八年级下册数学第二次月考测试题
- 格式:doc
- 大小:140.00 KB
- 文档页数:2
BFOCDBA初二数学月测试题A 卷一、 填空.〔每题3分,共30分〕1. 假设558.178.3=,1558.0=x ,那么=x .2. 常用的四组勾股值为 , , , .3. 假设()05251=++-y x ,那么()=2003xy .4. 如下图,树AB 的高为m 5,树根A 距墙DC 为 m 4,当树被大风 刮倒,靠到墙面上时,树尖B 正好与高D 点重合, 那么墙的高为 m .5. n 边形与m 边形内角和度数差为720°,那么n 与m 的差为 .6. 在△ABC 中,BC AD ⊥于D,E 、F 分别是AB,AC的中点,连接DE,DF .当△ABC 满足条件时,四边形是AEDF 是菱形,〔填写一个你认为恰当的条件即可〕.7. 如下图,在矩形ABCD 中,点E 、F 分别在边AB,CD 上,BF ∥DE ,假设AD=12cm ,AB=7cm 且AE ∶EB=5∶2,那么阴影局部的面积为 .8. 如下图,把边长为AD=10cm,AB=8cm 的矩形沿着AE 为折痕对折,使点D 落在BC 上的点F 处,那么DE= .9. 梯形的上底和下底分别是1和4,两条对角线之长分别是3和4,那么梯形的面积是 .10. 某家装饰市场有五种型号的地板砖,它们的每个内角度数分别是60°,90°,100°,120°,150°,能密铺新居室地面的型号是 . 二、 选择题.〔每题3分,共30分〕1. 以下条件中,不能确定三角形是直角三角形的有〔 〕 A . 三角形中有两个角是锐角B . 三角形中有三个内角的比是3∶2∶1C . 三角形中有两个内角的差等于第三个内角D . 三角形中三个外角的度数比是3∶4∶52. 0,1,131131113.0,83--π中,无理数的个数是〔 〕 A. 0 B.1个C. 2个D. 3个3. 如下图,∠A=∠D=90°,AC 与BD 交于O ,AB=CD=4,AO=3 那么BD 的长为〔 〕 A .6 B .7 C .8 D .104. 估算56的值应在〔 〕A .6.5~7.0之间B .7.0~7.5之间C .7.5~8.0之间D .8.0~8.5之间 5. 以下命题不成立的是〔 〕A .对角线相等的平行四边形是矩形B .对角线互相垂直的平行四边形是菱形C .对角线互相垂直且相等的四边形是正方形D .对角线相等的梯形是等腰梯形6. 既是轴对称又是中央对称图形的是〔 〕 A .等边三角形 B .等腰三角形 C .平形四边形 D .正六边形7. 正方形的对角线与边长之比为〔 〕 A .1∶1B .2∶1C .1∶2D .2∶18. 如下图,用一块边长为22的正方形ABCD 厚纸板,按下面的做法做一套七巧板,作对角线AC 分别取AB,BC 的中点E,F,连接EF,连接BD,交EF 于G ,交AC 于H,将正方形ABCD 沿画出的线剪开,现把它们拼成一座桥,如下图,这座桥阴影局部的面积是〔 〕 A .8 B .6 C .4 D .59. 菱形的周长为40,两邻边所夹锐角为30°,那么菱形的面积为〔 〕 A .30 B .40学校:班级:姓名:B CDE F BCCD C .50 D .6010. 四边形有三条边分别为,3,5,12,那么第四条边x 的取值范围为〔 〕 A .123<<x B .175<<x C .204<<x D .2012<<x三、 化简.〔每题4分,共20分〕.1. 154520-+2. 1.025240--3. 42+4. ⎪⎪⎭⎫ ⎝⎛--⨯814122483235. 21⎪⎪⎭⎫ ⎝⎛+a a四、 简答以下各题.〔每题5分,共10分〕 1. 作图.①. 作出将正方形ABCD 平移后的图形〔点A 移到了点C 〕②. 作等腰三角形绕其底边中点旋转180°以后的图形.2. 在数学活动课上,老师领学生去河边,如果老师和学生都在A 岸,要测出AB 两岸的距离,请你帮助设计一个方案.〔只要测出两个数据就可测出AB 的距离,但不能到B岸〕学校: 班级: 姓名:E D C B A A五、 在等腰△ABC 中,AB=AC=13,BC=10,取BC 所在直线为x 轴,且以点B 为坐标原点,求△ABC 三个顶点的坐标.〔5分〕六、 一位小姐在商店看到一块漂亮的纱巾,非常想买,但当她拿起来看时,感觉纱巾不太方,商店老板看她犹豫的样子,马上过来拉起一组对角,让小姐看另一组对角是否对齐,小姐还有些迷惑,老板又拉起另一组对角,让小姐检验,小姐终于买了这块纱巾,你认为这块纱巾是正方形的吗?当时采用什么方法就可检验出来?〔8分〕七、 如下图,AE ∥BD,假设AE=5,BD=8,且△ABD的面积为24,设C 在直线BD 上,那么△ACE 的面积是多少?〔7分〕八、 如图,在梯形ABCD 中,AD ∥BC,∠B=90°,AD=24cm,AB=8cm,BC=26cm,动点P 从A 点开始沿AD 边以1cm/秒的速度向D 运动.动点Q 从C 点开始沿CB 边以3cm/秒的速度向B 运动,P,Q 分别从A,C 同时出发,当其中一点到端点时,另一点也随之停止运动.设运动时间为t 秒.①. t 为何值时,四边形PQCD 是平行四边形.②. t 为何值时,四边形PQCD 是等腰梯形.学校:班级:姓名:O C D BA BF 初二数学月测试题B 卷一、 填空.〔每题3分,共30分〕1. 对于任意两个正整数m,n 〔m>n 〕组成勾股数的三个代数式为 .2. x 边形与y 边形内角和度数差为720°,那么x 与y 的差为 .3. 在△ABC 中,BC AD ⊥于D,G 、H 分别是AB,AC 的中点,连接DG ,DH.当△ABC 满足条件 时,四边形是AGDH 是菱形,〔填写一个你认为恰当的条件即可〕.4. 如下图,在矩形ABCD 中,点F 、E 分别在边AB,CD 上,BE ∥DF ,假设AD=12cm ,AB=7cm 且CE ∶D E=5∶2,那么阴影局部的面积为 . 5. 假设558.178.3=,1558.0=x ,那么=x .6. 如下图,树AB 的高为m 5,树根A 距墙DC 为m 4,当树被大风刮倒,靠到墙面上时,树尖B 正好与高D 点重合,那么墙的高为 m .7. 假设()05251=++-y x ,那么()=2003xy .8. 如下图,把边长为AD=10cm,AB=8cm 的矩形沿着AE折,使点D 落在BC 上的点F 处,那么DE= . 9. 某家装饰市场有五种型号的地板砖,它们的每个内角度数分别是60°,90°,100°,120°,150°,能密铺新居室地面的型号是 .10. 梯形的上底和下底分别是1和4,两条对角线之长分别是4和3,那么梯形的面积是 . 二、 选择题.〔每题3分,共30分〕1. 四边形有三条边分别为,3,5,12,那么第四条边x 的取值范围为〔 〕A .204<<xB .86<<xC .43<<xD . 125<<x 2. 正方形的对角线与边长之比为〔 〕A .2∶1B .2∶1C .1∶1D .1∶23. 以下命题不成立的是〔 〕A .对角线互相垂直的平行四边形是菱形B .对角线相等的梯形是等腰梯形C .对角线相等的平行四边形是矩形D .对角线互相垂直且相等的四边形是正方形4. 0,1,131131113.0,83--π中,无理数的个数是〔 〕A. 3个B. 2个C. 0D. 1个5. 