北师大版七年级上册数学单元测试卷全套
- 格式:doc
- 大小:2.07 MB
- 文档页数:58
北师大版数学七年级上册《有理数及其运算》单元测试卷一、选择题1.若规定向东走为正,那么﹣8米表示( )A.向东走8米B.向南走8米C.向西走8米D.向北走8米2.2020年3月抗击“新冠肺炎”居家学习期间,小华计划每天背诵6个汉语成语.将超过的个数记为正数,不足的个数记为负数,某一周连续5天的背诵记录如下:+4,0,+5,-3,+2,则这5天他共背诵汉语成语( )A.38个B.36个C.34个D.30个3.某天三个城市的最高气温分别是-7℃,1℃,-6℃,则任意两城市中最大的温差是( )A.5B.6C.7D.84.2018年政府工作报告指出,过去五年来,我国经济实力跃上新台阶.国内生产总值从54万亿元增加到82.7万亿元,稳居世界第二,82.7万亿用科学记数法表示为( )A.0.827×1014B.82.7×1012C.8.27×1013D.8.27×10145.点O,A,B,C在数轴上的位置如图所示,O为原点,AC=1,OA=OB.若点C所表示的数为a,则点B所表示的数为( )A.-(a+1)B.-(a-1)C.a+1D.a-16.下列式子中,正确的是( )A.|﹣5|=﹣5B.﹣|﹣5|=5C.﹣(﹣5)=﹣5D.﹣(﹣5)=57.下列变形中,不正确的是( )A.a+(b﹣c+d)=a+b﹣c+dB.a﹣(b+c﹣d)=a﹣b﹣c+dC.a+b﹣(c﹣d)=a+b﹣c﹣dD.a+b﹣(﹣c+d)=a+b+c﹣d8.下列命题中,正确的是( )A.若a ·b >0,则a >0,b >0B.若a ·b >0,则a <0,b <0C.若a ·b=0,则a=0且b=0D.若a ·b=0,则a=0或b=09.在算式4-∣-3□5∣中的□所在位置,填入下列哪种运算符号,计算出来值最小( )A.+B.-C.×D.÷10.下列各组数中,互为相反数的有( )①﹣(﹣2)和﹣|﹣2|;②(﹣1)2和﹣12;③23和32;④(﹣2)3和﹣23.A.④B.①②C.①②③D.①②④11.已知实数x ,y 满足|x ﹣3|+(y+4)2=0,则代数式(x+y)2019的值为( ) A.﹣1 B.1 C.2012 D.﹣200812.在一列数:a 1,a 2,a 3,...,a n 中,a 1=7,a 2=1,从第三个数开始,每一个数都等于它前两个数之积的个位数字,则这一列数中的第2021个数是( )A. 1B. 3C. 7D. 9二 、填空题13.温度由-4℃上升7℃,达到的温度是______℃。
2022-2023学年北师大版七年级数学上册《第2章有理数及其运算》单元测试题(附答案)一、选择题(共10题,共30分)1.《九章算术》中有注:“今两算得失相反,要令正负以名之.”意思是:“今有两数若其意义相反,则分别叫做正数和负数.”如果高于海平面200米记为+200米,那么低于海平面300米应记为()A.﹣300米B.+500米C.+300米D.﹣100米2.﹣的相反数是()A.﹣B.C.﹣2D.23.数轴上有A,B,C,D四个点,其中表示的数的绝对值等于2的点是()A.点A B.点B C.点C D.点D4.下列各数中,不是有理数是()A.0B.C.﹣2.D.3.14159265.计算(﹣1)÷(﹣5)×的结果是()A.﹣1B.1C.D.﹣256.在﹣(﹣2),﹣24,﹣|﹣23|,﹣{+[﹣(﹣3)]}中,负数的个数为()A.0个B.1个C.2个D.3个7.下列说法正确的是()A.|x|>xB.当x=1时,|x+1|+2取最小值C.若x>1>y>﹣1,则|x|<|y|D.若|x+1|≤0,|x+1|≥0,则x=﹣18.有理数a、b、c在数轴上对应的点的位置如图所示.如果﹣(a+b)=a+b,那么下列结论正确的是()A.abc>0B.C.|a|<|c|D.a+c=09.一个动点P从数轴上的原点O出发开始移动,第1次向右移动1个单位长度到达点P1,第2次向右移动2个单位长度到达点P2,第3次向左移动3个单位长度到达点P3,第4次向左移动4个单位长度到达点P4,第5次向右移动5个单位长度到达点P5…,点P按此规律移动,则移动第2022次后到达的点P2022在数轴上表示的数为()A.﹣2020B.﹣2021C.2022D.202310.有理数a,b,c满足abc≠0,a<b且a+b<0,,那么的值为()A.0B.2C.0或2D.0或﹣2二、填空题(共8题,共32分)11.比较大小:﹣﹣0.3333.(填“>”,“=”,或“<”)12.如图,数轴上有三个点A,B,C,它们表示的数均为整数,且B,C之间的距离为1个单位长度.若点A,B表示的数互为相反数,则图中点C表示的数是.13.在﹣32,﹣|﹣3.4|,,﹣(﹣5),﹣中,负分数的个数为个.14.已知(x﹣3)2+|y+2|=0,那么3x﹣y2的值为.15.如果a,b互为相反数a≠0,c是最大的负整数,m是﹣的倒数,则m(a+b+c)+的值是.16.已知点A表示的数是﹣2,一个点从数轴上的P点出发,先向左移动1个单位长度,再向右移动5个单位长度,终点距离A点的距离为3,则点P表示的数为.17.对一个正整数n进行如下操作:若n为奇数,则将它乘以3,再加1,得到一个新数;若n为偶数,则取它的一半,若结果仍为偶数,则再取这个结果的一半,…,直到得到一个新的奇数.对n进行1次上述操作所得的结果记为(n)1,再将(n)1进行一次上述操作,所得的结果记为(n)2,….例如:数9经过1次操作得到28,即(9)1=28,经过2次操作得到7,即(9)2=7,经过3次操作得到22,即(9)3=22.则(11)100=.18.对于数轴上的三个点A,B,C给出如下定义:A,B两点到C点的距离之差的绝对值称为A,B两点关于点C的绝对距离,记为||ACB||.若P,Q为数轴上的两点(点P在点Q 的左边),且PQ=9,点C表示的数为﹣1,若||PCQ||=6,则点P表示的数为.三、解答题(共5题,共58分)19.计算:(1)﹣2+(﹣3)﹣(﹣10)﹣(+4);(2);(3);(4)﹣32×(﹣2)+(﹣1)2022×(﹣4)2﹣(﹣2)+.20.简便计算:(1);(2);(3);(4).21.把下列各数在数轴上表示出来,并把它们按从小到大的顺序用“<”号连接起来:﹣|﹣2.5|,﹣(﹣),(﹣1)2025,﹣22.22.如图所示,已知A,B两点在数轴上表示的数分别为a,b.(1)若,,求(a+b)×(a﹣b)的值;(2)化简:﹣|﹣b|+|1﹣a|﹣|a|+|b﹣a|.23.中国四大火炉城市之一的重庆,在2022年夏天遭遇了连晴高温天气.已知重庆某地8月14日的气温为39.5℃,如表记录了该地2022年8月15日(星期一)到8月21日这一周的气温变化情况(正号表示气温比前一天上升,负号表示气温比前一天下降,单位:℃):星期一二三四五六日气温变化+1.3+0.4﹣0.5+1.7﹣0.3+0.7﹣0.2(1)通过计算说明,这一周该地哪天的气温最高?最高气温是多少?并计算出星期四的气温.(2)计算这一周该地的平均气温.24.2022年8月,重庆多地突发山火.明知山有火,偏向火山行,在大火面前,山城涌现出一个个平民英雄.00后小伙“龙麻子”便是其中一员,他连续奋战36小时,背着50斤的背篓,驾驶摩托车行驶在坡度将近70度的山路上,奔波于火场和物资点之间.若上山用时记为正,下山用时记为负,“龙麻子”22号某时段驾驶摩托车运送物资所用的时间(单位:小时)可记为:+1,﹣,+,﹣1,+2,﹣1,+,﹣.(1)22号该时段“龙麻子”驾驶摩托车运送物资的时间一共是多少小时?(2)若“龙麻子”驾驶摩托车上山的速度是每小时20公里,下山的速度是每小时30公里.摩托车正常路况下的平均油耗是每公里0.025升,上山因为路况原因每公里要多耗油0.02升,下山每公里省油0.01升.请计算22号这个时段“龙麻子”的摩托车共耗油多少升.25.如图,AB和CD是数轴上的两条线段,线段AB的长度为1个单位长度,线段CD的长度为2个单位长度,B,C之间的距离为6个单位长度且与原点的距离相等分别以AB,CD为边作正方形ABEF,正方形CDGH.(1)直接写出:B表示的数为,D表示的数为;(2)P,Q是数轴上的动点,点P从B出发,以每秒1个单位长度的速度向C运动,点Q从C出发,向B运动,P,Q相遇后均立即以每秒比之前多1个单位长度的速度返回,分别到达B,C点后立即返回,第二次相遇时P,Q两点同时停止运动.已知第一次相遇时,点P到点C的距离比点P到点B的距离多两个单位长度,求P,Q第二次相遇时,点P所表示的数.(3)将AB和CD较近的两个端点之间的距离叫做正方形ABEF和正方形CDGH之间的最小距离,将AB和CD较远的两个端点之间的距离叫做正方形ABEF和正方形CDGH 之间的最大距离.例如图中正方形ABEF和正方形CDGH之间的最小距离即B,C之间的距离,最大距离即A,D之间的距离.若正方形ABEF以每秒1个单位长度的速度向数轴的正方向运动,正方形CDGH以每秒2个单位长度的速度向数轴的负方向运动.设运动时间为t秒,当这两个正方形之间的最大距离是最小距离的两倍时,请直接写出t 的值.参考答案一、选择题(共10题,共30分)1.解:如果高于海平面200米记为+200米,那么低于海平面300米应记为﹣300米.故选:A.2.解:﹣的相反数是,故选:B.3.解:一个数的绝对值为2,则这个数为2或﹣2,∴表示绝对值为2的点为点A.故选:A.4.解:A.0是整数,属于有理数,故本选项不合题意;B.不是有理数,故本选项符合题意;C.﹣2.是循环小数,属于有理数,故本选项不合题意;D.3.1415926是有限小数,属于有理数,故本选项不合题意.故选:B.5.解:(﹣1)÷(﹣5)×,=(﹣1)×(﹣)×,=.故选:C.6.解:∵﹣(﹣2)=2,∴﹣(﹣2)是正数,∵﹣24=﹣16,∴﹣24是负数;∵﹣|﹣23|=﹣|﹣8|=﹣8,∴﹣|﹣23|是负数;∵﹣{+[﹣(﹣3)]}=﹣3,∴﹣{+[﹣(﹣3)]}是负数,综上,负数的个数有3个,故选:D.7.解:A、当x=0时,|x|=x,原说法错误,故此选项不符合题意;B、∵|x+1|≥0,∴当x=﹣1时,|x+1|+2取最小值,原说法错误,故此选项不符合题意;C、∵x>1>y>﹣1,∴|x|>1,|y|<1,∴|x|>|y|,原说法错误,故此选项不符合题意;D、∵|x+1|≤0,|x+1|≥0,∴x+1=0,∴x=﹣1,原说法正确,故此选项符合题意.故选:D.8.解:∵﹣(a+b)=a+b,∴a+b=0,∴a<0,b>0,|c|>|a|,A、a<0,b>0,c>0,所以abc<0,此选项不符合题意;B、a<0,b>0,|a|=|b|,所以=﹣1,此选项不符合题意;C、|c|>|b|=|a|,所以|a|<|c|,此选项符合题意;D、a<0,c>0,|a|<|c|,所以a+c>0,此选项不符合题意.故选:C.9.解:∵P1表示的数为+1,P2表示的数为+3,P3表示的数为0,P4表示的数为﹣4,P5表示的数为+1,.....,∴每移动四次相当于向左移动4个单位长度,∵2022÷4=505……2,∴505×(﹣4)+2021+2022=2023,∴P2022在数轴上表示的数为2023,故选:D.10.解:∵a<b且a+b<0,abc≠0,∴a<0,b<0或a<0,b>0,当a<0,b<0时,则=﹣1﹣1=﹣2,∵,∴=1,∴c>0.∴a<0,b<0,c>0,∴ab>0,bc<0,ac<0,abc>0,∴原式=1﹣1﹣1+1=0;当a<0,b>0时,则=﹣1+1=0,∵,∴=﹣1,∴c<0.∴a<0,b>0,c<0,∴ab<0,bc<0,ac>0,abc>0,∴原式=﹣1﹣1+1+1=0,综上,的值为0,故选:A.二、填空题(共8题,共32分)11.解:|﹣|=≈0.33333,|﹣0.3333|=0.3333,∵0.33333>0.3333,∴>0.3333,∴﹣<﹣0.3333.故答案为:<.12.解:由于A、B两点表示的数互为相反数,因此A、B一定关于原点对称,∴原点O与各点的位置如图所示,将单位长度视为1,因此C所表示的数为3.故答案为:3.13.解:∵﹣32=﹣9是负整数,﹣|﹣3.4|=﹣3.4是负分数,是正数,﹣(﹣5)=5是正数,﹣是负分数,∴负分数的个数为2个,故答案为:2.14.解:根据题意得,x﹣3=0,y+2=0,解得x=3,y=﹣2,则3x﹣y2=3×3﹣(﹣2)2=9﹣4=5.故答案为:5.15.解:由题意知a+b=0且=﹣1,c=﹣1,m=﹣3,则原式=﹣3×(0﹣1)﹣1=﹣3×(﹣1)﹣1=3﹣1=2,故答案为:2.16.解:∵点A表示的数是﹣2,终点距离A点的距离为3,∴终点表示的数为﹣5或1,∵一个点从数轴上的P点出发,先向左移动1个单位长度,再向右移动5个单位长度,∴点P表示的数为﹣9或﹣3.故答案为:﹣9或﹣3.17.解:由题意可得,(11)1=34,(11)2=17,(11)3=52,(11)4=13,(11)5=40,(11)6=5,(11)7=16,(11)8=1,(11)9=4,(11)10=1,(11)11=4,(11)12=1,(11)13=4,...,观察其规律可得,(11)100=1.故答案为:1.18.解:∵点P在点Q的左边,PQ=9,∴设点P表示的数为x,则点Q表示的数为x+9,∵||PCQ||=6,∴点P在点C的左边,点Q在点C的右边,∴|(﹣1﹣x)﹣[x+9﹣(﹣1)]|=6,解得x=﹣8.5或﹣2.5,∴点P表示的数为﹣8.5或﹣2.5.三、解答题(共5题,共58分)19.解:(1)原式=﹣2﹣3+10﹣4=﹣9+10=1;(2)原式=﹣×3××=﹣2;(3)原式=1×(﹣8)++||=﹣8++=﹣;(4)原式=﹣9×(﹣2)+1×16+2+=18+16+2+=36.20.解:(1)原式=×(﹣24)﹣×(﹣24)+×(﹣24)=﹣20+16﹣6=﹣10;(2)原式=﹣6+1+5.3﹣3.3+2+=﹣5+2+3=0;(3)原式=84+6+209=299;(4)原式=(﹣2)×(+﹣)=(﹣2)×=﹣2.21.解:∵﹣|﹣2.5|=﹣2.5,﹣(﹣)=,(﹣1)2025=﹣1,﹣22=﹣4,把各数在数轴上表示如下:,∴﹣22<﹣|﹣2.5|<(﹣1)2025<﹣(﹣).22.解:(1)由数轴可知,﹣1<a<0,b>1,∵,,∴a=﹣,b=1,∴(a+b)×(a﹣b)=a2﹣b2=﹣=﹣;(2)∵﹣1<a<0,b>1,∴﹣b<0,1﹣a>0,b﹣a>0,∴﹣|﹣b|+|1﹣a|﹣|a|+|b﹣a|=﹣b+1﹣a+a+b﹣a=1﹣a.23.解:周一:39.5+1.3=40.8(℃),周二:40.8+0.4=41.2(℃),周三:41.2﹣0.5=40.7(℃),周四:40.7+1.7=42.4(℃),周五:42.4﹣0.3=42.1(℃),周六:42.1+0.7=42.8(℃),周日:42.8﹣0.2=42.6(℃),答:这一周该地周六气温最高,最高气温是42.8℃,星期四的气温为42.4℃;(2)这一周该地的平均气温为:×(40.8+41.2+40.7+42.4+42.1+42.8+42.6)=41.8(℃),答:这一周该地的平均气温为41.8℃.24.解:(1)|+1|+|﹣|+|+|+|﹣1|+|+2|+|﹣1|+|+|+|﹣|=9.故22号该时段“龙麻子”驾驶摩托车运送物资的时间一共是9小时;(2)20×(1++2+)×(0.025+0.02)+30×(+1+1+)×(0.025﹣0.01)=20×5×0.045+30×4×0.015=4.5+1.8=6.3(升).答:22号这个时段“龙麻子”的摩托车共耗油6.3升.25.解:(1)∵点B,C之间的距离为6个单位长度且与原点的距离相等,CD=2,∴点B在数轴上表示的数是﹣3,点C在数轴上表示的数是3,D表示的数为5;故答案为:﹣3,5;(2)设点Q开始出发时的速度为v单位/秒,点P运动的时间为t秒,则第一次相遇前点P表示的数为﹣3+t,点C表示的数为3+vt,∵第一次相遇时,点P到点C的距离比点P到点B的距离多两个单位长度,∴PC=2+PB,∴3﹣(﹣3+t)=2+t,∴t=2,∴2×(1+v)=6,∴v=2,即第一次相遇前点Q的运动速度为每秒2个单位长度,∵P,Q相遇后均立即以每秒比之前多1个单位长度的速度返回,∴点P相遇后返回到点B的时间=1,2(t﹣2)+3(t﹣2)=2×6,∴t=,∴P,Q第二次相遇时,点P所表示的数为:﹣3+2(﹣2﹣1)=﹣;(3)运动后,点A表示的数为:﹣4+t,点B表示的数为:﹣3+t,点C表示的数为:3﹣2t,点D表示的数为:4﹣2t,∵这两个正方形之间的最大距离是最小距离的两倍,∴AD=2BC,∴|4﹣2t﹣(﹣4+t)|=2|﹣3+t﹣(3﹣2t)|,∴|8﹣3t|=2|﹣6+3t|,∴8﹣3t=2(﹣6+3t)或8﹣3t=﹣2(﹣6+3t),∴t=或.。
最新北师大版七年级数学上册单元测试题全套含答案单元测试(一)丰富的图形世界(时间:120分钟满分:150分)一、选择题(本大题共15小题,每小题3分,共45分)1.下列图形不是立体图形的是( )A.球B.圆柱C.圆锥D.圆2.如图,在下面四个物体中,最接近圆柱的是( )A.烟囱B.弯管C.玩具硬币D.某种饮料瓶3.直棱柱的侧面都是( )A.正方形B.长方形C.五边形D.以上都不对4.下列几何体没有曲面的是( )A.圆锥B.圆柱C.球D.棱柱5.(芦溪县期末)如图所示,用一个平面去截一个圆柱,则截得的形状应为( )A B C D6.一个几何体的展开图如图所示,这个几何体是( )A.圆锥B.圆柱C.四棱柱D.无法确定7.如图中几何体从正面看得到的平面图形是( )A B C D 8.(长沙一模)如图,直角三角形绕直线l旋转一周,得到的立体图形是( )A B C D10.如图的四个几何体,它们各自从正面,上面看得到的形状图不相同的几何体的个数是( )A.1 B.2 C.3 D.411.下列四张正方形硬纸片,剪去阴影部分后,如果沿虚线折叠,可以围成一个封闭的长方体包装盒的是( )12.下列说法不正确的是( )A.球的截面一定是圆B.组成长方体的各个面中不可能有正方形C.从三个不同的方向看正方体,得到的平面图形都是正方形D.圆锥的截面可能是圆13.将四个棱长为1的正方体如图摆放,则这个几何体的表面积是( )A.3 B.9 C.12 D.1814.(深圳期末)用平面去截如图所示的三棱柱,截面形状不可能是( )A.三角形B.四边形C.五边形D.六边形15.明明用纸(如图)折成了一个正方体的盒子,里面装了一瓶墨水,与其他空盒子混放在一起,只凭观察,选出墨水在哪个盒子中( )A B C D二、填空题(本大题共5小题,每小题5分,共25分)16.飞机表演的“飞机拉线”用数学知识解释为:________________.17.下列图形中,是柱体的有________ .(填序号)20.一个正方体盒子的展开图如图所示,如果要把它粘成一个正方体,那么与点A重合的点是________.三、解答题(本大题共7小题,共80分)21.(12分)将下列几何体与它的名称连接起来.22.(6分)如图,求这个棱柱共有多少个面?多少个顶点?有多少条棱?23.(10分)若要使图中平面图形折叠成正方体后,相对面上的数字相等,求x+y+z的值.24.(10分)如图是一个由若干个小正方体搭成的几何体从上面看到的形状图,其中小正方形内的数字是该位置小正方体的个数,请你画出它从正面和从左面看到的形状图.25.(12分)如图所示的正方体被竖直截去了一部分,求被截去的那一部分的体积.(棱柱的体积等于底面积乘以高)26.(14分)如图所示,长方形ABCD的长AB为10 cm,宽AD为6 cm,把长方形ABCD绕AB边所在的直线旋转一周,然后用平面沿AB方向去截所得的几何体,求截面的最大面积.27.(16分)根据如图所给出的几何体从三个方向看得到的形状图,试确定几何体中小正方体的数目的范围.参考答案1.D 2.C 3.B 4.D 5.B 6.A 7.D 8.C 9.C 10.C11.C 12.B 13.D 14.D 15.B 16.点动成线 17.②③⑥ 18.答案不唯一,如:球、正方体等 19.8 20.C 、E 21.略.22.这个棱柱共有7个面,10个顶点,15条棱. 23.“2”与“y”相对,“3”与“z”相对,“1”与“x”相对.则x +y +z =1+2+3=6. 24.从正面和从左面看到的形状图如图所示.25.V =12×(5-4)×(5-3)×5=5(cm 3).答:被截去的那一部分体积为5 cm 3.26.由题意得:把长方形ABCD 绕AB 边所在的直线旋转一周,得到的几何体为圆柱,且圆柱的底面半径为6 cm ,高为10 cm .所以截面的最大面积为:6×2×10=120(cm 2).27.根据题意,从上面看,构成几何体所需小正方体最多情况如图1所示,所需小正方体最少情况如图2所示:所以最多需要11个小正方体,最少需要9个小正方体.单元测试(二) 有理数及其运算(时间:120分钟 满分:150分)一、选择题(本大题共15小题,每小题3分,共45分)1.如果用+0.02克表示一只乒乓球质量超出标准质量0.02克,那么一只乒乓球质量低于标准质量0.02克记作( ) A .-0.02克 B .+0.02克 C .0克 D .+0.04克 2.(宁波中考改编)下列各数中,既不是正数也不是负数的是( )A .0B .-1 C.12 D .23.(遂宁中考)在下列各数中,最小的数是( )A .0B .-1 C.32 D .-24.-8的相反数是( )A .-6B .8C .-16 D.185.用四舍五入法得到近似数4.005万,关于这个数有下列说法,其中正确的是( )A .-2B .-8C .8D .27.(盐城中考)2014年5月,中俄两国签署了供气购销合同,从2018年起,俄罗斯开始向我国供气,最终达到每年380亿立方米.380亿这个数据用科学记数法表示为( )A .3.8×109B .3.8×1010C .3.8×1011D .3.8×1012 8.(河北中考)计算:3-2×(-1)=( )A .5B .1C .-1D .6 9.下列计算正确的是( )A .(-14)-(+5)= -9 B. 0-(-3)=0+(-3) C .(-3)×(-3)= -6 D .|3-5|= 5-310.某校小卖铺一周的盈亏情况如下表所示(每天固定成本200元,其中“+”表示盈利,“-”表示亏损)星期 一 二 三 四 五 盈亏+220-30+215-25+225则这个周共盈利( )A .715元B .630元C .635元D .605元 11.下列四个有理数12、0、1、-2,任取两个相乘,积最小为 ( )A.12 B .0 C .-1 D .-212.在某一段时间里,计算机按如图所示程序工作,如果输入的数是2,那么输出的数是( )A .-54B .54C .-558D .55813.如图,四个有理数在数轴上对应点M ,P ,N ,Q ,若点P ,N 表示的有理数互为相反数,则图中表示绝对值最大的数的点是( )A .点MB .点NC .点PD .点Q 14.若(a +3)2+|b -2|=0,则a b 的值是( )A .6B .-6C .9D .-915.观察下列各算式:21=2,22=4,23=8,24=16,25=32,26=64…通过观察,用你所发现的规律确定22 016的个位数字是 ( )A .2B .4C .6D .8 二、填空题(本大题共5小题,每小题5分,共25分) 16.-32的倒数的绝对值为________.17.一种零件的内径尺寸在图纸上是30±0.05(单位:毫米),表示这种零件的标准尺寸是30毫米,加工要求最大不超过________毫米,最小不低于________毫米. 18.大于-1.5小于2.5的整数共有________个.19.一个点从数轴的原点开始,先向右移动5个单位长度,再向左移动8个单位长度,到达的终点表示的数是________________.a -b21.(12分)把下列各数填入相应集合内:+8.5,-312,0.3,0,-3.4,12,-9,413,-1.2,-2.(1)正数集合:{ };(2)整数集合:{ }; (3)负分数集合:{ }.22.(8分)把数-2,1.5,-(-4),-312,(-1)4,-|+0.5|在数轴上表示出来,然后用“<”把它们连接起来.23.(16分)计算:(1)6.8-(-4.2)+(-9); (2)|-2|-(-3)×(-15);(3)(12+56-712)×(-24); (4)-24÷(23)2+312×(-13)-(-0.5)2.24.(8分)已知a 、b 互为相反数,c 、d 互为倒数,x 的绝对值是2,求3x -(a +b +cd )x 的值.25.(10分)已知x 、y 为有理数,现规定一种新运算※,满足x ※y =xy +1. (1)求2※4的值;(2)求(1※4)※(-2)的值;26.(12分)“新春超市”在2015年1~3月平均每月盈利20万元,4~6月平均每月亏损15万元,7~10月平均每月盈利17万元,11~12月平均每月亏损23万元.问“新春超市”2015年总的盈亏情况如何?27.(14分)一名足球守门员练习折返跑,从球门线出发,向前记作正数,返回记作负数,他的记录如下:(单位:米)+5,-3,+10,-8,-6,+12,-10.(1)守门员最后是否回到了球门线的位置?(2)在练习过程中,守门员离开球门线最远距离是多少米? (3)守门员全部练习结束后,他共跑了多少米?参考答案1.A 2.A 3.D 4.B 5.D 6.B 7.B 8.A 9.D 10.D11.D 12.C 13.A 14.C 15.C 16.23 17.30.05 29.95 18.4 19.-3 20.-7或-17 21.(1)+8.5,0.3,12,413(2)0,12,-9,-2 (3)-312,-3.4,-1.2 22.在数轴上表示数略,-312<-2<-|+0.5|<(-1)4<1.5<-(-4). 23.(1)原式=2. (2)原式=-43. (3)原式=-18. (4)原式=-37512. 24.由题意知,a +b =0,cd =1,x =±2,当x =2时,原式=4;当x =-2时,原式=-4. 25.(1)2※4=2×4+1=9.(2)(1※4)※(-2)=(1×4+1)×(-2)+1=-9. 26.(+20)×3+(-15)×3+(+17)×4+(-23)×2=37(万元).答:“新春超市”2015年总的盈利为37万元. 27.(1)(+5)+(-3)+(+10)+(-8)+(-6)+(+12)+(-10)=0.答:守门员最后回到了球门线的位置.(2)由观察可知:5-3+10=12.答:在练习过程中,守门员离开球门线最远距离是12米.(3)|+5|+|-3|+|+10|+|-8|+|-6|+|+12|+|-10|=54(米).答:守门员全部练习结束后,他共跑了54米.单元测试(三) 整式及其加减(时间:120分钟 满分:150分)一、选择题(本大题共15小题,每小题3分,共45分) 1.下列各式中不是单项式的是( )A .-a 3B .-15C .0D .-3a2.单项式-3xy 2z 3的系数是( )A .-1B .5C .6D .-33.某班数学兴趣小组共有a 人,其中女生占30%,那么女生人数是( ) A .30%a B .(1-30%)a C.a 30% D.a 1-30%4.下列各组式子中,为同类项的是( )A .5x 2y 与-2xy 2B .4x 与4x 2C .-3xy 与32yx D .6x 3y 4与-6x 3z 45.当a =-1,b =2时,代数式a 2b 的值是( )A .-2B .1C .2D .-1 6.列式表示“比m 的平方的3倍大1的数”是( )A .(3m )2+1B .3m 2+1C .3(m +1)2D .(3m +1)27.若m ,n 为自然数,多项式x m +y n +4m +n 的次数应是( )A .mB .nC .m ,n 中的较大数D .m +n 8.化简2x -(x -y)-y 的结果是( )A .3xB .xC .x -2yD .2x -2y 9.(玉林中考)下列运算中,正确的是( )A .3a +2b =5abB .2a 3+3a 2=5a 5C .3a 2b -3ba 2=0D .5a 2-4a 2=1 10.一个多项式减去x 2-2y 2等于x 2-2y 2,则这个多项式是( )A .-2x 2+y 2B .x 2-2y 2C .2x 2-4y 2D .-x 2+2y 2 11.下列判断错误的是( )A .多项式5x 2-2x +4是二次三项式B .单项式-a 2b 3c 4的系数是-1,次数是9C .式子m +5,ab ,-2,sv 都是代数式 D .多项式与多项式的和一定是多项式 12.十位数字是x ,个位数字是y 的两位数是 ( )A .xyB .x +10yC .x +yD .10x +y13.(厦门中考)某商店举办促销活动,促销的方法是将原价x 元的衣服以(45x -10)元出售,则下列说法中,能正确表达该商店促销方法的是( )A .原价减去10元后再打8折B .原价打8折后再减去10元C .原价减去10元后再打2折D .原价打2折后再减去10元 14.(湘西中考)已知x -2y =3,则代数式6-2x +4y 的值为( )A .0B .-1C .-3D .3 15.下面一组按规律排列的数:0,2,8,26,80,…,则第2 016个数是( )A .32 016B .32 015C .32 016-1D .32 015-1 二、填空题(本大题共5小题,每小题5分,共25分) 16.去括号:-(3x -2)=________.18.对于有理数a,b,定义a⊙b=3a+2b,则(x+y)⊙(x-y)化简后得________.19.当m=________时,代数式2x2+(m+2)xy-5x不含xy项.20.若用围棋子摆出下列一组图形:…(1)(2)(3)按照这种方法摆下去,第n个图形共用________枚棋子.三、解答题(本大题共7小题,共80分)21.(8分)化简下列各式:(1)a+2b+3a-2b; (2)2(a-1)-(2a-3)+3.22.(8分)先化简,再求值:(2m2-3mn+8)-(5mn-4m2+8),其中m=2,n=1.23.(10分)如图所示:(1) 用代数式表示阴影部分的面积;(2) 当a=10,b=4时,求阴影部分的面积(π取3.14,结果精确到0.01).24.(12分)已知a,b,c在数轴上的位置如图所示,求|b+c|-|a-b|-|c-b|的值.25.(12分)已知长方形的一边长为2a+3b,另一边比它短(b-a),试计算此长方形的周长.26.(14分)已知A=2a2+3ab-2a-1,B=-a2+ab-1.(1)求3A+6B;(2)若3A+6B的值与a的取值无关,求b的值.27.(16分)某农户承包荒山若干亩,种果树2 000棵.今年水果总产量为18 000千克,此水果在市场上每千克售a 元,在果园每千克售b元(b<a).该农户将水果拉到市场出售平均每天出售1 000千克,需8人帮忙,每人每天付工资25元,农用车运费及其他各项税费平均每天100元.(1)分别用a,b表示两种方式出售水果的收入;(2)若a=1.3元,b=1.1元,且两种出售水果方式都在相同的时间内售完全部水果,请你通过计算说明选择哪种出售方式较好.参考答案1.D 2.D 3.A 4.C 5.C 6.B 7.C 8.B 9.C 10.C11.D 12.D 13.B 14.A 15.D 16.-3x +2 17.某班级有a 名学生参加考试,30名学生成绩合格,则合格人数占总人数的30a18.5x +y 19.-2 20.3n 21.(1)原式=4a. (2)原式=4. 22.原式=2m 2-3mn +8-5mn +4m 2-8=6m 2-8mn.当m =2,n =1时,原式=6×22-8×2×1=8. 23.(1)ab -12πb 2.(2)当a =10,b =4时,ab -12πb 2≈10×4-12×3.14×42=14.88. 24.由图知:b +c >0,a -b <0,c -b >0,|b +c|-|a -b|-|c -b|=b +c -[-(a -b)]-(c -b)=b +c +a -b -c +b =a +b. 25.长方形的另一边长为3a +2b ,则周长为2[(2a +3b)+(3a +2b)]=2(5a +5b)=10a +10b. 26.(1)3A +6B =3(2a 2+3ab -2a -1)+6(-a 2+ab -1)=6a 2+9ab -6a -3-6a 2+6ab -6=15ab -6a -9.(2)因为15ab -6a -9=a(15b -6)-9,且3A +6B 的值与a 的取值无关,所以15b =6,即b =25. 27.(1)将这批水果拉到市场上出售收入为18 000a -18 0001 000×8×25-18 0001 000×100=18 000a -3 600-1 800=18 000a -5 400(元).在果园直接出售收入为18 000b 元.(2)当a =1.3时,市场收入为18 000a -5 400=18 000×1.3-5 400=18 000(元).当b =1.1时,果园收入为18 000b =18 000×1.1=19 800(元).因为18 000<19 800,所以应选择在果园出售.单元测试(四) 基本平面图形题号一二三总分 合分人 复分人 得分一、选择题(本大题共15题号123456789 10 11 12 13 14 15 选项1.A .线段 B .射线 C .直线 D .弧线 2.下列图形中表示直线AB 的是( )A B C D 3.下面四个图形中,是多边形的是( )4.下列说法正确的是( )A .平角是一条直线B .角的边越长,角越大C .大于直角的角叫做钝角D .把线段AB 向两端无限延伸可得到直线AB 5.木匠在木料上画线,先确定两个点的位置,就能把线画得很准确,其依据是( ) A .两点确定一条直线 B .两点确定一条线段C.过一点有一条直线D.过一点有无数条直线6.如图,若∠AOC=∠BOD,则∠AOD与∠BOC的关系是( )A.∠AOD>∠BOC B.∠AOD<∠BOCC.∠AOD=∠BOC D.无法确定7.如图,点C在线段AB上,则下列说法正确的是( )A.AC=BC B.AC>BCC.图中共有两条线段D.AB=AC+BC8.如图是一块手表早上8时的时针、分针的位置图,那么分针与时针所成的角的度数是( ) A.60°B.80°C.120°D.150°9.下列计算错误的是( )A.0.25°=900″ B.1.5°=90′C.1 000″=(518)°D.125.45°=1 254.5′10.如图,OA是北偏东30°方向的一条射线,若∠AOB=90°,则OB的方位角是( )A.西偏北60°B.北偏西60°C.北偏东60°D.东偏北60°11.如图,OC是∠AOB的平分线,OD平分∠AOC,若∠COD=25°,则∠AOB的度数为( )A.100°B.80°C.70°D.60°12.已知线段AB=5 cm,在直线AB上画线段BC=2 cm,则AC的长是( )A.3 cm B.7 cmC.3 cm或7 cm D.无法确定13.过多边形的一个顶点可以引出6条对角线,则多边形的边数是( )A.7 B.8 C.9 D.1014.将一个圆分成四个扇形,它们的圆心角的度数比为4∶4∶5∶7,则这四个扇形中,圆心角最大的是( ) A.54°B.72°C.90°D.126°15.两条直线最多有1个交点,三条直线最多有3个交点,四条直线最多有6个交点,…那么六条直线最多有( ) A.21个交点B.18个交点C.15个交点D.10个交点二、填空题(本大题共5小题,每小题5分,共25分)16.