正方体的展开图,关键是弄清把它折叠成正方体后,哪两个面相对.4.在一列数:,,,,,,…中,从哪一个数开始,1与每个数之差都小于?考点:数列中的规律.专题:探索数的规律.分析:这列数的特点是每个数的分母比分子大2,分子为奇数列,要使1﹣<,则n>999.5,即从n=1000开始,带入分数,即可得解.解答:解:这列数的特点是每个数的分母比分子大2,分子为奇数列,1﹣<,n>999.5,从n=1000开始,即从开始,满足条件.答:从开始,1与每个数之差都小于.点评:找出这列数的规律,根据已知列出等式求解.5.“神舟五号”载人飞船载着航天英雄杨利伟于2003年10月16日清晨6时51分从太空返回地球,实现了中华民族的飞天梦.飞船绕地球共飞行14圈,其中后10圈沿离地面343千米的圆形轨道飞行.请计算飞船沿圆形轨道飞行了多少千米(地球半径为6371千米,圆周率π=3.14).考点:有关圆的应用题.专题:平面图形的认识与计算.分析:先圆形轨道的半径,再根据圆的周长公式:C=2πr求出飞船沿圆形轨道飞行1圈的长度,再乘以10即可求出飞船沿圆形轨道飞行了多少千米.解答:解:2×3.14×(6371+343)×10=2×3.14×6714×10=3.14×134280=421639.2(千米);答:飞船沿圆形轨道飞行了421639.2千米.点评:考查了有关圆的应用题,关键是熟练掌握圆的周长公式.6.如图,一块圆形的纸片分成4个相同的扇形,用红、黄两种颜色分别涂满各扇形,问共有几种不同的涂法?考点:染色问题.专题:传统应用题专题.分析:根据四个扇形中有一个红色、两个、三个、四个分类列举即可.解答:解:按逆时针方向涂染各扇形:红红红红红红红黄红红黄黄红黄红黄红黄黄黄黄黄黄黄所以,共有6种.点评:本题考查了排列组合知识中的染色问题,还可以列式解答:4×(4﹣1)÷2=6(种).7.在9点至10点之间的某一时刻,5分钟前分针的位置与5分钟后时针的位置相同,此时刻是9点几分?考点:时间与钟面.专题:时钟问题.分析:可设当前是9点x分,则5分钟前分针指向x﹣5的位置,而分针转动的速度是时针的12倍,分针5分钟后指向x+5的位置,时针指向9刻度后刻度处,根据题意列出方程解答即可.解答:解:设当前时刻是9点x分.则5分钟后时针的位置为45+=x﹣5540+x+5=12x﹣6011x=605x=55;答:此时刻是9点55分.点评:本题主要考查钟表问题的实际应用,熟练掌握钟表的特征是解答本题的关键.8.一副扑克牌有54张,最少要抽取几张牌,方能使其中至少有2张牌有相同的点数?考点:抽屉原理.专题:传统应用题专题.分析:建立抽屉:一副扑克牌有54张,大小鬼不相同,那么(54﹣2)÷4=13,所以一共有13+2=15个抽屉;分别是:1、2、3、…K、小鬼、大鬼,由此利用抽屉原理考虑最差情况,即可进行解答.解答:解:建立抽屉:54张牌,根据点数特点可以分别看做15个抽屉,考虑最差情况:每个抽屉都摸出了1张牌,共摸出15张牌,此时再任意摸出一张,无论放到哪个抽屉,都会出现有两张牌在同一个抽屉,即两张牌点数相同,15+1=16(张),答:至少抽取16张扑克牌,方能使其中至少有两张牌有相同的点数.点评:此类问题关键是根据点数特点,建立抽屉,这里要注意考虑最差情况.9.任意写一个两位数,再将它依次重复3遍成一个8位数.将此8位数除以该两位数所得到的商再除以9,问:得到的余数是多少?考点:带余除法.专题:余数问题.分析:先设这个两位数为10a+b,则可用含a、b的代数式表示将它依次重复写3遍成的一个8位数,再将此8位数除以该两位数得到商为1010101,然后将1010101除以9即可求解.解答:解:设这个两位数为10a+b,则将它依次重复3遍成的一个8位数为:1000000(10a+b)+10000(10a+b)+100(10a+b)+10a+b=1010101(10a+b),将此8位数除以该两位数得到的商为:1010101(10a+b)÷(10a+b)=1010101,则1010101÷9=112233…4.