如下图,用一块边长为22的正方形ABCD 厚纸板,按下面的做法做一套七巧板,作对角线AC 分别取AB,BC 的中点E,F,连接EF,连接BD,交EF 于G ,交AC 于H,将正方形ABCD 沿画出的线剪开,现把它们拼成一座桥,如下图,这座桥阴影局部的面积是〔 〕A .4B .6C .5D . 86. 菱形的周长为40,两邻边所夹锐角为30°,那么菱形的面积为〔 〕A .60B .40C .30D .507. 以下条件中,不能确定三角形是直角三角形的有〔 〕 A . 三角形中有三个内角的比是3∶2∶1 B . 三角形中三个外角的度数比是3∶4∶5 C . 三角形中有两个角是锐角D . 三角形中有两个内角的差等于第三个内角 8. 如下图,∠A=∠D=90°,AC 与BD 交于o,AB=CD=4,AO=3 那么BD 的长为〔 〕 A .8 B .6 C .10 D .7 9. 估算56的值应在〔 〕A .7.0~7.5之间B . 8.0~8.5之间C .6.5~7.0之间D . 7.5~8.0之间10. 既是轴对称又是中央对称图形的是〔 〕 A .等腰三角形 B .正六边形 C .等边三角形 D .平形四边形B C B C D EF学校: 班级:姓名:CD 三、 化简.〔每题4分,共20分〕1. 154520-+2. ⎪⎪⎭⎫ ⎝⎛--⨯814122483233. 21⎪⎪⎭⎫ ⎝⎛+a a4. 1.025240--5. 42+四、 简答以下各题.〔每题5分,共10分〕1. 作图.①. 作出将正方形ABCD 平移后的图形〔点A 移到了点C 〕②. 作等腰三角形绕其底边中点旋转180°以后的图形.2. 在数学活动课上,老师领学生去河边,如果老师和学生都在A 岸,要测出AB 两岸的距离,请你帮助设计一个方案.〔只要测出两个数据就可测出AB 的距离,但不能到B 岸〕E D C B A A 五、 在等腰△ABC 中,AB=AC=13,BC=10,取BC 所在直线为x 轴,且以点B 为坐标原点,求△ABC 三个顶点的坐标.〔5分〕六、 如下图,AE ∥BD,假设AE=5,BD=8,且△ABD 的面积为24,设C 在直线BD 上,那么△ACE 的面积是多少?〔7分〕七、 如图,在梯形ABCD 中,AD ∥BC,∠B=90°,AD=24cm,AB=8cm,BC=26cm,动点P 从A 点开始沿AD 边以1cm/秒的速度向D 运动.动点Q 从C 点开始沿CB 边以3cm/秒的速度向B 运动,P,Q 分别从A,C 同时出发,当其中一点到端点时,另一点也随之停止运动.设运动时间为t 秒.①. t 为何值时,四边形PQCD 是平行四边形.②.t 为何值时,四边形PQCD 是等腰梯形.八、 一位小姐在商店看到一块漂亮的纱巾,非常想买,但当她拿起来看时,感觉纱巾不太方,商店老板看她犹豫的样子,马上过来拉起一组对角,让小姐看另一组对角是否对齐,小姐还有些迷惑,老板又拉起另一组对角,让小姐检验,小姐终于买了这块纱巾,你认为这块纱巾是正方形的吗?当时采用什么方法就可检验出来?〔8分〕。
2015-2016 学年广西南宁四十九中八年级(下)第二次月考数学试卷一、选择题(此题共 12 小题,每题 3 分,共 36分)1.已知是二次根式,则 a 的值可以是()A.﹣ 2 B.﹣ 1 C. 2D.﹣ 72.以下四组木棒中,哪一组的三条可以恰好做成直角三角形的木架()A. 7 厘米, 12 厘米, 15 厘米B. 7 厘米, 12 厘米, 13 厘米C. 8 厘米, 15 厘米, 16 厘米D. 3 厘米, 4 厘米, 5 厘米3.正方形拥有,而菱形不用然拥有的性质是()A.四条边都相等 B .对角线垂直且相互均分C.对角线相等D.对角线均分一组对角4.已知 m=+1,n=,则 m和 n 的大小关系为()A. m=n B. mn=1 C. m=﹣ n D. mn=﹣ 15.在一块平川上,张大爷家屋前9 米远处有一颗大树,在一次强风中,这课大树从离地面6 米处折断倒下,量得倒下部分的长是10 米,大树倒下时能砸到张大爷的房屋吗?()A.必定不会 B .可能会C.必定会D.以上答案都不对6.在平行四边形ABCD中,∠ B=110°,延伸 AD至 F,延伸 CD至 E,连结 EF,则∠ E+∠F=()A.110°B.30° C .50° D .70°7.若=﹣ a 建立,则知足的条件是()A. a> 0 B. a< 0 C . a≥ 0 D . a≤ 08.预计×+的运算结果是()A. 3 到 4 之间B. 4 到 5 之间C. 5 到 6 之间D. 6 到 7 之间9.如图,已知暗影部分是一个正方形,AB=4,∠ B=45°,此正方形的面积()A. 16B. 8C. 4D. 210.如图,由四个边长为 1 的正方形组成的田字格,只用没有刻度的直尺在田字格中最多可以作长为的线段()A. 4 条B. 6 条C. 7 条D. 8 条11.如图,在平面直角坐标系中,以O( 0, 0), A(1, 1),B(3, 0)为极点,结构平行四边形,以下各点中不可以作为平行四边形极点坐标的是()A.(﹣ 3, 1)B.( 4, 1) C.(﹣ 2, 1)D.( 2,﹣ 1)12.如图,分别以直角△ ABC的斜边 AB,直角边 AC为边向△ ABC外作等边△ ABD和等边△ ACE,F 为 AB的中点, DE与 AB 交于点 G, EF 与 AC交于点 H,∠ ACB=90°,∠ BAC=30°.给出以下结论:①EF⊥ AC;②四边形 ADFE为菱形;③ AD=4AG;④ FH=BD;此中正确结论的是()A.①②③B.①②④C.①③④D.②③④二、填空题(此题共 6 小题,每题 3 分,共21 分)13.二次根式是一个整数,那么正整数 a 最小值是.14.一个四边形的边长挨次为a、b、c、d,且 a2+b2+c2+d2﹣2ac﹣ 2bd=0,则这个四边形的形状是.15.已知一个三角形的三条边的长分别为、和,那么这个三角形的最大内角度数为.16.在?ABCD中,∠ABC和∠ BCD的均分线分别交AD于点 E 和点 F,AB=3cm,EF=1cm,则?ABCD 的边 AD的长是.17.如图是一个三级台阶,它的每一级的长、宽、高分别为20dm、 3dm、2dm.A 和 B 是这个台阶上两个相对的端点,点 A 处有一只蚂蚁,想到点 B 处去吃爽口的食品,则蚂蚁沿着台阶面爬行到点 B 的最短行程为dm.18.如图,正方形 OABC的边长为 6,点 A、 C 分别在 x 轴, y 轴的正半轴上,点D( 2, 0)在 OA上, P 是 OB上一动点,则 PA+PD的最小值为.三、(此题共 1 小题,共10 分)19.计算:①( 4﹣ 6)÷ 2②﹣(﹣ 2)0+.四、(此题共1 小题,共14 分)20.已知: x=+,y=﹣,求代数式x2﹣ y2+5xy 的值.五、(此题共2 小题,共14 分)21.如图,已知,在四边形ABCD中: AO=BO=CO=DO.求证:四边形ABCD是矩形.22.如图,在Rt △ ABC中,∠ ACB=90°,点D,E 分别是边AB,AC的中点,延伸BC到点 F,使CF= BC.若 AB=12,求 EF的长.六、(此题共1 小题,共7 分)23.如图,在四边形ABCD中, AB∥ CD, AB=12,BC=17, CD=20, AD=15.(1)请你在图中增添一条直线,将四边形ABCD分红一个平行四边形和一个三角形.(2)求四边形ABCD的面积?七、(此题共1 小题,共8 分)24.