要在A、B两个村庄之间建一个车站,则当车站建在A、B村庄之间的线段上时,它到两个村庄的路程和最短,理由是________________.17.如图,点A、B、C在直线l上,则图中共有________条线段,有________条射线.18.如图,已知C为线段AB的中点,D在线段CB上.若DA=6,DB=4,则CD=________.19.如图,将一副直角三角板叠在一起,使直角顶点重合于点O,则∠AOB=155°,则∠COD=________,∠BOC =________ .20.若一个多边形截去一个角后,变成六边形,则原来多边形的边数可能是________.三、解答题(本大题共7小题,共80分)21.(8分)如图,直线AB表示一条公路,公路两旁各有一点M、N表示工厂,要在公路旁建一个货场,使它到两个工厂的距离之和最小,问这个货场应建在什么地方.22.(8分)已知四点A、B、C、D.根据下列语句,画出图形.①画直线AB;②连接AC、BD,相交于点O;③画射线AD、BC,交于点P.23.(10分)如图,已知A、B、C三点在同一条线段上,M是线段AC的中点,N是线段BC的中点,且AM=5 cm,CN=3 cm.求线段AB的长.24.(12分)如图,已知∠AOE=∠COD,且射线OC平分∠BOE,∠EOD=30°,求∠AOD的度数.25.(12分)王老师到市场买菜,发现如果把10千克的菜放到秤上,指标盘上的指针转了180°,第二天王老师就给同学们出了两个问题:(1)如果把0.6千克的菜放在秤上,指针转过多少角度? (2)如果指针转了7°12′,这些菜有多少千克?26.(14分)画图并计算:已知线段AB =2 cm ,延长线段AB 至点C ,使得BC =12AB ,再反向延长AC 至点D ,使得AD =AC.(1)准确地画出图形,并标出相应的字母;(2)线段DC 的中点是哪个?线段AB 的长是线段DC 长的几分之几? (3)求出线段BD 的长度.27.(16分)如图,正方形ABCD 内部有若干个点,用这些点以及正方形ABCD 的顶点A 、B 、C 、D 把原正方形分割成一些三角形(互不重叠).(1)填写下表:正方形ABCD 内点的个数1234…n分割成三角形的个数4 6 …(2)参考答案1.B 2.D 3.D 4.D 5.A 6.C 7.D 8.C 9.D 10.B 11.A 12.C 13.C 14.D 15.C 16.两点之间,线段最短 17.3 6 18.1 19.25° 65° 20.5,6,7 21.连接MN 于AB 相交,交点即为所求.22.图略.23.因为AM =5 cm ,CN =3 cm ,且M 是线段AC 的中点,N 是线段BC 的中点,所以AC =10 cm ,CB =6 cm.所以AB =AC +CB =16 cm.24.因为∠AOB =180°,∠EOD =30°,所以∠AOD +∠EOC +∠COB =150°.因为∠AOE =∠COD ,所以∠AO D =∠EOC.因为OC 平分∠EOB ,所以∠EOC =∠COB.所以∠EOC =∠COB =∠AOD =50°. 25.(1)由题意,得(180°÷10)×0.6=10.8°.(2)由题意,得(10÷180°)×7°12′=(10÷180°)×7.2°=0.4(千克). 26.(1)如图所示.(2)线段DC 的中点是点A ,AB =13CD.(3)由BC =12AB =12×2=1(cm),因而AC =AB +BC =2+1=3(cm),而AD =AC =3 cm ,故BD =DA +AB =3+2=5(cm).27.(1)8 10 2n +2 (2)不可以,因为2n +2是偶数,不可能等于2 015,所以不可以.单元测试(五) 一元一次方程 (时间:120分钟 满分:150分)题号一二三总分 合分人 复分人 得分一、选择题(本大题共15小题,每小题3分,共45分)题号1234567 8 9 10 11 12 13 14 15 选项1.下列式子中,是一元一次方程的是( )A .x -7 B.2x =7C .4x -7y =6D .2x -6=0 2.下列方程变形中,属于移项的是( )A .由3x =-2,得x =-23B .由x2=3,得x =6C .由5x -10=0,得5x =10D .由2+3x =0,得3x +2=03.若a =b ,则下列式子不正确的是( )A .a +1=b +1B .a +5=b -5C .-a =-bD .a -b =0 4.解方程-2(x -5)+3(x -1)=0时,去括号正确的是( )A .-2x -10+3x -3=0B .-2x +10+3x -1=0C .-2x +10+3x -3=0D .-2x +5+3x -3=0 5.下列方程中,解是2的方程是( )A.23x =2 B .-14x +12=0 C .3x +6=0 D .5-3x =1 6.方程3-2(x -5)=9的解是( )A .x =-2B .x =2C .x =23D .x =17.解方程x +12-x -14=1有下列四步,其中发生错误的一步是( )A .去分母,得2(x +1)-x -1=4B .去括号,得2x +2-x -1=4C .移项,得2x -x =4-2+1D .合并同类项,得x =3 8.已知x =1是方程x +2a =-1的解,那么a 的值是( ) A .-1 B .0 C .1 D .2 9.如果2x -3与-13互为倒数,那么x 的值为( )A .x =53B .x =43C .x =0D .x =110.设某数为x ,若比它的34大1的数的相反数是6,可列方程为( )A .-34x +1=6B .-(34x +1)=6C.34x -1=6 D .-(34x -1)=6 11.小马虎在计算16-13x 时,不慎将“-”看成了“+”,计算的结果是17,那么正确的计算结果应该是( )A .15B .13C .7D .-112.某班在一次美化校园的劳动中,先安排35人打扫卫生,15人拔草,后又增派10人去支援,结果打扫卫生的人数是拔草人数的2倍,若设支援打扫卫生的同学有x 人,则下列方程正确的是( ) A .35+x =2×10 B .35+x =2×(15+10-x ) C .35+x =2×(15-x ) D .35+x =2×1513.学校组织了一次知识竞赛,共有25道题,每一道题答对得5分,答错或不答都扣3分,小明得了85分,那么他答对的题数是( )A .22B .20C .19D .1814.如果方程6x +3a =22与方程3x +5=11的解相同,那么a 的值为( ) A.310 B.103 C .-310 D .-10315.某品牌商品按标价九折出售,仍可获得20%的利润.若该商品标价为28元,则商品的进价为( ) A .21元 B .19.8元 C .22.4元 D .25.2元 二、填空题(本大题共5小题,每小题5分,共25分)16.若-3x =13,则x =________.17.若(m +1)x |m|=6是关于x 的一元一次方程,则m 等于________.18.若4x 2m y n +1与-3x 4y 3的和是单项式,则m =________,n =________.19.已知A 种品牌的文具比B 种品牌的文具单价少1元,小明买了2个A 种品牌的文具和3个B 种品牌的文具,一共花了28元,那么A 种品牌的文具单价是________元.20.一条山路,某人从山下往山顶走3小时还有1千米才到山顶,若从山顶走到山下只用150分钟,已知下山速度是上山速度的1.5倍,则山下到山顶的路程为________千米. 三、解答题(本大题共7小题,共80分)21.(9分)在下列横线上填上适当的数或整式,使所得结果仍是等式,并说明根据的是等式的哪一条性质. (1)如果x -2=-y ,那么x =________,根据________;(2)如果2x =-2y ,那么x =________,根据等式的性质________; (3)如果-x 10=y5,那么x =________,根据等式的性质________.22.(7分)解方程:x -74-5x +82=1.23.(10分)当x 取何值时,代数式2x -35的值比代数式23x -4的值小1?24.(12分)小明和小刚从学校出发去敬老院送水果,小明带着东西先走了200 m ,小刚才出发.若小明每分钟行80 m ,小刚每分钟行120 m .则小刚用几分钟可以追上小明?25.(12分)对于任意有理数a ,b ,c ,d ,我们规定⎪⎪⎪ ⎪⎪⎪a c b d =ad -bc ,如⎪⎪⎪⎪⎪⎪1234=1×4-2×3.若⎪⎪⎪⎪⎪⎪322x -12x +1=3,求x 的值.26.(14分)某中学组织七年级学生参观,原计划租用45座客车若干辆,但有15人没有座位;如果租用同样数量的60座客车,则多出一辆,且其余客车恰好坐满.试问:(1)七年级学生人数是多少?(2)原计划租用45座客车多少辆?27.(16分)某织布厂有150名工人,为了提高经济效益,增设制衣项目,已知每人每天能织布30 m ,或利用所织布制衣4件,制衣一件需要布1.5 m ,将布直接出售,每米布可获利2元,将布制成衣后出售,每件可获利25元,若每名工人每天只能做一项工作,且不计其他因素,设安排x 名工人制衣. (1)一天中制衣所获利润P =________(用含x 的式子表示); (2)一天中剩余布所获利润Q =________(用含x 的式子表示); (3)一天当中安排多少名工人制衣时,所获利润为11 806元?参考答案1.D 2.C 3.B 4.C 5.B 6.B 7.A 8.A 9.C 10.B11.A 12.B 13.B 14.B 15.A 16.-19 17.1 18.2 2 19.5 20.521.(1)2-y 等式的性质1 (2)-y 2 (3)-2y 2 22.x =-3.23.根据题意得:2x -35+1=23x -4,去分母,得6x -9+15=10x -60, 移项合并,得4x =66,解得x =332.24.设小刚用x 分钟可以追上小明.根据题意,得200+80x =120x.解得x =5. 答:小刚用5分钟可以追上小明. 25.因为⎪⎪⎪⎪⎪⎪a cb d =ad -bc ,又⎪⎪⎪⎪⎪⎪322x -12x +1=3,所以3(2x +1)-2(2x -1)=3,解得x =-1.26.(1)设七年级人数是x 人,根据题意得x -1545=x60+1,解得x =240.答:七年级学生人数是240人.(2)原计划租用45座客车:(240-15)÷45=5(辆). 答:原计划租用45座客车5辆.27.(1)100x (2)-72x +9 000 (3)根据题意得100x -72x +9 000=11 800.解得x =100. 答:应安排100名工人制衣.单元测试(六)数据的收集与整理(时间:120分钟满分:150分)一、选择题(本大题共15小题,每小题3分,共45分)1.某同学想了解寿春路与阜阳路交叉路口1分钟内各个方向通行的车辆数量,他应采取的收集数据方法为( ) A.查阅资料B.实验C.问卷调查D.观察2.2015年某市初中毕业升学考试的考生人数约为3.2万名,从中抽取300名考生的数学成绩进行分析,在本次调查中,样本指的是( )A.300名考生的数学成绩B.300C.3.2万名考生的数学成绩D.300名考生3.(佛山中考)下列调查中,适合用普查方式的是( )A.调查佛山市市民的吸烟情况B.调查佛山市电视台某节目的收视率C.调查佛山市市民家庭日常生活支出情况D.调查佛山市某校某班学生对“文明佛山”的知晓率4.扇形统计图中某扇形占圆的30%,则此扇形所对的圆心角是( )A.120°B.108°C.90°D.60°5.某课外兴趣小组为了了解所在地区老年人的健康状况,分别作了四种不同的抽样调查.你认为抽样比较合理的是( )A.在公园调查了1 000名老年人的健康状况B.在医院调查了1 000名老年人的健康状况C.调查了10名老年邻居的健康状况D.利用派出所的户籍网随机调查了该地区10%的老年人的健康状况6.我国五座名山的海拔高度如下表:山名泰山华山黄山庐山峨眉山海拔(m) 1 524 1 997 1 873 1 500 3 099)A.扇形统计图B.条形统计图C.折线统计图D.以上三种都可以7.为了解中学生获取资讯的主要渠道,随机抽取50名中学生进行问卷调查,调查问卷设置了“A:报纸,B:电视,C:网络,D:身边的人,E:其他”五个选项(五项中必选且只能选一项),根据调查结果绘制了如下的条形图.该图中a的值是( )A.28B.26C.24D.228.某人设计了一个游戏,在一网吧征求了三位游戏迷的意见,就宣传“本游戏深受游戏迷欢迎”,这种说法错误的原因是( )A.没有经过专家鉴定B.应调查四位游戏迷C.这三位玩家不具有代表性D.以上都不是9.空气是由多种气体混合而成的,为了简明扼要地介绍空气的组成情况,较好地描述数据,最适合使用的统计图是( )A.扇形统计图B.条形统计图C.折线统计图D.以上都不对10.如图的两个统计图,女生人数较多的学校是( )A.甲校B.乙校C.甲、乙两校女生人数一样多D.无法确定11.小明家下个月的开支预算如图所示,如果用于衣服上的支出是200元,则估计用于食物上的支出是( ) A.200元B.250元C.300元D.35012.对某中学70名女生的身高进行测量,得到一组数据的最大值为169 cm,最小值为143 cm,对这组数据整理时测定它的组距为5 cm,应分成( )A.5组B.6组C.7组D.8组13.某次考试中,某班级的数学成绩被绘制成了如图所示的频数分布直方图.下列说法错误的是( )A.得分在70~80分之间的人数最多B.该班的总人数为40C.得分在90~100分之间的人数占总人数的5% D.及格(不低于60分)的人数为2614.某市股票在七个月之内增长率的变化状况如图所示.从图上看出,下列结论不正确的是( )A.2~6月份股票月增长率逐渐减少B.7月份股票的月增长率开始回升C.这七个月中,每月的股票不断上涨D.这七个月中,股票有涨有跌15.如图是某班全体学生外出时乘车、步行、骑车的人数分布直方图和扇形统计图(两图都不完整),则下列结论中错误的是( )A.该班总人数为50 B.骑车人数占总人数的20%C.步行人数为30 D.乘车人数是骑车人数的2.5倍二、填空题(本大题共5小题,每小题5分,共25分)16.要反映一天的气温变化情况用________统计图表示比较合适.17.专家提醒:目前我国从事脑力劳动的人群中,“三高”(高血压、高血脂、高血糖)现象必须引起重视.这个结论是通过________得到的(填“普查”或“抽样调查”).18.学校为了考察我校七年级同学的视力情况,从七年级的10个班共540名学生中,每班抽取了5名进行分析,在这个问题中,总体是________________________,个体是________________________.19.某校报名参加甲、乙、丙、丁四个兴趣小组的学生人数如图所示,那么报名参加甲组和丙组的人数之和占所有报名人数的百分比为________.20.(金华中考)小亮对60名同学进行节水方法选择的问卷调查(每人选择一项),人数统计如图,如果绘制成扇形统计图,那么表示“一水多用”的扇形圆心角的度数是________.三、解答题(本大题共7小题,共80分)21.(8分)下面这几个抽样调查选取样本的方法是否合适?并说明理由.(1)为调查全校学生对购买正版书籍、唱片和软件的支持率,在全校所有的班级中,任意抽取8个班级,调查这8个班所有学生对购买正版书籍、唱片和软件的支持率;(2)为调查一个省的环境污染情况,调查省会城市的环境污染情况.22.(8分)为了解某校全体同学喜欢的NBA篮球明星的情况,小明抽取了七年级一班50名同学进行调查,得到最喜欢的NBA篮球明星的调查结果如下:A ABCD A B A A C B A A C B C A A B C A A B A CD B A C D B A C D A A B C D A C B A C A C D C A A其中:A代表姚明,B代表科比,C代表詹姆斯,D代表麦迪.(1)填表:(2)该班同学喜欢最多的是谁?(3)明星划记人数ABCD23.(10分)对某文明小区400户家庭拥有电视机数量情况进行抽样调查,得扇形统计图,根据图中提供的信息回答下列问题:(1)有一台彩电的家庭有多少户?(2)有三台彩电的家庭所在扇形的圆心角是多少度?24.(12分)如图是某班在一次数学小测验中学生考试成绩分布图(满分100分),根据图中提供的信息回答问题:(1)该班共有多少学生?(2)该次测验成绩哪一分数段的人数最多?是多少人?(3)如果80分及以上为优秀,那么优秀率是多少?25.(12分)某家电商场A、B两种品牌彩电2016年5~12月销售量统计如图.(1)有人认为B品牌彩电销售量比A品牌彩电销售量增长快.你同意这种观点吗?(2)根据统计图进行比较、判断时要注意些什么?(3)如果你是商场经理,从上面的统计图中你能得到哪些信息?对你有什么帮助?A品牌彩电月销售量统计图B品牌彩电月销售量统计图26.(14分)(贵阳中考)2014年巴西世界杯足球赛正在如火如荼地进行,小明和喜爱足球的伙伴们一起预测“巴西队”能否获得本届杯赛的冠军,他们分别在3月、4月、5月、6月进行了四次预测,并且每次参加预测的人数相同,小明根据四次预测结果绘制成如下两幅不完整的统计图.请你根据图中提供的信息解答下列问题:(1)每次有________人参加预测;(2)计算6月份预测“巴西队”夺冠的人数;(3)补全条形统计图和折线统计图.27.(16分)端午节即将来临,某商场对去年端午节这天销售A,B,C三种品牌粽子的情况进行了统计,绘制如图1和图2所示的统计图.根据图中信息解答下列问题:(1)哪一种品牌的粽子的销售量最大?(2)补全图1中的条形统计图;(3)写出A种品牌粽子在图2中所对应的圆心角的度数;(4)根据上述统计信息,今年端午节期间该商场对A、B、C三种品牌的粽子如何进货?请你提一条合理化的建议.。
(2)丰富的图形世界—七年级上册数学北师大版(2024)单元质检卷(B卷)【满分:120】一、选择题:(本大题共10小题,每小题4分,共40分,给出的四个选项中,只有一项是符合题目要求的)1.下面几何体中,是圆锥的为( )A. B. C. D.2.如图,将小立方块①从4个大小相同的小立方块所搭的几何体中移走后,所得几何体( )A.从上面看到的图形改变,从左面看到的图形改变B.从上面看到的图形不变,从左面看到的图形改变C.从前面看到的图形改变,从左面看到的图形不变D.从前面看到的图形不变,从左面看到的图形不变3.下面的几何图形,哪一个不能由平面图形绕某直线旋转一周得到( )A. B. C. D.4.圆柱是由长方形绕着它的一边所在直线旋转一周所得到的,那么下列四个选项绕直线旋转一周可以得到如图立体图形的是( )A. B. C. D.5.用一个平面去截长方体、圆柱、圆锥、正方体、五棱柱,截面形状可能是三角形的有( )A.2个B.3个C.4个D.5个6.给出下列结论:①圆柱由三个面围成,这三个面都是平的;②圆锥由两个面围成,这两个面中,一个面是平的,一个面是曲的;③球仅由一个面围成,这个面是曲的;④长方体由六个面围成,这六个面都是平的.其中正确的有( )A.①②③B.①③④C.②③④D.①②④7.下面各说法中,错误的是( )A.直五棱柱有7个面B.直三棱柱有9条棱C.用平面去截一个圆锥,截面可能是三角形D.绕正方形四条边长中的任意一条边旋转一周得到的几何体不可能是圆柱8.能由如图所示的平面图形折叠而成的立体图形是( )A. B. C. D.9.走马灯,又称仙音烛,据史料记载,走马灯的历史起于隋唐时期,盛行于宋代,是中国特色工艺品,常见于除夕、元宵、中秋等节日,在一次综合实践活动中,一同学用如图所示的纸片,沿折痕折合成一个棱锥形的“走马灯”,正方形做底,侧面有一个三角形面上写了“祥”字,当灯旋转时,正好看到“吉祥如意”的字样.则在A、B、C处依次写上的字可以是( )A.吉如意B.意吉如C.吉意如D.意如吉10.用一个平面去截下列几何体,若截面的形状是三角形,则这个几何体不可能是( )A. B. C. D.二、填空题(每小题4分,共20分)11.如图所示,用一个平面截六棱柱,剩下的几何体(阴影部分)是______,共有______个面.12.《雨不绝》是唐代诗人杜甫的作品,其中有诗句:鸣雨既过渐细微,映空摇飏如丝飞.译文:喧哗的雨已经过去,逐渐变得细微,映着天空摇漾的是如丝的细雨飘飞.诗中描写雨滴滴下来形成雨丝,用数学知识解释为__________.13.如图,将一张正方形纸板的四角各剪去一个小正方形,折成一个无盖长方体盒子,若折成的长方体盒子的底面边长为,体积为,则原正方形纸面的边长为____________ .14.用一个平面取截取一个几何体,截面形状为圆,则这个几何体可能是_________.(填序号)①正方体;②圆柱;③圆锥;④正三棱柱15.一个几何体由13个大小相同的小立方块搭成.从前面、左面、上面看这个几何体得到的平面图形如图所示,则这个几何体的搭法共有________种.三、解答题(本大题共6小题,共计60分,解答题应写出演算步骤或证明过程)16.(8分)指出如图所示的立体图形中的柱体、锥体、球.柱体:___________________________.锥体:___________________________.球体:___________________________.(填序号)17.(8分)我们知道,三棱柱的上、下底面都是三角形,那么正三棱柱的上、下底面都是等边三角形.如图,大正三棱柱的底面周长为10,截取一个底面周长为3的小正三棱柱.(1)请写出截面的形状;(2)请直接写出四边形DECB的周长.18.(10分)如图是由若干个边长为1cm的小正方体搭成的几何体从上面看到的形状图,其中小正方形内的数字是该位置小正方体的个数,请分别画出从正面和从左面看到的形状图,井计算出该几何体的表面积.19.(10分)如图所示,长方形ABCD的长AB为10 cm,宽AD为6 cm,把长方形ABCD绕AB 边所在的直线旋转一周,然后用平面沿AB方向去截所得的几何体,求截面的最大面积.20.(12分)(1)如果将图①~⑤的平面图形绕虚线旋转一周,可以得到图Ⅰ~Ⅴ的几何体,请你把有对应关系的平面图形与几何体用线连接起来;(2)在图Ⅰ~Ⅴ的几何体中,有顶点的几何体是______,没有顶点的几何体是________;(3)图Ⅴ中的几何体由几个面围成?面与面相交成几条线?它们是直的还是曲的?21.(12分)如图,图1为一个长方体,,,图2为左图的表面展开图,请根据要求回答问题:(1)面“学”的对面是面什么?(2)图1中,M、N为所在棱的中点,试在图2中画出点M、N的位置;并求出图2中的面积.答案以及解析1.答案:B解析:A选项为圆柱,不合题意;B选项为圆锥,符合题意;C选项为三棱锥,不合题意;D选项为球,不合题意;故选B.2.答案:A解析:将小立方块①从4个大小相同的小立方块所搭的几何体中移走后,所得几何体从前面看到的图形不变,从左面看到的图形由原来的两列变为一列,从上面看到的图形由原来的两行变为一行.故选A.3.答案:B解析:球可以由一个半圆绕直径所在的直线旋转一周得到,故A不符合题意;正方体不能由一个平面图形绕某直线旋转一周得到,故B符合题意;圆锥可以由一个直角三角形绕一条直角边所在的直线旋转一周得到,故C不符合题意;圆柱可以由一个矩形绕一条边所在的直线旋转一周得到,故D不符合题意.故选:B.4.答案:A解析:A.可以通过旋转得到两个圆柱,故本选项正确;B.可以通过旋转得到一个圆柱,一个圆筒,故本选项错误;C.可以通过旋转得到一个圆柱,两个圆筒,故本选项错误;D.可以通过旋转得到三个圆柱,故本选项错误.故选:A.5.答案:C解析:用一个平面去截长方体、圆柱、圆锥、正方体、五棱柱,截面形状可能是三角形的有长方体、圆锥、正方体、五棱柱,一共4个.6.答案:C解析:圆柱的侧面是曲的,①错误:圆锥由侧面和底面两个面围成,侧面是曲的,底面是平的,②正确;球只由一个面围成,这个面是曲的,③正确;长方体由六个面围成,这六个面都是平的,④正确.故正确的有②③④,故选C.7.答案:D解析:A.直五棱柱有7个面,故选项A说法正确,不符合题意;B.直三棱柱有9条棱,故选项B说法正确,不符合题意;C.用平面去截一个圆锥,截面可能是三角形,故选项C说法正确,不符合题意;D.绕正方形四条边长中的任意一条边旋转一周得到的几何体是圆柱,故选项D说法错误,符合题意;故选:D.8.答案:D解析:对于A项,圆圈在正面时,两竖线应在上下两面或左右两面,故A项不符合题意;对于B项,当正方形在正面,且含有线的一面为上面时,此面上的线应为竖线,故B项不符合题意;对于C项,折叠后,含有竖线的两个面应相对,故C项不符合题意.9.答案:A解析:由题意可得:展开图是四棱锥,A、B、C处依次写上的字可以是吉,如,意;或如,吉,意;故选A.10.答案:B解析:、用一个平面截正方体的一个角即可得到一个三角形,故此选项不符合题意;、圆柱从哪个方向截,截面不可能是三角形,故此选项符合题意;、用一个平面截六棱柱的一个角即可得到一个三角形,故此选项不符合题意;、沿着圆锥中心轴去截,即可截到三角形,故此选项不符合题意;故选:.11.答案:8解析:如上图所示,用一个平面截六棱柱,剩下的几何体(阴影部分)是六棱柱,共有8个面,故答案为:六棱柱;8.12.答案:点动成线解析:雨滴滴下来形成雨丝属于点动成线,故答案为:点动成线13.答案:解析:由题意得,减去的小正方形的边长为,所以原正方形纸面的边长为,故答案为:.14.答案:②③/③②解析:①当平面截正方体时,所得到的截面不可能是圆;②当平面平行于圆柱的底面时,得到的截面是圆;③用平面平行于圆锥底面时,可以得到圆;④当平面截正三棱柱时,所得到的截面不可能是圆;综上分析可知,用一个平面取截取一个几何体,截面形状为圆,则这个几何体可能是②③.故答案为:②③.15.答案:3解析:由从上面看得到的平面图形可知最底层小立方块的个数为9,由另外两个方向看得到的平面图形可知第三层有1个小立方块,那么第二层有3个小立方块,结合图形可知这个几何体的搭法共有3种,如图所示,数字表示该位置小立方块的个数.故答案为3.16.答案:①②⑤⑦⑧;④⑥;③解析:柱体为:①②⑤⑦⑧;锥体为:④⑥;球体为:③.故答案为:①②⑤⑦⑧;④⑥;③.17.答案:(1)长方形(2)9解析:(1)由题可得,截面的形状为长方形.(2)是周长为3的等边三角形,,又是周长为10的等边三角形,,,四边形DECB的周长9.18.答案:图见解析,解析:从正面和从左面看到的形状如图所示:该几何体的表面积是:19.答案:截面的最大面积为解析:把长方形ABCD绕AB边所在的直线旋转一周,得到的几何体为圆柱,且圆柱的底面半径为6 cm,高为10 cm.当沿图示的方法截圆柱时,得到的截面面积最大且为一个长方形,此长方形的长为圆柱的底面直径,宽为圆柱的高.所以截面的最大面积为.20.答案:(1)见解析(2)Ⅰ、Ⅱ、Ⅲ;Ⅳ、Ⅴ(3)Ⅴ中的几何体有2个面,其中一个是平面,一个是曲面,面与面相交有一条线,是一条曲线解析:(1)如图所示:(2)在图I~Ⅴ的几何体中,有顶点的几何体是Ⅰ、Ⅱ、Ⅲ,没有顶点的几何体是Ⅳ、Ⅴ;故答案为:Ⅰ、Ⅱ、Ⅲ;Ⅳ、Ⅴ.(3)Ⅴ中的几何体有2个面,其中一个是平面,一个是曲面,面与面相交有一条线,是一条曲线.21.答案:(1)面“学”的对面是面国(2)的面积为64解析:(1)正方体的表面展开图,相对的面之间一定相隔一个正方形,“学”与“国”是相对面,“叶”与“际”是相对面,“枫”与“校”是相对面,答:面“学”的对面是面国.(2)点M、N如图所示,∵N是所在棱的中点,∴点N到AB的距离为,∴的面积.。
(新)北师大版七年级数学上册各章测试卷(共7套,含答案)第一章达标检测卷(120分,90分钟)题号一二三总分得分一、选择题(每题3分,共30分)1.生活中的“八宝粥”易拉罐同学们都很熟悉,你认为“八宝粥”易拉罐类似于( )A.棱柱B.圆柱C.圆锥D.长方体2.将图中的图形绕虚线旋转一周,形成的几何体是( )(第2题)3.如图是一个螺母的示意图,从上面看得到的图形是( )(第3题)4.一个无盖的正方体盒子的表面展开图可以是如图所示的( )(第4题)A.①B.①②C.②③D.①③5.下列说法正确的是( )A.有六条侧棱的棱柱的底面一定是三角形B.棱锥的侧面是三角形C.长方体和正方体不是棱柱D.柱体的上、下两底面可以大小不一样6.用一个平面去截下列几何体,所得截面与其他三个不同的是( )(第7题)7.如图为一个长方体截去两个角后的立体图形,如果照这样截去长方体的八个角,则所得新的立体图形的棱有( )A.26条B.30条C.36条D.42条8.能由如图所示的平面图形折叠而成的立体图形是( )(第8题)9.把一个棱长为3的正方体的每个面等分成9个小正方形,然后沿每个面正中心的一个正方形向里挖空(相当于挖去了7个小正方体),所得到的几何体的表面积是( ) A.78 B.72 C.54 D.4810.如图是由一些小立方块所搭的几何体从三个不同方向看到的图形,若在所搭的几何体的基础上(不改变原几何体中小立方块的位置),继续添加相同的小立方块,以搭成一个大正方体,至少还需要的小立方块个数是( )(第10题) A.50 B.51 C.54 D.60二、填空题(每题3分,共24分)11.快速旋转一枚竖立的硬币(假定旋转轴在原地不动),旋转形成的立体图形是________.12.一个棱柱有12个顶点,所有侧棱长的和是48 cm,则每条侧棱长是________.13.如图,将七个小正方形中的一个去掉,就能成为一个正方体的展开图,则去掉的小正方形的序号是______或______.(第13题)(第14题)(第15题)14.如图是从不同方向看一个立体图形得到的平面图形,则这个立体图形的侧面积是________.15.正方体木块的六个面分别标有数字1,2,3,4,5,6,如图是从不同方向观察这个正方体木块看到的数字情况,数字1对面的数字是______.16.如图,木工师傅把一根长为1.6 m的长方体木料锯成3段后,表面积比原来增加了80 cm2,那么这根木料原来的体积是________.(第16题)(第17题)(第18题)17.如图,长方形ABCD的长AB=4,宽BC=3,以AB所在的直线为轴,将长方形旋转一周后所得几何体从正面看到的形状图的面积是________.18.如图是由若干个大小相同的小正方体堆砌而成的几何体,那么该几何体从______面看到的形状图的面积最大.三、解答题(19~21题每题10分,其余每题12分,共66分)19.(1)如图是一些基本立体图形,在括号里写出它们的名称.(第19题)(2)将这些几何体分类,并写出分类的理由.20.如图①②都是几何体的表面展开图,先想一想,再折一折,然后说出图①②折叠后的几何体的名称、棱数与顶点数.(第20题)21.如图是一个立体图形从三个不同方向看所得到的形状图,请写出这个立体图形的名称,并计算这个立体图形的体积(结果保留π).(第21题)22.如图,在一次数学活动课上,张明用17个棱长为1的小正方体搭成了一个几何体,然后他请王亮用其他同样的小正方体在旁边再搭一个几何体,使王亮所搭几何体恰好可以和张明所搭几何体拼成一个无缝隙的大长方体(不改变张明所搭几何体的形状).(1)王亮至少需要多少个小正方体?(2)王亮所搭几何体的表面积是多少?(第22题)23.如图①,在正方体中,点P,Q,S分别是所在边的中点,将此正方体展开,请在展开图(图②)中标出点P,Q,S的位置,当正方体的棱长为a时,求出展开图中三角形PSQ 的面积.(第23题)24.如图①至③是将正方体截去一部分后得到的几何体.(第24题)(1)根据要求填写表格:图面数(f) 顶点数(v) 棱数(e)①②③(2)猜想f,v,e三个数量间有何关系;(3)根据猜想计算,若一个几何体有2 013个顶点,4 023条棱,试求出它的面数.答案一、1.B 2.B 3.B 4.D 5.B 6.D 7.C 8.D 9.B 10.C二、11.球 12.8 cm 13.6;7 14.18 cm 215.3 16.3 200 cm 317.24 18.正三、19.解:(1)球;圆柱;圆锥;长方体;三棱柱(2)第一类:球、圆柱、圆锥,几何体的面中含有曲面;第二类:长方体、三棱柱,几何体的面中不含有曲面.(答案不唯一)20.解:图①折叠后是长方体,有12条棱,8个顶点;图②折叠后是六棱柱,有18条棱,12个顶点.21.解:这个立体图形是圆柱,体积为π×⎝ ⎛⎭⎪⎫822×10=160π(cm 3). 22.解:(1)两人所搭成的几何体拼成一个大长方体,该大长方体的长、宽、高至少为3,3,4,所以它的体积为36,则它是由36个棱长为1的小正方体搭成的,那么王亮至少需要36-17=19(个)小正方体.(2)王亮所搭几何体的上面面积为8,右侧面积为7,左侧面积为7,后面面积为9,前面面积为9,底面面积为8,故表面积为48.23.解:如图所示.(第23题)S 所在位置有两种情况.如图,过点Q 作QT ⊥BC 交直线BC 于点T.S 三角形PSQ =52a ·a -12a ·52a ·12-12a ·32a ·12-a ·a ·12=a 2.由图可以看出三角形PS ′Q 和三角形PSQ 的面积相等,所以三角形PS ′Q 的面积也是a 2.24.解:(1)7;9;14;6;8;12;7;10;15 (2)f +v -e =2.(3)因为v =2 013,e =4 023,f +v -e =2,所以f +2 013-4 023=2,f =2 012,即它的面数是2 012.第二章达标检测卷(120分,90分钟)题 号 一 二 三 总 分得 分一、选择题(每题3分,共30分) 1.下列各数中是正数的是( )A .-12B .2C .0D .-0.22.2的相反数是( )A .2B .12C .-2D .-123.在-1,-2,0,1这四个数中最小的数是( )A .-1B .-2C .0D .14.下列计算正确的是( )A .-2-1=-1B .3÷⎝ ⎛⎭⎪⎫-13×3=-1C .(-3)2÷(-2)2=32D .0-7-2×5=-175.有理数a ,b 在数轴上对应的位置如图所示,则( )(第5题)A .a +b <0B .a +b >0C .a -b >0D .a b>06.移动互联网已经全面进入人们的日常生活.截至2015年3月,全国4G 用户总数达到1.62亿,其中1.62亿用科学记数法表示为( )A .1.62×104B .162×106C .1.62×108D .0.162×1097.已知|a|=5,|b|=2,且a <b ,则a +b 的值为( )A .3或7B .-3或-7C .-3D .-78.下列说法中正确的是( )A .一个有理数不是正数就是负数B .|a|一定是正数C .如果两个数的和是正数,那么这两个数中至少有一个正数D .两个数的差一定小于被减数9.如图的数轴被墨迹盖住一部分,被盖住的整数点有( )(第9题)A .7个B .8个C .9个D .10个10.如图,下面每个表格中的四个数都是按相同规律填写的:(第10题)根据此规律确定x 的值为( )A .135B .170C .209D .252二、填空题(每题3分,共24分)11.-25的绝对值是________,倒数是________.12.某项科学研究,以45 min 为1个时间单位,并记每天上午10时为0,10时以前记为负,10时以后记为正.例如9:15记为-1,10:45记为1,以此类推,上午7:45应记为________.13.某商店出售三种品牌的洗衣粉,袋上分别标有质量为(500±0.1) g ,(500±0.2)g ,(500±0.3) g 的字样,从中任意拿出两袋,它们最多相差________.14.