答:得到的余数是4.点评:本题考查了带余除法的定义及应用,难度中等,用含a、b的代数式正确表示将(10a+b)这个数依次重复写3遍成的一个8位数是解题的关键.10.一块长方形的木板,长为90厘米,宽为40厘米,将它锯成2块,然后拼成一个正方形,你能做到吗?考点:图形的拆拼(切拼).专题:平面图形的认识与计算.分析:因为这块长方形木板的面积为90×40=3600(平方厘米),又因为3600=60×60,即所求的正方形的边长为60厘米,如下图所示.解答:解:因为90×40=3600,3600=60×60,所求的正方形的边长为60厘米,可以如下图拼成:因此,能拼成一个正方形.点评:先求出总面积,看看是否能分成两个数的平方.11.如图,大小两个半圆,它们的直径在同一直线上,弦AB与小圆相切,且与直径平行,弦AB长12厘米.求图中阴影部分的面积(圆周率π=3.14).考点:组合图形的面积.专题:平面图形的认识与计算.分析:将小圆缩小至0,则AB就是大圆直径,阴影部分就是大圆的一半,利用圆的面积公式即可求解.解答:解:将小圆缩小至0,则AB就是大圆直径,阴影部分就是大圆的一半,所以阴影部分的面积是:×3.14×(12÷2)2=×3.14×36=56.52(平方厘米);答:图中阴影部分的面积是56.52平方厘米.点评:此题可以巧妙地利用“缩小法”,得出阴影部分的面积与直径为AB的圆的面积的关系,问题即可得解.12.半径为25厘米的小铁环沿着半径为50厘米的大铁环的内侧作无滑动的滚动,当小铁环沿大铁环滚动一周回到原位时,问小铁环自身转了几圈?考点:有关圆的应用题.专题:平面图形的认识与计算.分析:由于小铁环的半径为25厘米,大铁环的半径为50厘米,可得小铁环的半径是大铁环半径的一半.根据周长与半径的关系可得大环周长是小环的2倍,即小环沿大环转2个周长时又回到原位,再减去公转的1圈,可得小环自身转动的圈数.解答:解:由于小铁环的半径是大铁环半径的一半,所以大环周长是小环的2倍,即小环沿大环转2个周长时又回到原位,其中有1个周长属于小环公转的,而另一个周长才是小环自身转动的,因此,小环自身转动1圈.点评:本题考查了圆与圆的位置关系,小铁环运动的圈数乘以它的周长就等于大铁环的周长.2004年第10届“华罗庚金杯”少年数学邀请赛初赛试卷一、解答题(共12小题,满分0分)1.2005年是中国伟大航海家郑和首次下西洋600周年,西班牙伟大航海家歌伦布首次远洋航行是在1492年.问这两次远洋航行相差多少年?2.从冬至之日起每九天分为一段,依次称之为一九,二九,…,九九,2004年的冬至为12月21日,2005年的立春是2月4日.问立春之日是几九的第几天?3.如图是一个直三棱柱的表面展开图,其中,黄色和绿色的部分都是边长等于1的正方形.问这个直三棱柱的体积是多少?4.爸爸、妈妈、客人和我四人围着圆桌喝茶.若只考虑每人左邻的情况,问共有多少种不同的入座方法?5.在奥运会的铁人三项比赛中,自行车比赛距离是长跑的4倍,游泳的距离是自行车的,长跑与游泳的距离之差为8.5千米.求三项的总距离.6.如图,用同样大小的正三角形,向下逐次拼接出更大的正三角形.其中最小的三角形顶点的个数(重合的顶点只计一次)依次为:3,6,10,15,21,…问这列数中的第9个是多少?7.一个圆锥形容器甲与一个半球形容器乙,它们圆形口的直径与容器的高的尺寸如图所示.若用甲容器取水来注满乙容器,问:至少要注水多少次?8.100名学生参加社会实践,高年级学生两人一组,低年级学生三人一组,共有41组.问:高、低年级学生各多少人?9.小鸣用48元钱按零售价买了若干练习本.如果按批发价购买,每本便宜2元,恰好多买4本.问:零售价每本多少元?10.不足100名同学跳集体舞时有两种组合:一种是中间一组5人,其他人按8人一组围在外圈;另一种是中间一组8人,其他人按5人一组围在外圈.问最多有多少名同学?11.输液100毫升,每分钟输2.5毫升.请你观察第12分钟时吊瓶图象中的数据,回答整个吊瓶的容积是多少毫升?12.两条直线相交所成的锐角或直角称为两条直线的“夹角”.