如图,北部湾海面上,一艘解放军军舰在基地 A 的正东方向且距 A 地 60 海里的 B 处训练,忽然接到基地命令,要该舰前去 C 岛,接送一名病危的渔民到基地医院救治.已知C岛在 A 的北偏东30°方向,且在 B 的北偏西60°方向,军舰从 B 处出发,均匀每小时行驶30 海里,需要多少时间才能把生病渔民送到基地医院.(精准到小时,≈ )八、(此题共2 小题,共10 分)25.以以以下图,四边形 ABCD是正方形, M是 AB延伸线上一点.直角三角尺的一条直角边经过点 D,且直角极点 E在 AB边上滑动(点 E 不与点 A、B 重合),另向来角边与∠ CBM的均分线 BF 订交于点 F.(1)如图 1,当点 E 在 AB 边得中点地点时:①经过丈量DE、 EF的长度,猜想DE与 EF 知足的数目关系是.②连结点 E 与 AD边的中点N,猜想 NE与 BF 知足的数目关系是,请证明你的猜想.(2)如图 2,当点 E 在 AB边上的随意地点时,猜想此时DE与 EF有如何的数目关系,并证明你的猜想.26.如图, BD是菱形 ABCD的对角线,点 E,F 分别在边CD,DA上,且 CE=AF.求证: DE=DF.2015-2016 学年广西南宁四十九中八年级(下)第二次月考数学试卷参照答案与试题分析一、选择题(此题共12 小题,每题 3 分,共 36 分)1.已知是二次根式,则 a 的值可以是()A.﹣ 2 B.﹣ 1 C. 2D.﹣ 7【考点】二次根式的定义.【分析】依据二次根式的被开方数是非负数,可得答案.【解答】解:是二次根式,则 a 的值可以是2,故 C 吻合题意;应选: C.2.以下四组木棒中,哪一组的三条可以恰好做成直角三角形的木架()A. 7 厘米, 12 厘米, 15 厘米B. 7厘米, 12 厘米, 13 厘米C. 8 厘米, 15 厘米, 16 厘米D. 3厘米, 4 厘米, 5 厘米【考点】勾股定理的逆定理.【分析】由勾股定理的逆定理,只需考证两小边的平方和等于最长边的平方即可.222B、 72+122≠ 132,故不是直角三角形,故此选项错误;222C、 8 +15 =16 ,故不是直角三角形,故此选项错误;222D、 3 +4 =5 ,故不是直角三角形,故此选项正确.应选 D.3.正方形拥有,而菱形不用然拥有的性质是()A.四条边都相等 B .对角线垂直且相互均分C.对角线相等D.对角线均分一组对角【考点】正方形的性质;菱形的性质.【分析】举出正方形拥有而菱形不用然拥有的全部性质,即可得出答案.【解答】解:正方形拥有而菱形不用然拥有的性质是:①正方形的对角线相等,而菱形不用然对角线相等,②正方形的四个角是直角,而菱形的四个角不用然是直角,应选 C.4.已知 m= +1,n=,则m和n的大小关系为()A. m=n B. mn=1 C. m=﹣ n D. mn=﹣ 1【考点】分母有理化.【分析】第一依据分母有理化的方法,把n=分母有理化,此后再把它和m比较大小,判断出 m和 n 的大小关系;最后求出mn的值是多少即可.【解答】解:由于n==,m=+1,因此 m=n;又由于 mn==4因此 mn≠ 1, mn≠﹣ 1,因此选项B、 D 错误.应选: A.5.在一块平川上,张大爷家屋前9 米远处有一颗大树,在一次强风中,这课大树从离地面6 米处折断倒下,量得倒下部分的长是10 米,大树倒下时能砸到张大爷的房屋吗?()A.必定不会 B .可能会C.必定会D.以上答案都不对【考点】勾股定理的应用.【分析】由题意知树折断的两部分与地面形成向来角三角形,依据勾股定理求出BC的长即可解答.【解答】解:以以以下图,AB=10米, AC=6米,依据勾股定理得,BC===8 米< 9 米.应选: A.6.在平行四边形ABCD中,∠ B=110°,延伸 AD至 F,延伸 CD至 E,连结 EF,则∠ E+∠F=()A.110°B.30° C .50° D .70°【考点】平行四边形的性质.【分析】要求∠ E+∠ F,只需求∠ ADE,而∠ ADE=∠ A 与∠ B 互补,因此可以求出∠ A,从而求解问题.【解答】解:∵四边形ABCD是平行四边形,∴∠ A=∠ADE=180°﹣∠ B=70°∵∠ E+∠ F=∠ ADE∴∠ E+∠F=70°应选 D.7.若=﹣ a 建立,则知足的条件是()A. a> 0 B. a< 0 C . a≥ 0 D . a≤ 0【考点】二次根式的性质与化简.【分析】依据=,进行选择即可.【解答】解:∵=﹣ a,∴a≤ 0,应选 D.8.预计×+ 的运算结果是()A. 3 到 4 之间B. 4 到 5 之间C. 5 到 6 之间D. 6 到 7 之间【考点】预计无理数的大小.【分析】先预计的范围,即可解答.【解答】解:原式 =,∵,∴,应选: B.9.如图,已知暗影部分是一个正方形,AB=4,∠ B=45°,此正方形的面积()A. 16B. 8C. 4D. 2【考点】二次根式的应用.【分析】依据特别角的三角函数求得 AC的长,也就是正方形的边长,进一步求得面积即可.【解答】解:∵ AB=4,∠ B=45°,∴A C=AB?sin∠ B=4×=2 ,∴此正方形的面积为2×2=8.应选: B.10.如图,由四个边长为 1 的正方形组成的田字格,只用没有刻度的直尺在田字格中最多可以作长为的线段()A. 4 条B. 6 条C. 7 条D. 8 条【考点】勾股定理.【分析】联合图形,获得1, 2,是一组勾股数,以以以下图,找出长度为的线段即可.【解答】解:依据勾股定理得:=,即 1, 2,是一组勾股数,以以以下图,在这个田字格中最多可以作出8 条长度为的线段.应选 D.11.如图,在平面直角坐标系中,以O( 0, 0), A(1, 1),B(3, 0)为极点,结构平行四边形,以下各点中不可以作为平行四边形极点坐标的是()A.(﹣ 3, 1)B.( 4, 1) C.(﹣ 2, 1)D.( 2,﹣ 1)【考点】坐标与图形性质;平行四边形的性质.【分析】所给点的纵坐标与 A 的纵坐标相等,说明这两点所在的直线平行于x 轴,这两点的距离为: 1﹣(﹣ 3)=4;点 O和点 B 的纵坐标相等,这两点所在的直线平行于x 轴,这两点的距离为: 3﹣ 0,相对的边平行,但不相等,因此 A 选项的点不可以能是行四边形极点坐标.【解答】解:由于经过三点可结构三个平行四边形,即?AOBC1、 ?ABOC2、?AOC3B.依据平行四边形的性质,可知B、C、D正好是C1、C2、C3的坐标,应选 A.12.如图,分别以直角△ ABC的斜边 AB,直角边 AC为边向△ ABC外作等边△ ABD和等边△ ACE,F 为 AB的中点, DE与 AB 交于点 G, EF 与 AC交于点 H,∠ ACB=90°,∠ BAC=30°.给出以下结论:①EF⊥ AC;②四边形 ADFE为菱形;③ AD=4AG;④ FH=BD;此中正确结论的是()A.①②③B.①②④C.①③④D.②③④【考点】菱形的判断;等边三角形的性质;含30 度角的直角三角形.【分析】依据已知先判断△ ABC≌△ EFA,则∠ AEF=∠ BAC,得出 EF⊥ AC,由等边三角形的性质得出∠ BDF=30°,从而证得△ DBF≌△ EFA,则 AE=DF,再由 FE=AB,得出四边形 ADFE为平行四边形而不是菱形,依据平行四边形的性质得出AD=4AG,从而获得答案.