比较一个正整数a ,其倒数1a,相反数-a 的大小:________________.15.若x ,y 为有理数,且(5-x)4+|y +5|=0,则⎝ ⎛⎭⎪⎫x y 2 016=________.16.已知在如图所示没有标明原点的数轴上有四个点,且它们表示的数分别为a ,b ,c ,d ,若|a -c|=10,|a -d|=12,|b -d|=9,则|b -c|=________.(第16题)(第17题)17.按如图所示的程序进行计算,如果第一次输入的数是20,而结果不大于100时,应把结果作为输入的数再进行第二次运算,直到符合要求为止,则最后输出的结果为________.18.一列数a 1,a 2,a 3,…,a n .其中a 1=-1,a 2=11-a 1,a 3=11-a 2,…,a n =11-a n -1,则a 1+a 2+a 3+…+a 2 017=________.三、解答题(21题6分,19,22,23题每题8分,其余每题12分,共66分) 19.把下列各数填在相应的集合中:15,-12,0.81,-3,227,-3.1,-4,171,0,3.14,π,1.6·正数集合{ …} 负分数集合{ …} 非负整数集合{ …} 有理数集合{ …} 20.计算:(1)-5-(-3)+(-4)-[-(-2)];(2)-14+⎝ ⎛⎭⎪⎫-112-38+712×(-24);(3)-62×⎝ ⎛⎭⎪⎫-1122-32÷⎝ ⎛⎭⎪⎫-1123×3;(4)⎪⎪⎪⎪⎪⎪-⎝ ⎛⎭⎪⎫-232+⎝ ⎛⎭⎪⎫-59-(-1)1 000-2.45×8+2.55×(-8).21.如果a ,b 互为相反数,c ,d 互为倒数,m 的绝对值为2,求a +b a +b +c +m 2-cd 的值.22.一辆货车从超市出发,向东走了1 km ,到达小明家,继续向东走了3 km 到达小兵家,然后向西走了10 km ,到达小华家,最后又向东走了6 km 结束行程.(1)如果以超市为原点,以向东为正方向,用1个单位长度表示1 km ,请你在如图所示的数轴上表示出小明家、小兵家和小华家的具体位置.(第22题)(2)请你通过计算说明货车最后回到什么地方?(3)如果货车行驶1 km 的用油量为0.25 L ,请你计算货车从出发到结束行程共耗油多少升?23.已知有理数a ,b 满足ab 2<0,a +b >0,且|a|=2,|b|=3,求⎪⎪⎪⎪⎪⎪a -13+(b -1)2的值.24.商人小周于上周日收购某农产品10 000 kg ,每千克2.3元,进入批发市场后共占5个摊位,每个摊位最多能容纳 2 000 kg 该农产品,每个摊位的市场管理价为每天20元.批发市场该农产品上周日的批发价为每千克 2.4元,下表为本周内该农产品每天的批发价格比前一天的涨跌情况.(涨记为正,跌记为负)星期一 二 三 四 五 与前一天相比价格的涨跌情况/元+0.3 -0.1 +0.25 +0.2 -0.5 当天的交易量/kg2 5002 0003 0001 5001 000(1)星期四该农产品价格为每千克多少元?(2)本周内该农产品的最高价格为每千克多少元?最低价格为每千克多少元? (3)小周在销售过程中采用逐步减少摊位个数的方法来降低成本,增加收益,这样他在本周的买卖中共赚了多少钱?请你帮他算一算.25.观察下列各式: -1×12=-1+12;-12×13=-12+13; -13×14=-13+14;… (1)你发现的规律是____________________;(用含n 的式子表示)(2)用以上规律计算:⎝ ⎛⎭⎪⎫-1×12+⎝ ⎛⎭⎪⎫-12×13+⎝ ⎛⎭⎪⎫-13×14+…+⎝ ⎛⎭⎪⎫-12 017×12 018.答案一、1.B 2.C 3.B 4.D 5.A 6.C 7.B 8.C 9.C10.C 点拨:首先根据图示,可得第n 个表格的左上角的数等于n ,左下角的数等于n +1;然后根据4-1=3,6-2=4,8-3=5,10-4=6,…,可得从第一个表格开始,右上角的数与左上角的数的差分别是3,4,5,…,n +2,据此求出a 的值是多少;最后根据每个表格中右下角的数等于左下角的数与右上角的数的积加上左上角的数,求出x 的值是多少即可.二、11.25;-5212.-3 13.0.6 g 14.-a <1a ≤a15.1 16.7 17.320 18.1 007三、19.解:正数集合{15,0.81,227,171,3.14,π,1.6·,…}负分数集合{-12,-3.1,…}非负整数集合{15,171,0,…}有理数集合{15,-12,0.81,-3,227,-3.1,-4,171,0,3.14,1.6·,…}20.解:(1)原式=-8. (2)原式=30. (3)原式=-73. (4)原式=-40.21.解:由题意,得a +b =0,cd =1, m =±2,所以m 2=4. 所以a +b a +b +c +m 2-cd=0+c+4-1 =0+4-1=3. 22.解:(1)略.(2)由题意得(+1)+(+3)+(-10)+(+6)=0(km ),因而货车最后回到超市. (3)由题意得,1+3+10+6=20(km ),货车从出发到结束行程共耗油0.25×20=5(L ).23.解:由ab 2<0,知a <0.因为a +b >0,所以b >0. 又因为|a|=2,|b|=3, 所以a =-2,b =3.所以⎪⎪⎪⎪⎪⎪a -13+(b -1)2=⎪⎪⎪⎪⎪⎪-2-13+(3-1)2=73+4 =613. 24.解:(1)2.4+0.3-0.1+0.25+0.2=3.05(元). 所以星期四该农产品价格为每千克3.05元. (2)星期一的价格是2.4+0.3=2.7(元); 星期二的价格是2.7-0.1=2.6(元); 星期三的价格是2.6+0.25=2.85(元); 星期四的价格是3.05元;星期五的价格是3.05-0.5=2.55(元).因而最高价格为每千克3.05元,最低价格为每千克2.55元.(3)(2 500×2.7-5×20)+(2 000×2.6-4×20)+(3 000×2.85-3×20)+(1 500×3.05-2×20)+(1 000×2.55-20)-10 000×2.3=6 650+5 120+8 490+4 535+2 530-23 000=27 325-23 000=4 325(元).所以他在本周的买卖中共赚了4 325元.25.解:(1)-1n ×1n +1=-1n +1n +1(n 为正整数)(2)原式=-1+12-12+13-13+14-…-12 017+12 018=-1+12 018=-2 0172 018.第三章达标检测卷(120分,90分钟)题 号 一 二 三 总 分得 分一、选择题(每题3分,共30分) 1.下列各式中,代数式的个数是( )①12; ②a +38; ③ab =ba ; ④1x +y ; ⑤2a -1; ⑥a ; ⑦12(a 2-b 2); ⑧5n +2.A .5B .6C .7D .82.单项式-π3a 2b 的系数和次数分别是( )A .π3,3 B .-π3,3 C .-13,4 D .13,43.下列各组是同类项的是( )A .xy 2与-12x 2y B .3x 2y 与-4x 2yz C .a 3与b 3 D .-2a 3b 与12ba 34.如果多项式(a -2)x 4-12x b +x 2-3是关于x 的三次多项式,那么( )A .a =0,b =3B .a =1,b =3C .a =2,b =3D .a =2,b =15.下列去括号正确的是( )A .a -(2b -3c)=a -2b -3cB .x 3-(3x 2+2x -1)=x 3-3x 2-2x -1C .2y 2+(-2y +1)=2y 2-2y +1D .-(2x -y)-(-x 2+y 2)=-2x +y +x 2+y 26.某校组织若干师生到活动基地进行社会实践活动.若学校租用45座的客车x 辆,则余下20人无座位;若租用60座的客车,则可少租用2辆,且最后一辆还没坐满,则乘坐最后一辆60座客车的人数是( )A .200-60xB .140-15xC .200-15xD .140-60x7.如图,阴影部分的面积是( )(第7题)A .112x yB .132xy C .6xy D .3xy8.已知-x +3y =5,则代数式5(x -3y)2-8(x -3y)-5的值为( )A .80B .-170C .160D .609.某同学计算一个多项式加上xy -3yz -2xz 时,误认为减去此式,计算出的错误结果为xy -2yz +3xz ,则正确答案是( )A .2xy -5yz +xzB .3xy -8yz -xzC .yz +5xzD .3xy -8yz +xz10.如图,小明用棋子摆放图形来研究数的规律.图①中棋子围成三角形,其颗数分别为3,6,9,….类似地,图②中棋子围成正方形,其颗数分别为4,8,12,….下列选项中既能围成三角形又能围成正方形的棋子颗数是( )(第10题)A .2 010B .2 012C .2 014D .2 016二、填空题(每题3分,共24分)11.用代数式表示“比a 的平方的一半小1的数”是____________. 12.已知15 m xn 和-29m 2n 是同类项,则|2-4x|+|4x -1|的值为________.13.已知有理数a ,b 在数轴上对应的点的位置如图所示,化简|a +b|-|b -a|的结果为________.(第13题)14.三角形三边的长分别为(2x +1) cm ,(x 2-2) cm 和(x 2-2x +1) cm ,则这个三角形的周长是________.15.若多项式2x 3-8x 2+x -1与多项式3x 3+2mx 2-5x +3的和不含二次项,则m 等于________.16.已知a 2-4ab =1,3ab +b 2=2,则整式3a 2+4b 2的值是________.17.随着通讯市场竞争的日益激烈,为了占领市场,甲公司推出的优惠措施是每分降低a 元后,再下调25%;乙公司推出的优惠措施是每分下调25%,再降低a 元.若甲、乙两公司原来每分的收费标准相同,则推出优惠措施后收费较便宜的是________公司.18.有一个正六面体骰子,放在桌面上,将骰子按如图所示的顺时针方向滚动,每滚动90°算一次,则滚动第2 017次后,骰子朝下一面的点数是________.(第18题)三、解答题(19,21,22题每题10分,其余每题12分,共66分) 19.先去括号,再合并同类项.(1)2a -(5a -3b)+(4a -b); (2)3(m 2n +mn)-4(mn -2m 2n)+mn.20.先化简,再求值:(1)-a 2+(-4a +3a 2)-(5a 2+2a -1),其中a =-23;(2)⎝ ⎛⎭⎪⎫32x 2-5xy +y 2-⎣⎢⎡⎦⎥⎤-3xy +2⎝ ⎛⎭⎪⎫14x 2-xy +23y 2,其中|x -1|+(y +2)2=0.21.已知A =y 2-ay -1,B =2by 2-4y -1,且2A -B 的值与字母y 的取值无关,求2(a 2b -1)-3a 2b +2的值.22.小刚在图书馆认识了新朋友小明,他想知道小明的年龄,于是说:“把你的年龄减去5,再乘2后减去结果的一半,再加11,把最后结果告诉我,我就能猜出你的年龄.”小明这样做后,小刚果然迅速猜到了小明的年龄.你能说出小刚是用了什么办法猜对的吗?23.A,B两家公司都准备向社会招聘人才,两家公司条件基本相同,只有工资待遇有如下差异:A公司年薪20万元,每年加工龄工资4 000元;B公司半年薪10万元,每半年加工龄工资2 000元.A,B两家公司第n年的年薪分别是多少?从经济角度考虑,选择哪家公司有利?24.如图是一个长方形娱乐场所的设计图.其中半圆形休息区和长方形游泳池以外的地方都是绿地.试解答下列问题:(1)游泳池和休息区的面积各是多少? (2)绿地的面积是多少?(3)如果这个娱乐场所的长是宽的1.5倍,要求绿地面积占整个面积的一半以上.小亮同学根据要求,设计的游泳池的长和宽分别是大长方形的长和宽的一半,你说他的设计符合要求吗?为什么?(第24题)答案一、1.C 2.B 3.D 4.C 5.C 6.C 7.A 8.C9.B 点拨:由题意可知原多项式为(xy -2yz +3xz)+(xy -3yz -2xz)=2xy -5yz +xz ,则正确的答案为(2xy -5yz +xz)+(xy -3yz -2xz)=3xy -8yz -xz.10.D 二、11.12a 2-112.13 点拨:因为15m xn 和-29m 2n 是同类项,所以x =2.所以|2-4x|+|4x -1|=6+7=13.13.-2b 14.2x 2cm 15.416.11 点拨:因为a 2-4ab =1,所以3a 2-12ab =3 ①.因为3ab +b 2=2,所以12ab +4b 2=8 ②.①+②得3a 2+4b 2=11.17.乙 点拨:设甲、乙两公司原来的收费为每分b(b >a)元,则推出优惠措施后,甲公司的收费为(b -a)×75%=0.75b -0.75a (元),乙公司的收费为(0.75b -a )元.因为0.75b -a <0.75b -0.75a ,所以乙公司收费较便宜.18.2三、19.解:(1)2a -(5a -3b)+(4a -b) =2a -5a +3b +4a -b =a +2b.(2)3(m 2n +mn)-4(mn -2m 2n)+mn =3m 2n +3mn -4mn +8m 2n +mn =11m 2n.20.解:(1)-a 2+(-4a +3a 2)-(5a 2+2a -1) =-a 2-4a +3a 2-5a 2-2a +1 =-3a 2-6a +1.当a =-23时,原式=-3×⎝ ⎛⎭⎪⎫-232-6×⎝ ⎛⎭⎪⎫-23+1=113.(2)⎝ ⎛⎭⎪⎫32x 2-5xy +y 2-[-3xy +2(14x 2-xy)+23y 2]=32x 2-5xy +y 2+3xy -12x 2+2xy -23y 2=x 2+13y 2. 因为|x -1|+(y +2)2=0, 所以x -1=0且y +2=0.所以x =1,y =-2.所以原式=12+13×(-2)2=73.21.解:2A -B =2(y 2-ay -1)-(2by 2-4y -1) =2y 2-2ay -2-2by 2+4y +1 =(2-2b)y 2+(4-2a)y -1. 由题意知2-2b =0,4-2a =0, 即a =2,b =1.2(a 2b -1)-3a 2b +2=2a 2b -2-3a 2b +2=-a 2b =-22×1=-4.22.解:设小明的年龄是x 岁,则2(x -5)-12×2(x -5)+11=x +6(小明说的这个数是x +6).所以只要小明说出这个数,小刚再把这个数减去6就能得知小明的年龄. 23.解:A 公司第n 年的年薪为200 000+4 000(n -1)=196 000+4 000n(元),B 公司第n 年的年薪为100 000×2+(2n -1)×2 000=198 000+4 000n(元). 因为n >0,所以196 000+4 000n <198 000+4 000n. 所以从经济角度考虑,选择B 公司有利. 24.解:(1)游泳池的面积为mn ; 休息区的面积为12×π×⎝ ⎛⎭⎪⎫n 22=18πn 2.(2)绿地的面积为ab -mn -18πn 2.(3)符合要求.理由如下:由已知得a =1.5b ,m =0.5a ,n =0.5b. 所以⎝ ⎛⎭⎪⎫ab -mn -18πn 2-12ab = 38b 2-π32b 2>0. 所以ab -mn -18πn 2>12ab ,即小亮设计的游泳池符合要求.第四章达标检测卷(120分,90分钟)题 号 一 二 三 总 分得 分一、选择题(每题3分,共30分)1.小辉同学画出了如下的四个图形,你认为是四边形的是( )2.在党中央、国务院“振兴中央苏区”的精神鼓舞下,老区人民掀起了建设家乡的热潮.某村把一条弯曲的公路改为直道以达到缩短路程的目的,其道理用数学知识解释应是( )A .两点之间线段最短B .两点确定一条直线C .线段可以比较大小D .线段有两个端点3.对于下列直线AB ,线段CD ,射线EF ,能相交的是( )4.如图,OB ,OC 都是∠AOD 内部的射线,如果∠AOB =∠COD ,那么( )A .∠AOC>∠BODB .∠AOC =∠BOD C .∠AOC<∠BOD D .以上均有可能(第4题)(第5题)5.如图,下列等式中错误的是( )A .AD -CD =AB +BC B .AC -BC =AD -BD C .AC -BC =AC +BD D .AD -AC =BD -BC6.晓敏早晨8:00出发,中午12:30到家,那么晓敏到家时时针和分针的夹角是( )A .160°B .165°C .120°D .125°7.下列说法正确的有( ) ①角的大小与所画边的长短无关;②比较角的大小就是比较它们的度数的大小;③从角的顶点出发的一条射线把这个角分成两个角,这条射线叫做这个角的平分线; ④如果∠AOC =12∠AOB ,那么OC 是∠AOB 的平分线.A .1个B .2个C .3个D .4个8.如图,射线OA 与正东方向所成的角是30°,射线OA 与射线OB 所成的角是100°,则射线OB 的方向为( )A .北偏西30°B .北偏西50°C .北偏西40°D .西偏北30°(第8题)(第9题)(第10题)9.如图,OC 是∠AOD 的平分线,OE 是∠BOD 的平分线.如果∠AOC =30°,∠BOD =80°,那么∠COE 的度数为( )A .50°B .60°C .65°D .70°10.如图,C ,D 为线段AB 上的两点,M 是AC 的中点,N 是BD 的中点,如果MN =a ,CD =b ,那么线段AB 的长为( )A .2(a -b)B .2a -bC .2a +2bD .2a +b二、填空题(每题3分,共24分)11.工人师傅在用地砖铺地时,常常打两个木桩然后沿着拉紧的线铺地,这样地砖就铺得整齐,这是根据________________________.12.如图,线段有________条,射线有________条.(第12题)13.时钟由2点30分到2点55分,时针走过的角度是________,分针走过的角度是________.14.如图,直径AC 与BD 互相垂直,则半径分别是______________________,扇形AOD 的圆心角是________,弧AD 可表示为________.(第14题)(第15题)(第16题)15.如图,已知线段AB ,延长AB 到C ,使BC =12AB ,D 为AC 的中点,DC =3 cm ,则DB=________.16.如图,∠AOB 是平角,∠AOC =30°,∠BOD =60°,OM ,ON 分别是∠AOC ,∠BOD 的平分线,则∠MON 等于________.17.如图,艺术节期间我班数学兴趣小组设计了一个长方形时钟作品,其中心为O ,数3,6,9,12标在各边中点处,数2在长方形顶点处,则数1应该标在________处(选填一个序号:①线段DE的中点;②∠DOE的平分线与DE的交点).(第17题)(第18题)18.点M,N在数轴上的位置如图所示,如果P是数轴上的另外一点,且3PM=MN,则点P对应的有理数是________.三、解答题(19题8分,20题6分,24题12分,其余每题10分,共66分)19.读句画图:如图,A,B,C,D四点在同一平面内.(1)过点A和点D画直线;(2)画射线CD;(3)画线段AB;(4)连接BC,并反向延长BC.(第19题)20.计算:(1)83°46′+52°39′16″;(2)96°-18°26′59″;(3)20°30′×8;(4)105°24′15″÷3.21.如图,由点O引出6条射线OA,OB,OC,OD,OE,OF,且∠AOB=90°,OF平分∠BOC,OE平分∠AOD.若∠EOF=170°,求∠COD的度数.(第21题)22.如图,在O点的观测站测得渔船A,B的方向分别为北偏东45°,南偏西30°,为了减少相互干扰并取得较好的捕鱼效益,渔船C恰好位于∠AOB的平分线上,求渔船C相对观测站的方向.(第22题)23.如图,已知A ,B ,C 三点在同一直线上,AB =24 cm ,BC =38AB ,E 是线段AC 的中点,D 是线段AB 的中点,求DE 的长.(第23题)24.如图,B 是线段AD 上一动点,沿A →D →A 以2 cm /s 的速度往返运动1次,C 是线段BD 的中点,AD =10 cm ,设点B 的运动时间为t s (0≤t ≤10).(1)当t =2时,①AB =________;②求线段CD 的长度. (2)用含t 的代数式表示运动过程中AB 的长.(3)在运动过程中,若AB 的中点为E ,则EC 的长是否发生变化?若不变,求出EC 的长;若发生变化,请说明理由.(第24题)25.如图,正方形ABCD 内部有若干个点,利用这些点以及正方形ABCD 的顶点A ,B ,C ,D 把原正方形分割成一些三角形(互相不重叠):(第25题)(1)填写下表:正方形ABCD 内点的个数 1 2 3 4 … n 分割成的三角形的个数46…(2)原正方形能否被分割成2 018个三角形?若能,求此时正方形ABCD 内部有多少个点;若不能,请说明理由.答案一、1.B 2.A 3.B 4.B 5.C 6.B 7.B 8.C 9.D 10.B 二、11.两点确定一条直线 12.6;813.12.5°;150°14.OA ,OB ,OC ,OD ;90°;AD ︵15.1 cm 16.135°17.② 点拨:根据钟表表盘的特征可得数1应该标在∠DOE 的平分线与DE 的交点处.故答案为②.18.-1或-5 点拨:因为3PM =MN ,所以PM =13×(3+3)=2.所以当点P 在点M 左侧时,点P 对应的有理数是-5;当点P 在点M 右侧时,点P 对应的有理数是-1.三、19.解:如图.(第19题)20.解:(1)83°46′+52°39′16″= 135°85′16″=136°25′16″.(2)96°-18°26′59 ″=95°59′60″-18°26′59″=77°33′1″. (3)20°30′×8=160°240′=164°. (4)105°24′15″÷3=35°8′5″.21.解:因为∠EOF =170°,∠AOB =90°,所以∠BOF +∠AOE =360°-∠EOF -∠AOB =360°-170°-90°=100°.又因为OF 平分∠BOC ,OE 平分∠AOD ,所以∠COF =∠BOF ,∠EOD =∠AOE. 所以∠COF +∠EOD =∠BOF +∠AOE =100°.所以∠COD =∠EOF -(∠COF +∠EOD)=170°-100°=70°.22.解:由题意可知∠AOB =180°-45°+30°=165°,165°÷2-30°=52.5°,所以渔船C 在观测站南偏东52.5°方向.23.解:因为AB =24 cm ,BC =38AB ,所以BC =38×24=9(cm ).所以AC =AB +BC =24+9=33(cm ). 因为E 是线段AC 的中点, 所以AE =12×33=16.5(cm ).因为D 是线段AB 的中点, 所以AD =12AB =12×24=12(cm ).所以DE =AE -AD =16.5-12=4.5(cm ). 24.解:(1)①4 cm②因为AD =10 cm ,AB =4 cm , 所以BD =10-4=6(cm ). 因为C 是线段BD 的中点, 所以CD =12BD =12×6=3(cm ).(2)因为B 是线段AD 上一动点,沿A →D →A 以2 cm /s 的速度往返运动,所以当0≤t ≤5时,AB =2t cm ;当5<t ≤10时,AB =10-(2t -10)=20-2t(cm ). (3)不变.因为AB 的中点为E ,C 是线段BD 的中点, 所以EC =12(AB +BD)=12AD =12×10=5(cm ).25.解:(1)填表如下: 正方形 ABCD 内点的个数,1,2,3,4,…,n 分割成的 三角形的个数,4,6,8,10,…,2n +2(2)能.当2n +2=2 018,即n =1 008时,原正方形被分割成2 018个三角形,此时正方形ABCD 内部有1 008个点.第五章达标检测卷(120分,90分钟)题 号 一 二 三 总 分得 分一、选择题(每题3分,共30分)1.下列方程中,是一元一次方程的是( )A .x =1B .2x+1=0 C .3x +y =2 D .x 2-1=5x2.下列等式变形正确的是( )A .若a =b ,则a -3=3-bB .若x =y ,则x a =y aC .若a =b ,则ac =bcD .若b a=d c,则b =d3.下列方程中,解是x =2的方程是( )A .23x =2B .-14x +12=0 C .3x +6=0 D .5-3x =14.下列解方程过程正确的是( )A .由47x =5-27x ,得4x =5-2xB .由30%x +40%(x +1)=5,得30x +40(x +1)=5C .由x0.2-1=x ,得5x -1=xD .由x -6=8,得x =25.若代数式4x -5与2x -12的值相等,则x 的值是( )A .1B .32C .23D .26.已知方程2x -3=m3+x 的解满足|x|-1=0,则m 的值是( )A .-6B .-12C .-6或-12D .任何数7.已知方程7x +2=3x -6与关于x 的方程x -1=k 的解相同,则3k 2-1的值为( )A .18B .20C .26D .-268.小明准备为希望工程捐款,他现在有20元,以后每月打算存10元,若设x 月后他能捐出100元,则下列方程中能正确计算出x 的是( )A .10x +20=100B .10x -20=100C .20-10x =100D .20x +10=1009.如图①,天平呈平衡状态,其中左侧秤盘中有一袋玻璃球,右侧秤盘中也有一袋玻璃球,还有2个各20 g 的砝码.现将左侧袋中一颗玻璃球移至右侧秤盘,并拿走右侧秤盘的一个砝码后,天平仍呈平衡状态,如图②,则被移动的玻璃球的质量为( )(第9题)A .10 gB .15 gC .20 gD .25 g10.学友书店推出售书优惠方案:①一次性购书不超过100元,不享受优惠;②一次性购书超过100元,但不超过200元,一律打九折;③一次性购书超过200元,一律打八折.如果小明同学一次性购书付款162元,那么他所购书的原价为( )A .180元B .202.5元C .180元或202.5元D .180元或200元二、填空题(每题3分,共24分) 11.方程2x -1=0的解是x =________. 12.已知关于x 的方程(a -3)x|2a -7|-5=0是一元一次方程,则a =________.13.若k 是方程3x +1=7的解,则4k +3=________.14.美术馆举办的一次画展中,展出的油画作品和国画作品共有100幅,其中油画作品数量比国画作品数量的2倍多7幅,则展出的油画作品有__________幅.15.一个两位数,个位上的数字是十位上的数字的2倍,如果把十位上与个位上的数字对调,那么所得的两位数比原两位数大27,求原两位数.若设原两位数个位上的数字为x ,则可列方程为____________________;若设原两位数十位上的数字为y ,则可列方程为______________________.16.甲、乙两个足球队连续进行对抗赛,规定胜一场得3分,平一场得1分,负一场得0分,共赛10场,甲队保持不败,得22分,甲队胜________场.(第18题)17.某商店一套服装的进价为200元,若按标价的80%销售可获利72元,则该服装的标价为________元.18.如图是一块在电脑屏幕上出现的长方形色块图,由6个不同颜色的正方形组成,已知中间最小的一个正方形的边长为1,那么这个长方形色块图的面积为________.三、解答题(20~22题每题10分,其余每题12分,共66分) 19.解下列方程:(1)5y -3=2y +6; (2)5x =3(x -4);(3)2x +13-5x -16=1; (4)x 0.7-0.17-0.2x 0.03=1.20.若x=5是方程ax-6=22+a的解.试求关于y的方程ay+5=a-3y的解.21.轮船在静水中的航行速度为20 km/h,水流速度为4 km/h,从甲码头顺流航行到乙码头,再返回甲码头,共用5 h(不计停留时间),求甲、乙两码头间的距离.22.某市为更有效地利用水资源,制定了居民用水收费标准:如果一户每月用水量不超过15 m3,按每立方米1.8元收费;如果超过15 m3,超过部分按每立方米2.3元收费,其余仍按每立方米1.8元收费.另外,每立方米加收污水处理费1元.若某户一月份共支付水费58.5元,求该户一月份的用水量.23.用一个长60 m的篱笆围成一个长方形鸡场(鸡场的一边靠墙,墙长为20 m).如图,若BC=2AB,求AB和BC的长,并检验是否符合要求;若不符合要求,提出改进意见,并求出改进后的AB,BC的长,使其仍满足BC=2AB.(1)一变:若不利用墙,使围成鸡场的长比宽多6 m,求鸡场的面积;(2)二变:不利用墙,若围成正方形、圆形,分别求出鸡场的面积,并猜想要使鸡场的面积更大一些,最好围成什么图形.(第23题)24.甲、乙两人想共同承包一项工程,甲单独做30天完成,乙单独做20天完成,合同规定15天完成,否则每超过一天罚款1 000元,甲、乙两人经商量后签了该合同.(1)正常情况下,甲、乙两人能否履行该合同?为什么?(2)现两人合做了这项工程的75%,因别处有急事,必须调走1人,问调走谁更合适?为什么?答案一、1.A 2.C 3.B 4.C 5.B 6.C 7.C 8.A 9.A 10.C 二、11.1212.4 点拨:由题意得|2a -7|=1且a -3≠0,解得a =4. 13.11 14.6915.10×x 2+x =10x +x2-27;10y +2y =10×2y +y -27 16.6 17.340 18.143 三、19.解:(1)y =3. (2)x =-6. (3)x =-3. (4)x =1417.20.解:把x =5代入方程ax -6=22+a ,得5a -6=22+a ,解得a =7, 把a =7代入关于y 的方程ay +5=a -3y ,得7y +5=7-3y , 解得y =15.21.解:设甲、乙两码头间的距离为x km ,由题意得x 20+4+x20-4=5.解这个方程得x=48.所以甲、乙两码头间的距离为48 km .22.解:若该户一月份的用水量为15 m 3,则需支付水费15×(1.8+1)=42(元),而42<58.5,所以该户一月份的用水量超过15 m 3.设该户一月份的用水量为x m 3,则列方程为42+(2.3+1)(x -15)=58.5,解得x =20. 所以该户一月份的用水量为20 m 3. 23.解:设AB =x m ,根据题意, 得x +x +2x =60,解得x =15, 所以BC =30 m >20 m . 所以不符合题意. 改进意见:墙AE 做鸡场一边AD 的一部分,如图,设AB =y m ,此时可得方程2(y +2y)-20=60,解得y =403,所以AB =403 m .AD =BC =803m >20 m ,符合题意.(第23题)(1)设宽为z m ,则长为(z +6) m . 由题意,得2(z +6+z)=60. 解得z =12,则长为12+6=18(m ),所以鸡场的面积为12×18=216(m 2). (2)若围成正方形, 则其边长为60÷4=15(m ), 所以面积为152=225(m 2);若围成圆形,则其半径为60÷2π=30π(m ),所以面积为π×⎝ ⎛⎭⎪⎫30π2=900π≈286.6(m 2).因为286.6>225,所以要使鸡场的面积更大一些,最好围成圆形. 24.解:(1)正常情况下,甲、乙两人能履行该合同.理由如下:设两人合做需x 天,由题意得x 30+x20=1,解得x =12,因为12<15,所以正常情况下,两人能履行该合同. (2)调走甲更合适.理由如下:完成这项工程的75%所用天数为34÷⎝ ⎛⎭⎪⎫130+120=9(天),若调走甲,设共需y 天完成,由题意得 34+y -920=1,解得y =14, 因为14<15,所以能履行该合同.若调走乙,设共需z 天完成,由题意得34+z -930=1,解得z =16.5,因为16.5>15,所以不能履行该合同.综上可知,调走甲更合适.第六章达标检测卷(120分,90分钟)题 号 一 二 三 总 分得 分一、选择题(每题3分,共30分)1.在下列调查中,适宜采用普查的是( )A .了解我省中学生的视力情况B .了解九(1)班学生校服的尺码情况C .检测一批电灯泡的使用寿命D .调查台州《600全民新闻》栏目的收视率2.为了了解某校1 500名学生的体重情况,从中抽取了100名学生的体重,就这个问题来说,下面说法正确的是( )A .1 500名学生的体重是总体B .1 500名学生是总体C .每名学生是个体D .100名学生是所抽取的一个样本3.PM 2.5指数是衡量空气污染程度的一个重要指标,在一年中最可靠的一种观测方法是( )A .随机选择5天进行观测B .选择某个月进行连续观测C .选择在春节7天期间连续观测D .每个月随机选中5天进行观测4.要反映北京市某周内每天最高气温的变化情况,采用的统计图比较合适的是( )A .条形统计图B .扇形统计图C .折线统计图D .上述三种统计图都可以5.如图是七年级(1)班参加课外兴趣小组人数的扇形统计图,则表示唱歌兴趣小组人数的扇形的圆心角的度数是( )A .36°B .72°C .108°D .180°。