现平面上有若干条直线,它们两两相交,并且“夹角”只能是30°,60°或90°.问:至多有多少条直线?2004年第1届“华罗庚金杯”少年数学邀请赛初赛试卷参考答案与试题解析一、解答题(共12小题,满分0分)1.2005年是中国伟大航海家郑和首次下西洋600周年,西班牙伟大航海家歌伦布首次远洋航行是在1492年.问这两次远洋航行相差多少年?考点:日期和时间的推算.分析:先求出郑和首次下西洋的时间,再求差.解答:解:2005﹣600=1405(年),1492﹣1405=87(年).答:这两次远洋航行相差87年.点评:本题先根据2005年求出郑和首次下西洋的时间,再用较晚的时间减去较早的时间.2.从冬至之日起每九天分为一段,依次称之为一九,二九,…,九九,2004年的冬至为12月21日,2005年的立春是2月4日.问立春之日是几九的第几天?考点:日期和时间的推算.分析:先求出2004年的12月21日到2005年的2月4日经过了多少天,再求这些天里有几个9天,还余几天,再根据余数推算是几九第几天即可.解答:解:2004年的12月21日到12月31日共有11天,1月份有31天,2月4日是2月的第四天,那么一共经过了:11+31+4=46(天),46÷9=5…1,说明已经经过了5个9天,还余1天,这一天就是六九的第一天.答:立春之日是六九的第1天.点评:本题的是9天为1个周期,先求出经过的天数(注意两头的天数都算),再求这些天里有几个9天,还余几天,再根据余数判断.3.如图是一个直三棱柱的表面展开图,其中,黄色和绿色的部分都是边长等于1的正方形.问这个直三棱柱的体积是多少?考点:规则立体图形的体积.分析:根据棱柱的体积公式:底面积×高,进行计算.解答:解:因为直三棱柱的底面是直角边都为1的直角三角形,高为1,所以直三棱柱的体积=×1×1×1=.答:这个直三棱柱的体积是.故答案为:.点评:本题考查了直三棱柱及展开图的特征和直三棱柱体积计算.直三棱柱是由三个长方形的侧面和上下两个底面组成.4.爸爸、妈妈、客人和我四人围着圆桌喝茶.若只考虑每人左邻的情况,问共有多少种不同的入座方法?考点:加法原理.分析:可先把我放在第一个位置,进而考虑我的左邻的情况,我的左邻的左邻的情况,找到总情况数即可.解答:解:共有6种不同的入座方法.点评:考查用列表法解决问题;把1个人固定位置,进而考虑左邻的情况是解决本题的关键.5.在奥运会的铁人三项比赛中,自行车比赛距离是长跑的4倍,游泳的距离是自行车的,长跑与游泳的距离之差为8.5千米.求三项的总距离.考点:分数除法应用题.分析:把自行车的距离看成单位“1”,那么长跑的距离就是自行车的,游泳的距离是自行车的,它们的差对应的数量是8.5千米,用除法可以求出自行车的距离,根据自行车的距离求出另外两项的距离,再把三者加起来.解答:解:自行车比赛距离是长跑的4倍,那么长跑的距离就是自行车的,8.5÷()=8.5÷,=40(千米);40×=10(千米);40×=1.5(千米);40+10+1.5=51.5(千米);答:三项的总距离是51.5千米.点评:本题关键是把倍数关系看成一个是另一个的几分之几,找出单位“1”分析出数量关系,再由基本的数量关系求解.6.如图,用同样大小的正三角形,向下逐次拼接出更大的正三角形.其中最小的三角形顶点的个数(重合的顶点只计一次)依次为:3,6,10,15,21,…问这列数中的第9个是多少?考点:事物的简单搭配规律.分析:观察图形,分析数列,发现规律:从第一个数开始,后面的数依次比前一个数多3、4、5、6、7、…据此规律,推出即可.解答:解:6﹣3=3;10﹣6=4;15﹣10=5;21﹣15=6;…从第一个数开始,后面的数依次比前一个数多3、4、5、6、7、…往下写数:3,6,10,15,21,28,36,45,55,…第9个数是55.答:这列数中的第9个是55.点评:观察图形,分析数列,发现规律,然后利用规律解决问题.7.一个圆锥形容器甲与一个半球形容器乙,它们圆形口的直径与容器的高的尺寸如图所示.