【解答】解:∵△ ACE是等边三角形,∴∠ EAC=60°, AE=AC,∵∠ BAC=30°,∴∠ FAE=∠ACB=90°, AB=2BC,∵F 为 AB的中点,∴AB=2AF,∴BC=AF,∴△ ABC≌△ EFA,∴FE=AB,∴∠ AEF=∠BAC=30°,∴EF⊥ AC,故①正确,∵EF⊥ AC,∠ ACB=90°,∴HF∥ BC,∵F 是 AB的中点,∴HF=BC,∵BC=AB, AB=BD,∴HF=BD,故④说法正确;∵AD=BD, BF=AF,∴∠ DFB=90°,∠ BDF=30°,∵∠ FAE=∠BAC+∠CAE=90°,∴∠ DFB=∠EAF,∵EF⊥ AC,∴∠ AEF=30°,∴∠ BDF=∠AEF,∴△ DBF≌△ EFA( AAS),∴AE=DF,∵FE=AB,∴四边形ADFE为平行四边形,∵AE≠ EF,∴四边形ADFE不是菱形;故②说法不正确;∴AG=AF,∴AG=AB,∵A D=AB,则AD=4AG,故③说法正确,应选: C.二、填空题(此题共 6 小题,每题 3 分,共 21 分)13.二次根式是一个整数,那么正整数 a 最小值是2.【考点】二次根式的定义.【分析】依据二次根式的乘法,可得答案.【解答】解:由二次根式是一个整数,那么正整数 a 最小值是 2,故答案为: 2.14.一个四边形的边长挨次为a、b、c、d,且 a2+b2+c2+d2﹣2ac﹣ 2bd=0,则这个四边形的形状是平行四边形.【考点】因式分解的应用;平行四边形的判断.【分析】由 a2+b2+c2+d2﹣ 2ac﹣ 2bd=0,可整理为( a﹣ c)2+( b﹣ d)2 =0,即 a=c,b=d,进一步判断四边形为平行四边形即可.2222【解答】解:∵ a +b +c +d ﹣ 2ac﹣ 2bd=0,∴a=c, b=d,∴这个四边形必定是平行四边形.故答案为:平行四边形.15.已知一个三角形的三条边的长分别为、和,那么这个三角形的最大内角度数为90° .【考点】勾股定理的逆定理.【分析】依据勾股定理的逆定理:假如三角形有两边的平方和等于第三边的平方,那么这个是直角三角形,从而可得答案.【解答】解:∵()2+()2=()2,∴三角形为直角三角形,∴这个三角形的最大内角度数为90°,故答案为: 90°16.在?ABCD中,∠ABC和∠ BCD的均分线分别交AD于点 E 和点 F,AB=3cm,EF=1cm,则?ABCD 的边 AD的长是5cm或 7cm.【考点】平行四边形的性质.【分析】第一依据题意画出图形,由在?ABCD中,∠ ABC和∠ BCD的均分线分别交A D于点 E 和点 F,易证得△ ABE与△ CDF是等腰三角形,既而求得AE=DF=3cm,此后分别从图(1)与(2)两种状况去分析,既而求得答案.【解答】解:∵四边形 ABCD是平行四边形,∴AB=CD=3cm, AD∥ BC,∴∠ AEB=∠EBC,∵BE 均分∠ ABC,∴∠ABE=∠CBE,∴∠ABE=∠AEB,∴AE=AB=3cm,同理: DF=CD=3cm,如图(1),AD=AE+DF﹣EF=3+3﹣1=5(cm);如图( 2),AD=AE+EF+DF=3+1+3=7( cm),∴?ABCD的边 AD的长是: 5cm或 7cm.故答案为: 5cm 或 7cm.17.如图是一个三级台阶,它的每一级的长、宽、高分别为20dm、 3dm、2dm.A 和 B 是这个台阶上两个相对的端点,点 A 处有一只蚂蚁,想到点 B 处去吃爽口的食品,则蚂蚁沿着台阶面爬行到点 B 的最短行程为 25 dm.【考点】平面张开 - 最短路径问题.【分析】先将图形平面张开,再用勾股定理依据两点之间线段最短进行解答.【解答】解:三级台阶平面张开图为长方形,长为 20dm,宽为( 2+3)× 3dm,则蚂蚁沿台阶面爬行到 B 点最短行程是此长方形的对角线长.可设蚂蚁沿台阶面爬行到 B 点最短行程为xdm,由勾股定理得:x2=202+[ ( 2+3)× 3] 2=252,解得 x=25.故答案为25.18.如图,正方形 OABC的边长为 6,点 A、 C 分别在 x 轴, y 轴的正半轴上,点D( 2, 0)在 OA上, P 是 OB上一动点,则 PA+PD的最小值为 2.【考点】轴对称 - 最短路线问题;坐标与图形性质.【分析】过 D 点作对于OB的对称点D′,连结 D′A交 OB于点 P,由两点之间线段最短可知D′A即为 PA+PD的最小值,由正方形的性质可求出D′点的坐标,再依据OA=6可求出 A 点的坐标,利用两点间的距离公式即可求出D′A的值.【解答】解:过 D 点作对于OB的对称点 D′,连结 D′A交 OB于点 P,由两点之间线段最短可知 D′A即为 PA+PD的最小值,∵D( 2, 0),四边形OABC是正方形,∴D′点的坐标为(0, 2), A 点坐标为( 6, 0),∴D′A==2,即PA+PD的最小值为2.故答案为2.三、(此题共 1 小题,共10 分)19.计算:①( 4﹣ 6)÷ 2②﹣(﹣ 2)0+.【考点】二次根式的混淆运算;零指数幂.【分析】( 1)先进行二次根式的除法运算,此后归并;(2)分别进行二次根式的化简、零指数幂等运算,此后归并.【解答】解:( 1)原式 =2﹣3;(2)原式 =3﹣1+=4﹣ 1.四、(此题共1 小题,共14 分)20.已知: x=+,y=﹣,求代数式x2﹣ y2+5xy 的值.【考点】二次根式的化简求值.【分析】第一把代数式利用平方差公式因式分解,再进一步代入求得答案即可.【解答】解:∵ x=+,y=﹣,∴x2﹣ y2+5xy=( x+y )( x﹣ y) +5xy=2× 2+5(+)(﹣)=4+5.五、(此题共2 小题,共14 分)21.如图,已知,在四边形ABCD中: AO=BO=CO=DO.求证:四边形ABCD是矩形.【考点】矩形的判断.【分析】第一依据AO=BO=CO=DO判断平行四边形,此后依据其对角线相等判断矩形即可.【解答】证明:∵ AO=C0=BO=DO,∴四边形ABCD是平行四边形,∵AO=C0=BO=DO,∴AC=DB,∴四边形ABCD是矩形.22.如图,在Rt △ ABC中,∠ ACB=90°,点D,E 分别是边AB,AC的中点,延伸BC到点 F,使CF= BC.若 AB=12,求 EF的长.【考点】平行四边形的判断与性质;直角三角形斜边上的中线;三角形中位线定理.【分析】利用三角形中位线定理以及直角三角形的性质得出DE BC,DC= AB,从而得出四边形 DEFC是平行四边形,即可得出答案.【解答】解:连结DC,∵点 D, E分别是边AB, AC的中点,∴DE BC, DC= AB,∵C F= BC,∴DE FC,∴四边形DEFC是平行四边形,∴D C=EF,∴E F= AB=6.六、(此题共1 小题,共7 分)23.如图,在四边形ABCD中, AB∥ CD, AB=12,BC=17, CD=20, AD=15.(1)请你在图中增添一条直线,将四边形ABCD分红一个平行四边形和一个三角形.(2)求四边形 ABCD的面积?【考点】平行四边形的性质;勾股定理的逆定理.【分析】( 1)第一过点 B 作 BE∥ AD,交 CD于点 E,可得四边形ABED是平行四边形;(2)由四边形 ABED是平行四边形,可求得 CE, BE的长,此后利用勾股定理的逆定理证得△BCE是直角三角形,既而求得答案.【解答】解:(1)如图,过点B作BE∥AD,交CD于点E,∵在四边形 ABCD中, AB∥ CD,∴四边形 ABED是平行四边形;(2)∵四边形 ABED是平行四边形,∴D E=AB=12, BE=AD=15,∴C E=CD﹣ DE=20﹣ 12=8,∵B C=17,222∴BE +CE=BC,∴S= ( AB+CD)?BE=×( 12+20)× 15=240 .