(北师大版)七年级数学上册(全册)单元测试卷汇总北师大版七年级数学上册第1章《丰富的图形世界》单元测试试卷及答案(4)一、精心选一选,慧眼识金!(每小题4分,共10小题,共40分) 1. 如图,四个几何体分别为长方体、圆柱体、球体和三棱柱,这四个几何体中有三个的某一种形状图都是同一种几何图形,则另一个几何体是( ) A .长方体 B .圆柱体C .球体D .三棱柱2. 如图是每个面上都有一个汉字的正方体的一种展开图,那么在正方体的表面,与“迎”相对的面上的汉字是( )A.文B.明C.奥D.运3. 如图所示的几何体的从上面看到的形状图是( )4.下面形状的四张纸板,按图中线经过折叠可以围成一下直三棱柱的是 ( )5. 将如左下图所示的绕直角边旋转一周,所得几何体的从正面看到的形状图是( )6. 如图是由若干个小正方形所搭成的几何体及从上面看这个几何体所看到的图形,那么从左边看这个几何体时, 所看到的几何图形是 ( )第1题图 第5题图第2题图 第3题图7. 某几何体的三种形状图如下所示,则该几何体可以是 ( )从正面看 从左面看 从上面看8. 一个无盖的正方体盒子的平面展开图可以是下列图形中的 ( )9.如图是一个由若干个相同的小正方体组成的几何体的三种形状图,则组成这个几何体的小正体的个数是 ( )10.如图表示一个由相同小立方块搭成的几何体的从上面看到的形状图俯视图,小正方形中的数字表示该位置上小立方块的个数,那么该几何体的从正面看到的形状图为 ( )二、耐心填一填,一锤定音!(每小题4分,共5小题,共20分)11.快速旋转一枚竖立的硬币(假定旋转轴在原地不动),旋转形成的立体图形是 .12.把边长为lcm 的正方体表面展开要剪开 条棱,展开成的平面图形的周长为cm.13.如果一个六棱柱的一条侧棱长为5cm ,那么所有侧棱之和为 .14.一个n 边形,从一个顶点出发的对角线有 条,这些对角线将n 边形分成了________个三角形.15.如图,木工师傅把一个长为1.6米的长方体木料锯成3段后,表面积比原来增加了802cm ,那么这根木料本来的体积是 3cm .A B C D 第10题图 31 12 2 4 第15题图1.6米A B C D第6题图三、用心做一做,马到成功!(每小题12分,共5小题,共60分) 16.将图中剪去一个正方形,使剩余的部分恰好能折成一个正方体,问应剪去几号小正方形?说出所有可能的情况.17.由一些大小相同的小正方体组成的简单几何体的从正面、从上面看到的形状图(如图):⑴若组成这个几何体的小正方体的块数为n ,则n 的所有可能的值为 . ⑵请你画出这个几何体所有可能的从左面看到的形状图.18.如图是一个几何体的两种形状图,求该几何体的体积(л取3.14).19. 如图所示的几何体是由若干个相同的小正方体搭建而成的(第一层,1个;第二层3个;第3层,6个),小正方体的一个侧面的面积为1cm.今要用红颜色给这个几何体的表面着色(但底部不着色),要着色的面积是多少?20.若已知两点之间的所有连线中,线段最短,那么你能否试着解决下面的问题呢?问题:已知正方体的顶点A 处有一只蜘蛛,B 处有一只小虫,如图所示,请你在图上作第16题图 1 5 4 62 3 7 第18题图 20cm32cm 40cm 30cm 30cm 25cmBA第19题图出一种由A 到B 的最短路径,使得这只小蜘蛛能在最短时间内捉住这只小虫子.参考答案1.C2.A3.D4.C5.A6.B7.A8.D9.C 10.C11.球体 12.7,6 13.30 cm 14.n-3,n-2 15.32 16.1号、2号 17.⑴8或9 ⑵图略18.40048cm 3 19.18cm 220.略北师大版七年级数学上册第2章《有理数及其运算》单元测试试卷及答案(5)一、选择题(本大题共15小题,共45分):1、在–1,–2,1,2四个数中,最大的一个数是( ) (A )–1 (B )–2 (C )1 (D )22、有理数31的相反数是( ) (A )31 (B )31- (C )3 (D ) –33、计算|2|-的值是( ) (A )–2 (D )21-(C ) 21(D )2 4、有理数–3的倒数是( ) (A )–3 (B )31- (C )3 (D )31 5、π是( )(A )整数 (B )分数 (C )有理数 (D )以上都不对 6、计算:(+1)+(–2)等于( ) (A )–l (B ) 1 (C )–3 (D )3 7、计算32a a ⋅得( )(A )5a (B )6a (C )8a (D )9a 8、计算()23x 的结果是( )(A )9x (B )8x (C )6x (D )5x9、我国拟设计建造的长江三峡电站,估计总装机容量将达16780000千瓦,用科学记数法表示总装机容量是( )(A )4101678⨯千瓦(B )61078.16⨯千瓦(C )710678.1⨯千瓦(D )8101678.0⨯千瓦 10、1999年国家财政收入达到11377亿元,用四舍五入法保留两个有效数字的近似值为( )亿元(A )4101.1⨯ (B )5101.1⨯ (C )3104.11⨯ (D )3103.11⨯ 11、用科学记数法表示0.0625,应记作( )(A )110625.0-⨯ (B )21025.6-⨯ (C )3105.62-⨯ (D )410625-⨯ 12、大于–3.5,小于2.5的整数共有( )个。
北师大版七年级数学上册单元测试题全套第一章丰富的图形世界01分点突破知识点1生活中的立体图形1.(东台月考)下列图形属于棱柱的有( )A.2个B.3个C.4个D.5个2.下列说法错误的是( )A.长方体、正方体都是棱柱B.六棱柱有18条棱、6个侧面、12个顶点C.三棱柱的侧面是三角形D.圆柱由两个平面和一个曲面围成3.(镇江校级月考)夜晚的流星划过天空时留下一道明亮的光线,由此说明____________的数学事实.知识点2图形的展开与折叠4.(张店区一模)下面图形经过折叠不能围成棱柱的是( )5.(河南中考)如图是正方体的一种展开图,其每个面上都标有一个数字,那么在原正方体中,与数字“2”相对的面上的数字是( )A.1B.4C.5D.66.(通辽中考)妈妈为今年参加中考的女儿小红制作了一个正方体礼品盒(如图),六个面上各有一个字,连起来就是“预祝中考成功”,其中“祝”的对面是“考”,“成”的对面是“功”,则它的平面展开图可能是( )知识点3截一个几何体7.(济南校级月考)如下左图,用水平面截几何体,所得几何体的截面图形的标号是()8.用一平面去截下列几何体,其截面可能是长方形的有( )A.1个B.2个C.3个D.4个知识点4从三个方向看物体的形状9.(广州中考)从正面看如图所示的几何体得到的平面图形是( )10.在下面四个几何体中,从左面看、从上面看分别得到的平面图形是长方形、圆,这个几何体是()02综合训练)11.(普宁校级月考)下列说法中,正确的个数是( )①柱体的两个底面一样大;②圆柱、圆锥的底面都是圆;③棱柱的底面是四边形;④长方体一定是柱体;⑤棱柱的侧面一定是长方形.A.2 B.3 C.4 D.5 12.(福安市期末)把图绕虚线旋转一周形成一个几何体,与它相似的物体是( )A.课桌B.灯泡C.篮球D.水桶13.如图是由5个大小相同的正方体搭成的几何体,从上面看得到的平面图形是()14.(牡丹江中考)如图,由高和直径相同的5个圆柱搭成的几何体,从左边看得到的平面图形是( )15.如图的几何体有________个面,________条棱,________个顶点,它是由简单的几何体________和________组成的.16.围成下面这些立体图形的各个面中,哪些面是平的?哪些面是曲的?(1)(2)17.(通许期末)如图所示,在无阴影的方格中选出两个画出阴影,使它们与图中四个有阴影的正方形一起可以构成一个正方体的表面展开图.(填出两种答案)18.(镇江校级期末)如图,图1为一个长方体,AB=AD=16,AE=6,图2为左图的表面展开图,请根据要求回答问题:(1)面“学”的对面是面“________”;(2)图1中,M、N为所在棱的中点,试在图2中画出点M、N的位置,并求出图2中△ABN 的面积.参考答案分点突破1.B 2.C 3.点动成线 4.D 5.B 6.D 7.A 8.C 9.A 10.A综合训练11.B 12.D 13.C 14.C 15.九 十六 九 四棱锥 四棱柱 16.(1)中的5个面都是平的.(2)中圆锥的侧面是曲的,圆柱的侧面是曲的,圆柱的底面是平的. 17.略. 18.(1)国(2)点M 、N 如图所示. 因为N 是所在棱的中点,所以点N 到AB 的距离为12×16=8,所以△ABN 的面积为12×16×8=64.第二章 有理数及其运算01 分点突破知识点1 有理数的概念及分类1.下列数-91,1.5,23,-136,7,0中,负数的个数是( )A .1B .2C .3D .4 2.下列说法错误的是( )A .-2是负有理数B .0不是整数 C.25是正有理数 D .-0.25是负分数3.把下面的有理数填在相应的大括号里:15,-38,0,-30,0.15,-128,225,+20,-2.6.(1)非负数集合:{ ,…}; (2)负数集合:{ ,…}; (3)正整数集合:{ ,…};(4)负分数集合:{,…}.知识点2 数轴、相反数、绝对值与倒数 4.如图,在数轴上点A 表示的数可能是( )A .1.5B .-1.5C .-2.6D .2.6 5.(东营中考)|-13|的相反数是( )A.13 B .-13C .3D .-36.-2的倒数是________,|-2 016|=________,-5的倒数的相反数是________. 知识点3 有理数的大小比较7.(绍兴中考)比较-3,1,-2的大小,正确的是( ) A .-3<-2<1 B .-2<-3<1 C .1<-2<-3 D .1<-3<-2 8.绝对值不大于11.1的整数有( )A .11个B .12个C .22个D .23个9.有理数a 、b 、c 在数轴上的位置如图所示,下列结论错误的是( )A .c <b <aB .-c >aC .b <0,c <0D .-a >-c 知识点4 有理数的混合运算及其应用 10.计算:(1)(-49)-90-(-6)+(-9);(2)23×(-3)-(-2)÷(-164);(3)24×(12+13-112).11.初一年级共110名学生,在一次数学测试中以90分为标准,超过的记为正,不足的记为负,成绩如下:6知识点5 科学记数法与近似数12.(菏泽中考)现在网购越来越多地成为人们的一种消费方式,在2014年的“双11”网上促销活动中天猫和淘宝的支付交易额突破57 000 000 000元,将数字57 000 000 000用科学记数法表示为( )A .5.7×109B .5.7×1010C .0.57×1011D .57×10913.计算一个式子,计算器上显示的结果1.597 583,将这个结果精确到0.01是________. 02 综合训练14.(丽水中考)如图,数轴的单位长度为1,如果点A ,B 表示的数的绝对值相等,那么点A 表示的数是( )A .-4B .-2C .0D .4 15.(毕节中考)下列说法正确的是( ) A .一个数的绝对值一定比0大 B .一个数的相反数一定比它本身小 C .绝对值等于它本身的数一定是正数 D .最小的正整数是116.某地一天下午4时的温度是6 ℃,过了6时气温下降了4 ℃,又过了2时气温下降了3 ℃,第二天0时的气温是________. 17.计算:(1)(-3)2-112×29-6÷|-23|2;(2)(佛山中考)2×[5+(-2)3]-(-|-4|÷12).18.一天,小红与小丽利用温差测量山的高度,小红在山顶测得温度是-4 ℃,小丽此时在山脚测得温度是6 ℃.已知该地区高度每增加100米,气温大约降低0.8 ℃,这个山峰的高度大约是多少米?a |a|+b|b|+ab|ab|的值是多少?19.若a,b都是非零的有理数,那么参考答案分点突破1.B 2.B 3.(1)15,0,0.15,225,+20 (2)-38,-30,-128,-2.6 (3)15,+20 (4)-38,-2.6 4.C 5.B 6.-12 2 016 15 7.A 8.D 9.D 10.(1)原式=-49-90+6-9=-142. (2)原式=-69-128=-197. (3)原式=12+8-2=18. 11.-1×10+20×3+5×(-2)+14×1+12×10+18×2+10×0+4×(-7)+9×7+6×(-9)+2×(-12)=-10+60-10+14+120+36-28+63-54-24=167,90+167÷110≈91.5.答:这次考试的平均成绩是91.5分. 12.B 13.1.60 综合训练14.B 15.D 16.-1 ℃ 17.(1)原式=9-13-6÷49=9-13-272=-456. (2)原式=2×(5-8)-(-4×2)=2×(-3)-(-8)=2. 18.由题意,得[6-(-4)]÷0.8×100=12.5×100=1 250(米).答:这个山峰的高度大约是1 250米.19.当a>0,b>0时,原式=a a +b b +ab ab =1+1+1=3;当a>0,b<0时,原式=a a +b -b +ab-ab =1+(-1)+(-1)=-1;当a<0,b>0时,原式=a -a +b b +ab-ab=-1+1+(-1)=-1;当a<0,b<0时,原式=a -a +b -b +ab ab =-1+(-1)+1=-1.综上所述,a |a|+b |b|+ab|ab|的值为3或-1.第三章 整式及其加减01 分点突破 知识点1 代数式1.以下各式不是代数式的是( )A .-27 B .-2x +6x 2-xC .a 2+b 4≠0 D.25100y 2.(株洲中考)如果手机通话每分钟收费m 元,那么通话a 分钟,收费________元.3.(咸宁中考)体育委员小金带了500元钱去买体育用品,已知一个足球x 元,一个篮球y 元.则代数式500-3x -2y 表示的实际意义是________________________________________________________. 知识点2 整式4.下列说法正确的是( )A .单项式-xy 25的系数是-5,次数是2B .单项式a 的系数为1,次数是0 C.xy -12是二次单项式D .单项式-67ab 的系数为-67,5.下列式子:4xy ,x 2+x -23,m 2n 2,y 2+y +2y ,2x 3-3,0,-3ab +a ,m ,m -n m +n,x -12,3x ,其中单项式有________________;多项式有________________;整式有________________________________.6.(1)多项式2x 2y -x 2+12x 2y 2-3的最高次项是________,三次项的系数是________,常数项是________;(2)多项式-43x m -3-2x +1是六次三项式,则m 的值是________.知识点3 整式的加减7.下列各组中是同类项的是( )A .3x 2y 与2xy 2 B.13x 4y 与12yx 4C .-2a 与0 D.12πa 2bc 3与-3a 2cb 38.去掉下列各式中的括号:(1)a -(-b +c)=________________; (2)a +(b -c )=________________;(3)(a -2b )-(b 2-2a 2)=________________. 9.计算:(1)3a +4b -5a -b ;(2)5(2x-3)+4(3-2x).知识点4探索与表达规律10.(漳州中考)已知一列数2,8,26,80,…,按此规律,则第n个数是____________.(用含n的式子表示)11.小强用黑白两种颜色的正六边形地面砖按如图拼成了三个图案,他发现了规律,若继续这样拼出第4个,第5个,…,那么第n个图案中白色地面砖有____________块.02综合训练12.当x=1时,多项式ax2+bx+1的值为3,则多项式-(6a-2b)+(5a-3b)的值等于( ) A.0 B.1 C.2 D.-213.某校组织若干师生到活动基地进行社会实践活动.若学校租用45座的客车x辆,则余下20人无座位;若租用60座的客车则可少租用2辆,且最后一辆还没坐满,则乘坐最后一辆60座客车的人数是( )A.200-60x B.140-15xC.200-15x D.140-60x14.请写出一个符合下列要求的单项式:系数为-5,只含有字母m,n的四次单项式________________________________.15.一个十位数字是a,个位数字是b的两位数表示为____________,交换这个两位数的十位数字和个位数字,又得一个新的两位数,新数与原数的差是________.16.电影院第一排有m个座位,后面每排比前一排多2个座位,则第n排的座位数为____________.17.(娄底中考)按照如图所示的操作步骤,若输入的值为3,则输出的值为________.18.计算:(1)3(a2-2ab)-(-ab+b2);(2)(2x 2+x )-[2x +(1-x 2)].19.如果12x a y 3和-y b x 2是同类项,求多项式3(a -b)2-12(a -b)+32(a -b)2-13(a -b)的值.20.已知3x 2y |m|-(m -1)y +5是关于x ,y 的多项式,且它的最高次项的次数是3,求2m 2-3m +1的值.21.一种中性笔售价是5元/支,如果一次买100支以上(不含100支),售价是4元/支. (1)列代数式表示买n 支中性笔所需要的钱数(注意对n 的大小要有所考虑); (2)按照这种售价规定,会不会出现多买比少买反而付钱少的情况?举例说明.参考答案分点突破1.C 2.am 3.体育委员买了3个足球、2个篮球后剩余的经费 4.D 5.4xy ,m 2n2,0,mx 2+x -23,2x 3-3,x -12 4xy ,x 2+x -23,m 2n 2,2x 3-3,0,m ,x -12 6.(1)12x 2y 2 2 -3(2)9 7.B 8.(1)a +b -c (2)a +b -c (3)a -2b -b 2+2a 2 9.(1)原式=-2a +3b. (2)原式=10x -15+12-8x =2x -3. 10.3n -1 11.(4n +2) 综合训练12.D 13.C 14.答案不唯一,如:-5m 3n ,-5m 2n 2,-5mn 3 15.10a +b 9b -9a 16.m +2(n -1) 17.55 18.(1)原式=3a 2-6ab +ab -b 2=3a 2-5ab -b 2. (2)原式=2x 2+x -(2x +1-x 2)=2x 2+x -2x -1+x 2=3x 2-x -1. 19.由题意,得a =2,b =3.所以a -b =-1.所以原式=92(a -b)2-56(a -b)=92×(-1)2-56×(-1)=163. 20.由题意知,2+|m|=3,所以m =-1或m =1.当m =-1时,原式=2×(-1)2-3×(-1)+1=6.当m =1时,原式=2×12-3×1+1=0. 21.(1)当n ≤100时,买n 支中性笔所需要的钱数为5n ;当n >100时,买n 支中性笔所需要的钱数为4n.(2)按照这种售价规定,会出现多买比少买反而付钱少的情况.如:买101支中性笔需要404元,买100支中性笔需要500元.第四章 基本平面图形分点突破知识点1 线段、射线、直线1.如图,直线l 上有A 、B 、C 三点,下列说法正确的有( )①直线AB 与直线BC 是同一条直线;②射线AB 与射线BC 是同一条射线;③直线AB 经过点C ;④射线AB 与射线AC 是同一条射线.A .1个B .2个C .3个D .4个 2.下列语句正确的是( ) A .画直线AB =10厘米 B .画直线l 的中点 C .画射线OB =3厘米D .延长线段AB 到点C ,使得BC =AB 知识点2 线段的有关计算3.下列关系中,与图示不符合的式子是( )A .AD -CD =AB +BC B .AC -BC =AD -DB C .AC -BC =AC +BD D .AD -AC =BD -BC 4.如图,若AB =2 cm ,BC =5 cm ,C 是BD 的中点,则BD =________cm ,AD =________cm.[来5.如图,线段AB =10 cm ,延长AB 到点C ,使BC =6 cm ,点M 、N 分别为AC 、BC 的中点,求线段BM 、MN 的长.知识点3 角的有关运算6.下列各式计算正确的是( )A .(12)°=118″ B .38°15′=38.15°[来源学科网Z,X,X,K]C .24.8°×2=49.6°D .90°-85°45′=4°65′7.(北京中考)如图,直线AB、CD交于点O,射线OM平分∠AOC,若∠AOC=76°,则∠BOM等于( )A.38°B.104°C.142°D.144°8.用A、B、C分别表示学校、小明家、小红家,已知学校在小明家的南偏东25°,小红家在小明家正东,小红家在学校北偏东35°,则∠ACB等于( )A.35°B.55°C.60°D.65°知识点4多边形和圆的初步认识9.一个正六边形的边长为6,则它的周长为________.10.将一个圆分成六个完全相同的小扇形,则这些小扇形的圆心角为________度.综合训练11.如图,从点O出发引四条射线OA、OB、OC、OD,则可组成角的个数是( )A.3B.4C.5D.612.如图,已知A、B、C、D、E五点在同一直线上,D点是线段AB的中点,点E是线段BC的中点,若线段AC=12,则线段DE等于( )A.10 B.8 C.6 D.413.如图,已知点C、D、E都在线段AB上,AD=BC,E是线段AB的中点,则CE________DE.(填“>”“<”或“=”)14.普通的钟表在4点钟时,时针与分针的夹角的度数为________°.15.若已知∠AOB=80°,∠BOC=30°,OD是∠AOC的平分线,则∠COD=________.16.计算:(1)90°-78°19′40″;(2)11°23′26″×3;(3)176°52′÷3.17.如图,已知线段AB 和CD 的公共部分BD =13AB =14CD ,线段AB 、CD 的中点E 、F之间的距离是10 cm ,求AB 、CD 的长.18.如图,射线OA 的方向是北偏东15°,射线OB 的方向是北偏西40°,∠AOB =∠AOC ,OD 是OB 的反向延长线.(1)射线OC 的方向是_________; (2)求∠COD 的度数;(3)若射线OE 平分∠COD ,求∠AOE 的度数.19.已知:如图,OC是∠AOB的平分线.(1)当∠AOB=60°时,求∠AOC的度数;(2)在(1)的条件下,∠EOC=90°,请在图中补全图形,并求∠A OE的度数;[来源学科网ZXXK](3)当∠AOB=α时,∠EOC=90°,直接写出∠AOE的度数.(用含α的代数式表示)参考答案基础题1.C 2.D 3.C 4.10 125.因为AB =10 cm ,BC =6 cm ,所以AC =16 cm. 又M 为AC 的中点,所以MC =AM =8 cm.因为N 为BC 的中点,所以BN =NC =3 cm ,BM =AB -AM =10-8=2(cm),MN =BM +BN =2+3=5(cm).6.C7.C8.B9.36 10.60 中档题11.D 12.C 13.= 14.120 15.25°或55°16.(1)原式=11°40′20″. (2)原式=34°10′18″. (3)原式=58°57′20″. 17.设BD =x cm ,则AB =3x cm ,CD =4x c m ,AC =6x cm.因为点E 、F 分别为AB 、CD 的中点,所以AE =12AB =1.5x cm ,CF =12CD =2x cm.所以EF =AC -AE -CF =2.5x(cm).又因为EF =10 cm ,所以2.5x =10.解得x =4. 所以AB =12 cm ,CD =16 cm.18.(1)北偏东70°(2)因为∠AOB =40°+15°=55°,∠AOB =∠AOC ,所以∠BOC =110°.又因为OD 是OB 的反向延长线,°.所以∠COD =180°-110°=70°. (3)因为∠COD =70°,OE 平分∠COD =35°. 又因为∠AOC =55°,所以∠AOE =55°+35°=90°.19.(1)因为OC 是∠AOB 的平分线,所以∠AOC =12∠AOB.因为∠AOB =60°,所以∠AOC=30°.(2)如图1,∠AOE =∠EOC +∠AOC =90°+30°=120°;如图2,∠AOE =∠EOC -∠AOC =90°-30°=60°.所以∠AOE =120°或60°.(3)90°+α2或90°-α2.第五章一元一次方程的应用类型1和差倍分问题1.儿子今年13岁.父亲今年40岁,是否有哪一年父亲年龄恰好是儿子的4倍?2.某人将2 600元工资作了打算,购书费用、休闲娱乐费用、家庭开支、存款比为1∶3∶5∶4,请问此人打算休闲娱乐花去多少元?类型2等积变形问题3.将一个底面直径是20厘米,高为9厘米的“矮胖”形圆柱,锻压成底面直径是10厘米的“痩长”形圆柱,高变成了多少?4.有一个底面半径为5 cm的圆柱形储油器,油中浸有铁球,若从中捞出重为546π克的铁球,问液面将下降多少厘米?(1 cm3的铁重7.8克)类型3打折销售问题5.“五一”期间,某商场搞优惠促销,决定由顾客抽奖确定折扣.某顾客购买甲、乙两种商品,分别抽到七折和九折,共付款386元,这两种商品定价之和为500元,问:这两种商品的定价分别为多少元?6.甲、乙两件服装的成本共500元,商店老板为获取利润,决定将甲服装按50%的利润定价,乙服装按40%的利润定价.在实际出售时,应顾客要求,两件服装均按9折出售,这样商店共获利157元,求甲、乙两件服装的成本各是多少元.类型4分配问题7.某车间有技术工人80人,平均每天每人可加工甲种部件14个或乙种部件9个,2个甲种部件和3个乙种部件配成一套,则加工甲、乙部件各安排多少人,才能使每天加工的甲、乙两种部件刚好配套?类型5工程问题8.一件工作,甲单独完成需7.5小时,乙单独完成需5小时,先由甲、乙两人合做1小时,再由乙单独完成剩余任务,共需多少小时完成任务?类型6行程问题9.兄弟两人由家里骑车去学校,弟弟每小时走6千米,哥哥每小时走8千米,哥哥晚出发10分钟,结果两人同时到校,学校离家有多远?10.甲、乙两人从A地同时出发去相距100千米的B地,甲的速度是乙的1.5倍,4小时后,乙与到达B地又立即回头的甲相遇.试求两人的速度.类型7其他问题11.一个两位数,十位上的数字比个位上的数字小4,如果把十位上的数与个位上的数对调后,那么所得的两位数比原来的两位数的2倍小12,求原来的两位数.参考答案分点突破1.A 2.B 3.-2 4.-4 5.B 6.a ≠0 7.减去5 1 8.C 9.D 10.(1)-35m +m =-4,25m =-4,m =-10.(2)4x -60+3x =6x -63+7x ,-6x =-3,x =12.(3)12-2(2x +1)=3(1+x),12-4x -2=3+3x ,-7x =-7,x =1.11.设欧洲的意向创始成员国有x 个,亚洲的意向创始成员国有(2x -2)个. 根据题意,得2x -2+x +5=57.解得x =18.则2x -2=34. 答:亚洲和欧洲的意向创始成员国各有34个和18个. 综合训练12.12 13.11314.25 15.(1)x =-10. (2)x =-17. 16.由题意,得3=m -1,5n -2=3m +n.解得m =4,n =72.所以m +n =152.17.(1)设该商场购进甲种矿泉水x 箱,则购进乙种矿泉水(500-x)箱.根据题意,得24x +33(500-x)=13 800.解得x =300.故500-x =200.答:该商场购进甲种矿泉水300箱,购进乙种矿泉水200箱.(2)300×(36-24)+200(48-33)=6 600(元).答:全部售完500箱矿泉水,该商场共获得利润6 600元.18.设老张家到单位的路程是x 千米.依题意,得13+2.3(x -3)=8+2(x -3)+0.8x.解得x =8.2.答:老张家到单位的路程是8.2千米.第六章数据的收集与整理01分点突破知识点1数据的收集1.下面获取数据的方法不正确的是( )A.了解我们班同学的身高情况用测量方法B.快捷了解历史资料情况用观察方法C.抛硬币看正反面的次数用实验方法D.了解全班同学最喜爱的体育活动用访问方法2.进行数据的调查收集,一般可分为以下六个步骤,但它们的顺序弄乱了,正确的顺序是____________(用字母按顺序写出即可).A.明确调查问题;B.记录结果;C.得出结论;D.确定调查对象;E.展开调查;F.选择调查方法.知识点2调查方式的选择3.下列调查中,最适宜采用全面调查的是( )A.对某市居民日平均用水量的调查B.对我国初中学生视力状况的调查C.对“最强大脑”节目收视率的调查D.对某校九年级(1)班同学身高情况的调查4.为了了解某商品促销广告中所称中奖率的真实性,某人买了100件该商品调查其中奖率,那么他采用的调查方式是____________.5.下列调查中,________适宜使用抽样调查方式,________适宜使用普查方式.(只填相应的序号)①张伯想了解他承包的鱼塘中的鱼的生长情况;②了解全国患支气管炎的人数;③评价八年级(2)班本次期末数学考试的成绩;④张红想了解妈妈煲的一锅汤的味道.知识点3总体、个体、样本6.某中学要了解七年级学生的身高情况,在全校七年级中抽取了30名学生进行测量,在这个问题中,总体是________________________________,个体是________________________,样本是________________________________.知识点4样本的代表性7.下列调查具有代表性的是( )A.在公园里调查老年人的健康状况B.在大学生中调查我国青年业余时间的娱乐的主要方式C.在一个班级中随机抽出10名学生,以了解学生们对班主任老师某一新举措的意见和建议D.在深圳调查我国居民的收入水平、生活状况和生活质量8.小明从一批乒乓球中随意摸出三个,检测全部合格,因此小明断定这批乒乓球全部合格.在这个问题中,小明( )A.忽略了抽样调查的随机性B.忽略了抽样调查的随机性和广泛性C.抽取的乒乓球个数太少,不具有代表性D.忽略了抽样调查的随机性和代表性知识点5统计图的选择与应用9.某单位有6位司机:A,B,C,D,E,F,12月份耗去的汽油费用如下表,根据表中的数据作出统计图,以便更清楚地对每个人的耗油费用进行比较,那么应用( )A.C.扇形统计图D.上述三种图都可以10.(淄博中考)某实验中学九年级(1)班全体同学的综合素质评价“运动与健康”方面的等级统计如图所示,其中评价为“A”所在扇形的圆心角是________度.02综合训练11.如图分别是某班全体学生上学时乘车、步行、骑车人数的条形统计图和扇形统计图(两图都不完整),下列结论错误的是( )A.该班总人数为50人B.步行人数为30人C.乘车人数是骑车人数的2.5倍D.骑车人数占20%12.某校八年级(1)班为了了解同学们一天零花钱的消费情况,对本班48名同学开展了调查,将同学一周的零花钱以5元为组距,绘制如图的频数直方图,已知从左到右各组的频数之比为2∶3∶4∶2∶1.(1)零花钱人数最多的是第_______组,有_______人;(2)零花钱在20元以上的共有________人.13.某电台“市民热线”对上周内接到的热线电话进行了分类统计,得到的统计信息如图所示,其中有关房产城建的电话有30个,请你根据扇形统计图回答以下问题:(1)上周“市民热线”接到有关道路交通方面的电话有________个;(2)上周“市民热线”接到有关环境保护方面的电话有________个;(3)据此估计,除环境保护方面的电话外,“市民热线”今年(按52周计算)接到的热线电话约为多少个?(4)为了更直观显示各类“市民热线”电话数目,你准备采用什么样的统计图?14.九(1)班开展了为期一周的“敬老爱亲”的社会活动,并根据学生做家务的时间来评价他们在活动中的表现,老师调查了全班50名学生在这次活动中做家务的时间,并将统计的时间(单位:小时)分成5组:A.0.5≤x<1,B.1≤x<1.5,C.1.5≤x<2,D.2≤x<2.5,E.2.5≤x<3,制作成两幅不完整的统计图(如图).请根据图中提供的信息,解答下列问题:(1)补全频数直方图;(2)该班的小明同学这一周做家务2小时,他认为自己做家务的时间比班里一半以上的同学多,你认为小明的判断符合实际吗?请用适当的统计知识说明理由.参考答案分点突破1.B 2.ADFEBC 3.D 4.抽样调查 5.①②④ ③ 6.某中学七年级学生的身高情况 每名学生的身高情况 抽取的30名学生的身高情况 7.C 8.C 9.A 10.108 综合训练11.B 12.(1)3 16 (2)12 13.(1)15 (2)45 (3)(150-45)×52=5 460(个).(4)由于条形统计图能清楚地表示出每个项目的数据,故可用条形统计图.14.(1)如图.(2)小明判断符合实际,该班同学一周做家务时间不超过2小时的百分比为20+15+350×100%=76%>50%,所以小明判断符合实际.。
北师大版七年级数学上册《第三章整式及其加减》单元测试题(附答案)一、选择题1.下列说法正确的是()A.单项式−xy2的系数是-2B.单项式−3x2y与4x是同类项C.单项式−x2yz的次数是4D.多项式2x3−x2−1是三次三项式2.下列运算正确的是()A.2a+3b=5ab B.x2y−xy2=0C.−0.25ab+14ab=0D.3a−a=33.如果3a m+3b4与a2b n是同类项,则mn的值为()A.4B.-4C.8D.12 4.下列代数式符合书写要求的是()A.ab4B.315a C.ab3D.15÷t5.数学兴趣小组的一位同学用棋子摆图形探究规律.如图所示,若按照他的规律继续摆下去,第n个图案中用了2025颗棋子,则n的值为()A.506B.507C.508D.5096.如图是一个数值转换机的示意图,若输入x的值为3,y的值为-2,则输出的结果为()A.-6B.5C.-5D.67.按如图所示的运算程序,能使输出y值为5的是()A.m=2,n=1B.m=2,n=0C.m=2,n=2D.m=38.正整数按如图所示的规律排列,则第9行、第10列的数字是()A.90B.86C.92D.109.已知a−2b=−1,则代数式1−2a+4b的值是()A.-3B.-1C.2D.310.已知整数a1,a2,a3,a4……满足下列条件:a1=0。