若用甲容器取水来注满乙容器,问:至少要注水多少次?考点:规则立体图形的体积.分析:根据圆锥的体积公式求出容器甲容积,根据球的体积公式求出容器乙容积,相除即可求解.解答:解:容器甲容积:V甲=×π×()2×1=π;容器乙容积:V乙=×π×13=π,V乙÷V甲=π÷π=8.答:至少要注水8次.点评:考查了圆锥的体积和球的体积.球的体积公式是V=πr3.圆锥的体积是V=sh=πr2h.8.100名学生参加社会实践,高年级学生两人一组,低年级学生三人一组,共有41组.问:高、低年级学生各多少人?考点:鸡兔同笼.分析:可设高年级有学生x人,则低年级的学生有100﹣x人,根据等量关系:高年级组数+低年级组数=41组解答即可.解答:解:高年级有学生x人,则低年级的学生有100﹣x人,由题意得:=41,3x+2(100﹣x)=246,3x+200﹣2x=246,x=46,100﹣46=54(人),答:高年级有46人,低年级有54人.点评:此类题目中一般都有两个等量关系,抓住其中一个等量关系设出一个未知数,从而得出另一个未知数;另一个等量关系用来列方程.9.小鸣用48元钱按零售价买了若干练习本.如果按批发价购买,每本便宜2元,恰好多买4本.问:零售价每本多少元?考点:整数、小数复合应用题;合数与质数;质数与合数问题.分析:先将48分解质因数:48=1×48=2×24=3×16=4×12=6×8,因数全写出来,再找出里面相差分别是2和4的,那么这两个算式就分别为零售价和批发价.解答:解:48=48=1×48=2×24=3×16=4×12=6×8,找出里面相差分别是2和4的,那么这两个算式就分别为零售价和批发价;只有4×12和6×8,12比8多4,4比6少2,则零售价为6元,批发价为4元;答:零售价为6元.点评:解答此题应结合合数和质数的含义进行分析,通过分解质因数,找出符合题意的答案即可.10.不足100名同学跳集体舞时有两种组合:一种是中间一组5人,其他人按8人一组围在外圈;另一种是中间一组8人,其他人按5人一组围在外圈.问最多有多少名同学?考点:最大与最小.分析:设两种组合外圈的组数为a、b,那么第一种的人数是5+8a人,第二种的人数是8+5b人,因为总人数一定相等,求出a与b的关系,根据a和b关系讨论取值.解答:解:设两种组合外圈的组数为a、b,那么第一种的人数是5+8a,第二种的人数是8+5b,则5+8a=8+5b即;8a=5b+3,当b=1时,a=1,总人数为5+8×1=13(人);当b=9时,a=6,总人数为5+8×6=53(人);当b=17时,a=11,总人数为5+8×11=93(人).数字再大就超过100了,所以最多有93人.答:最多有93名同学.点评:本题先找出两种组数之间的关系,然后根据组数是自然数和它们之间的关系讨论取值,找出100以内最大的即可.11.输液100毫升,每分钟输2.5毫升.请你观察第12分钟时吊瓶图象中的数据,回答整个吊瓶的容积是多少毫升?考点:整数、小数复合应用题.分析:水平面的刻度是80毫升,说明空的部分是80毫升;根据每分钟的输液量和输液时间求出已经输出的体积,用100毫升减去已经输出的体积就是瓶内剩下的体积;整个吊瓶的容积就是空的部分加剩下的这部分体积.解答:解:100﹣2.5×12=70(毫升),80+70=150(毫升),答:整个吊瓶的容积是150毫升.点评:本题第12分时瓶子上方没有溶液的容积的等量关系是解决本题的关键.12.两条直线相交所成的锐角或直角称为两条直线的“夹角”.现平面上有若干条直线,它们两两相交,并且“夹角”只能是30°,60°或90°.问:至多有多少条直线?考点:乘法原理.分析:根据题意,“夹角”只能是30°,60°或90°,都是30°的倍数,根据这个倍数,通过旋转的方法,进一步解答即可.