四边形 ABCD七、(此题共1 小题,共8 分)24.如图,北部湾海面上,一艘解放军军舰在基地 A 的正东方向且距 A 地 60 海里的 B 处训练,忽然接到基地命令,要该舰前去 C 岛,接送一名病危的渔民到基地医院救治.已知C 岛在 A 的北偏东30°方向,且在 B 的北偏西60°方向,军舰从 B 处出发,均匀每小时行驶30 海里,需要多少时间才能把生病渔民送到基地医院.(精准到小时,≈ )【考点】勾股定理的应用;方向角.【分析】依据题意知应求( BC+AC)的长,△ ABC为斜三角形,因此需作高转变为直角三角形求解.【解答】解:依据题意,得∠ A=60°,∠ B=30°作CD⊥ AB于 D,设CD=x,∵=tan60 °∴AD=x∵=tan30 °∴B D= x∵A B=60,∴x+x=60,解得: x=15 海里,∴AC=x=30 海里,BC=2x=30海里,∴A C=2x∴= +1≈ 2.7 小时,答:需要大概 2.7 小时才能把生病渔民送到基地医院.八、(此题共2 小题,共10 分)25.以以以下图,四边形 ABCD是正方形, M是 AB延伸线上一点.直角三角尺的一条直角边经过点 D,且直角极点 E在 AB边上滑动(点 E 不与点 A、B 重合),另向来角边与∠ CBM的均分线 BF 订交于点 F.(1)如图 1,当点 E 在 AB 边得中点地点时:①经过丈量DE、 EF的长度,猜想DE与 EF 知足的数目关系是DE=EF .②连结点 E 与 AD边的中点N,猜想 NE与 BF知足的数目关系是NE=BF ,请证明你的猜想.(2)如图 2,当点 E 在 AB边上的随意地点时,猜想此时DE与 EF有如何的数目关系,并证明你的猜想.【考点】全等三角形的判断与性质;正方形的性质.【分析】( 1)①依据图形可以获得DE=EF,NE=BF,②要证明这两个关系,只需证明△DNE≌△E BF即可.(2) DE=EF,连结 NE,在 DA边上截取 DN=EB,证出△ DNE≌△ EBF即可得出答案.【解答】解:( 1)① DE=EF;②NE=BF;原因以下:∵四边形 ABCD为正方形,∴AD=AB,∠ DAB=∠ABC=90°,∵N,E 分别为 AD, AB中点,∴AN=DN= AD, AE=EB= AB,∴DN=BE, AN=AE,∵∠ DEF=90°,∴∠ AED+∠FEB=90°,又∵∠ ADE+∠AED=90°,∴∠ FEB=∠ADE,又∵ AN=AE,∴∠ ANE=∠AEN,又∵∠ A=90°,∴∠ ANE=45°,∴∠ DNE=180°﹣∠ ANE=135°,又∵∠ CBM=90°, BF均分∠ CBM,∴∠ CBF=45°,∠ EBF=135°,在△ DNE和△ EBF中,∴△ DNE≌△ EBF( ASA),∴D E=EF, NE=BF.(2) DE=EF,原因以下:连结 NE,在 DA边上截取 DN=EB,∵四边形 ABCD是正方形, DN=EB,∴AN=AE,∴△AEN为等腰直角三角形,∴∠ ANE=45°,∴∠ DNE=180°﹣ 45°=135°,∵BF 均分∠ CBM, AN=AE,∴∠ EBF=90° +45°=135°,∴∠ DNE=∠EBF,∵∠ NDE+∠DEA=90°,∠BEF+∠DEA=90°,∴∠ NDE=∠BEF,在△ DNE和△ EBF中,∴△ DNE≌△ EBF( ASA),∴D E=EF.26.如图, BD是菱形 ABCD的对角线,点E,F 分别在边CD,DA上,且 CE=AF.求证: DE=DF.【考点】菱形的性质;全等三角形的判断与性质.【分析】依据菱形的性质可得AD=CD,即可得出结论.【解答】证明:∵四边形ABCD是菱形,∴AD=CD,∵CE=AF,∴DE=DF.。
初二下学期第二次月考试题一、请你填一填。
(每题3分,共30分) 1.计算4133m m m -+++= . 2.计算y —y ÷x= 。
3.反比例函数x ky =的图象过点P (3,7),那么k 的值是 .4.顺次连结矩形各边中点所得的四边形是_____5.如图,一架云梯长10米,斜靠在一面墙上,梯子顶端离地面6米,要使梯子顶端离地面8 米,则梯子的底部在水平面方向要向左滑动_______________米.第5题图 第6题图 第7题图6.如图,P 是正方形ABCD 内一点,将△ABP 绕点B 顺时针方向旋转能与△CBP′重合,PB=1,则PP′=__________________.7.你吃过兰州拉面吗?实际上在做拉面的过程中就渗透着数学知识:一定体积的面团做成拉面,面条的总长度у(cm )是面条粗细(横截面积)x (cm 2)的反比例函数,假设其图象如图所示,则у与x 的函数关系式为__ _ .8.某射击运动员五次射击成绩分别为9环,5环,8环,8环,10环,则他这五次成绩的平均数为 ,众数为 . 9. 我县某天的最高温度是32℃,最低温度是21℃,则气温的极差为 _______℃ 10.某商店选用每千克28元的A 型糖3千克,每千克20元的B 型糖2千克,每千克12元的C 型糖5千克混合杂拌后出售,这种杂拌糖平均每千克售价为____元. 二、请你选一选。
(每题3分,共18分) 11.(辽宁省) 五名同学在“爱心捐助”活动中,捐款数额为8,10,10,4,6(单位:元),这组数据的中位数是 ( ) A .10 B .9 C .8 D . 6 12.下列结论正确的是 ( )A .邻角相等的四边形是菱形B .有一组邻边相等的四边形是菱形C .对角线互相垂直的四边形是菱形D .对角线互相垂直平分的四边形是菱形13.如图所示,在□ABCD 中,对角线AC 、BD 交于 点O ,下列式子中一定成立的是 ( )A .OA=ODB .AC=BDC .AC ⊥BD D .OB=0D 14.下列命题中的假命题是 ( ) A .在△ABC 中,若∠A=∠C-∠B ,则△ABC 是直角三角形 B .在△ABC 中,若a 2+b 2=c 2,则△ABC 是直角三角形C .在△ABC 中,若∠A 、∠B 、∠C 的度数比是5∶2∶3,则△ABC 是直角三角形D .在△ABC 中,若三边长a ∶b ∶c=2∶2∶3,则△ABC 是直角三角形 15.以A 、B 、C 三点为平行四边形的三个顶点,作形状不同的平行四边形,一共可以作( ) A .0个或3个 B .2个 C .3个 D .4个 16.(漳州市) 甲、乙两名运动员在10次的百米跑练习中,平均成绩分别为x甲7.10=秒,x 乙7.10=秒,方差分别为S 2甲054.0=,S 2乙103.0=,那么在这次百米跑练习中,甲、乙两名运动员成绩较为稳定的是 ( )A .甲运动员B .乙运动员C .甲、乙两人一样稳定D .无法确定 三、请你来解答。