a2=−|a1+1|,a3=−|a2+2|,a4=−|a3+3|……依次类推,则a2017的值为()A.−1009B.−1008C.−2017D.−201611.如图,将三种大小不同的正方形纸片①,②,③和一张长方形纸片④,平铺长方形桌面,重叠部分(图中阴影部分)是正方形,若要求长方形桌面长与宽的差,只需知道()A.正方形①的边长B.正方形②的边长C.阴影部分的边长D.长方形④的周长12.在计算:M-(5x2-3x-6)时,嘉琪同学将括号前面的“-”号抄成了“+”号,得到的运算结果是-2x2+3x-4,你认为多项式M是()A.-7x2+6x+2B.-7x2-6x-2C.-7x2+6x-2D.-7x2-6x+213.有一道题目是一个多项式A减去多项式2x2+5x﹣3,小胡同学将2x2+5x﹣3抄成了2x2+5x+3,计算结果是﹣x2+3x﹣7,这道题目的正确结果是()A.x2+8x﹣4B.﹣x2+3x﹣1C.﹣3x2﹣x﹣7D.x2+3x﹣714.将一列有理数−1 , 2 , −3 , 4 , −5 , 6……如图所示有序排列.根据图中的排列规律可知,“峰1”中峰顶的位置(C的位置)是有理数4,那么,“峰6”中C的位置是有理数____,2022应排在A、B、C、D、E中____的位置.正确的选项是()A.-29,A B.30,D C.029,B D.-31二、填空题15.单项式−2x4y的系数是.16.若−2a m b4与5a3b2+n是同类项,则−m+n的值是.17.若整式2x2+5x的值为8,那么整式6x2+15x−10的值是.18.有理数a、b、c在数轴上的位置如图所示,请化简:|−a+c|−|b−a|+|c−b|=.19.当k=时,代数式x6−5kx4y3−4x6+15x4y3+10中不含x4y3项.20.一本笔记本原价a元,降价后比原来便宜了b元,小玲买了3本这样的笔记本,比原来便宜了元.21.已知x2−2x−3=0,则7+x2−2x=.三、计算题22.化简:(1)5x−4y−3x+y(2)2a−(4a+5b)+2(3a−4b)23.(1)化简:m−n+5m−4n(2)化简:3(x2−2y)−12(6x2−14y)+10.(3)先化简,再求值:2x2+4y2+(2y2−3x2)−2(y2−2x2),,其中x=−1,y=12.四、解答题24.先化简,再求值:(2a 2−3a +1)+3(a −2a 2−13),其中a =−1.25.先化简,再求值:5(3a 2b −ab 2)−4(−ab 2+3a 2b),其中a =−2,b =1.26.若多项式2x 2−ax +3y −b +bx 2+2x −6y +5的值与字母x 无关,试求多项式3(a 2−2ab −b 2)−2(2a 2−3ab −b 2)的值.五、综合题27.2022年秋季因我县七年级生源的增加,某校计划添置100张课桌和一批椅子(椅子不少于100把),现从A 、B 两家公司了解到:同一款式的产品价格相同,课桌每张300元,椅子每把100元.且A 公司的优惠政策为:每买一张课桌赠送一把椅子,其余部分按原价结算;B 公司的优惠政策为:课桌和椅子都实行8折优惠.(1)若购买课桌的同时买x 把椅子,到A 公司和B 公司购买分别需要付款多少元?(2)如果购买课桌的同时买150把椅子,并且可以到A 、B 两公司分别购买,请你设计一种购买方案,使所付金额最少.28.如图是一组有规律的图案,它们是由边长相等的等边三角形组合而成,第1个图案有4个三角形,第2个图案有7个三角形,第3个图案有10个三角形,……照此规律摆下去.(1)第5个图案有 个三角形;(2)第n 个图案有 个三角形;(用含n 的式子表示) (3)第2022个图案有几个三角形?29.利用图形来表示数量或数量关系,也可以利用数量或数量关系来描述图形特征或图形之间的关系,这种思想方法称为数形结合.请你尝试利用数形结合的思想方法解决下列问题(1)如图①,一个边长为1的正方形,依次取正方形面积的12,14,18⋯12n ,根据图示我们可以知道:12+14+18+116+⋯+12n = .(用含有n 的式子表示)(2)如图②,一个边长为1的正方形,第一次取正方形面积的23,然后依次取剩余部分的23,根据图示:计算:23+29+227+⋯+23n = .(用含有n 的式子表示)(3)如图③是一个边长为1的正方形,根据图示:计算:13+29+427+881+⋯+2n−13n= .(用含有n 的式子表示)30.为了提高居民的宜居环境,某小区规划修建一个广场(平面图如图中阴影部分所示).(1)用含m ,n 的式子表示广场(阴影部分)的周长C 和面积S ;(2)若m =30米,n =20米,修建每平方米需费用200元,求修建广场的总费用W 的值.31.某商场销售一种西装和领带,西装每套定价1000元,领带每条定价200元.“国庆节”期间商场决定开展促销活动,活动期间向客户提供两种优惠方案(客户只能选择其中一种): 方案一:买一套西装送一条领带;方案二:西装和领带都按定价的90%付款.现某客户要到该商场购买西装20套,领带x 条(x>20)(1)若该客户按方案一购买,需付款 元;若该客户按方案二购买,需付款 元,(用含 x 的代数式表示)(2)若x=30,通过计算说明此时按哪种方案购买较为合算.32.问题提出:某校要举办足球赛,若有5支球队进行单循环比赛(即全部比赛过程中任何一队都要分别与其他各队比赛一场且只比赛一场),则该校一共要安排多少场比赛? 构建模型:生活中的许多实际问题,往往需要构建相应的数学模型,利用模型的思想来解决问题.为解决上述问题,我们构建如下数学模型:(1)如图①,我们可以在平面内画出5个点(任意3个点都不在同一条直线上),其中每个点各代表一支足球队,两支球队之间比赛一场就用一条线段把它们连接起来.由于每支球队都要与其他各队比赛一场,即每个点与另外4个点都可连成一条线段,这样一共连成5×4条线段,而每两个点之间的线段都重复计算了一次,实际只有=10条线段,所以该校一共要安排10场比赛.(2)若学校有6支足球队进行单循环比赛,借助图②,我们可知该校一共要安排场比赛;(3)根据以上规律,若学校有n支足球队进行单循环比赛,则该校一共要安排场比赛.(4)实际应用:9月1日开学时,老师为了让全班新同学互相认识,请班上42位新同学每两个人都相互握一次手,全班同学总共握手次.(5)拓展提高:往返于青岛和济南的同一辆高速列车,中途经青岛北站、潍坊、青州、淄博4个车站(每种车票票面都印有上车站名称与下车站名称),那么在这段线路上往返行车,要准备车票的种数为种33.观察归纳和应用(1)(x−1)(x+1)=(2)(x−1)(x2+x+1)=(3)(x−1)(x3+x2+x+1)=(4)(x−1)(x99+x98+⋯⋯+x+1)=(5)计算299+298+297+⋯⋯+2+1(要求有过程)答案解析部分1.【答案】D2.【答案】C3.【答案】B4.【答案】A5.【答案】A6.【答案】B7.【答案】C8.【答案】A9.【答案】D10.【答案】B11.【答案】B12.【答案】A13.【答案】B14.【答案】A15.【答案】−216.【答案】-117.【答案】1418.【答案】2a-2c19.【答案】125或0.0420.【答案】3b21.【答案】1022.【答案】(1)解:原式=(5−3)x+(−4+1)y=2x−3y;(2)解:原式=2a−4a−5b+6a−8b=(2−4+6)a+(−5−8)b =4a−13b.23.【答案】(1)解:m−n+5m−4n=6m−5n(2)解:3(x2−2y)−12(6x2−14y)+10=3x2−6y−3x2+7y+10=y+10.(3)解:原式=2x2+4y2+2y2−3x2−2y2+4x2 =3x2+4y2;当x=−1,y=1 2时原式=3×(−1)2+4×(12)2=3+1=4.24.【答案】解:原式=2a2−3a+1+3a−6a2−1=−4a2当a=−1时原式=−4×1=−4.25.【答案】解:原式=15a2b−5ab2+4ab2−12a2b=3a2b−ab2当a=−2,b=1时,原式=3×(−2)2×1−(−2)×12=12+2=14.26.【答案】解:2x2−ax+3y−b+bx2+2x−6y+5=(2+b)x2+(2−a)x+(3−6)y+5−b∵多项式的值与字母x无关∴2+b=0,2﹣a=0解得:b=﹣2,a=23(a2−2ab−b2)−2(2a2−3ab−b2)=3a2−6ab−3b2−4a2+6ab+2b2=−a2−b2.当b=﹣2,a=2时原式=−22−(−2)2=−8.27.【答案】(1)解:A公司付款:300×100+100×(x−100)=100x+20000;B公司付款:(300×100+100x)×0.8=80x+24000;答:购买课桌的同时买x把椅子,到A公司和B公司购买分别需要付款(100x+20000)元,(80x+ 24000)元;(2)解:当x=150时A公司付款为100×150+20000=35000(元)B 公司付款为:80×150+24000=36000(元)到A ,B 公司分别购买,到A 公司买100张课桌,用300×100=30000(元),赠100把椅子,再到B 公司买50把椅子,100×50×0.8=4000(元)一共用30000+4000=34000(元),此方案所付金额最少.28.【答案】(1)16(2)(3n +1)(3)解:当n =2022时a 2022=3×2022+1=6067 ∴摆成第2022个图案需要6067个三角形.29.【答案】(1)1−12n(2)1−13n(3)1−2n3n30.【答案】(1)解:根据题意有解:广场的周长:C =2×4m +2×2n +2×n =8m +6n广场的面积:S =4m ×2n −n ×(4m −m −2m)=8mn −mn =7mn ; ∴C =8m +6n ,S =7mn ; (2)解:当m =30米,n =20米时 S =7mn =7×30×20=4200(平方米) W =200×4200=840000(元) ∴修建广场的总费用W 的值为840000元.31.【答案】(1)(200x+16000);(180x+18000);(2)解:方案一合算.理由: 当x =30时该客户按方案一购买,需付款:16000+200×30=22000(元) 该客户按方案二购买,需付款:18000+180×30=23400(元). ∵22000<23400 ∴方案一合算.32.【答案】(1)解:由图①可知,图中共有10条线段,所以该校一共要安排10场比赛.(2)15 (3)n(n−1)2(4)861(5)解:因为行车往返存在方向性,所以不需要除去每两个点之间的线段都重复计算了一次的情况将n=6代入n(n−1)中解得n×(n−1)=6×(6−1)=30∴要准备车票的种数为30种.33.【答案】(1)x2−1(2)x3−1(3)x4−1(4)x100−1(5)解:299+298+297+⋯⋯+2+1=(2−1)(299+298+297+⋯⋯+2+1)=2100−1。
七年级数学上册《第四章基本平面图形》单元测试卷及答案-北师大版一、选择题1.下列各线段的表示方法中,正确的是( )A .线段AB .线段abC .线段ABD .线段Ab2.下列命题是假命题的是( )A .等角的补角相等B .垂线段最短C .两点之间,线段最短D .无限小数是无理数3.下列四个图中,能用1∠,O ∠与AOB ∠三种方法表示同一个角的是( )A .B .C .D .4.利用一副三角板不能画出的角的度数是( )A .105︒B .100︒C .75︒D .15︒5.从多边形的一个顶点出发,可以画出4条对角线,则该多边形的边数为( )A .5B .6C .7D .86.要在墙上钉牢一根木条,至少要钉两颗钉子.能正确解释这一现象的数学知识是( )A .两点之间,线段最短B .垂线段最短C .两点确定一条直线D .经过一点有且只有一条直线与已知直线垂直7.如图,已知ABC ,点D 是BC 边中点,且ADC BAC.∠∠=若BC 6=,则AC =( )A .3B .4C .42D .328.一条船从海岛A 出发,以15海里/时的速度向正北航行,2小时后到达海岛B 处.灯塔C 在海岛A 的北偏西30︒方向上,在海岛B 的北偏西60︒方向上,则海岛B 到灯塔C 的距离是( ) A .15海里B .20海里C .30海里D .60海里9.如图,直线AB 、CD 交于点O ,OE 平分BOC ∠,若136∠=︒,则DOE ∠等于( )A .72︒B .90︒C .108︒D .144︒10.下列命题正确的是( )A .三点确定一个圆B .圆的任意一条直径都是它的对称轴C .等弧所对的圆心角相等D .平分弦的直径垂直于这条弦二、填空题11.要在墙上订牢一根木条,至少需要2颗钉子,其理由是 .12.如图,在菱形ABCD 中,10AB =,M ,N 分别为BC ,CD 的中点,P 是对角线BD 上的一个动点,则PM PN +的最小值是 .13.如图,直线AB 、CD 相交于点O ,OE 平分AOD ∠,若80BOC ∠=︒,则COE ∠的度数是 .14.一个多边形的每个内角都等于150°,则这个多边形的边数为 ,对角线总数是条。
北师大版七上数学第三章整式及其加减综合测试1.下面各式中是代数式的是( )A.a2−b2=0B.4>3C.a D.5x−2≠0 2.用代数式表示“a的倒数与b的倒数的和”是( )A.1a+b B.1a+1bC.1a+b D.a+1b3.下列各组式子中,为同类项的是( )A.5x2y与−2xy2B.4x与4x2C.−3xy与32yx D.6x3y4与−6x3z44.将3(a−b)−5(b−a)−9(a−b)合并后的结果是( )A.−11(a−b)B.−11(b−a)C.a−b D.b−a5.a+b−c的相反数是( )A.a−b−c B.b−a−c C.c−a−b D.c−a+b 6.一个两位数的个位数是a,十位数字比个位数字的2倍多1,则这个两位数是( )A.20(a+1)+a B.10(2a+1)+aC.10a(2a+1)D.21a+17.身高由1.36米增长m米后是米.8.飞机每小时飞行a千米,火车每小时行驶b千米,飞机的速度是火车的倍.9.−2x3y5的系数是.10.(a+b)(a−b)可以解释为.11.如下图是一个数值转换机,若输入的a值为2,则输出的结果应为.时,求代数式2x2+3x−2的值.12.当x=1213.有这样一道题:“计算代数式6x2−5y+7的值,其中x=−2,y=1.”王方把“x=−2”抄成“x=2”,计算结果也是正确的吗?请你说一说这是怎么回事.14.一项研究表明可由父母身高预测子女的身高,若父亲身高为a米,母亲身高为b米,那么儿子×1.08(米),女儿成年的身高ℎ2与父成年的身高ℎ1与父母身高a,b之间的关系是ℎ1=a+b2母身高a,b之间的关系是ℎ2=0.923a+b(米).2(1) 四年级(1)班男生陶冶的父亲身高为1.75米,母亲身高为1.63米,请预测陶冶成年后的身高是多少米;(2) 四年级(2)班女生何夏的父亲身高为1.68米,母亲身高为1.56米,请预测何夏成年后的身高是多少米.答案1. 【答案】C2. 【答案】B3. 【答案】C4. 【答案】D5. 【答案】C6. 【答案】B7. 【答案】1.36+m8. 【答案】ab9. 【答案】−2510. 【答案】a,b和与差的乘积11. 【答案】012. 【答案】013. 【答案】当x=−2,y=1时,6x2−5y+7=6×(−2)2−5+7=26;当x=2,y=1时,6x2−5y+7=6×22−5+7=26.计算结果也是正确的.因为(−2)2=22.14. 【答案】(1) 1.83米(2) 1.56米。
七年级数学上册《第一章丰富的图形世界》单元测试卷及答案-北师大版一、选择题1.将下列平面图形绕轴旋转一周,可以得到图中所示的立体图形是()A.B.C.D.2.如图是正方体的一种展开图,表面上的语句为北京2022年冬奥会和冬残奥会的主题口号“一起向未来!”,那么在正方体的表面与“!”相对的汉字是()A.一B.起C.向D.来3.用一个平面分别去截球、圆柱、圆锥、正方体,截面形状不可能...是圆的几何体有()A.1个B.2个C.3个D.4个4.如图所示,几何体由6个大小相同的立方体组成,其俯视图是()A.B.C.D.5.下面四个立体图形中,从正面去观察它,得到的平面图形是三角形的是()A.B.C.D.6.在朱自清的《春》中描写春雨“像牛毛、像花针、像细丝,密密麻麻地斜织着”的语句,这里把雨看成了线,这说明了()A.点动成线B.线动成面C.面动成体D.以上都不对7.如图所示图形绕直线旋转一周,可以得到圆柱的是()A.B.C.D.8.某正方体的每一个面上都有一个汉字,如图是它的种表面展开图,那么在原正方体的表面上,与“洗”字相对的面上的汉字是()A.罩B.勤C.口D.戴9.用一个平面分别去截长方体,圆锥,三棱柱,圆柱,能得到截面是三角形的几何体有()A.1个B.2个C.3个D.4个10.学生玩一种游戏,需按墙上的空洞造型摆出相同姿势才能穿墙而过,否则会被墙推入水池,类似地,一个几何体恰好无缝隙地以3个不同形状的“姿势”穿过“墙”上的3个空洞,则该几何体为()A.B.C.D.二、填空题11.截一个几何体,截面的形状既与被截的几何体有关,还与截面的角度和方向有关.如图,截面平行于底面,则这个几何体的截面是.12.六棱柱有条棱.13.如图是一个正方体的平面展开图,正方体中相对的面上的数字或代数式互为相反数,则3x+2y 的值为.14.分别从正面、上面、左面观察下列物体,得到的平面图形完全相同的是(填写序号).三、解答题15.一个正方体.六个面上分别写着6个连续整数.且每两个相对面上的两个数的和都相等,如图所示.能看到的三个面上所写的数为16,19,20,问这6个整数的和为多少?16.如图所示的是一个正方体的表面展开图,折成正方体后其相对面上的两个数互为相反数,求a﹣b的值.17.把正方体的六个面分别涂上六种不同的颜色,并画上朵数不等的花,各面上的颜色与花的朵数情况见下表:颜色红黄蓝白紫绿花的朵数123456现将上述大小相同,颜色.花朵分布也完全相同的四个正方体拼成一个水平放置的长方体,如图所示.问:长方体的下底面共有多少朵花?18.如图,已知一个几何体的主视图与俯视图,求该几何体的体积.( 取3.14,单位: cm)四、综合题19.把棱长为1cm的若干个小正方体摆放成如图所示的几何体,然后在露出的表面上涂上颜色(不含底面)(1)该几何体中有小正方体?(2)其中两面被涂到的有个小正方体;没被涂到的有个小正方体;(3)求出涂上颜色部分的总面积.20.如图1所示,从大正方体中截去一个小正方体之后,可以得到图2的几何体.(1)设原大正方体的表面积为a,图2中几何体的表面积为b,那么a与b的大小关系是;A.a>b;B.a<b;C.a=b;D.无法判断.(2)小明说“设图1中大正方体的棱长之和为m,图2中几何体的各棱长之和为n,那么n比m 正好多出大正方体的3条棱的长度.”你认为小明的说法正确吗?为什么?(3)如果截去的小正方体的棱长为大正方体的棱长的一半,那么图3是图2几何体的表面展开图吗?如有错误,请予修正.21.如图是由棱长都为lcm的6块小正方体组成的简单几何体.(1)请在方格中画出该几何体的三个视图.(2)如果在这个几何体上再添加一些小正方体,并保持主视图和左视图不变,最多可以再添加块小正方体(3)直接写出添加最多的小正方体后该几何体的表面积(包含底面).参考答案与解析部分1.【答案】D【解析】【解答】A、绕轴旋转一周,得不到图中所示的立体图形,故不合题意;B、绕轴旋转一周,得不到图中所示的立体图形,故不合题意;C、绕轴旋转一周,得不到图中所示的立体图形,故不合题意;D、绕轴旋转一周,可得到图中所示的立体图形,故符合题意;故答案为:D.【分析】从运动的观点来看,点动成线,线动成面,面动成体,分别判断各选项即可求解. 2.【答案】A【解析】【解答】解:对于正方体的平面展开图中相对的面一定相隔一个小正方形,由图形可知,与“!”字相对的字是“一”.故答案为:A.【分析】根据正方体的展开图的特征“相对的面之间一定相隔一个正方形”并结合题意可求解. 3.【答案】A【解析】【解答】解:用一个平面分别去截球,截面形状是圆;用一个平面分别去截圆柱和圆锥,截面形状可能是圆;用一个平面分别去截正方体,截面形状不可能是圆;∴截面形状不可能是圆的几何体有1个.故答案为:A【分析】根据几何体的形状,可知用一个平面分别去截球,截面的形状一定是圆,用一个平面分别去截圆柱,圆锥截面形状可能是圆;用一个平面分别去截正方体,截面形状不可能是圆;据此可求解.4.【答案】C【解析】【解答】解:从上边看,底层是一个小正方形,上层是四个小正方形.故答案为:C.【分析】根据从上边看得到的图形是俯视图,可得答案.5.【答案】A【解析】【解答】解:A、从正面去观察,得到的平面图形是三角形,符合题意;B、从正面去观察,得到的平面图形是圆,不符合题意;C、从正面去观察,得到的平面图形是长方形,不符合题意;D、从正面去观察,得到的平面图形是长方形,不符合题意;故答案为:A【分析】根据三视图的定义求解即可。
北师大版七年级数学上册单元测试题全套(含答案)work Information Technology Company.2020YEAR北师大版七年级数学上册单元测试题全套(含答案)第一章检测卷一、选择题(每小题3分,共30分)1.下列几何体中,是圆柱的是( )2.下列几何体没有曲面的是( )A.圆锥 B.圆柱 C.球 D.棱柱3.如图,一平面经过圆锥的顶点截圆锥所得到的截面形状是( )4.下列说法错误的是( )A.长方体、正方体都是棱柱B.三棱柱的侧面是三角形C.直六棱柱有六个侧面,侧面均为长方形D.从正面、左面、上面看球体得到的图形均为同样大小的圆形5.如图,一个长方形绕轴l旋转一周得到的立体图形是( )A.棱锥 B.圆锥 C.圆柱 D.球第5题图第7题图6.如图是由六个相同的小正方体搭成的几何体,从正面看该几何体得到的平面图形是( )7.如图所示是某几何体从三个方向看到的图形,则这个几何体是( )A.三棱锥 B.圆柱 C.球 D.圆锥8.下列展开图不能叠合成无盖正方体的是( )9.如图,圆柱高为8,底面半径为2,若截面是长方形,则长方形的最大面积为( )A.16 B.20 C.32 D.18第9题图第10题图10.一个几何体由几个大小相同的小正方体搭成,其从左面看和从上面看得到的图形如图所示,则搭成这个几何体的小正方体的个数是( )A.3个 B.4个 C.5个 D.6个二、填空题(每小题3分,共18分)11.夜晚的流星划过天空时留下一道明亮的光线,由此说明了____________的数学事实.12.下面的几何体中,属于柱体的有______;属于锥体的有_____;属于球体的有______.13.用一个平面去截正方体,截面__________是三角形(填“可能”或“不可能”).14.如图,某长方体的底面是长为4cm,宽为2cm的长方形,如果从左面看这个长方体时看到的图形面积为6cm2,则这个长方体的体积等于________.第14题图第16题图15.用平面去截一个几何体,如果得到的是长方形,那么所截的这个几何体可能是________________(至少填两种).16.一个圆柱的侧面展开图为如图所示的长方形,则这个圆柱的底面面积为__________.三、解答题(共72分)17.(8分)下列图形中,上面是一些具体的实物,下面是一些立体图形,请找出与下面立体图形相类似的实物,用线连接起来.18.(9分)由7个相同的小立方块搭成的几何体如图所示,请画出从正面、左面、上面看到的几何体的形状图.19.(10分)小毅设计了某个产品的包装盒(如图所示),由于粗心少设计了其中一部分,请你把它补上,使其成为一个两面均有盖的正方体盒子.(1)共有________种添补的方法;(2)任意画出一种成功的设计图.20.(10分)一个几何体从三个方向看到的图形如图所示(单位:cm).(1)写出这个几何体的名称:________;(2)若其从上面看为正方形,根据图中数据计算这个几何体的体积.21.(12分)如图①,把一张长10厘米、宽6厘米的长方形纸板分成两个相同的直角三角形.(1)甲三角形(如图②)旋转一周,可以形成一个怎样的几何体它的体积是多少立方厘米(2)乙三角形(如图③)旋转一周,可以形成一个怎样的几何体它的体积是多少立方厘米22.(11分)用5个相同的正方体搭出如图所示的组合体.(1)分别画出从正面、左面、上面看这个组合体时看到的图形;(2)如果在这个组合体中,再添加一个相同的正方体组成一个新组合体,从正面、左面看这个新组合体时,看到的图形与原来相同.你认为这个设想能实现吗?若能,画出添加正方体后,从上面看这个组合体时看到的图形;若不能,说明理由.23.(12分)如图所示,图①为一个正方体,其棱长为10,图②为图①的表面展开图(数字和字母写在外表面上,字母也可以表示数),请根据要求回答问题:(1)如果正方体相对面上的两个数字之和相等,则x=________,y=________;(2)如果面“2”是右面,面“4”在后面,则上面是________(填“6”“10”“x”或“y”);(3)图①中,M,N为所在棱的中点,试在图②中找出点M,N的位置,并求出图②中三角形ABM的面积.参考答案与解析1.A 2.D 3.B 4.B 5.C 6.B 7.D 8.C 9.C10.B 解析:由图可知,底层有3个小正方体,第2层有1个小正方体.故搭成这个几何体的小正方体的个数是3+1=4(个).11.点动成线12.①③⑤⑥④②13.可能14.24cm315.圆柱、长方体(答案不唯一)16.4π或π解析:(1)当底面周长为4π时,半径为4π÷π÷2=2,底面圆的面积为π×22=4π;(2)当底面周长为2π时,半径为2π÷π÷2=1,底面圆的面积为π×12=π.故其底面圆的面积为4π或π.17.解:如图所示.18.解:如图所示.19.解:(1)4(2)答案不唯一,如图.20.解:(1)长方体(2)由题可知,长方体的底面是边长为3cm 的正方形,高是4cm ,则这个几何体的体积是3×3×4=36(cm 3). 答:这个几何体的体积是36cm 3.21.解:(1)甲三角形旋转一周可以形成一个圆锥体,它的体积是13×3.14×62×10=376.8(立方厘米).(2)乙三角形旋转一周可以形成一个空心的圆柱,它的体积是 3.14×62×10-13×3.14×62×10=753.6(立方厘米).22.解:(1)画出的图形如图①所示.(2)能实现.(6分)添加正方体后从上面看到的图形如图②所示,有两种情况.23.解:(1)12 8 (2)6(3)有两种情况.如图甲,三角形ABM 的面积为12×10×5=25.如图乙,三角形ABM 的面积为12×(10+10+5)×10=125.∴三角形ABM 的面积为25或125.第二章检测卷一、选择题1.如果温泉河的水位升高0.8m 时水位变化记作+0.8m ,那么水位下降0.5m 时水位变化记作( ) A .0m B .0.5m C .-0.8m D .-0.5m 2.下列四个数中,最大的数是( ) A .-2 B.13C .0D .63.一天早晨的气温是-10℃,中午的气温比早晨上升了8℃,中午的气温是( ) A .8℃ B.-2℃ C .18℃ D.-8℃4.如图,数轴上有A ,B ,C ,D 四个点,其中表示2的相反数的点是( )A .点AB .点BC .点CD .点D5.用计算器计算230,按键顺序正确的是( ) A.30xy2= B.xy302= C.230xy= D.2xy30=6.下列各式中,计算正确的是( )A .(-5.8)-(-5.8)=-11.6B .[(-5)2+4×(-5)]×(-3)2=45 C .-23×(-3)2=72 D .-42÷14×14=-17.将一把刻度尺按如图所示放在数轴上(数轴的单位长度是1cm),刻度尺上的“0cm”和“8cm”分别对应数轴上的-3.6和x ,则x 的值为( )A .4.2B .4.3C .4.4D .4.58.有理数a 、b 在数轴上的对应点如图所示,则下列式子中错误的是( )A .ab >0B .a +b <0 C.a b<1 D .a -b <09.已知|a +1|与|b -4|互为相反数,则a b的值是( ) A .-1 B .1 C .-4 D .410.已知点A 是数轴上的一点,且点A 到原点的距离为2,把点A 沿数轴向右移动5个单位得到点B ,则点B 表示的有理数是( )A .7B .-3C .7或3D .-7或-3二、填空题11.在0,1,-2,-3.5这四个数中,是负整数的为________. 12.|-0.3|的相反数等于________.13.某公司在埃及新投产一座鸡饲料厂,年生产的饲料可饲养57000000只肉鸡,这个数据用科学记数法可表示为____________只.14.计算:-22-(-2)2=________.15.如图是一个简单的数值运算程序.当输入x 的值为-1时,则输出的数值为________.输入x ―→×(-3)―→-2―→输出16.数轴上表示整数的点叫作整点.某数轴的单位长度为1厘米,若在这条数轴上随意画出一条长度为2016厘米的线段,则线段盖住的整点个数为______________.三、解答题(共72分) 17.(12分)计算:(1)(-2)2×5-(-2)3÷4; (2)-24×⎝ ⎛⎭⎪⎫-56+38-112;(3)⎝ ⎛⎭⎪⎫-56+23÷⎝ ⎛⎭⎪⎫-712×72; (4)[-33×2+(-3)2×4-5×(-2)3]÷⎝ ⎛⎭⎪⎫-142.18.(8分)画出数轴,在数轴上表示下列各数,并用“>”把它们连接起来. -⎝ ⎛⎭⎪⎫-412,-2,0,(-1)2,|-3|,-313.19.(10分)水浮莲是一种生长速度非常快的水生植物,如果在某个池塘中水浮莲每5天能生长到原来面积的3倍,那么面积是1平方米的水浮莲大约经过第几个5天就能覆盖700平方米的池塘?20.(10分)如图,一只蚂蚁从点A 沿数轴向右爬了2个单位长度到达点B ,点A 表示-112,设点B 所表示的数为m . (1)求m 的值;(2)求|m -1|+(m -6)2的值.21.(10分)已知a ,b 均为有理数,现我们定义一种新的运算,规定:a #b =a 2+ab -5,例如:1#2=12+1×2-5=-2.求:(1)(-3)#6的值;(2)⎣⎢⎡⎦⎥⎤2#⎝ ⎛⎭⎪⎫-32-[(-5)#9]的值.22.(10分)有20筐白菜,以每筐25千克为标准,超过或不足的千克数分别用正、负数来表示,记录如下:(1)20(2)与标准重量比较,20筐白菜总计超过或不足多少千克?(3)若白菜每千克售价2.6元,则出售这20筐白菜可卖多少元(结果保留整数)23.(12分)下表给出了某班6名同学的身高情况(单位:cm).(1)(2)他们6人中最高身高比最矮身高高多少?(3)如果身高达到或超过平均身高时叫达标身高,那么这6名同学身高的达标率是多少?参考答案与解析1.D 2.D 3.B 4.A 5.D 6.B 7.C 8.C 9.B10.C 解析:根据题意,点A表示的数是-2或2,当点A表示的数是-2时,点B表示的数是3;当点A表示的数是2时,点B表示的数是7.故点B表示的有理数是3或7.11.-2 12.-0.3 13. 5.7×10714.-8 15. 116.2016或2017个 解析:当线段的起点恰好是一个整点时,盖住的整点个数为2017个,其他情况下,盖住的整点个数为2016个.故线段盖住的整点个数为2016或2017个.17.解:(1)原式=22.(3分)(2)原式=13. (3)原式=1.(4)原式=352. 18.解:如图所示.由数轴得-⎝ ⎛⎭⎪⎫-412>|-3|>(-1)2>0>-2>-313.19.解:假设1平方米的水浮莲经过n 个5天后能覆盖700平方米的池塘,则n 个5天后水浮莲的面积为3n平方米.当n =5时,水浮莲的面积为35=243(平方米); 当n =6时,水浮莲的面积为36=729(平方米).因为243<700<729,所以面积是1平方米的水浮莲经过第6个5天就能覆盖700平方米的池塘. 20.解:(1)m =-112+2=12.(2)|m -1|+(m -6)2=⎪⎪⎪⎪⎪⎪12-1+⎝ ⎛⎭⎪⎫12-62=12+1214=1234.21.解:(1)(-3)#6=(-3)2+(-3)×6-5=9-18-5=-14.(2)⎣⎢⎡⎦⎥⎤2#⎝ ⎛⎭⎪⎫-32-[(-5)#9]=[22+2×⎝ ⎛⎭⎪⎫-32-5]-[(-5)2+(-5)×9-5]=(4-3-5)-(25-45-5)=-4+25=21.22.解:(1)最重的一筐超过2.5千克,最轻的差3千克,2.5-(-3)=5.5(千克). 答:最重的一筐比最轻的一筐重5.5千克.(2)1×(-3)+4×(-2)+2×(-1.5)+3×0+2×1+8×2.5=-3-8-3+2+20=8(千克). 答:20筐白菜总计超过8千克.(3)2.6×(25×20+8)=1320.8≈1321(元). 答:出售这20筐白菜可卖1321元.23.解:(1)根据题意得,班级的平均身高为166cm ,则表格中从左到右,从上到下依次填:168 163 170 0 +6(5分)(2)根据题意得172-163=9(cm). 答:他们6人中最高身高比最矮身高高9cm. (3)根据题意得46×100%≈67%.答:这6名同学身高的达标率约是67%.第三章检测卷一、选择题(每小题3分,共30分) 1.下列各式:①2x -1;②0;③S =πR 2;④x <y ;⑤s t;⑥x 2.其中代数式有( ) A .3个 B .4个 C .5个 D .6个 2.单项式-2xy 3的系数与次数分别是( ) A .-2,4 B .2,3 C .-2,3 D .2,4 3.在下列单项式中,与2xy 是同类项的是( ) A .2x 2y 2B .3yC .xyD .4x4.小芳在纸上画了大小不等的两个圆,并量得小圆的半径为5cm.如果大圆的半径比小圆的半径多a cm ,则大圆面积比小圆面积多( )A .25πcm 2B .πa 2cm 2C .π(a +5)2cm 2D .[π(a +5)2-25π]cm 25.当a =12,b =1时,代数式a 2+3ab -b 2的值为( )A.14B.12C.34D.54 6.下面计算正确的是( ) A .3x 2-x 2=3 B .3a 2+2a 3=5a 5C .3+x =3xD .-0.75ab +34ba =07.按如图所示的运算程序,能使输出结果为3的x ,y 的值是( )A .x =5,y =-2B .x =3,y =-3C .x =-4,y =2D .x =-3,y =-98.已知-4x a y +x 2y b =-3x 2y ,则a +b 的值为( ) A .1 B .2 C .3 D .49.若m -n =1,则(m -n )2-2m +2n 的值是( ) A .3 B .2 C .1 D .-110.填在下面各正方形中的四个数之间都有相同的规律,根据这种规律,m 的值应是( )A .110B .158C .168D .178 二、填空题(每小题3分,共18分)11.钢笔每支a 元,铅笔每支b 元,买2支钢笔和3支铅笔共需________元.12.当a =1,b =-2时,代数式2a +12b 2的值是________.13.已知x 2+3x 的值为6,则代数式3x 2+9x -12=________. 14.若-7xm +2y 与-3x 3y n 是同类项,则m =________,n =________.15.一个三角形一条边长为a +b ,另一条边比这条边长2a +b ,第三条边比这条边短3a -b ,则这个三角形的周长为____________.16.规定⎪⎪⎪⎪⎪⎪ab cd =ad -bc ,若⎪⎪⎪⎪⎪⎪-5 3x 2+52 x 2-3=6,则-11x 2+6=________. 三、解答题(共72分) 17.(8分)计算:(1)2(m 2-n 2+1)-2(m 2+n 2)+mn ; (2)3a -2b -[-4a +(c +3b )].18.(12分)化简求值:(1)(3a 2-8a )+(2a 2-13a 2+2a )-2(a 3-3),其中a =-2; (2)3x 2y -⎣⎢⎡⎦⎥⎤2xy 2-2⎝ ⎛⎭⎪⎫xy -32x 2y +xy +3xy 2,其中x =3,y =-13.19.(10分)老师在黑板上书写了一个正确的验算过程,随后用手掌捂住了一个二次三项式,形式如下:(1)求所捂的二次三项式;(2)若-x 2+2x =1,求所捂二次三项式的值.20.(10分)一个花坛的形状如图所示,它的两端是半径相等的半圆,求:(1)花坛的周长l;(2)花坛的面积S;(3)若a=8m,r=5m,求此时花坛的周长及面积(π取3.14).21.(10分)若代数式(4x2-mx-3y+4)-(8nx2-x+2y-3)的值与字母x的取值无关,求代数式(-m2+2mn-n2)-2(mn-3m2)+3(2n2-mn)的值.22.(10分)某公司的某种产品由一家商店代销,双方协议不论这种产品销售情况如何,该公司每月给商店a元代销费,同时商店每销售一件产品有b元提成,该商店一月份销售了m件,二月份销售了n件.(1)用式子表示这两个月公司应付给商店的钱数;(2)假设代销费为每月200元,每件产品的提成为2元,该商店一月份销售了200件,二月份销售了250件,求该商店这两个月销售此种产品的收益.23.(12分)用三角形和六边形按如图所示的规律拼图案.(1)第4个图案中,三角形的个数有________个,六边形的个数有________个;(2)第n(n为正整数)个图案中,三角形的个数与六边形的个数各有多少个?(3)第2017个图案中,三角形的个数与六边形的个数各有多少个?(4)是否存在某个符合上述规律的图案,其中有100个三角形与30个六边形?如果有,指出是第几个图案;如果没有,说明理由.参考答案与解析1.B 2.A 3.C 4.D 5.C 6.D 7.D 8.C 9.D10.B 解析:根据排列规律可知10下面的数是12,10右面的数是14.∵8=2×4-0,22=4×6-2,44=6×8-4,∴m=12×14-10=158.故选B.11.(2a+3b) 12. 4 13. 614.1 1 15. 2a +5b 16. 7 17.解:(1)原式=-4n 2+mn +2. (2)原式=7a -5b -c .18.解:(1)原式=3a 2-8a +2a 2-13a 2+2a -2a 3+6=-2a 3-8a 2-6a +6.当a =-2时,原式=-2×(-2)3-8×(-2)2-6×(-2)+6=2.