解答:解:因为夹角只能是30°、60°或者90°,其均为30°的倍数,所以每画一条直线后,逆时针旋转30°画下一条直线,这样就能够保证两两直线夹角为30°的倍数,即为30°、60°或者90°(因为如果每次旋转度数其他角度,例如15°,则必然会出现两条直线的夹角为15°或15°的其它倍数,如45°这与题目不符);因为该平面上的直线两两相交,也就是说不会出现平行的情况,在画出6条直线时,直线旋转过5次,5×30°=150°,如果再画出第7条直线,则旋转6次,6×30°=180°,这样第七条直线就与第一条直线平行了.如图:所以最多能画出六条.答:至多有6条直线.点评:根据题意,由题目给出的条件,通过旋转的方法进一步解答即可.2006年第11届“华罗庚金杯”少年数学邀请赛初赛试卷一、选择题(共6小题,每小题6分,满分36分)1.(6分)如图所示,将一张正方形纸片先由下向上对折压平,再由右翻起向左对折压平,得到小正方形ABCD.取AB 的中点M和BC 的中点N,剪掉AMBN得五边形AMNCD.则将折叠的五边形AMNCD纸片展开铺平后的图形是()A.B.C.D.2.(6分)2008006共有()个质因数.A.4B.5C.6D.73.(6分)(2007•北塘区)奶奶告诉小明:“2006年共有53个星期日”.聪敏的小明立刻告诉奶奶:2007年的元旦一定是()A.星期一B.星期二C.星期六D.星期日4.(6分)如图,长方形ABCD小AB:BC=5:4.位于A点的第一只蚂蚁按A→B→C→D→A的方向,位于C点的第二只蚂蚁按C→B→A→D→C的方向同时出发,分别沿着长方形的边爬行.如果两只蚂蚁第一次在B点相遇,则两只蚂蚁第二次相遇在()边上.A.A B B.B C C.C D D.D A5.(6分)如图,ABCD是个直角梯形(∠DAB=∠ABC=90°).以AD为一边向外作长方形ADEF,其面积为6.36平方厘米,连接BE交AD于P,再连接PC.则图中阴影部分的面积是()平方厘米.A.6.36 B.3.18 C.2.12 D.1.596.(6分)五位同学扮成奥运会吉祥物福娃贝见、晶晶、欢欢、迎迎和妮妮,排成一排表演节目,如果贝贝和妮妮不相邻,共有()种不同的排法.A.48 B.72 C.96 D.120二、填空题(共8小题,每小题3分,满分24分)7.(3分)在算式中,汉字“第、十、一、届、华、杯、赛”代表1,2,3,4,5,6.7,8,9中的7个数字,不同的汉字代表不同的数字,恰使得加法算式成立.则“第、十、一、届、华、杯、赛”所代表的7个数字的和等于_________•8.(3分)全班50个学生,每人恰有三角板或直尺中的一种,28人有直尺,有三角板的人中,男生是14人,若已知全班共有女生31人,那么有直尺的女生有_________人.9.(3分)如图是﹣个直圆柱形状的玻璃杯,一个长为12厘米的直棒状细吸管(不考虑吸管粗细)放在玻璃杯内.当吸管一端接触圆柱下底面时,另一端沿吸管最少可露出上底面边缘2厘米,最多能露出4厘米.则这个玻璃杯的容积为_________立方厘米.(取π=3.14)(提示:直角三角形中“勾6、股8、弦10)10.(3分)有5个黑色和白色棋子围成一圈,规定:将同色的和相邻的两个棋子之间放入一个白色棋子,在异色的和相邻的两个棋子之间放入一个黑色棋子,然后将原来的5个棋子拿掉,如果从图5(1)的初始状态开始依照上述规定操作下去,对于圆圈上呈现5个棋子的情况,圆圈上黑子最多能有_________个.11.(3分)李大爷用一批化肥给承包的麦田施肥.若每亩施6千克,则缺少化肥300千克;若每亩施5千克,则余下化肥200千克.那么李大爷共承包了麦田_________亩,这批化肥有_________千克.12.(3分)将从1开始的到103的连续奇数依次写成﹣个多位数:a=13579111315171921…9799101103.则数a共有_________位,数a除以9的余数是_________.13.(3分)自制的一副玩具牌共计52张(含4种牌:红桃,红方、黑桃、黑梅.每种牌都有1点、2点,…、13点牌各一张).洗好后背面朝上放好.一次至少抽取_________张牌,才能保证其中必定有2张牌的点数和颜色都相同.如果要求一次抽出的牌中必定有3张牌的点数是相邻的(不计颜色),那么至少要取_________张牌.。