八年级(下)第二次月考数学试卷一、选择题:本大题共6个小题,每小题3分,共18分.在每小题给出的四个选项中,只有一项是符合题目要求的1.(3分)如图,所给图形中是中心对称图形但不是轴对称图形的是()A.B.C.D.2.(3分)下列变形中不正确的是()A.由a>b得b<aB.若a>b,则ac2>bc2(c为有理数)C.由﹣a>﹣b得b>aD.由﹣x<y得x>﹣2y3.(3分)已知点A的坐标为(1,3),点B的坐标为(2,1).将线段AB沿某一方向平移后点A的对应点的坐标为(﹣2,5),则点B的对应点的坐标为()A.(﹣1,3)B.(﹣1,﹣1)C.(5,3)D.(5,﹣1)4.(3分)若关于x的分式方程有增根,则m的值为()A.1B.2C.﹣1D.﹣25.(3分)如图,直线y=x+2与直线y=ax+4相交于点P(m,3),则关于x的不等式x+2<ax+4的解集为()A.x>1B.x<1C.x>3D.x<36.(3分)如图,已知:∠MON=30°,点A1、A2、A3…在射线ON上,点B1、B2、B3…在射线OM上,△A1B1A2、△A2B2A3、△A3B3A4…均为等边三角形,若OA1=1,则△A6B6A7的边长为()A.6B.12C.32D.64二、填空题(每题3分,满分18分,将答案填在答题纸上)7.(3分)要使分式无意义,则x的取值范围是.8.(3分)如图,在△ABC中,BC=5cm,BP、CP分别是∠ABC和∠ACB的角平分线,且PD∥AB,PE∥AC,则△PDE的周长是cm.9.(3分)如图所示,在△ABC中,∠B=90°,AB=3,AC=5,将△ABC折叠,使点C 与点A重合,折痕为DE,则△ABE的周长为.10.(3分)已知m+n=3,则m2﹣n2+6n=.11.(3分)在实数范围内规定新运算“*”,基本规则是a*b=a﹣2b,已知不等式x*m≤3的解集在数轴上表示如图所示,则m的值为.12.(3分)在等腰△ABC中,AD⊥BC交直线BC于点D,若AD=BC,则△ABC的顶角的度数为.三、(本大题共5小题,每小题6分,共30分)13.(6分)(1)因式分解:m3﹣m;(2)解不等式组:.14.(6分)先化简,再从﹣2<x≤2中选一个合适的整数作为x的值代入求值.15.(6分)如图,已知AC⊥BC,BD⊥AD,AC与BD交于O,AC=BD 求证:(1)△ABC≌△BAD;(2)OA=OB.16.(6分)小明解方程﹣=1的过程如下:解:方程两边乘x,得1﹣(x﹣2)=1.①去括号,得1﹣x﹣2=1.②移项,得﹣x=1﹣1+2.③合并同类项,得﹣x=2.④解得x=﹣2.⑤所以,原分式方程的解为x=﹣2.⑥请指出他解答过程中的错误,并写出正确的解答过程.17.(6分)在4×4的方格纸中,△ABC的三个顶点都在格点上.(1)在图1中画出与△ABC关于点C成中心对称的格点三角形A1B1C;(2)将图2中的△ABC绕着点C按逆时针方向旋转90°,画出经旋转后的三角形A2B2C.四、(本大题共3小题,每小题8分,共24分)18.(8分)阅读下列材料:我们知道,分子比分母小的数叫做“真分数”;分子比分母大,或者分子、分母同样大的分数,叫做“假分数”.类似地,我们定义:在分式中,对于只含有一个字母的分式,当分子的次数大于或等于分母的次数时,我们称之为“假分式”;当分子的次数小于分母的次数时,我们称之为“真分式”.如:这样的分式就是假分式;再如:这样的分式就是真分式,假分数可以化成1+(即1)带分数的形式,类似的,假分式也可以化为带分式.如:.解决下列问题:(1)分式是(填“真分式”或“假分式”);假分式可化为带分式形式;(2)如果分式的值为整数,求满足条件的整数x的值;(3)若分式的值为m,则m的取值范围是(直接写出答案).19.(8分)如图,在Rt△ABC中,∠ACB=90°,AC=6,BC=8,AE平分∠CAB,CE⊥AE于点E,延长CE交AB于点D.(1)求证:CE=DE;(2)若点F为BC的中点,求EF的长.20.(8分)阅读材料:根据多项式乘多项式法则,我们很容易计算:(x+2)(x+3)=x2+5x+6;(x﹣1)(x+3)=x2+2x﹣3.而因式分解是与整式乘法方向相反的变形,利用这种关系可得:x2+5x+6=(x+2)(x+3);x2+2x﹣3=(x﹣1)(x+3).通过这样的关系我们可以将某些二次项系数是1的二次三项式分解因式.如将式子x2+2x ﹣3分解因式.这个式子的二次项系数是1=1×1,常数项﹣3=(﹣1)×3,一次项系数2=(﹣1)+3,可以用下图十字相乘的形式表示为:先分解二次项系数,分别写在十字交叉线的左上角和左下角;再分解常数项,分别写在十字交叉线的右上角和右下角;然后交叉相乘,求和,使其等于一次项系数,然后横向书写.这样,我们就可以得到:x2+2x﹣3=(x﹣1)(x+3).利用这种方法,将下列多项式分解因式:(1)x2+7x+10=;(2)x2﹣2x﹣3=;(3)y2﹣7y+12=;(4)x2+7x﹣18=.五、(本大题共2小题,每小题9分,共18分)21.(9分)如图,点O是等边△ABC内一点,∠AOB=110°,∠BOC=α.以OC为一边作等边三角形OCD,连接AD.(1)求证:△BOC≌△ADC;(2)当α=150°时,试判断△AOD的形状,并说明理由;(3)探究:当α为多少度时,△AOD是等腰三角形?22.(9分)疫情复学返校之前,为方便快速筛查体温异常学生,某校准备购买A,B两种型号的额温枪,已知每支A型额温枪比每支B型额温枪贵50元,买1支A型额温枪和2支B型额温枪共500元.(1)每支A型、B型额温枪的价格各是多少元?(2)该校欲购进A,B型额温枪共100支,且A型额温枪的数量不少于B型额温枪的数量,购买的总金额不超过17600元,则共有哪几种购买方案?(3)在(2)的条件下,若购买A型额温枪m支,写出购买总费用w(元)与m的表达式,并求出w的最小值.六.(本大题共12分)23.(12分)如图,在平面直角坐标系中,A(a,0),D(6,4),将线段AD平移得到BC,使B(0,b),且a、b满足|a﹣2|+=0,延长BC交x轴于点E.(1)填空:点A(,),点B(,),∠DAE=°;(2)求点C和点E的坐标;(3)设点P是x轴上的一动点(不与点A、E重合),且P A>AE,探究∠APC与∠PCB 的数量关系?写出你的结论并证明.。
宾王中学八下数学第二次月考检测一、选择题(共10小题,每题3分,共30分)1.\sqrt(32)的值是()A.3B. - 3C.±3D.62.在下列反比例函数中,其图象经过点(3,4)的是()A.y =- 12x B.y =12x C.y =7x D.y =-7x3.已知a是一元二次方程x2 - 2r + 3 = 0的解,则代数式2a2 - 4a的值为()A.3B.6C. - 3D. - 64.用反证法证明命题:“已知△ABC,AB = AC,求证:∠B< 90°,”第一步应先假设()A.∠B≥90°B.∠B> 90°C.∠B< 90°D.AB≠AC5..如图,已知\@ABCD,则下列结论一定正确的是()A.∠1 = ∠2B.∠2 = ∠4C.∠1 = ∠3D.∠2 = ∠36.2019年由于生猪产量下滑,导致猪肉价格节节器升,我市在8月份为32元/公斤,到10月份时就已涨到64元/公斤,假设这两个月猪肉价格的平均上涨串相同,求这两次猪肉价格的平均上涨率.设这两月的猪肉价格的平均上涨率为x,则可列方程为(A.32(1 + x)^2 = 64B.32x = 64C.64(1 - x)^2 = 32D.32 + 32(1 + x)= 647.如图,在\@ABCD中,E为CD上一点,连接AE、BD,且AE、BD交于点F,SADFF:S△ABF = 4:25,A.2:5B.2:3C.3:5D.3:28.用配方法解方程x2 - 6r + 1 = 0,方程应变形为(5.A.(x-3)2 = 8B.(x-3)2 = 10C.(x-6)2 = 10D.(x-6)2 = 89.如图,已知反比例函数y = kx(x> 0)的图象如图所示,则k的取值范围是()A. - 2 <k<- 1B. - 3 <k<- 2C. - 4 <k<- 3D. - 5 <k<- 410.