(2)原式=3x 2y -2xy 2+2xy -3x 2y -xy +3xy 2=xy 2+xy .当x =3,y =-13时,原式=3×⎝ ⎛⎭⎪⎫-132+3×⎝ ⎛⎭⎪⎫-13=-23.19.解:(1)所捂的二次三项式为x 2-2x +1.(2)若-x 2+2x =1,则x 2-2x +1=-(-x 2+2x )+1=-1+1=0. 20.解:(1)l =2πr +2a . (2)S =πr 2+2ar .(3)当a =8m ,r =5m 时,l =2π×5+2×8=10π+16≈47.4(m),S =π×52+2×8×5=25π+80≈158.5(m 2). 21.解:(4x 2-mx -3y +4)-(8nx 2-x +2y -3) =4x 2-mx -3y +4-8nx 2+x -2y +3 =(4-8n )x 2+(1-m )x -5y +7. ∵上式的值与字母x 的取值无关, ∴4-8n =0,1-m =0,即m =1,n =12.∴原式=-m 2+2mn -n 2-2mn +6m 2+6n 2-3mn =5m 2+5n 2-3mn =194.22.解:(1)这两个月公司应付给商店的钱数为[2a +(m +n )b ]元. (2)当a =200,b =2,m =200,n =250时,2a +(m +n )b =1300(元). 答:该商店这两个月销售此种产品的收益为1300元. 23.解:(1)10 4.(2)观察发现,第1个图案中有4个三角形与1个六边形,以后每个图案都比它前一个图案增加2个三角形与1个六边形,则第n 个图案中三角形的个数为4+2(n -1)=(2n +2)个,六边形的个数为n . (3)第2017个图案中,三角形的个数为2×2017+2=4036(个),六边形的个数为2017个.(4)不存在.理由如下:假设存在这样的一个图案,其中有30个六边形,则这个图案是第30个图案,而第30个图案中三角形的个数为2×30+2=62≠100,所以这样的图案不存在.第四章检测卷一、选择题(每小题3分,共30分) 1.下列各直线的表示法中,正确的是( )A .直线ab B.直线Ab C.直线A D.直线AB2.下图中射线OA 与OB 表示同一条射线的是( )3.如图,OC 是∠AOB 的平分线,若∠AOC =75°,则∠AOB 的度数为( ) A .145° B.150° C.155° D.160°第3题图 第4题图4.如图,点C 在线段AB 上,点D 是AC 的中点,如果CD =3cm ,AB =10cm ,那么BC 的长度是( ) A .3cm B .3.5cm C .4cm D .4.5cm5.从五边形的一个顶点出发,分别连接这个点与其余各顶点,可以把五边形分割成几个三角形( ) A .2个B.3个C.4个D.5个6.若∠A =25°18′,∠B =25°19′1″,∠C =25.31°,则( ) A .∠A >∠B >∠C B .∠B >∠A >∠C C .∠B >∠C >∠A D .∠C >∠B >∠A7.如图,C 是线段AB 的中点,D 是CB 上一点,下列说法中错误的是( ) A .CD =AC -BD B .CD =12BC C .CD =12AB -BD D .CD =AD -BC第7题图8.用A ,B ,C 分别表示学校、小明家、小红家,已知学校在小明家的南偏东25°,小红家在小明家的北偏东35°,则∠ABC 等于( )A .35° B.120° C.105° D.115°9.如图,将一张长方形纸片对折,然后剪下一个角,如果剪出的角展开后是一个直角,那么剪口线与折痕AB 形成的夹角度数是( )A .180° B.90° C.45° D.22.5°第9题图 第10题图10.如图,一条流水生产线上L 1、L 2、L 3、L 4、L 5处各有一名工人在工作,现要在流水生产线上设置一个零件供应站P ,使五人到供应站P 的距离总和最小,这个供应站设置的位置是( )A .L 2处B .L 3处C .L 4处D .生产线上任何地方都一样 二、填空题(每小题3分,共18分)11.开学整理教室时,老师总是先把每一列最前和最后的课桌摆好,然后再依次摆中间的课桌,一会儿一列课桌摆在一条线上,整整齐齐,这是因为 . 12.如图,图中的线段共有 条,直线共有 条.第12题图13.一个圆被分为1∶5两部分,则较大的弧所对的圆心角是 .14.如图,OA 的方向是北偏东15°,OB 的方向是北偏西40°,若∠AOC =∠AOB ,则OC 的方向是 .第14题图 第15题图15.如图,在∠AOB 中,OD 是∠BOC 的平分线,OE 是∠AOC 的平分线,若∠AOB =135°,则∠EOD = .16.已知A ,B ,C 是直线l 上的三点,且线段AB =9cm ,BC =13AB ,那么A ,C 两点的距离是 .三、解答题(共72分) 17.(12分)计算:(1)48°39′+67°33′; (2)15°24′+32°47′-6°55′;(3)13°53′×3-32°5′31″; (4)50°24′×3+98°12′25″÷5.18.(8分)如图,∠AOC 为直角,OC 是∠BOD 的平分线,且∠AOB =35°,求∠AOD 的度数.19.(10分)如图所示,已知点A,B,请你按照下列要求画图(延长线都画成虚线).(1)过点A,B画直线AB,并在直线AB上方任取两点C,D;(2)画射线AC,线段CD;(3)延长线段CD,与直线AB相交于点M;(4)画线段DB,反向延长线段DB,与射线AC相交于点N.20.(10分)如图所示,OB是∠AOC的平分线,OD是∠COE的平分线.(1)若∠AOB=50°,∠DOE=35°,求∠BOD的度数;(2)若∠AOE=160°,∠COD=40°,求∠AOB的度数.21.(10分)如图,点C是线段AB上一点,M是线段AC的中点,N是线段BC的中点.(1)如果AB=10cm,AM=3cm,求CN的长;(2)如果MN=6cm,求AB的长.22.(10分)小明家O,学校A和公园C的平面示意图如图所示,图上距离OA=2cm,OC=2.5cm.(1)学校A、公园C分别在小明家O的什么方向上?(2)若学校A到小明家O的实际距离是400m,求公园C到小明家O的实际距离.23.(12分)如图①,将一副三角板的两个锐角顶点放到一块,∠AOB =45°,∠COD =30°,OM ,ON 分别是∠AOC ,∠BOD 的平分线.(1)当∠COD 绕着点O 逆时针旋转至射线OB 与OC 重合时(如图②),则∠MON 的大小为 ;(2)如图③,在(1)的条件下,继续绕着点O 逆时针旋转∠COD ,当∠BOC =10°时,求∠MON 的大小,写出解答过程;(3)在∠COD 绕点O 逆时针旋转过程中,∠MON = °.参考答案与解析1.D 2.B 3.B 4.C 5.B 6.C 7.B 8.B 9.C 10.B11.两点确定一条直线 12. 3 1 13. 300° 14.北偏东70° 15. 67.5° 16.6cm 或12cm 解析:如图,应分两种情况:(1)当点C 在点B 左侧时,AC =AB -BC =9-13×9=6(cm);(2)当点C 在点B 右侧时,AC =AB +BC =9+13×9=12(cm).故A ,C 两点的距离为6cm 或12cm.17.解:(1)原式=116°12′.(2)原式=41°16′. (3)原式=9°33′29″.(4)原式=170°50′29″.18.解:∵∠AOC 为直角,∴∠AOC =90°,∴∠BOC =∠AOC -∠AOB =90°-35°=55°.又OC 平分∠BOD ,∴∠COD =∠BOC =55°,∴∠AOD =∠AOC +∠COD =90°+55°=145°. 19.解:答案不唯一,例如画出的图形如图所示.20.解:(1)∵OB 是∠AOC 的平分线,OD 是∠COE 的平分线, ∴∠COB =∠BOA =50°,∠COD =∠DOE =35°, ∴∠BOD =∠COB +∠COD =50°+35°=85°.(2)∵OD 是∠COE 的平分线,∴∠COE =2∠COD =2×40°=80°, ∴∠AOC =∠AOE -∠COE =160°-80°=80°.又∵OB 是∠AOC 的平分线,∴∠AOB =12∠AOC =12×80°=40°.21.解:(1)∵M 是线段AC 的中点,∴CM =AM =3cm ,AC =6cm. 又AB =10cm ,∴BC =4cm.∵N 是线段BC 的中点,∴CN =12BC =12×4=2(cm).(2)∵M 是线段AC 的中点,N 是线段BC 的中点, ∴NC =12BC ,CM =12AC .∴MN =NC +CM =12BC +12AC =12(BC +AC )=12AB ,∴AB =2MN =2×6=12(cm).22.解:(1)∵∠NOA =90°-45°=45°,∠CON =90°-60°=30°, ∴学校A 在小明家O 的北偏东45°方向,公园C 在小明家O 的北偏西30°方向. (2)∵学校A 到小明家O 的实际距离是400m ,且OA =2cm , ∴平面图上1cm 代表的实际距离是200m ,∴平面图上2.5cm 代表的实际距离是2.5×200=500(m). 故公园C 到小明家O 的实际距离是500m. 23.解:(1)37.5°(2)当绕着点O 逆时针旋转∠COD ,∠BOC =10°时,∠AOC =55°,∠BOD =40°, ∴∠BON =12∠BOD =20°,∠MOB =12∠AOC -∠BOC =27.5°-10°=17.5°,∴∠MON =∠MOB +∠BON =17.5°+20°=37.5°.(3)37.5 解析:∠AOC =∠AOB +∠BOC ,∠BOD =∠COD +∠BOC ,又OM ,ON 分别是∠AOC ,∠BOD 的平分线,∠AOB =45°,∠COD =30°,∴∠MOC =12∠AOC =12(∠AOB +∠BOC ),∠CON =12∠BOD -∠BOC ,∴∠MON =∠MOC +∠CON =12(∠AOB +∠BOC )+12∠BOD -∠BOC =12∠AOB +12(∠BOD -∠BOC )=12∠AOB +12∠COD =37.5°.第五章检测卷一、选择题(每小题3分,共30分) 1.下列方程中,是一元一次方程的是( )A .x 2-4x =3 B .3x -1=x2 C .x +2y =1 D .xy -3=52.方程-2x +3=0的解是( )A .x =23B .x =-23C .x =32D .x =-323.方程3x +2x -13=3-x +12去分母正确的是( )A .18x +2(2x -1)=18-3(x +1)B .3x +2(2x -1)=3-(x +1)C .18x +(2x -1)=18-(x +1)D .3x +2(2x -1)=3-3(x +1) 4.下列说法错误的是( )A .若x a =y a,则x =y B .若x 2=y 2,则-4ax 2=-4ay 2C .若a =b ,则a -3=b -3D .若ac =bc ,则a =b5.一元一次方程12x -1=2的解表示在数轴上,是图中数轴上的哪个点( )A .D 点B .C 点 C .B 点D .A 点6.已知x =-3是方程k (x +4)-2k -x =5的解,则k 的值是( ) A .-2 B .2 C .3 D .57.某班分两组去两处植树,第一组22人,第二组26人.现第一组在植树中遇到困难,需第二组支援.问从第二组调多少人去第一组才能使第一组的人数是第二组的2倍?设抽调x 人,则可列方程( ) A .22+x =2×26 B .22+x =2(26-x ) C .2(22+x )=26-x D .22=2(26-x )8.小马虎在做作业时,不小心将方程中的一个常数污染了,被污染的方程是2(x -3)-●=x +1,怎么办呢?他想了想便翻看书后的答案,方程的解是x =9,那么这个被污染的常数是( ) A .1 B .2 C .3 D .49.某种商品因换季准备打折出售,如果按原定价的七五折出售,将赔25元,而按原定价的九折出售,将赚20元,则这种商品的原价是( )A .500元B .400元C .300元D .200元10.如图,在长方形ABCD 中,AB =10cm ,BC =6cm ,动点P ,Q 分别从点A ,B 同时出发,点P 以3cm/s 的速度沿AB ,BC 向点C 运动,点Q 以1cm/s 的速度沿BC 向点C 运动.设P ,Q 运动的时间是t 秒,当点P 与点Q 重合时t 的值是( )A.52B .4C .5D .6二、填空题(每小题3分,共18分) 11.已知方程2xm -3+3=5是关于x 的一元一次方程,则m =________.12.2x =3(5-x )的解是________.13.若a 3+1与2a -73互为相反数,则a =________.14.定义运算“&”:a &b =2a +b ,则满足x &(x -6)=0的x 的值为________.15.一个两位数,个位数字是十位数字的4倍,如果把个位数字与十位数字对调,那么得到的新数比原数大54,则原数为________.16.一艘轮船航行于A ,B 两个码头之间,顺水航行需3小时,逆水航行需5小时.已知水流速度为4千米/时,则两码头之间的距离为________千米. 三、解答题(共72分) 17.(8分)解方程:(1)2(x +3)=-3(x -1)+2; (2)1-x 3-x =3-x +24.18.(8分)当x 为何值时,式子5x +12-3x 的值比式子7x -53的值大5?19.(10分)若方程2x -35=23x -2与关于x 的方程3n -14=3(x +n )-2n 的解相同,求(n -3)2的值.20.(10分)根据以下对话,分别求小红所买的笔和笔记本的价格.21.(12分)根据下面的两种移动电话计费方式表,解答下列问题:(1)(2)若某人预计一个月内使用本地通话费90元,则应该选择哪种通讯方式较合算?22.(12分)如图,线段AB=60厘米.(1)点P沿线段AB自A点向B点以4厘米/分的速度运动,同时点Q沿线段自B点向A点以6厘米/分的速度运动,几分钟后,P,Q两点相遇?(2)几分钟后,P,Q两点相距20厘米?23.(12分)若干个3的倍数按照一定的规律排成下表,用如图所示的正方形框出四个数.(1)如果框出的四个数的和是1158,你能确定四个数分别是多少吗?(2)你认为能否框出四个数,使这四个数的和是190.请说明理由.参考答案与解析1.B 2.C 3.A 4.D 5.A 6.A 7.B 8.B 9.C10.C 解析:当点P 与点Q 重合时有3t -t =10,解得t =5,故选C. 11.4 12.x =3 13.4314. 2 15. 2816.60 解析:设船在静水中的速度为x 千米/时,由题意可得3(x +4)=5(x -4),解得x =16,所以两码头之间的距离为3×(16+4)=60(千米).17.解:(1)x =-15.(2)x =-2.18.解:根据题意,得5x +12-3x -7x -53=5,解得x =-1.19.解:解方程2x -35=23x -2得x =214.把x =214代入3n -14=3(x +n )-2n ,解得n =8.所以(n -3)2=25.20.解:设笔的价格为x 元/支,则笔记本的价格为3x 元/本. 由题意得10x +5×3x =30,解得x =1.2,3x =3.6. 答:笔的价格为1.2元/支,笔记本的价格为3.6元/本.21.解:(1)设一个月内本地通话x 分钟时,两种通讯方式的费用相同,由题意得25+0.2x =0.3x ,解得x =250. 答:一个月内本地通话250分钟时,两种通讯方式的费用相同.(2)设一个月内本地通话y 分钟时,“全球通”:25+0.2y =90,解得y =325.“神州行”:0.3y =90,解得y =300.∵325>300,∴选择全球通比较合算.22.解:(1)设经过x 分钟后,P ,Q 两点相遇,依题意得4x +6x =60,解得x =6. 答:经过6分钟后,P ,Q 两点相遇.(2)设经过y 分钟后,P ,Q 两点相距20厘米,依题意得①4y +6y +20=60,解得y =4; ②4y +6y -20=60,解得y =8.答:经过4或8分钟后,P 、Q 两点相距20厘米.23.解:(1)设四个数中最小的一个数是x ,那么其余的三个数分别表示为x +3,x +30,x +33.根据题意得x +(x +3)+(x +30)+(x +33)=1158.即4x +66=1158,解得x =273.所以x +3=276,x +30=303,x +33=306,即这四个数分别是273,276,303,306.(2)不能框出四个数,使这四个数的和是190,理由如下:由(1)可知,若设四个数中最小的为y ,则有4y +66=190,解得y =31.而31不是3的倍数,所以不在此数表中,因此不能框出四个数,使这四个数的和是190.第六章检测卷一、选择题(每小题3分,共30分) 1.下面调查中,适合采用普查的是( )A .调查全国中学生心理健康现状B .调查你所在班级同学的身高情况C .调查我市食品的合格情况D .调查《人民的民义》的收视率 2.下列选项中,能显示部分在总体中所占百分比的统计图是( ) A .扇形图 B .条形图 C .折线图 D .直方图3.某校为了解360名七年级学生的体重情况,从中抽取了60名学生进行测量,下列说法正确的是( )A.总体是360 B.样本容量是60C.样本是60名学生 D.个体是每个学生4.如图是某手机店今年1~5月份音乐手机销售额统计图.根据图中信息,可以判断相邻两个月音乐手机销售额变化最大的是( )A.1月至2月 B.2月至3月 C.3月至4月 D.4月至5月第4题图第5题图5.湘西某县有68万人口,各民族所占比例如图所示,则该县少数民族人口共有( )A.30.0万 B.37.4万 C.30.6万 D.40.0万6.如图是七年级(1)班参加课外兴趣小组人数的扇形统计图,则表示唱歌兴趣小组人数的扇形的圆心角度数是( ) A.36° B.72° C.108° D.180°第6题图第7题图7.如图是某班一次数学测验成绩的频数直方图,则数学成绩在69.5~89.5分范围内的学生共有( )A.24人 B.10人 C.14人 D.29人8.频数直方图由五个小长方形组成,且五个小长方形的高度之比是3∶5∶4∶2∶3.若第一小组的频数为12,则数据总数为( )A.60 B.64 C.68 D.729.为了解本校九年级学生的体能情况,随机抽查了其中30名学生,测试1分钟仰卧起坐的次数,并将其绘制成如图所示的频数直方图.那么仰卧起坐次数在25~30次的人数占抽查总人数的百分比是( )A.40% B.30% C.20% D.10%第9题图第10题图10.甲、乙两人参加某体育项目训练,为了便于研究,把最近五次的训练成绩绘制成如图所示的折线统计图,下面结论错误的是( )A.甲的第三、四次成绩相同 B.甲、乙两人第三次成绩相同C.甲的第四次成绩比乙的第四次成绩少2分 D.甲每次的成绩都比乙的高二、填空题(每小题3分,共18分)11.为了解北京火车站2017年“春运”期间每天的乘车人数,随机调查了2017年2月11~2月15日这5天的乘车人数,抽查的这5天中每天的乘车人数是这个调查的________.12.某超市对今年前两个季度每月销售总量进行统计,为了更清楚地看出销售总量的总趋势是上升还是下降,应选用________统计图来描述数据.13.对150名男生的身高进行测量,数据最大的是181厘米,最小的是164厘米.若画频数分布直方图时取组距为2厘米,则应将数据分成________组.14.某校根据去年九年级学生参加中考的数学成绩的等级,绘制成如图所示的扇形统计图,则图中表示A等级的扇形的圆心角的大小为________.第14题图第15题图第16题图15.为了解小学生的体能情况,抽取了某小学同年级学生进行跳绳测试,将所得数据整理后,画出如图所示的频数直方图.已知图中从左到右前三个小组所占的百分比分别是10%,30%,40%,第一小组的频数为5,则第四小组所占的百分比是________,参加这次测试的学生有________人.16.如图,整个圆表示某班参加课外活动的总人数,跳绳的人数占30%,表示踢毽的扇形圆心角是60°,踢毽和打篮球的人数比是1∶2,那么表示参加“其他”活动的人数占总人数的________.三、解答题(共72分)17.(8分)下面这几个抽样调查选取样本的方法是否合适?并说明理由.(1)为调查全校学生对购买正版书籍、唱片和软件的支持率,在全校所有的班级中,任意抽取8个班级,调查这8个班所有学生对购买正版书籍、唱片和软件的支持率;(2)为调查一个省的污染情况,调查省会城市的环境污染情况.18.(10分)在对某地区的一次人口抽样统计分析中,各年龄段(年龄为整数)的人数如下表所示.请根据此表回答下列问题:(1)(2)________岁年龄段的人数最多,________岁年龄段的人数最少;(3)年龄在60岁以上(含60岁)的频数是________,所占百分比是________;。
北师大版七年级数学上册单元测试第一章丰富的图形世界(总分:100分;时间:分)姓名学号成绩一、填空题(每空2分,共36分):1、圆锥是由________个面围成,其中________个平面,________个曲面。
2、在棱柱中,任何相邻的两个面的交线都叫做______,相邻的两个侧面的交线叫做_______。
3、从一个多边形的某个顶点出发,分别连接这个点和其余各顶点,可以把这个多边形分割成十个三角形,则这个多边形的边数为_____。
4、伟大的数学家欧拉发现并证明的关于一个多面体的顶点(V)、棱数(E)、面数(F)之间关系的公式为_______________。
5、已知三棱柱有5个面6个顶点9条棱,四棱柱有6个面8个顶点12条棱,五棱柱有7个面10个顶点15条棱,……,由此可以推测n棱柱有_____个面,____个顶点,_____条侧棱。
6、圆柱的表面展开图是________________________(用语言描述)。
7、圆柱体的截面的形状可能是________________________。
(至少写出两个,可以多写,但不要写错)8、用小立方块搭一几何体,使得它的主视图和俯视图如图所示,这样的几何体最少要_____个立方块,最多要____个立方块。
9、已知一不透明的正方体的六个面上分别写着1至6六个数字,如图是我们能看到的三种情况,那么1和5的对面数字分别是____和_____。
10、写出两个三视图形状都一样的几何体:_______、_________。
二、选择题(每题3分,共24分):11、下面几何体的截面图不可能是圆的是()A、圆柱B、圆锥C、球D、棱柱12、棱柱的侧面都是()A、三角形B、长方形C、五边形D、菱形13、圆锥的侧面展开图是()A、长方形B、正方形C、圆D、扇形14、一个直立在水平面上的圆柱体的主视图、俯视图、左视图分别是()A 长方形、圆、长方形B、长方形、长方形、圆C、圆、长方形、长方形D、长方形、长主形、圆15、将半圆绕它的直径旋转一周形成的几何体是()A、圆柱B、圆锥C、球D、正方体16、正方体的截面不可能是()A、四边形B、五边形C、六边形D、七边形17、如图,该物体的俯视图是()A 、B 、C 、D 、18、下列平面图形中不能围成正方体的是( )A 、B 、C 、D 、三、解答题(共40分):19、指出下列平面图形是什么几何体的展开图(6分):B20、如图,这是一个由小立方块塔成的几何体的俯视图,小正方形中的数字表示该位置的小立方块的个数。
北师大版七年级数学上册各单元同步测试题【精品全套】第一章丰富的图形世界------ 第1课时 班级 姓名1. 图形是由________,__________,____________构成的.2. 物体的形状似于圆柱的有________________;类似于圆锥的有______________;类似于球的有_________________.3. 围成几何体的侧面中,至少有一个是曲面的是有_____________.4. 正方体有_____个顶点,经过每个顶点有_________条棱,这些棱都____________.5. 圆柱,圆锥,球的共同点是_____________________________.6. 假如我们把笔尖看作一个点,当笔尖在纸上移动时,就能画出线,说明了______________,时钟秒针旋转时,形成一个圆面,这说明了_______________,三角板绕它的一条直角边旋转一周,形成一个圆锥体,这说明了___________________.7、一个六棱柱共有 条棱,如果六棱柱的底面边长都是2cm ,侧棱长都是4cm ,那么它所有棱长的和是 cm.8、图1-1是由( )图形饶虚线旋转一周形成的9、图1-2绕虚线旋转一周形成的图形是 ( )10、如图所示的几何体是由一个正方体截去41后而形成的,这个几何体是由个面围成的,其中正方形有个,长方形有个.11、在正方体的六个面上分别涂上红、黄、蓝、白、黑、绿六种颜色,现有涂色方式完全相同的四个正方体,如图拼成一个长方体,请判断涂红、黄、白三种颜色的对面分别涂着哪一种颜色?12、如图,已知一个正方体的六个面上分别写着六个连续的整数,且每两个相对面上的两个数的和都相等,图中所能看到的数是16,19和20,求这6个整数的和.13.如图一长方体土地,用两条直线把它分成形状相同,大小相等的四块,你能做到吗,能用不同的方法完成这个任务吗?14、一个圆绕着它的直径的直线旋转一周就形成球体,那么现有一个长方形如图,你有几种方法使它类似于圆柱的几何体?请你画出这些立体圆形第一章丰富的图形世界------ 第2课时展开与折叠(1)班级姓名1,如图,把左边的图形折叠起来,它会变为()2,下面图形经过折叠不能围成棱柱()3,如图,把左边的图形折叠起来,它会变成()4,一个几何体的边面全部展开后铺在平面上,不可能是()A.一个三角形B.一个圆C.三个正方形D.一个小圆和半个大圆5、如果有一个正方体,它的展开图可能是下面四个展开图中的()二、填空题:1、侧面可以展开成一长方形的几何体有;圆锥的侧面展开后是一个;各个面都是长方形的几何体是;棱柱两底面的形状,大小,所有侧棱长都. 2、用一个边长为4cm的正方形折叠围成一个四棱柱的侧面,若该四棱柱的底面是一个正方形,则此正方形边长为cm.3、这个棱柱的底面是_______边形。
第一章丰富的图形世界时间:45分钟分值:100分一、选择题(每题5分,共35分)1.下列四个图形中,是三棱柱的平面展开图的是(B)A B C D2.下面的几何体中,从正面看为三角形的是(C)A B C D解析:A.主视图是长方形;B.主视图是长方形;C.主视图是三角形;D.主视图是正方形,中间还有一条线.故选C.3.一个正方体的表面展开图如图所示,六个面上各有一字,连起来的意思是“预祝中考成功”,把它折成正方体后,与“成”相对的字是(B)A.中B.功C.考D.祝解析:这是一个正方体的平面展开图,共有六个面,其中面“成”与面“功”相对,面“预”与面“祝”相对,面“中”与面“考”相对,故选B.4.如图,由5个完全相同的小正方体组合成一个立体图形,从它的左边看到的图形是(B)A B C D5.下列几何体中,有一个几何体,从它的上面看到的形状图与其他三个不一样,这个几何体是(A)6.如图是一个正方体被截去一角后得到的几何体,它从上面看的形状图是(A)7.如图是一个由相同小立方块搭成的几何体从上面看到的形状图,小正方形中的数字表示在该位置上的小立方块的个数,则这个几何体从左面看到的形状图是(B)二、填空题(每题4分,共24分)8.如图所示,在平面图中添加一个小正方形,使该图形经过折叠后能围成一个四棱柱,不同的添法共有4种.9.如图是正方体的展开图,则原正方体相对两个面的数字之和的最小值是6.10.一个棱柱有12个顶点,且所有侧棱的和是30 cm,则每条侧棱长为5cm.11.如图,图形沿虚线旋转一周,所围成的几何体是圆柱.12.一个几何体由几个大小相同的小立方块搭成,从上面看这个几何体得到的形状图如图所示,小正方形中的数字表示该位置小立方块的个数,则从正面看这个几何体,能看到6个立方块.13.一个圆锥的侧面展开图是一个半圆,如图所示,则它的表面积为27πcm2.三、解答题(共41分)14.(12分)如图所示,将图中的一个小正方形剪去,使剩余的部分恰好能折成一个正方体,应剪去哪个小正方形?解:剪去建或美或好.15.(14分)如图是由若干个相同的正方体组成的一个立体图形从三个不同方向看到的形状图,根据形状图回答下列问题:(1)原立体图形共有几层?(2)立体图形中共有多少个小正方体?解:(1)两层;(2)5个.16.(15分)如图所示的是一个长方体的表面展开图,每个面上都标注了字母(字母朝外),回答下列问题:(1)如果面A 在长方体的底部放置,那么哪一个面会在它的上面? (2)如果面F 在前面,从左面看是面B ,那么哪一个面会在上面? (3)从右面看是面C ,面E 在左面,那么哪一个面会在上面? 解:(1)面F ;(2)面C ;(3)面B 或D.第二章 有理数及其运算时间:45分钟 分值:100分一、选择题(每题3分,共30分)1.如图,数轴上有A ,B ,C ,D 四个点,其中表示互为相反数的点是(A)A .点A 与点DB .点A 与点C C .点B 与点D D .点B 与点C2.-13的绝对值是(D) A .-3 B .3 C .-13D.133.如图,数轴上的A ,B ,C 三点所表示的数分别是a ,b ,c ,其中AB =BC ,如果|a |>|b |>|c |,那么该数轴的原点的位置应该在(D)A .点A 的左边B .点A 与点B 之间C .点B 与点C 之间D .点B 与点C 之间或点C 的右边解析:∵|a |>|b |>|c |,∴点A 到原点的距离最大,点B 其次,点C 最近,又∵AB =BC ,∴原点的位置是在点C 的右边,或者在点B 与点C 之间,且靠近点C 的地方.故选D.4.-5的倒数是(B) A .-5 B .-15 C .5D.155.如图,数轴上一动点A 向左移动2个单位长度到达点B ,再向右移动5个单位长度到达点C .若点C 表示的数为0,则点A 表示的数为(C)A .7B .3C .-3D .-2解析:本题可以反过来考虑,点C 表示的数为0,从C 点向左移动5个单位长度到达点B ,则点B 表示的数是-5,再向右移动2个单位长度到达点A ,则点A 表示的数是-3,故选C.6.计算(-23)×[32×(15-14)]=[(-23)×32]×(15-14)使用了(B) A .交换律 B .结合律C .分配律D .交换律、结合律7.在-1,0,4,-6这四个数中,最小的数与最大的数的积是(C) A .-4 B .0 C .-24D .68.计算-22+3的结果是(C) A .7 B .5 C .-1D .-5 9.计算(-2)2+(4-7)÷32-|-1|所得结果是(C)A.-2B.0C.1D.210.据统计,今年春节期间(除夕到初五),微信红包总收发次数达321亿次,几乎覆盖了全国75%的网民,数据“321亿”用科学记数法可表示为(D)A.3.21×108B.321×108C.321×109D.3.21×1010二、填空题(每题3分,共24分)11.下列各数|-5|,-12,0,-5,8.01,-(-1)2中,属于非负数的有|-5|,0,8.01.12.数轴上a,b,c三点分别表示-7,-3,4,则这三点到原点的距离之和是14.13.某公交车原坐有22人,经过4个站点时,上下车情况记录如下(上车为正,下车为负):+4,-8;-5,+6;-3,+2;+1,-7.则车上还有12人.解析:车上还有的人数是22+[(4-8)+(-5+6)+(-3+2)+(1-7)]=22-4+1-1-6=12(人).14.若a,b互为相反数,c,d互为倒数,x的绝对值等于2,则|x|-(a+b+cd)+a+b cd的值是1.解析:由a,b互为相反数,得a+b=0;由c,d互为倒数,得cd=1;由x的绝对值等于2,得|x|=2.所以原式=2-(0+1)+0=1.15.若0<a<1,则-a,1a,a2从小到大排列正确的顺序为-a<a2<1a.16.若(x+4)2+|5-y|=0,则x与y的积是-20.17.小亮在计算28-N时,误将“-”号看成了“÷”号,得到的结果为-7,则28-N 的正确值为32.18.(1)利用计算器,比较下列各组中两个数的大小:12<21,23<32,34>43,45>54,56>65;(2)根据(1)的结果可以猜测: 2 0152 016>2 0162 015. 三、解答题(共46分)19.(18分)计算:(1)-0.1-0.2+0.3+2.3; (2)-223+52-45-52-13; (3)34÷(-75)×(-4)×(-15); (4)(-76+34+1112-1324)×3÷(-112); (5)-42-13×[32-(-3)3];(6)(-3)2-(-12)×(13-56)+(-22)÷(-23). 解:(1)-0.1-0.2+0.3+2.3 =(-0.1-0.2+0.3)+2.3 =2.3;(2)-223+52-45-52-13 =(-223-13)+(52-52)-45 =-3+0-45=-345; (3)34÷(-75)×(-4)×(-15) =34×(-57)×(-4)×(-15) =-(34×4)×(57×15) =-3×17=-37;(4)(-76+34+1112-1324)×3÷(-112) =(-76+34+1112-1324)×(-36)=-76×(-36)+34×(-36)+1112×(-36)-1324×(-36) =42-27-33+392 =32;(5)-42-13×[32-(-3)3]=-16-13×(9+27) =-16-13×36 =-16-12 =-28;(6)(-3)2-(-12)×(13-56)+(-22)÷(-23) =9+12×13-12×56+(-4)×(-32) =9+4-10+6 =9.20.(8分)向月球发射无线电波,无线电波至月球并返回地球用时2.56秒.已知无线电波每秒传播3×105千米,求地球与月球之间的距离.(结果用科学记数法表示)解:12×3×105×2.56 =3.84×105(千米).答:地球与月球之间的距离为3.84×105千米.21.(9分)小明利用业余时间进行飞镖训练,上周日训练的平均成绩是8.5环,而这一周训练的平均成绩变化如下表(正号表示比前一天提高,负号表示比前一天下降):(1)(2)本周哪一天的平均成绩最低?它是多少环?(3)本周日的成绩和上周日的成绩相比是提高了这是下降了?其变动的环数是多少? 解:(1)本周二和本周五训练的平均成绩最高,是9.7环. (2)本周日训练的平均成绩最低,是8.9环.(3)本周日的平均成绩和上周日的平均成绩相比提高了,提高了0.4环. 22.(11分)先阅读材料再计算: 11×2=1-12;12×3=12-13;…; 故11×2+12×3+13×4+…+199×100=(1-12)+(12-13)+(13-14)+…+(199-1100)=1-1100=99100.根据上述材料,计算:11×2+12×3+13×4+…+12 015×2 016+12 016×2 017.解:11×2+12×3+13×4+…+12 015×2 016+12 016×2 017=(1-12)+(12-13)+(13-14)+…+ (12 015-12 016)+(12 016-12 017) =1-12 017=2 0162 017.第三章 整式及其加减时间:45分钟分值:100分一、选择题(每题4分,共32分)1.