如图,已知直线I∥AB,I与AB之间的距离为2.C、D是直线l上两个动点(点C在D点的左侧),且AB = CD = 5.连接AC、BC、BD,将△ABC沿BC折叠得到△A′BC.下列说法:①四边形ABDC的面积始终为10:②当A′与D重合时,四边形ABDC是菱形;③当A′与D不重合时;连接A′、D,则∠CA′D+ ∠BCH′=180°:④若以A′、C、B、D为原点的四边形为矩形,则此把形相邻两边之和为3\sqrt5或7.A.①②④B.①③④C.①②③D.①②③④二、填空题(共6小题,每题4分,共24分)11.若二次根式\sqrt(x + 2)有意义,则x的取值范围为_________ .12.三个数- 1,a,3的平均数是2,则a的值是 _________ .13.内角和为900°的多边形是 _________ 边形.14.如图,已知正方形ABCD,∠DBC的平分线DC于点E,作EF⊥BD于点F,E作FG⊥BC于点G,则EG6= _________边\@B15.如图,在平面直角坐标系中,0为坐标原点,四边形OABC是矩形,点A,C的坐标分别为A(9,0),C(0,3),点D以2cmls的速度从A出发向终点O运动,点P以1 cm/s的速度从C出发向终点B运动,当△ODP是以OP为一腰的等腰三角形时,点P的坐标为 _________16.一副含30°和45°角的三角板ABC和DEF叠合在一起,边BC与EF重\@合,BC = EF = 12 cm(如图1),点G为边BC(EF)的中点,边FD与AB相交于点H,此时线段BH的长 _________ .现将三角板DEF绕点G按顺时针方向旋转(如图2),在∠CGF从0°到60°的变化过程中,点H相应移动B@的路径长共为 _________ .(结果保留根号)6DA三、解答题\@田17(本题6分).计算:(1)\sqrt18 - \sqrt8:(2)\sqrt((-3)2 + 2\sqrt3 ×\sqrt3.18.(本题6分)解方程:(1)x2 - x = 0:(2)x2 + 4x - 3 = 0.19.(本题6分)如图,正方形网格中的每个小正方形边长都是1,每个小格的顶点叫做格点,以格点为顶点分别按下列要求画图:(1)在甲图中,画出一个平行四边形`d _________ 1``B _________ 1``C|`D_________ 1,`使其面积为3:(2)在乙图中,画出一个正方形`A _________ 2``B _________ 2``C _________ 2``D _________ 2`,使其面积为5;(3)在丙图中,画出一个数形ABC3D3,使其面积为6.20.(本题8分)如图,在\@ABCD中,∠BAD的平分线交BC干点E,∠BCD的平分线交AD于点F.(1)求证:四边形AECF是平行四边形:(2)若AE = 5,BC - AB = 3,求四边形AECF的周长.21.(本题8分)如图,直线y = x + 1与x轴交于点B,y轴交于A点,与反比例函数y = kx(x>0)的图象交于点M,过M作MH⊥x轴于点H,且AO = 12MH.(1)求k的值:(2)在y轴上是否存在点P,使得点P、A、H、M为顶点的四边形是平行四边形?若存在,求出P点坐标:若不存在,请说明理由.22.(本题10分)某商场将进价为2000元的冰箱以2400元钟出,平均每天能售出8台,为了配合国家“家电下乡”政策的实施,商场决定采取适当的降价措施. 调资费明:这种冰箱的售价每降低50元,平均每天就能多售出4台.(1)假设每台冰箱降价x元,商场每天销售这种冰箱的利润是y元,请写出y与x之间的函数表达式:(不要求写自变量的取值范围)(2)商场要想在这种冰箱销售中每天盈利4800元,同时又要使百姓得到实出,每台冰箱应降价多少元?(3)每台冰箱降价多少元时,商场每天销售这种冰箱的利润取高?最高利润是多少?23.(本题10分)已知:矩形ABCD中,AB = 4,BC = 3,点M、N分别在边AB、CD上,直线MN交矩形对角线AC于点E,将△AME沿直线MN翻折,点A落在点P处,且点P在射线CB上(1)如图1,当EP⊥BC时,求CN的长:(2)如图2,当EP⊥AC时,求AM的长:(3)请写出线段CP的长的取值范围,及当CP的长最大时MN的长.24.(本题12分)定义:如果一个y与x的函数图象经过平移后能与某反比例函数的图象重合,那么称这个函数是y与x的“反比例平移函数”.例如:y =1x−2+ 1的图象向左平移2个单位,再向下平移1个单位得到y = 1x的图象,则y =1x−2+ 1是y与x的“反比例平移函数”.1)若(x + 3)()= 8,求y与x的函数表达式,并判断这个函数是否为“反比例平移函数”?(2)如图,在平面直角坐标系中,点O为原点,矩形OABC的顶点A、C的坐标分别为(9,0)、(0.3),点D是O.A的中点,连接OB、CD交干点E,“反比例平移函数”y = ax - k的图象经过B、E两点则这个“反比例平移函数”的表达式为 _________ 这个“及比例平移函数”的图象经过适当的变换与某一个反比例函数的图象重合,请写出这个反比例函数的表达式 _________ .(3)在(2)的条件下,已知过线段BE中点的一条直线/交这个“反比例平移函数”图象于P、Q两点(P在Q的右侧),若B、E、P、Q为顶点组成的四边形面积为16,请求出点P的坐标.。
2021-2022学年八年级数学下册第二次月考测试题(附答案)一、选择题(共30分)1.把a2﹣a分解因式,正确的是()A.a(a﹣1)B.a(a+1)C.a(a2﹣1)D.a(1﹣a)2.如图,数轴上所表示的不等式的解集是()A.x≥2B.x>2C.x<2D.x≤23.下列图形中,既是轴对称图形又是中心对称图形的是()A.B.C.D.4.如图,在已知的△ABC中,按以下步骤作图:①分别以B,C为圆心,以大于BC的长为半径作弧,两弧相交于两点M,N;②作直线MN交AB于点D,连接CD,若CD=AC,∠B=25°,则∠ACB的度数为()A.105°B.100°C.95°D.90°5.要使分式有意义,则x的取值范围是()A.x=1B.x≠1C.x=﹣1D.x≠﹣16.如图,在▱ABCD中,将△ADC沿AC折叠后,点D恰好落在DC的延长线上的点E处.若∠B=60°,AB=3,则△ADE的周长为()A.12B.15C.18D.217.若(a+3)x>a+3的解集为x<1,则a必须满足()A.a<0B.a>﹣3C.a<﹣3D.a>38.如图,把一块三角板ABC的直角顶点B放在直线EF上,∠C=30°,AC∥EF,则∠1=()A.30°B.45°C.60°D.75°9.如图,一次函数y1=x+b与一次函数y2=kx+3的图象交于点P(1,2),则关于不等式x+b>kx+3的解集是()A.x>0B.x>1C.x<1D.x<010.如图,在△ABC中,AB=AC,分别以点A、B为圆心,以适当的长为半径作弧,两弧分别交于E,F,作直线EF,D为BC的中点,M为直线EF上任意一点.若BC=4,△ABC面积为10,则BM+MD长度的最小值为()A.B.3C.4D.5二、填空题(共24分)11.分解因式:ab2﹣9a=.12.若一个多边形的每一个内角都是150°,则它是边形.13.如图所示,△DEF是由△ABC通过平移得到的,且点B,E,C,F在同一条直线上,若BF=14,EC=8,则从△ABC到△DEF的平移距离为.14.