苹果的单价为a元/千克,香蕉的单价为b元/千克,买2千克苹果和3千克香蕉共需(C)A.(a+b)元B.(3a+2b)元C.(2a+3b)元D.5(a+b)元解析:买单价为a元的苹果2千克用去2a元,买单价为b元的香蕉3千克用去3b元,共用去(2a+3b)元,故选C.2.多项式1+2xy-3xy2的次数及最高次项的系数分别是(A)A.3,-3 B.2,-3C.5,-3 D.2,33.下列说法正确的是(B)A.整式就是多项式B.π是单项式C.x4+2x3是七次二项式D.3x-15是单项式解析:A.整式包含多项式和单项式,故本选项错误;B.π是单项式,正确;C.x4+2x3是四次二项式,故本选项错误;D.3x-15=3x5-15是多项式,故本选项错误,故选B.4.计算-2x2+3x2的结果为(D)A.-5x2B.5x2C.-x2D.x25.下列计算正确的是(C)A.2a+b=2ab B.3x2-x2=2C.7mn-7nm=0 D.a+a=a26.如图是一个运算程序的示意图,若开始输入x的值为81,则第2 016次输出的结果为(D)A .3B .27C .9D .1解析:第1次:13×81=27,第2次:13×27=9,第3次:13×9=3,第4次:13×3=1,第5次:1+2=3,第6次:13×3=1,…,依此类推,偶数次运算输出的结果是1,奇数次运算输出的结果是3,∵2 016是偶数,∴第2 016次输出的结果是1,故选D.7.如图,两个正方形的面积分别为16,9,两阴影部分的面积分别为a ,b (a >b ),则a -b 等于(A)A .7B .6C .5D .4解析:设重叠部分面积为c ,a -b =(a +c )-(b +c )=16-9=7.8.下列图形都是由同样大小的棋子按一定的规律组成,其中第①个图形有1颗棋子,第②个图形一共有6颗棋子,第③个图形一共有16颗棋子,…,则第⑥个图形中棋子的颗数为(C)A .51B .70C .76D .81解析:第①个图形有1颗棋子,第②个图形有1+5颗棋子,第③个图形有1+5+10颗棋子,由此可以推知:第④个图形有1+5+10+15颗棋子,第⑤个图形有1+5+10+15+20颗棋子,第⑥个图形有1+5+10+15+20+25颗棋子.故选C.二、填空题(每题4分,共24分)9.若2x 2y m 与-3x n y 3是同类项,则m +n =5. 10.单项式-π2a 2b 2c 3是5次单项式,系数为-π23. 11.若x =-1,则代数式x 3-x 2+4的值为2.12.已知a +b =10,ab =-2,则(3a -2b )-(-5b +ab )=32.13.有一组数满足a 1=1,a 2=2,a 3-a 1=0,a 4-a 2=2,a 5-a 3=0,a 6-a 4=2,…,按此规律进行下去,则a 1+a 2+a 3+…+a 100=2_600.解:由已知,得a 1=1,a 2=2,a 3=1,a 4=4,a 5=1,a 6=6,…,a 100=100,则a 1+a 2+a 3+…+a 100=1+2+1+4+1+6+…+1+100=1×50+(2+100)×502=2 600.14.如图,是由形状相同的正六边形和正三角形镶嵌而成的一组有规律的图案,则第n 个图案中阴影小三角形的个数是4n -2或2+4(n -1).解析:由图可知:第一个图案有阴影小三角形2个.第二图案有阴影小三角形2+4=6个.第三个图案有阴影小三角形2+8=10个,那么第n 个就有阴影小三角形2+4(n -1)=(4n -2)个.三、解答题(共44分)15.(10分)有这样一道题:“计算(2x 3-3x 2y -2xy 2)-(x 3-2xy 2+y 3)+(-x 3+3x 2y -y 3)的值,其中x =12,y =-1”.甲同学把“x =12”错抄成“x =-12”,但他计算的结果也是正确的,试说明理由,并求出这个结果.解:(2x 3-3x 2y -2xy 2)-(x 3-2xy 2+y 3)+(-x 3+3x 2y -y 3) =2x 3-3x 2y -2xy 2-x 3+2xy 2-y 3-x 3+3x 2y -y 3=-2y 3. 原式=-2×(-1)3=2.因为化简的结果中不含x ,所以原式的值与x 的值无关.16.(10分)先化简,再求值:(1)3x (x -2y )-[3x 2-2y +2(xy +y )],其中x =-12,y =-3. (2)7a 2b +(-4a 2b +5ab 2)-(2a 2b -3ab 2),其中a =2,b =-12. 解:(1)原式=3x 2-6xy -3x 2+2y -2xy -2y =-8xy , 当x =-12,y =-3时,原式=-12.(2)原式=7a 2b -4a 2b +5ab 2-2a 2b +3ab 2=a 2b +8ab 2, 当a =2,b =-12时,原式=-2+4=2.17.(12分)一个四边形的周长为48 cm ,已知第一条边长a cm ,第二条边比第一条边的2倍长3 cm ,第三条边等于第一、第二两条边的和.(1)求出表示第四条边长的式子;(2)当a =3 cm 或a =7 cm 时,还能得到四边形吗?若能,指出四边形的形状,若不能,说明理由.解:(1)48-a -(2a +3)-[a +(2a +3)] =48-a -2a -3-a -2a -3 =42-6a ;(2)当a =3 cm 时,四条边长分别为3 cm ,9 cm,12 cm ,24 cm ,因为3+9+12=24,故不能构成四边形.当a =7 cm 时,四条边长分别为7 cm,17 cm,24 cm,0 cm , 因为四边形边长不能为0,故不能构成四边形.18.(12分)学习了整式的加减运算后,老师给同学们布置了一道课堂练习题“a =-2,b =2 017时,求(3a 2b -2ab 2+4a )-2(2a 2b -3a )+2(ab 2+12a 2b )-1的值”.盈盈做完后对同桌说:“张老师给的条件b =2 017是多余的,这道题不给b 的值,照样可以求出结果来.”同桌不相信她的话.亲爱的同学们,你相信盈盈的说法吗?说说你的理由.解:原式=3a2b-2ab2+4a-4a2b+6a+2ab2+a2b-1=10a-1,当a=-2时,原式=10×(-2)-1=-21.因为化简后的结果中不再含有字母b,故最后的结果与b的取值无关,b=2 016这个条件是多余的.所以盈盈的说法是正确的.第四章基本平面图形时间:45分钟分值:100分一、选择题(每题4分,共32分)1.下列命题中,正确的有(B)①两点之间线段最短;②连接两点的线段,叫做两点间的距离;③角的大小与角的两边的长短无关;④射线是直线的一部分,所以射线比直线短.A.1个B.2个C.3个D.4个解析:①和③正确,②连接两点的线段的长度叫做两点间的距离;④射线与直线无法比较长短.2.如图,直线AB和CD相交于点O,若∠AOC=125°,则∠AOD等于(B)A.50°B.55°C.60°D.65°3.一个多边形从一个顶点最多能引出三条对角线,这个多边形是(D)A.三角形B.四边形C.五边形D.六边形4.下列计算错误的是(D)A.0.25°=900″B.1.5°=90′C.1 000″=(518)°D.125.45°=1 254.5′5.如图,AB=CD,则下列结论不一定成立的是(D)A.AC>BC B.AC=BDC.AB+BC=BD D.AB+CD=BC解析:A.∵AC=AB+BC,∴AC>BC,故本选项正确;B.∵AB=CD,∴AB+BC=CD+BC,即AC=BD,故本选项正确;C.∵AB=CD,∴AB+BC=CD+BC,即AB+BC=BD,故本选项正确;D.AB,BC,CD是线段AD上的三部分,大小不明确,所以AB+CD与BC大小关系不确定,故本选项错误.故选D.6.如图,∠AOB=120°,OC是∠AOB内部任意一条射线,OD,OE分别是∠AOC,∠BOC的平分线,下列叙述正确的是(C)A.∠DOE的度数不能确定B.∠AOD=12∠EOCC.∠AOD+∠BOE=60°D.∠BOE=2∠COD解:本题是对角的平分线的性质的考查,角平分线将角分成相等的两部分.结合选项得出正确结论.7.一个人从A点出发向南偏东30°方向走到B点,再从B点出发向北偏西45°方向走到C 点,那么∠ABC等于(D)A.75°B.45°C.30°D.15°8.如图,已知扇形AOB的半径为2,圆心角为90°,连接AB,则图中阴影部分的面积是(A)A.π-2 B.π-4C.4π-2 D.4π-4解:由∠AOB为90°,得到△OAB为等腰直角三角形,于是OA=OB,而S阴影部分=S扇形OAB -S△OAB.然后根据扇形和直角三角形的面积公式计算即可.二、填空题(每题4分,共24分)9.C是线段AB上一点,D是BC的中点,若AB=12 cm,AC=2 cm,则BD的长为5_cm.10.计算:50°-15°30′=34°30′.11.两点半时钟面上时针与分针的夹角为105°.12.如图,C岛在A岛的北偏东60°方向,C岛在B岛的北偏西50°方向,从C岛看A,B两岛的视角∠ACB是110度.13.如图所示的圆面图案是用相同半径的圆与圆弧构成的.若圆的半径为3,则阴影部分的面积为3π.解析:阴影部分的面积占了整个圆面积的13,所以阴影部分的面积为13π×32=3π.14.如图,已知OE是∠BOC的平分线,OD是∠AOC的平分线,且∠AOB=150°,∠DOE 的度数是75°.三、解答题(共44分)15.(10分)如图,直线AB,CD相交于点O,OE平分∠AOD,∠FOC=90°,∠1=40°,求∠2与∠3的度数.解:因为∠FOC=90°,∠1=40°,且AB为直线,所以∠3=180°-∠FOC-∠1=50°.因为CD为直线,所以∠AOD=180°-∠3=130°,因为OE平分∠AOD,所以∠2=12∠AOD=65°.16.(12分)如图甲所示,将一副三角尺的直角顶点重合在点O处.(1)①∠AOD和∠BOC相等吗?说明理由.②∠AOC和∠BOD在数量上有何关系?说明理由.(2)若将这副三角尺按图乙所示摆放,三角尺的直角顶点重合在点O处.①∠AOD和∠BOC相等吗?说明理由.②∠AOC和∠BOD的以上关系还成立吗?说明理由.甲乙解:(1)①∠AOD=90°+∠BOD,∠BOC=90°+∠BOD,所以∠AOD和∠BOC相等.②∠AOC+90°+∠BOD+90°=360°,所以∠AOC+∠BOD=180°;(2)①∠AOD=90°-∠BOD,∠BOC=90°-∠BOD,所以∠AOD和∠BOC相等.②成立.由∠AOC=90°+90°-∠BOD可知∠AOC+∠BOD=180°.17.(10分)有一个周长为62.8 m的圆形草坪,准备为它安装自动旋转喷灌装置进行喷灌,现有射程为20 m,15 m,10 m的三种装置,你认为应选哪种比较合适?安装在什么地方?解:设圆形草坪的半径为r,则由题意得2πr=62.8,解得r=10(m).所以选射程为10 m的喷灌装置较合适,安装在圆形草坪的中心处.18.(12分)如图,点C在线段AB上,线段AC=15,BC=5,点M,N分别是AC,BC 的中点.(1)求MN的长度.(2)根据(1)的计算过程与结果,设AC+BC=a,其他条件不变,你能猜出MN的长度吗?请用一句简洁的语言表达你发现的规律.(3)若把(1)中的“点C在线段AB上”改为“点C在直线AB上”,其他条件不变,结论又如何?请说明你的理由.解:(1)因为点M,N分别是AC,BC的中点,所以MC=12AC=12×15=152,NC=12BC=52.所以MN=MC+NC=10.(2)能,MN的长度是a 2.规律:已知线段被分成两部分,它们的中点之间的距离等于原来线段长度的一半. (3)分情况讨论:当点C 在线段AB 上时, 由(1)得MN =12AB =10;当点C 在线段AB 延长线上时(如图),MN =MC -NC =12AC -12BC =12AB =5.第五章 一元二次方程时间:45分钟 分值:100分一、选择题(每题4分,共32分) 1.下列方程中,是一元一次方程的是(B) A .2x -y =1 B .y -9=2y C .y =6xD.3y =72.若单项式3a 4b 2x 与0.2b 3x -1a 4是同类项,则x 的值是(B) A.12 B .1 C.13D .03.若a =b ,则下列式子正确的有(C) ①a -2=b -2;②13a =12b ;③-34a =-34b ; ④5a -1=5b -1. A .1个 B .2个 C .3个D .4个 4.方程x -x -12=5的解为(D)A .x =-9B .x =3C .x =-3D .x =95.在解方程x -12-2x +13=1时,去分母正确的是(D) A .3(x -1)-2(2x +3)=6 B .3x -3-4x +3=1 C .3(x -1)-2(2x +3)=1 D .3x -3-4x -2=66.某文具店一支铅笔的售价为1.2元,一支圆珠笔的售价为2元.该店在六一期间举行文具优惠售卖活动,铅笔按原价打8折出售,圆珠笔按原价打9折出售,结果两种笔共卖出60支,卖得金额87元.若设铅笔卖出x 支,则依题意可列得的一元一次方程为(B)A .1.2×0.8x +2×0.9(60+x )=87B .1.2×0.8x +2×0.9(60-x )=87C .2×0.9x +1.2×0.8(60+x )=87D .2×0.9x +1.2×0.8(60-x )=877.通信市场竞争日益激烈,某通信公司的手机本地话费标准按原标准每分钟降低a 元后,再次下调了20%,现在的收费标准是每分钟b 元,则原收费标准是(A)A .(a +54b )元 B .(a -54b )元 C .(a +5b )元D .(a -5b )元8.甲、乙、丙三家超市为了促销一种定价相同的商品,甲超市先降价20%,后又降价10%;乙超市连续两次降价15%;丙超市一次降价30%.那么顾客到哪家超市购买这种商品更合算(C)A .甲B .乙C .丙D .一样二、填空题(每题4分,共24分)9.已知5是关于x 的方程3x -2a =7的解,则a 的值为4. 10.已知方程(a -2)x |a |-1+4=0是一元一次方程,则a =-2.解析:由一元一次方程的定义得|a |-1=1,所以a =±2;又a -2≠0,故a =-2. 11.若|p +3|=0,则p =-3. 12.有一个密码系统,其原理如下:输入x→2x→+5→输出当输出11时,则输入的x=3.13.甲以5 km/h的速度先走16 min,乙以13 km/h的速度追甲,则乙追上甲需要的时间为16h.14.李明组织大学同学一起去观看电影,票价每张60元,20张以上(不含20张)打八折,他们一共花了1 200元,他们共买了20或25张电影票.解析:设他们一共买了x张电影票,则①60x=1 200(x≤20),解得x=20;②80%×60x=1 200(x>20),解得x=25.均符合题意,所以他们共买了20或25张电影票.三、解答题(共44分)15.(10分)解下列方程:(1)2-2x+13=1+x2;(2)x-x+23=1-x-12.解:(1)去分母,得12-2(2x+1)=3(1+x).去括号,得12-4x-2=3+3x.移项,得-4x-3x=3+2-12.合并同类项,得-7x=-7.系数化为1,得x=1.(2)去分母,得6x-2(x+2)=6-3(x-1),去括号,得6x-2x-4=6-3x+3,移项,得6x-2x+3x=6+3+4,合并同类项,得7x=13,系数化为1,得x=13 7.16.(10分)情景:试根据图中的信息,解答下列问题:(1)购买6根跳绳需________元,购买12根跳绳需________元.(2)小红比小明多买2根,付款时小红反而比小明少付5元,你认为有这种可能吗?若有,请求出小红购买跳绳的根数;若没有,请说明理由.解:(1)150 240 (2)有这种可能.设小红购买跳绳x 根,则小明购买跳绳(x -2)根,则根据题意可列出方程:25×80%·x =25(x -2)-5.解得x =11.因此小红购买跳绳11根.17.(12分)某单位计划五一期间组织职工到东江湖旅游,如果单独租用40座的客车若干辆刚好坐满;如果租用50座的客车可以少租一辆,并且有40个剩余座位.(1)该单位参加旅游的职工有多少人?(2)若同时租用这两种客车若干辆,问有无可能使每辆车刚好坐满?如有可能,两种车各租多少辆?(此问可只写结果,不写分析过程)解:(1)设该单位参加旅游的职工有x 人, 由题意得方程x 40-x +4050=1, 解得x =360.答:该单位参加旅游的职工有360人.(2)有可能,因为租用4辆40座的客车、4辆50座的客车刚好可以坐360人,正好坐满.18.(12分)某同学在A,B两家超市发现他看中的随身听的单价相同,书包单价也相同.随身听和书包单价之和是452元,且随身听的单价比书包单价的4倍少8元.(1)该同学看中的随身听和书包的单价各是多少元?(2)某一天该同学上街,恰好赶上商场促销,超市A所有商品打八折销售,超市B全场购物满100元返购物券30元,不足100元不返券,购物券全场通用,但他只带了400元钱,如果他只在一家超市购买看中的这两样物品,你能说明他可以选择哪一家购买吗?若两家都可以选择,在哪一家购买更省钱?解:(1)设书包的单价为x元,则随身听的单价为(4x-8)元,由题意,得4x-8+x=452,解得x=92,4x-8=4×92-8=360.答:该同学看中的随身听单价为360元,书包单价为92元.(2)在超市A购买随身听与书包各一件需花费现金:452×80%=361.6(元).因为361.6<400,所以可以选择超市A购买.在超市B可先花费现金360元购买随身听,再利用得到的90元返券,加上2元现金购买书包,共花现金360+2=362(元).因为362<400,所以也可以选择在超市B购买.因为362>361.6,所以在超市A购买较省钱.第六章数据的收集与整理时间:45分钟分值:100分一、选择题(每题5分,共30分)1.下列调查中,适宜采用普查的是(D)A.了解全国中学生心理健康状况B.了解我市火锅底料的合格情况C.了解一批新型远程导弹的杀伤半径D.了解某班学生对马航失联事件的关注情况2.为了了解某初中学校学生的视力情况,需要抽取部分学生进行调查.下列抽取学生的方法最合适的是(D)A.随机抽取该校一个班级的学生B.随机抽取该校一个年级的学生C.随机抽取该校一部分男生D.分别从该校初一、初二、初三年级中各随机抽取10%的学生3.某班有50人,其中三好学生10人,优秀学生干部5人,在统计图上表示,能清楚地看出各部分与总数之间的百分比关系的是(B)A.条形统计图B.扇形统计图C.折线统计图D.频数直方图4.某班学生体重频数直方图如下,则该班有学生(A)A.40人B.56人C.60人D.不能确定5.甲、乙两户居民家庭全年支出的费用都设计成扇形统计图.且知甲、乙两户食品支出费用分别占全年支出费用的31%和34%,下面对食品支出费用判断正确的是(D) A.甲户比乙户多B.乙户比甲户多C.甲、乙两户一样多D.无法确定哪一户多解析:由分析可知:扇形统计图直接反映部分占总体的百分比大小,如果甲、乙两家全年支出的费用相等,则乙户比甲户多;如果甲、乙两家全年支出的费用不确定,则无法确定哪一户多.6.某实验中学开展以“我最喜欢的职业”为主题的调查活动,通过对学生的随机抽样调查得到一组数据,下面是根据这组数据绘制的不完整的统计图,则下列说法中,不正确的是(C)A.被调查的学生有200人B.被调查的学生中喜欢教师职业的有40人C.被调查的学生中喜欢其他职业的占40% D.扇形图中,公务员部分所对应的圆心角为72°解析:A.被调查的学生数为4020%=200(人),故此选项正确,不符合题意;B.根据扇形图可知喜欢医生职业的人数为200×15%=30(人),则被调查的学生中喜欢教师职业的有200-30-40-20-70=40(人),故此选项正确;C.被调查的学生中喜欢其他职业的占70200×100%=35%,故此选项错误.D.“公务员”所在扇形的圆心角的度数为20%×360°=72°,故此选项正确.故选C.三、填空题(每题6分,共30分)7.某校为了考察所有七年级学生的视力情况,从中抽取了120名学生的视力情况.这个问题中,总体是某校所有七年级学生的视力情况,个体是某校七年级每一名学生的视力情况,样本是120名学生的视力情况.8.某学校在开展庆六一活动前夕,从该校七年级共400名学生中,随机抽取40名学生进行“你最喜欢的活动”问卷调查,调查结果如下表:160人.9.孕后再就业的张嫂做起了快餐盒饭的小生意,前5天销售情况如下:第一天50盒,第二天60盒,第三天55盒,第四天72盒,第五天80盒,要清楚地反映盒饭的前5天销售情况,应选择制作条形统计图.10.某校为了了解七年级学生的体能情况,随机抽查了其中的30名学生,测试了1分钟仰卧起坐的次数,并绘制成如图的频数直方图,则仰卧起坐次数在20~25次之间的频数是10.11.和睦社区一次歌唱比赛共500名选手参加,比赛分数均大于或等于60且小于100,分数段的频率分布情况如表所示(其中每个分数段可包括最小值,不包括最大值),结合表中的信息,可得比赛分数在80~90分数段的选手有150名.解:测试分数在80~90分数段的选手是:500×(1-0.25-0.25-0.2)=150(名).三、解答题(共40分)12.(15分)某电视台播放一则新闻,奶粉“合格率为50%”,请据此回答下列问题:(1)这则新闻是否说明市场上所有奶粉的合格率一定是50%?(2)你认为这则新闻来源于普查还是抽样调查?为什么?(3)如果已知在这次抽查中各项指标均合格的奶粉共有1 000袋,你能算出共有多少袋奶粉接受了检查吗?解:(1)不一定;(2)抽样调查,因为数量太多不可能普查;(3)1 000÷50%=2 000(袋).13.(25分)某校为了了解学生对新闻、体育、动画、娱乐、戏曲五类电视节目的喜爱情况,随机抽取了本校部分学生进行问卷调查(必选且只选一类节目),将调查结果进行整理后,绘制了如下不完整的条形统计图和扇形统计图,其中喜爱体育节目的学生人数比喜爱戏曲节目的学生人数的3倍还多1人.请根据所给信息解答下列问题:(1)求本次抽取的学生人数;(2)补全条形图,在扇形统计图中的横线上填上正确的数值,并直接写出“体育”对应的扇形圆心角的度数;(3)该校有3 000名学生,求该校喜爱娱乐节目的学生大约有多少人.解:(1)∵其中喜爱体育节目的学生人数比喜爱戏曲节目的学生人数的3倍还多1人,喜欢戏曲节目的有3人,∴喜欢体育节目的有3×3+1=10(人),∴本次抽取的学生人数为4+10+15+18+3=50(人).答:本次抽取的学生人数为50人.(2)补全的条形图如下:3072°(3)1850×3 000=1 080(人).答:该校有3 000名学生,喜爱娱乐节目的学生大约有1 080人.。
北师大版七年级数学上册全套试卷本试卷为最新北师大版中学生七年级达标测试卷。
全套试卷共7份。
试卷内容如下:1. 第一单元使用2. 第二单元使用3. 第三单元使用4. 第四单元使用5. 第五单元使用6. 第六单元使用7. 期末检测卷第一章达标测试卷一、选择题(每题3分,共30分)1.生活中的“八宝粥”易拉罐同学们都很熟悉,你认为“八宝粥”易拉罐类似于()A.棱柱B.圆柱C.圆锥D.长方体2.下面的几何图形:①棱柱;②正方形;③圆锥;④圆;⑤长方体;⑥三角形.其中属于立体图形的是()A.①②③B.②④⑥C.①③⑤D.③④⑤3.将半圆绕它的直径所在的直线旋转一周形成的几何体是() A.圆柱B.圆锥C.球D.正方体4.一个无盖的正方体盒子的表面展开图可以是下列图形中的()(第4题) A.①B.①②C.②③D.①③5.下列说法不正确的是()A.圆锥和圆柱的底面都是圆B.棱柱的所有侧棱长都相等C.棱柱的上、下底面形状完全相同D.长方体是四棱柱,四棱柱是长方体6.一个正方体的表面展开图如图所示,六个面上各有一字,连起来是“祝福祖国万岁”,把它折成正方体后,与“万”相对的字是()A.祖B.岁C.国D.福(第6题)7.在一个正方体容器内分别装入不同量的水,再把容器按不同方式倾斜一点,容器内水面的形状不可能是()8.如图,贤贤同学用手工纸制作一个台灯灯罩,做好后发现上口太小了,于是他把纸灯罩对齐压扁,剪去上面一截后,正好合适,以下裁剪示意图中,正确的是()(第8题)9.由5个大小相同的正方体拼成的几何体如图所示,则下列说法正确的是() A.从正面看到的图形面积最小B.从左面看到的图形面积最小C.从上面看到的图形面积最小D.从三个方向看到的图形面积相等(第9题)10.如图表示一个由相同小立方块搭成的几何体从上面看到的图形,小正方形中的数字表示该位置上小立方块的个数,那么从正面看到的图形为()(第10题)二、填空题(每题3分,共24分)11.一个正方体有________个面,________个顶点.12.快速旋转一枚竖立的硬币一周(假定旋转轴在原地不动),旋转形成的立体图形是__________.13.用数学知识解释下列现象:一只蚂蚁行走的路线可以解释为____________;直升机的螺旋桨转起来形成一个圆形的面,这说明了____________.14.下列几何体(如图),属于柱体的有____________;属于锥体的有__________;属于球体的有__________.(填序号)(第14题) 15.下列各图是几何体的平面展开图,请写出对应的几何体的名称.(第15题)16.用一个平面去截一个圆柱(如图),图①中截面的形状是________,图②中截面的形状是__________.(第16题)17.从不同方向观察一个几何体,所得的平面图形如图所示,那么这个几何体的侧面积是__________(结果保留π).(第17题)18.如图②是圆柱被一个平面斜切后得到的几何体,请类比梯形面积公式的推导方法(如图①),推导图②几何体的体积为__________(结果保留π).14.矩形的对角线相交所成的角中,有一个角是60°,这个角所对的边长为1 cm,则其对角线长为________,矩形的面积为________.(第18题)三、解答题(19,22题每题8分,24题14分,其余每题12分,共66分) 19.图②中的几何体分别是由图①中哪个平面图形旋转一周得到的?用线连起来.(第19题)20.如图是从不同方向看一个几何体得到的图形及部分数据.(1)写出这个几何体的名称;(2)求这个几何体的侧面积.(第20题)21.观察如图所示的直六棱柱.(1)它有几个面?几个底面?底面与侧面分别是什么图形?(2)侧面的个数与底面多边形的边数有什么关系?(3)若底面的周长为25 cm,侧棱长为8 cm,则它的侧面积为多少?(第21题)22.如图所示的平面图形折叠成正方体后,相对面上的两个数之和为10,求x +y+z的值.(第22题)23.把棱长为1 cm的若干个小正方体摆放成如图所示的几何体,然后将露出的部分都涂上颜色(不涂底面).(1)该几何体中有多少个小正方体?(2)画出从正面观察所得到的平面图形.(3)求涂色部分的总面积.(第23题)24.把如图①所示的正方体切去一块,得到如图②~⑤所示的几何体.(第24题)(1)所得几何体各有多少个面?多少条棱?多少个顶点?(2)举例说明把其他形状的几何体切去一块,得到的几何体的面数、棱数和顶点数各是多少.(3)若面数记为f,棱数记为e,顶点数记为v,则f,v,e应满足什么关系式?答案1.B2.C3.C4.D5.D6.B7.A8.A9.B10.C二、11.6;812.球13.点动成线;线动成面14.①③⑤⑥;④;②15.圆锥;正方体;三棱锥;圆柱16.圆;长方形17.6π18.63π三、19.1—c;2—b;3—d;4—a20.解:(1)这个几何体是三棱柱.(2)这个几何体的侧面积为3×16×9=432 (cm2).21.解:(1)它有8个面,2个底面,底面是六边形,侧面是长方形.(2)侧面的个数与底面多边形的边数相等.(3)它的侧面积为25×8=200(cm2).22.解:由题意知x+5=10,2+y=10,2z+4=10,解得x=5,y=8,z=3.所以x+y+z=5+8+3=16.23.解:(1)该几何体中小正方体的个数为9+4+1=14(个).(2)如图所示.(第23(2)题)(3)由题意知该几何体的上面需涂色的面积为9个小正方形的面积和,前面、后面、左面、右面需涂色的面积和为6个小正方形面积和的4倍,故涂色部分的总面积为(9+6×4)×12=33(cm2).24.解:(1)题图②有7个面、15条棱、10个顶点,题图③有7个面、14条棱、9个顶点,题图④有7个面、13条棱、8个顶点,题图⑤有7个面、12条棱、7个顶点.(2)例如:把三棱锥切去一块,如图所示,得到的几何体有5个面、9条棱、6个顶点.(第24(2)题)(3)所求关系式为f +v -e =2.第二章达标测试卷一、选择题(每题3分,共30分)1.如果“盈利10%”记为+10%,那么“亏损6%”记为( )A .-16%B .-6%C .+6%D .+4%2.-15的相反数是( )A.15B .-15C .5D .-53. 太阳的温度很高,其表面温度大约有6 000 ℃,而太阳中心的温度达到了19200 000 ℃,用科学记数法可将19 200 000表示为( ) A .1.92×106 B .1.92×107 C .19.2×106D .0.192×1074.在数23,1,-3,0中,最大的数是( )A.23B .1C .-3D .05.下列算式正确的是( )A .-32=9B.⎝ ⎛⎭⎪⎫-14÷(-4)=1 C .(-8)2=-16D .-5-(-2)=-36.下列各式:①-(-2);②-|-2|;③-22;④-(-2)2.计算结果为负数的有( )A .4个B .3个C .2个D .1个7.学校、文具店、书店依次坐落在一条南北走向的大街上,学校在文具店的南边20 m 处,书店在文具店的北边100 m 处,张明同学从文具店出发,向北走了50 m ,接着又向北走了-70 m ,此时张明的位置在( ) A .文具店B .学校C .书店D .以上都不对8.数a ,b ,c 在数轴上对应的点的位置如图所示,表示0的点为原点,则下列各式正确的是( )A .abc <0B .a +c <0C .a +b <0D .a -c <09.学完有理数后,a ,b ,c ,d 四名同学分别聊起来了,a 说:“没有最大的正数,但有最大的负数.”b 说:“有绝对值最小的数,没有绝对值最大的数.”c 说:“有理数包括正有理数和负有理数.”d 说:“相反数是它本身的数是正数.”你认为谁说得对呢?( ) A .aB .bC .cD .d10.探索规律,71=7,72=49,73=343,74=2 401,75=16 807,…,那么72 018+1的个位数字是( ) A .8 B .4 C .2 D .0 二、填空题(每题3分,共24分)11.在有理数-3.7,2,213,-34,0,0.02中,正数有______________,负分数有______________.12.一种食用盐包装袋上标有(500±5)g ,表示这种食用盐的质量不超过________,不少于________.13.比较大小(填“>”“<”或“=”):(1)-45________-34; (2)|-5|________0;(3)-(-0.01)________⎝ ⎛⎭⎪⎫-1102.14.如图,小明写作业时不慎将墨水滴在数轴上,墨迹盖住部分对应的整数共有________个.15.若|a -11|+(b +12)2=0,则(a +b )2 018=________.16.按下面程序计算(如图),输入x =-5,则输出的答案是________ .输入x ―→平方―→-x ―→÷2―→输出答案17.在算式1-⎪⎪⎪⎪-2 3中的 里,填入运算符号________,可使得算式的值最小(在符号+,-,×,÷中选择一个).18.有六张卡片,卡片正面分别写有六个数,背面分别写有六个字母,如下表:将卡片正面的数由大到小排列,然后将卡片翻转使背面朝上,卡片上的字母组成的单词是________.三、解答题(19题16分,20,22题每题8分,24题10分,其余每题12分,共66分) 19.计算:(1)-|3-5|+2×(1-3);(2)-24×⎝ ⎛⎭⎪⎫-56+38-112;(3)(-2)3-(-13)÷⎝ ⎛⎭⎪⎫-12;(4)-12-(1-0.5)÷52×15.20.已知|x -3|与|y -1|互为相反数,求式子⎝ ⎛⎭⎪⎫x y -y x ÷(x +y)的值.21.如图,数轴上有三个点A ,B ,C ,请回答下列问题:(1)将点C 向左移动6个单位长度后,这时点B 所表示的数比点C 所表示的数大多少?(2)怎样移动A,B,C中的两个点,才能使这三个点表示相同的数?有几种移法?22.若“”表示运算a-b+c,“”表示运算x-y+z-w,求-的值.23.“十一”期间,某风景区在7天假期中,每天旅游的人数变化如下表(正数表示比前一天增加的人数,负数表示比前一天减少的人数)所示(单位:万人):日期1日2日3日4日5日6日7日人数变化+1.6 +0.8 +0.4 -0.4 -0.8 +0.2 -1.2万人.天内哪天游客的人数最多?哪天游客的人数最少?(2)这7天内该风景区平均每天有游客多少万人?24.如图,数轴上的点A,B,C分别表示数-3,-1,2.(1)A,B两点间的距离AB=________,A,C两点间的距离AC=________.(2)若点E表示的数为x,则AE的长等于多少?答案二、1.B 2.A 3.B 4.B 5.D 6.B7.B 8.B 9.B 10.D 二、11.2,213,0.02;-3.7,-3412.505 g ;495 g13.(1)< (2)> (3)= 14.7 15.1 16.15 17.× 18.thanks三、19.解:(1)原式=-2+2×(-2)=-2+(-4)=-6;(2)原式=20-9+2=13; (3)原式=-8-26=-34;(4)原式=-1-12×25×15=-1-125=-1125.20.解:因为|x -3|与|y -1|互为相反数,所以|x -3|+|y -1|=0.所以x =3,y =1.所以原式=⎝ ⎛⎭⎪⎫31-13÷(3+1)=⎝ ⎛⎭⎪⎫3-13÷4=23.21.解:(1)这时点B 所表示的数比点C 所表示的数大1.(2)有3种移法.①点A 右移2个单位长度,点C 左移5个单位长度; ②点A 右移7个单位长度,点B 右移5个单位长度; ③点B 左移2个单位长度,点C 左移7个单位长度.22.解:由题意知,原式=14-12+16-[-2-3+(-6)-3]=-112-(-14)=-112+14=131112.23.解:(1)由题意知,该风景区在7天假期中,每天旅游的人数如下表所示(单位:万人):由此可知,10月3日的游客人数最多,10月7日的游客人数最少.(2)这7天内该风景区平均每天的游客人数为17×(2.6+3.4+3.8+3.4+2.6+2.8+1.6)≈2.89(万人). 24.解:(1)2;5(2)|x -(-3)|=|x +3|, 即AE 的长为|x +3|.第三章达标测试卷一、选择题(每题3分,共30分)1.代数式:6x 2y +1x ,5xy +x 2,-15y 2+xy ,2y,-3中,不是整式的有( )A .4个B .3个C .2个D .1个2.下列各式中,与2a 是同类项的是( )A .3aB .2abC .-3a 2D .a 2b3.下列代数式中符合书写要求的是( )A.a 2b4B .213cbaC .a ×b ÷cD .ayz 34.在下列表述中,不能表示代数式“4a ”的意义的是( )A .4的a 倍B .a 的4倍C .4个a 相加D .4个a 相乘5.多项式y -x 2y +25的项数、次数分别是( )A .3,2B .3,5C .3,3D .2,3 6.下列运算正确的是( )A .-()2x +5=-2x +5B .-12()4x -2=-2x +2 C.13()2m -3n =23m +nD .-⎝ ⎛⎭⎪⎫23m -2x =-23m +2x 7.将有理数m 减小5后,再乘3,最后的结果是( )A .3(m -5)B .m -5×3mC .m -5+3mD .m -5+3(m -5)8.若m +n =-1,则(m +n )2-2m -2n 的值是( )A .3B .0C .1D .29.多项式12x |n |-(n +2)x +7是关于x 的二次三项式,则n 的值是( )A .2B .-2C .2或-2D .310.有一种石棉瓦,每块宽60 cm ,用于铺盖屋顶时,每相邻两块重叠部分的宽都为10 cm ,那么n (n 为正整数)块石棉瓦覆盖的宽度为( ) A .60n cmB .50n cmC .(50n +10)cmD .(60n +10)cm二、填空题(每题3分,共24分)11.单项式-x 2y3的系数是________,次数是________.12.-xy 22+3xy -23是________次________项式,最高次项的系数为________.13.计算:a 2b -2a 2b =________.14.若-x 3y 与x a y b -1是同类项,则(b -a )2 017=________.15.张老师带了100元钱去给学生买笔记本和笔.已知一本笔记本3元,一支笔2元,张老师买了a 本笔记本,b 支笔,她还剩______________元钱(用含a ,b 的代数式表示). 16.定义新运算“”,规定ab =13a -4b ,则12(-1)=________.17.一组等式:12+22+22=32,22+32+62=72,32+42+122=132,42+52+202=212,…,请观察它们的构成规律,用你发现的规律写出第9个等式:____________________.18.为庆祝“六一”儿童节,某幼儿园举行用火柴棒摆“金鱼”比赛.按照如图所示的规律,摆第n 个图形,需用火柴棒的根数为__________.(第18题)三、解答题(20~22题每题10分,其余每题12分,共66分) 19.计算:(1)(-5a 3)-a 3-(-7a 3); (2)()5a 2+2a -1-2()3-8a +2a 2;(3)(2xy-y)-(-y+yx); (4)3a2b-2[ab2-2(a2b-2ab2)].20.(1)先化简,再求值:12x+⎝⎛⎭⎪⎫13y2-x-⎝⎛⎭⎪⎫-32x+43y2,其中x=-12,y=-3.(2)已知A=-a2+2a-1,B=3a2-2a+4,求当a=-2时,2A-3B的值.21.如图是一个长方形广场,四角都有一块边长为x m的正方形草地,若长方形的长为a m,宽为b m.(1)请用代数式表示阴影部分的面积;(2)若长方形广场的长为350 m,宽为200 m,正方形草地的边长为10 m,求阴影部分的面积.(第21题)22.对于代数式2x2+7xy+3y2+x2-kxy+5y2,老师提出了两个问题,第一个问题:当k为何值时,代数式中不含xy项?第二个问题:在第一个问题的前提下,如果x=2,y=-1,那么代数式的值是多少?(1)小明同学很快就完成了第一个问题,也请你把你的解答写在下面.(2)在做第二个问题时,马小虎同学把y=-1错看成y=1,他得到的最后结果却是正确的,你知道这是为什么吗?23.某校组织学生到距离学校6 km的科技馆去参观,小华因事没能乘上学校的包车,于是准备在学校门口改乘出租车去科技馆,出租车收费标准有两种类型,如下表:里程甲类收费/元乙类收费/元3 km以下(包含3 km) 7.00 6.003 km以上,每增加1 km 1.60 1.40(1)设出租车行驶的里程为x km(x≥3且x取正整数),分别写出两种类型的总收费(用含x的代数式表示);(2)小华身上仅有11元,他乘出租车到科技馆车费够不够?24.一张正方形桌子可坐4人,按如图所示的方式将桌子拼在一起,回答下列问题.(第24题)(1)两张桌子拼在一起可以坐________人,三张桌子拼在一起可以坐________人,n张桌子拼在一起可以坐________人.(2)一家酒楼有60张这样的正方形桌子,按如图所示的方式每4张桌子拼成一张大桌子,则60张桌子可以拼成15张大桌子,共可坐多少人?(3)在(2)中,若每4张桌子拼成一张大的正方形桌子,共可坐多少人?(4)对于这家酒楼,(2)(3)中哪种拼桌子的方式能使坐的人更多?答案一、1.C2.A3.A4.D5.C6.D 7.A8.A点拨:(m+n)2-2m-2n=(m+n)2-2(m+n).当m+n=-1时,(m+n)2-2(m+n)=(-1)2-2×(-1)=1+2=3.9.A点拨:因为多项式12x|n|-(n+2)x+7是关于x的二次三项式,所以|n|=2且n+2≠0,所以n=2. 10.C二、11.-13;312.三;三;-1213.-a2b14.-1 15.(100-3a-2b)16.8点拨:12(-1)=13×12-4×(-1)=8.17.92+102+902=912点拨:规律:n2+(n+1)2+[n(n+1)]2=[n(n+1)+1]2,故第9个等式为92+102+902=912.18.6n+2点拨:第1个图形有8根火柴棒,第2个图形有14根火柴棒,第3个图形有20根火柴棒,…,第n个图形有(6n+2)根火柴棒.三、19.解:(1)原式=-5a3-a3+7a3=a3;(2)原式=5a2+2a-1-6+16a-4a2=a2+18a-7;(3)原式=2xy-y+y-xy=xy;(4)原式=3a2b-2(ab2-2a2b+4ab2)=3a2b-2ab2+4a2b-8ab2=7a2b-10ab2.20.解:(1)原式=12x+13y2-x+32x-43y2=x-y2.当x=-12,y=-3时,x-y2=-12-(-3)2=-192.(2)2A-3B=2(-a2+2a-1)-3(3a2-2a+4)=-2a2+4a-2-9a2+6a-12=-11a2+10a-14.当a=-2时,2A-3B=-11a2+10a-14=-11×(-2)2+10×(-2)-14=-78.21.解:(1)阴影部分的面积为(ab-4x2)m2.(2)将a=350,b=200,x=10代入(1)中得到的式子,得350×200-4×102=70 000-400=69 600(m2).答:阴影部分的面积为69 600 m2.22.解:(1)因为2x2+7xy+3y2+x2-kxy+5y2=(2x2+x2)+(3y2+5y2)+(7xy-kxy)=3x2+8y2+(7-k)xy,所以只要7-k=0,这个代数式中就不含xy项.所以当k=7时,代数式中不含xy项.(2)因为在第一个问题的前提下原代数式可化为3x2+8y2,当马小虎同学把y=-1错看成y=1时,y2的值不变,即8y2的值不变,所以马小虎得到的最后结果却是正确的.23.解:(1)甲类总收费为7+(x-3)×1.6=1.6x+2.2(元);乙类总收费为6+(x-3)×1.4=1.4x+1.8(元).(2)当x=6时,甲类总收费为1.6×6+2.2=11.8(元),11.8元>11元,不够;乙类总收费为1.4×6+1.8=10.2(元),10.2元<11元,够.所以他乘出租车到科技馆车费够.24.解:(1)6;8;(2n+2)(2)按题图所示的方式每4张桌子拼成一张大桌子,那么一张大桌子可坐2×4+2=10(人).所以15张大桌子共可坐10×15=150(人).(3)在(2)中,若每4张桌子拼成一张大的正方形桌子,则一张大正方形桌子可坐8人,15张大正方形桌子共可坐8×15=120(人).(4)由(2)(3)可知,按照(2)中拼桌子的方式能使坐的人更多.第四章达标测试卷一、选择题(每题3分,共30分)1.小辉同学画出了下面四个图形,你认为是四边形的是()2.对于直线AB,线段CD,射线EF,下面能相交的是()(第3题)3.如图,表示∠1的其他方法中,不正确的是()A.∠ACB B.∠CC.∠BCA D.∠ACD4.一个多边形从一个顶点最多能引出2 018条对角线,这个多边形的边数是()A.2 018 B.2 019 C.2 020 D.2 0215.下列有关画图的表述中,不正确的是()A.画直线MN,在直线MN上任取一点PB.以点M为端点画射线MXC.过P,Q,R三点画直线D.延长线段MN到点P,使NP=MN6.∠α=40.4°,∠β=40°4′,则∠α与∠β的大小关系是()A.∠α=∠βB.∠α>∠βC.∠α<∠βD.以上都不对7.如图,观察图形,下列说法或结论中不正确的是()(第7题)A.直线BA和直线AB是同一条直线B.射线AC和射线AD是同一条射线C.AC+CD=ADD.图中有4条线段8.下列说法正确的有()①角的大小与所画角的两边的长短无关;②比较角的大小就是比较它们的度数的大小;③从角的顶点出发的一条射线把这个角分成两个角,这条射线叫做这个角的平分线;④如果∠AOC=12∠AOB,那么OC是∠AOB的平分线.A.1个B.2个C.3个D.4个9.已知∠AOB=50°,∠BOC=30°,那么∠AOC的度数是() A.20°B.40°C.80°D.20°或80°10.如图,一条流水生产线上L1,L2,L3,L4,L5处各有一名工人在工作,现要在流水生产线上设置一个零件供应站P,使五人到供应站P的距离总和最小,这个供应站设置的位置是()(第10题)A.L2处B.L3处C.L4处D.生产线上任何地方都一样二、填空题(每题3分,共24分)11.开学整理教室时,老师总是先把每一列最前面和最后面的课桌摆好,然后依次摆中间的课桌,一会儿一列课桌便摆在一条线上,整整齐齐,这是因为______________________.12.如图,小于平角的角有________个.(第12题)(第14题)(第17题)(第18题)13.把一个直角4等分,每一个角的度数是________度________分.14.如图,阴影部分扇形的圆心角的度数是________.15.一支水笔正好与一把直尺平靠放在一起,小明发现:水笔的笔尖正好对着直尺刻度约为5.6 cm处,另一端正好对着直尺刻度约为20.6 cm处,则水笔的中点位置对着的直尺刻度约为________cm.16.在学习了“线段、射线、直线”后,小李发现:许多汉字就是由这些基本的图形组成的,例如:“一”“二”可以分别看成是一条线段和两条线段组成的,那么汉字“王”中有________条线段.17.如图,某轮船在O处测得灯塔A在北偏东40°的方向上,灯塔B在南偏东60°的方向上,则∠AOB=________.18.如图,艺术节期间某班数学兴趣小组设计了一个长方形时钟作品,其中心为O,数字3,6,9,12标在各边中点处,数字2在长方形顶点处,则数字1应该标在________处(选填一个序号:①线段DE的中点;②∠DOE的平分线与DE的交点).三、解答题(19~22题每题10分,其余每题13分,共66分)19.计算:(1)48°39′+67°41′-37°12′11″;(2)32°45′20″×4-40°35′50″.20.尺规作图,如图,已知线段a,b,作出线段c,使c=a-b.(要求:不写作法,保留作图痕迹)(第20题)21.如图,在O点的观测站测得渔船A,B的方向分别为北偏东45°,南偏西30°,为了减少相互干扰并取得较好的捕鱼效益,渔船C恰好位于∠AOB的平分线上,求渔船C相对观测站的方向.(第21题)22.如图,直线AB,CD相交于点O,OE平分∠AOD,∠FOC=90°,∠1=40°,求∠2和∠3的度数.(第22题)23.如图,A,B,C是一条笔直的公路上的三个村庄,A,B之间的路程为100 km,A,C之间的路程为40 km,现在要在A,B之间建一个车站P,设P,C之间的路程为x km.(1)用含x的代数式表示车站P到三个村庄的路程之和.(2)若路程之和为102 km,则车站P应建在何处?(3)若要使车站P到三个村庄的路程之和最小,则车站P应建在何处?此时路程之和是多少?(第23题)24.如图,正方形ABCD的内部有若干个点,利用这些点以及正方形ABCD的顶点A,B,C,D把原正方形分割成一些小三角形(互相不重叠):(第24题)(1)填写下表:正方形ABCD内点的个数1234…n分割成的小三角形的个数46…(2)原正方形能否被分割成2 018个小三角形?若能,求此时正方形ABCD的内部有多少个点.若不能,请说明理由.答案一、1.B2.B3.B4.D5.C6.B7.D8.B点拨:从角的顶点出发的一条射线把这个角分成两个相等的角,这条射线叫做这个角的平分线,故③错误;如果∠AOC=12∠AOB,当OC在∠AOB的内部时,OC是∠AOB的平分线,但当OC在∠AOB的外部时,OC不是∠AOB的平分线,故④错误.①②正确,所以选B.9.D点拨:①当射线OC在∠AOB的外部时,∠AOC=∠AOB+∠BOC=50°+30°=80°;②当射线OC在∠AOB的内部时,∠AOC=∠AOB-∠BOC=50°-30°=20°.故选D.10.B二、11.两点确定一条直线12.713.22;3014.36°15.13.116.1217.80°18.②三、19.解:(1)原式=(48°+67°-37°)+(39′+41′-13′)+(60″-11″)=78°67′49″=79°7′49″;(2)原式=131°1′20″-40°35′50″=90°25′30″.20.解:如图所示.(第20题)则线段BC=c=AB-AC=a-b.21.解:由题意可知∠AOB=180°-45°+30°=165°,165°÷2-30°=52.5°.所以渔船C在观测站南偏东52.5°方向.22.解:因为∠FOC=90°,∠1=40°,∠3+∠FOC+∠1=180°,所以∠3=180°-90°-40°=50°.因为∠3+∠AOD=180°,所以∠AOD=180°-∠3=130°.因为OE 平分∠AOD , 所以∠2=12∠AOD =65°.23.解:(1)路程之和为P A +PB +PC =(100+x )km .(2)令100+x =102,解得x =2, 即车站P 建在C 村两侧2 km 处均可.(3)当x =0时,x +100最小,此时x +100=100,即车站P 建在C 村处时,车站P 到三个村庄的路程之和最小,此时路程之和为100 km . 24.解:(1)填表如下:(2)能.当2n +2=2 018,即n =1 008时,原正方形能被分割成2 018个小三角形,此时正方形ABCD 的内部有1 008个点.第五章达标测试卷一、选择题(每题3分,共30分) 1.下列方程是一元一次方程的是( )A .x 2+x =3B .5x +2x =5y +3 C.12x -9=3 D.2x +1=22.下列方程中,解是x =2的方程是( )A .3x +6=0 B.23x =2 C .5-3x =1 D .3(x -1)=x +1 3.若代数式x +4的值是2,则x 等于( )A .2B .-2C .6D .-6 4.下列变形中,正确的是( )A .若ac =bc ,则a =bB .若a c =bc ,则a =b C .若|a |=|b |,则a =b D .若-2x -2=3,则x =12 5.将方程3x -23+1=x2去分母,正确的是( )A .3x -2+1=xB .2(3x -2)+1=3xC .2(3x -2)+6=3xD .2(3x -2)+1=x6.某公园要修建一个周长为48 m 的长方形花坛,已知该花坛的长比宽多2 m ,设花坛的宽为x m ,那么列出的方程为( )A .2x =48B .x +2=48C .(x +x +2)×2=48D .x (x +2)=48 7.若12m +1与m -2互为相反数,则m 的值为( )A .-23 B.23 C .-32 D.328.如果x +12 017=-3,那么3x +32 017等于( )A .6B .-9C .3D .-19.如图①,天平呈平衡状态,其中左侧秤盘中有一袋玻璃球,右侧秤盘中也有一袋玻璃球,还有2个各20 g 的砝码.现将左侧袋中一颗玻璃球移至右侧秤盘,并拿走右侧秤盘的1个砝码后,天平仍呈平衡状态,如图②所示,则被移动的玻璃球的质量为( )(第9题)A .10 gB .15 gC .20 gD .25 g10.对于有理数a ,b ,c ,d 规定一种运算⎪⎪⎪⎪⎪⎪a b c d =ad -bc ,如⎪⎪⎪⎪⎪⎪1 02 -2=1×(-2)-0×2=-2,那么当⎪⎪⎪⎪⎪⎪2 -43-x 5=25时,x 等于( ) A .-34 B.274 C .-234 D .-134 二、填空题(每题3分,共24分)11.如果(a -1)x -13=2是关于x 的一元一次方程,则a __________. 12.写出一个解为x =2的一元一次方程:______________.13.已知关于x 的方程2x +a -5=0的解是x =2,则a =________. 14.若规定“*”的意义为a *b =a -2b ,则方程3*x =5的解是____________. 15.若方程3x -4=0与关于x 的方程3x +4k =12的解相同,则k =________. 16.如图是一个计算程序,当输入某数后,得到的结果为5,则输入的数值x =________.(第16题)17.王经理到襄阳出差带回襄阳特产——孔明菜若干袋,分给朋友们品尝.如果每人分5袋,还余3袋;如果每人分6袋,还差3袋,则王经理带回孔明菜________袋.18.我们知道,无限循环小数都可以转化为分数.例如:将0.3·转化为分数时,可设0.3·=x ,则x =0.3+110x ,解得x =13,即0.3·=13.仿照此方法,将0.4·5·化成分数是________.三、解答题(20~22题每题10分,其余每题12分,共66分) 19.解下列方程:(1)3x -3=x +2; (2)x +14-1=2x -16.(3)4x -3(20-x )=4;(4)3(x +2)4=x +23+5.20.m为何值时,代数式2m-5m-13的值与代数式7-m2的值的和等于5?21.某月,小江去某地出差,回来时发现日历有好几天没翻了,就一次翻了6张,这6天的日期数之和是123.小江回来的日期应该是多少号?22.某地为了打造风光带,将一段长为360 m的河道整治任务交给甲、乙两个工程队接力完成,共用时20天,已知甲工程队每天整治24 m,乙工程队每天整治16 m,求甲、乙两个工程队分别整治了多长的河道.23.有一种用来画圆的工具板(如图),工具板长21 cm,上面依次排列着大小不等的五个圆(孔),其中最大圆的直径为3 cm,其余圆的直径从左到右依次递减x cm,最大圆的左侧距工具板左侧边缘1.5 cm,最小圆的右侧距工具板右侧边缘1.5 cm,且相邻两圆的间距均为d cm.(1)用含x的代数式表示出其余四个圆的直径;(2)若最小圆与最大圆的直径之比为11∶15,求相邻两圆的间距.(第23题)24.某市居民生活用电基本价格为每千瓦时0.60元,若每月用电量超过a kW·h,超出部分按基本电价的120%收费.(1)某用户6月用电150 kW·h,共交电费93.6元,求a的值;(2)若该用户7月的电费平均每千瓦时为0.66元,则7月用电多少千瓦时?应交电费多少元?答案一、1.C 2.D 3.B4.B 点拨:当c =0,a ≠b 时,ac =bc 也成立,故A 选项不正确;若a c =bc ,则c 不能为0,由等式的基本性质得a =b ,故B 选项正确;若|a |=|b |,则a =b 或a =-b ,故C 选项不正确;若-2x -2=3,则x =-52,故D 选项不正确. 5.C 6.C 7.B 8.B9.A 点拨:设被移动的玻璃球的质量为x g ,根据题意,得2x =20,解得x =10. 10.A二、11.≠1 12.x -2=0(答案不唯一) 13.114.x =-1 点拨:由已知得3*x =3-2x =5,即2x =-2,解得x =-1. 15.216.10 点拨:输入某数后,得到的结果为5,而输入的数值可能是奇数,也可能是偶数.当输入的数值是奇数时,可得x +3=5,解得x =2(不合题意,舍去);当输入的数值是偶数时,可得12x =5,解得x =10.17.33 点拨:设王经理带回孔明菜x 袋,根据题意列方程,得x -35=x +36.解这个方程,得x =33.18.511 点拨:设0.4·5·=y ,则y =0.45+1100y ,解得y =511.所以0.4·5·化成分数是511.三、19.解:(1)移项,得3x -x =2+3.合并同类项,得2x =5. 系数化为1,得x =52.(2)去分母,得3(x +1)-12=2(2x -1). 去括号,得3x +3-12=4x -2. 移项,得3x -4x =-2-3+12. 合并同类项,得-x =7. 系数化为1,得x =-7.(3)去括号,得4x-60+3x=4. 移项、合并同类项,得7x=64.系数化为1,得x=64 7.(4)去分母,得9(x+2)=4(x+2)+60. 移项,得9(x+2)-4(x+2)=60.合并同类项,得5(x+2)=60.所以x+2=12.解得x=10.20.解:由题意知,2m-5m-13+7-m2=5.去分母,得12m-2(5m-1)+3(7-m)=30.去括号,得12m-10m+2+21-3m=30.移项,得12m-10m-3m=30-2-21.合并同类项,得-m=7.系数化为1,得m=-7.21.解:设这6天的日期数分别为x-2,x-1,x,x+1,x+2,x+3.根据题意,可得(x-2)+(x-1)+x+(x+1)+(x+2)+(x+3)=123.解得x=20.20+3+1=24.答:小江回来的日期应该是24号.22.解:设甲工程队整治了x天,则乙工程队整治了(20-x)天.由题意,得24x+16(20-x)=360,解得x=5.所以乙工程队整治了20-5=15(天).甲工程队整治的河道长为24×5=120 (m);乙工程队整治的河道长为16×15=240 (m).答:甲、乙两个工程队分别整治了120 m,240 m的河道.23.解:(1)其余四个圆的直径分别为(3-x)cm,(3-2x)cm,(3-3x)cm,(3-4x)cm.(2)由题易得(3-4x)∶3=11∶15,解得x=0.2.将x=0.2代入2×1.5+[3+(3-x)+(3-2x)+(3-3x)+(3-4x)]+4d=21,解得d=1.25.答:相邻两圆的间距为1.25 cm.24.解:(1)因为0.60×150=90(元)<93.6元,所以a<150.由题意,得0.60a+(150-a)×0.60×120%=93.6,解得a=120.(2)设7月用电x kW·h.由题意,得0.66x=0.60×120+0.60×(x-120)×120%,解得x=240.所以0.66x=0.66×240=158.4.答:7月用电240 kW·h,应交电费158.4元.第六章达标测试卷一、选择题(每题3分,共30分)1.下列调查中,适合用普查方式的是()A.调查佛山市市民的吸烟情况B.调查佛山市电视台某节目的收视率C.调查佛山市市民家庭日常生活支出情况D.调查佛山市某校某班学生对“文明佛山”的知晓率2.为了解某校1 500名学生的体重情况,从中抽取了100名学生的体重,在这个问题中,下列说法正确的是()A.1 500名学生的体重是总体B.1 500名学生是总体C.每名学生是个体D.100名学生是所抽取的一个样本3.下列选项中,显示部分在总体中所占百分比的统计图是() A.扇形统计图B.条形统计图C.折线统计图D.频数直方图4.为了了解某初中学校学生的健康状况,对该校学生进行抽样调查,下列抽样的方法最合适的是()A.随机抽取该校一个班级的学生B.随机抽取该校一个年级的学生C.随机抽取该校一部分男生D.分别从该校初一、初二、初三年级中随机抽取10%的学生5.四种统计图:①条形统计图;②扇形统计图;③折线统计图;④频数直方图.四个特点:(a)易于比较数据之间的差异;(b)易于显示各组之间的频数的差别;(c)易于显示数据的变化趋势;(d)易于显示每组数据相对于总数的大小.统计图与特点选配方案分别是①与(a);②与(c);③与(d);④与(b).其中选配方案正确的有()A.1个B.2个C.3个D.4个6.某公司某产品的生产量在七个月之内的增长率变化情况如图所示,从图上看,下列结论不正确的是()A.2~6月生产量增长率逐月减少B.7月生产量的增长率开始回升C.这七个月中,每月生产量不断上涨D.这七个月中,生产量有上涨有下跌(第6题)(第7题)(第8题)7.某次考试中,某班级的数学成绩统计图如图所示(每组的分数包含最小值,不包含最大值).下列说法错误的是()A.得分在70~80分的人数最多B.该班共有40人C.得分在90~100分的人数最少D.及格(≥60分)的有26人8.某校开展以“了解传统习俗,弘扬民族文化”为主题的实践活动.实践小组就“是否知道端午节的由来”这个问题,对部分学生进行了调查,调查结果如图所示,其中“不知道”的学生有8人.下列说法不正确的是()。
【北师大版】初中数学单元测试卷【七年级上册试卷|全套】目录第一章丰富的图形世界(60分钟) (1)第一章检测题 (4)参考答案: (8)初一数学测试有理数综合 (9)初一数学测试题 (13)第二章、有理数及其运算 (16)参考答案 (20)七(上)第二章测试题 (21)第三章、字母表示数 (24)参考答案 (28)第四章平面图形及其位置关系单元测试卷 (29)参考答案 (33)初一数学期中测试卷(上册) (34)七年级数学(上)单元测试卷 (36)第五章单元测试卷 (40)第六章、生活中的数据 (43)参考答案 (48)第七章可能性 (49)参考答案 (52)七年级上学期数学期末综合试卷 (53)第一章丰富的图形世界(60分钟)学校:_________ 班级:_________ 姓名:_________ 学号:_________一、填空(每空2分共30分)1、这个几何体的名称是_______;它有_______个面组成;它有_______个顶点;经过每个顶点有_______条边。
2、一个圆锥体有_________个面,其中有_________个平面。
3、圆柱体有_______个面,其中有_____个平面,还有一个面,是_________面。
4、下图为一个三棱柱,用一个平面去截这个三棱柱,截面形状可能为下图中的_____________(填序号)5、当下面这个图案被折起来组成一个正方体,数字_______会在与数字2所在的平面相对的平面上5、如右上图所示,电视台的摄像机1、2、3、4在不同位置拍摄了四幅画面,则A图象是______号摄像机所拍,B图象是______号摄像机所拍,C图象是______号摄像机所拍,D图象是______号摄像机所拍。
二、选择题(每题4分,共24分)1.下列说法中,正确的是()A.棱柱的侧面可以是三角形B.由六个大小一样的正方形所组成的图形是正方体的展开图C.正方体的各条棱都相等D.棱柱的各条棱都相等2.用一个平面去截一个正方体,截面不可能是()A.梯形 B.五边形 C.六边形 D.圆3.将左边的正方体展开能得到的图形是()4.如果你按照下面的步骤做,当你完成到第五步的时候,将纸展开,会得到图形()5.在三棱锥5个面的18个角中,直角最多有()个A.12个 B.14个 C.16个 D.18个6.小明用如下图所示的胶滚沿从左到有的方向将图案滚涂到墙上,下列给出的四个图案中,符合图示胶滚涂出的图案是()三、画图题(每题10分,共20分)1.下图是由五块积木搭成,这几块积木都是相同的正方体,请画出这个图形的主视图、左视图和俯视图。
2.如图,在圆锥底面圆周B点有一只蚂蚁,要从圆锥体侧面爬一圈后,再回到B点,请你结合圆锥的展开图设计一条最短路径。
四、推理猜测题(每题3分,共12分)(1)三棱锥有______条棱,四棱锥有______条棱,十棱锥有______条棱。
(2)______棱锥有30条棱(3)______棱柱有60条棱(4)一个多面体的棱数是8,则这个多面体的面数是______五、解答题(14分)将一个长方形绕它的一边所在的直线旋转一周,得到的几何体是圆柱,现在有一个长为4厘米,宽为3厘米的长方形,分别绕它的长、宽所在的直线旋转一周,得到不同的圆柱体,它们的体积分别是多大?附加题(10分)一个多面体的每个面都是五边形,且每个顶点的一端都是有三条棱,求多面体的棱数和面数第一章检测题姓名:__________一、填空题(每空2分,共36分):1、圆锥是由_ ___个面围成,其中__ __个平面,___ __个曲面。
2、在棱柱中,任何相邻的两个面的交线都叫做______,相邻的两个侧面的交线叫做_______。
3、从一个多边形的某个顶点出发,分别连接这个点和其余各顶点,可以把这个多边形分割成十个三角形,则这个多边形的边数为_____。
4、伟大的数学家欧拉发现并证明的关于一个多面体的顶点(V)、棱数(E)、面数(F)之间关系的公式为_______________。
5、已知三棱柱有5个面6个顶点9条棱,四棱柱有6个面8个顶点12条棱,五棱柱有7个面10个顶点15条棱,……,由此可以推测n棱柱有_____个面,____个顶点,_____条侧棱。
6、圆柱的表面展开图是________________________(用语言描述)。
7、圆柱体的截面的形状可能是________________________。
(至少写出两个,可以多写,但不要写错)8、用小立方块搭一几何体,使得它的主视图和俯视图如图所示,这样的几何体最少要_____个立方块,最多要____个立方块。
9、已知一不透明的正方体的六个面上分别写着1至6六个数字,如图是我们能看到的三种情况,那么1和5的对面数字分别是____和_____。
10、写出两个三视图形状都一样的几何体:_______、_________。
二、选择题(每题3分,共24分):11、下面几何体的截面图不可能是圆的是()A、圆柱B、圆锥C、球D、棱柱12、棱柱的侧面都是()A、三角形B、长方形C、五边形D、菱形13、圆锥的侧面展开图是()A、长方形B、正方形C、圆D、扇形14、一个直立在水平面上的圆柱体的主视图、俯视图、左视图分别是()A、长方形、圆、长方形B、长方形、长方形、圆C、圆、长方形、长方形D、长方形、长主形、圆15、将半圆绕它的直径旋转一周形成的几何体是()A、圆柱B、圆锥C、球D、正方体16、正方体的截面不可能是()A、四边形B、五边形C、六边形D、七边形17、如图,该物体的俯视图是()A、B、 C、 D、18、下列平面图形中不能围成正方体的是 ( ) A 、 B 、 C 、 D 、三、解答题(共40分):19、指出下列平面图形是什么几何体的展开图(6分):B20、如图,这是一个由小立方块塔成的几何体的俯视图,小正方形中的数字表示该位置的小立方块的个数。
请你画出它的主视图与左视图(8分)。
21、将下列几何体分类,并说明理由(8分)。
24132AC22、画出下列几何体的三视图(9分)。
23、已知下图为一几何体的三视图:(1)写出这个几何体的名称;(2)任意画出它的一种表面展开图;(3)若主视图的长为10cm ,俯视图中三角形的边长为4cm,求这个几何体的侧面积。
(9分)选作题:一.选择题:(每小题4分)1、下列各图经过折叠后不能围成一个正方体的是 ( ) (A )(B (C ) (D )2、在下面的图形中是正方体的展开图的是 ( )3、下列平面图形中不能围成正方体的是 ( )A 、B 、C 、D 、俯视图:等边三角形左视图:长方形主视图:长方形(A )(B )(C )(D )二.(10分)探索规律:用棋子按下面的方式摆出正方形①按图示规律填写下表:②按照这种方式摆下去,摆第n个正方形需要多少个棋子?③按照这种方式摆下去,第第20个正方形需要多少个棋子?参考答案:一.1.2,1,1; 2.棱,侧棱; 3.12边; 4.E F V -+ 5.2+n ,n 2,n ; 6.一个长方形和两个圆形;7.圆、抛物线、长方形、正方形,椭圆形、梯形,只需2个即可; 8.9,13; 9.3,4; 10.球、正方体、正三棱锥;只需2个 二.11.D ; 12.B ; 13.D ; 14.A ; 15.C ; 16.D ; 17.C ;18.A ; 三.19.依次为:A 长方体;B 圆锥; C 圆柱; 20.主视图和左视图依次为: 21.理由是:(1)按平面分:正方体,长方体,三棱锥; (2)按曲面分:圆柱,圆锥,球;其他分法, 合乎理由的酌情给分; 22.23.(1)这个几何体的名称是三棱锥; (2)任意一种图形: (3)2123410cm =⨯⨯ 选作题: 一. 1.D ; 2.B ; 3.A ; 二.(2)需要个棋子;(3)第20个正方形需要80个棋子;主视图左视图俯视图初一数学测试有理数综合班级 姓名 学号 得分考生注意:1、本卷共有24个小题,共120分 2、考试时间为50分钟一、选择题(本题共有10个小题,每小题都有A 、B 、C 、D 四个选项,请你把你认为适当的选项前的代号填入题后的括号中,每题3分,共30分) 1、下列说法正确的是( )A 整数就是正整数和负整数B 负整数的相反数就是非负整数C 有理数中不是负数就是正数D 零是自然数,但不是正整数 2、下列各对数中,数值相等的是( )A -27与(-2)7B -32与(-3)2C -3×23与-32×2D ―(―3)2与―(―2)33、在-5,-101,-3.5,-0.01,-2,-212各数中,最大的数是( ) A -12 B -101C -0.01D -54、若其中至少有一个正数的5个有理数的积是负数,那么这五个因数中,正数的个数是( )A 1B 2或4C 5D 1和35、绝对值大于或等于1,而小于4的所有的正整数的和是( )A 8B 7C 6D 5 6、计算:(-2)100+(-2)101的是( )A 2100B -1C -2D -2100 7、比-7.1大,而比1小的整数的个数是( )A 6B 7C 8D 98、如果一个数的平方与这个数的差等于0,那么这个数只能是( )A 0B -1C 1D 0或19、我国最长的河流长江全长约为6300千米,用科学记数法表示为( )A 63×102千米B 6.3×102千米C 6.3×104千米D 6.3×103千米 10、已知8.62=73.96,若x 2=0.7396,则x 的值等于( )A 6.8B ±0.68C ±0.86D ±86 二、填空题(本题共有8个小题,每小题3分,共27分)11、一幢大楼地面上有12层,还有地下室2层,如果把地面上的第一层作为基准,记为0,规定向上为正,那么习惯上将2楼记为 ;地下第一层记作 ;数-2的实际意义为 ,数+9的实际意义为 。
12、互为相反数的两数(非零)的和是 ,商是 ;互为倒数的两数的积是 。
13、某数的绝对值是5,那么这个数是 。
134756≈ (保留四个有效数字) 14、( )2=16,(-32)3= 。
15、数轴上和原点的距离等于321的点表示的有理数是 。
16、计算:-0.85×178+14×72-(14×73-9×0.85)= 。
17、使用计算器进行计算时,按键程序为 5 4 ,则结果为 。
18、+5.7的相反数与-7.1的绝对值的和是 。
19、已知每辆汽车要装4个轮胎,则51只轮胎至多能装配 辆汽车。
三、解答题(本题共有7个小题,满分63分) 20、计算:(本题共有7个小题,每小题4分,共28分) (1)8+(―41)―5―(―0.25) (2)―82+72÷36(3)721×143÷(-9+19) (4)25×43―(―25)×21+25×(-41)(5)(-81)÷241+94÷(-16) (6)(-1)3-(1-21)÷3×[2―(―3)2](7)3232)2(361)3()2(---⨯---21、一天小明和冬冬利用温差来测量山峰的高度。