若分式有意义,则x的取值范围为.15.平行四边形ABCD中,E、F是对角线BD上不同的两点,写出一个能使四边形AECF 一定为平行四边形的条件.(用题目中的已知字母表示)16.如图,∠AOB=120°,点P为∠AOB的平分线上的一个定点,且∠MPN与∠AOB互补,若∠MPN在绕点P旋转的过程中,其两边分别与OA、OB相交于M、N两点,则以下结论:①PM=PN;②OM+ON=OP;③四边形PMON的面积保持不变;④△PMN的周长保持不变.其中说法正确的是(填序号).三、计算题(共18分)17.解方程:.18.解不等式组并把解集在数轴上表示出来.19.先化简:,再选一个你喜欢的a的值代入求值.四、解答题(共48分)20.如图,△ABC三个顶点的坐标分别为A(2,4),B(1,1),C(4,3).(1)请画出△ABC关于原点对称的△A1B1C1;(2)请画出△ABC绕点B逆时针旋转90°后的△A2B2C2,并写出A2的坐标.21.如图,在等边△ABC中,AB=6,D是AC的中点,E是BC延长线上的一点,CE=CD,DF⊥BE,垂足为F.(1)求BD的长;(2)求证:BF=EF.22.如图:在Rt△ABC中,∠A=90°,过B作BH∥AC.(1)按尺规作图要求作BC的垂直平分线,交AC于E,交BH于D,(保留作图痕迹,不写作法),连接BE、CD.(2)求证:四边形BECD是平行四边形.23.为了做好防疫工作,学校准备购进一批消毒液.已知每瓶B型消毒液比A型贵2元,用56元购A型消毒液与72元购B型消毒液的瓶数相同.(1)这两种消毒液的单价各是多少元?(2)学校准备购进这两种消毒液共90瓶,且B型消毒液的数量不少于A型消毒液数量的,请设计出最省钱的购买方案,并求出最少费用.24.如图,在▱ABCD中,对角线AC,BD相交于点O,BD=2AD,点E在线段OC上,且OE=CE.(1)求证:∠OBE=∠ADO;(2)若F,G分别是OD,AB的中点,且BC=10,①求证:△EFG是等腰三角形;②当EF⊥EG时,求▱ABCD的面积.25.如图,在平面直角坐标系xOy中,已知点A(5,1),B(1,1),C(0,5).直线m平行于x轴且经过C,D,E三点.直线l的关系式为y=﹣2x+b.(1)若△ABD是以AB为底的等腰三角形,且直线l过点D,求b的值;(2)若b=9,直线l与▱ABDE的边DE相交时,求点E的横坐标n的取值范围;(3)若点F为▱ABDE的对角线BE与DA的交点,当直线l经过点F时,求点D的横坐标q与b之间的函数关系式.参考答案与试题解析一、选择题(共30分)1.解:a2﹣a=a(a﹣1).故选:A.2.解:∵2处是实心圆点且折线向右,∴不等式的解集是x≥2.故选:A.3.解:A.该图形既不是轴对称图形,又不是中心对称图形,故此选项不合题意;B.该图形既不是轴对称图形,又不是中心对称图形,故此选项不合题意;C.该图形是轴对称图形,不是中心对称图形,故此选项不合题意;D.该图形既是轴对称图形,又是中心对称图形,故此选项符合题意.故选:D.4.解:由题意可得:MN垂直平分BC,则DC=BD,故∠DCB=∠DBC=25°,则∠CDA=25°+25°=50°,∵CD=AC,∴∠A=∠CDA=50°,∴∠ACB=180°﹣50°﹣25°=105°.故选:A.5.解:∵分式有意义,∴x﹣1≠0.解得;x≠1.故选:B.6.解:由折叠可得,∠ACD=∠ACE=90°,∴∠BAC=90°,又∵∠B=60°,∴∠ACB=30°,∴BC=2AB=6,由折叠可得,∠E=∠D=∠B=60°,∴∠DAE=60°,∴△ADE是等边三角形,∴△ADE的周长为6×3=18,故选:C.7.解:∵(a+3)x>a+3的解集为x<1,∴a+3<0,解得:a<﹣3.故选:C.8.解:∵AC∥EF,∠C=30°,∴∠C=∠CBF=30°,∵∠ABC=90°,∴∠1=180°﹣∠ABC﹣∠CBF=180°﹣90°﹣30°=60°,故选:C.9.解:当x>1时,x+b>kx+3,即不等式x+b>kx+3的解集为x>1.故选:B.10.解:由作法得EF垂直平分AB,∴MB=MA,∴BM+MD=MA+MD,连接MA、DA,如图,∵MA+MD≥AD(当且仅当M点在AD上时取等号),∴MA+MD的最小值为AD,∵AB=AC,D点为BC的中点,∴AD⊥BC,∵S△ABC=•BC•AD=10,∴AD==5,∴BM+MD长度的最小值为5.二、填空题(共24分)11.解:原式=a(b2﹣9)=a(b+3)(b﹣3),故答案为:a(b+3)(b﹣3).12.解:360÷30=12,则它是12边形.13.解:∵△DEF是由△ABC通过平移得到,∴BE=CF,∴BE=BF﹣EC,∵BF=14,EC=8,∴BE=14﹣8=3.故答案为:3.14.解:∵分式有意义,∴x2﹣4≠0,∴x≠±2.故答案为:x≠±2.15.解:连接AC交BD于点O,如图:在平行四边形ABCD中,OA=OC,OB=OD,∵AE∥CF,∴∠OAE=∠OCF,∵∠AOE=∠COF,AO=CO,∴△AOE≌COF(ASA),∴OE=OF,∴四边形AECF为平行四边形;故答案为:AE∥CF.16.解:过点P作PE⊥OA,垂足为E,过点P作PF⊥OB,垂足为F,∴∠PEO=90°,∠PFO=90°,∵∠AOB=120°,∴∠EPF=360°﹣∠AOB﹣∠PEO﹣∠PFO=60°,∵∠MPN+∠AOB=180°,∴∠MPN=180°﹣∠AOB=60°,∴∠MPN﹣∠EPN=∠EPF﹣∠EPN,∴∠MPE=∠NPF,∵OP平分∠AOB,PE⊥OA,PF⊥OB,∴PE=PF,∵∠MEP=∠NFP=90°,∴△MEP≌△NFP(ASA),∴PM=PN,ME=NF,故①正确;∵OP=OP,∴Rt△PEO≌Rt△PFO(HL),∴OE=OF,∴OM+ON=OE+ME+OF﹣NF=2OE,∵OP平分∠AOB,∴∠EOP=∠AOB=60°,∴∠EPO=90°﹣∠EOP=30°,∴PO=2OE,∴OM+ON=OP,故②正确;∵△MEP≌△NFP,∴四边形PMON的面积=四边形PEOF的面积,∴四边形PMON的面积保持不变,故③正确;∵PM=PN,∠MPN=60°,∴△PMN是等边三角形,∵MN的长度是变化的,∴△PMN的周长是变化的,故④错误;所以,说法正确的是:①②③,故答案为:①②③.三、计算题(共18分)17.解:方程两边同乘以(x+1)(x﹣1)得(x+1)2﹣6=(x+1)(x﹣1)(2分)整理,得2x=4x=2(4分)检验,把x=2代入(x+1)(x﹣1)=3≠0.所以,原方程的根是x=2.(5分)18.解:解不等式x+4≤3(x+2),得:x≥﹣1,解不等式3x﹣3<2x,得:x<3,则不等式组的解集为﹣1≤x<3,将不等式的解集表示在数轴上如下:19.解:原式=[﹣]•=•=•=,当a=﹣1时,原式=﹣1.四、解答题(共48分)20.解:(1)如图,△A1B1C1;即为所求;(2)如图,△A2B2C2即为所求,A2的坐标(﹣2,2).21.(1)解:∵△ABC是等边三角形,∴∠BCD=60°,AB=BC=AC=6,又∵AB=6,点D为AC的中点,∴CD=3,BC⊥CD,∴BD===3;(2)证明:∵△ABC是等边三角形,D为AC的中点,∴∠CBD=,又∵CE=CD,∴∠CDE=∠E,又∵∠BCD=60°,∴∠E=,∴∠CBD=∠E,∴BD=DE,又∵DF⊥BC,垂足为F.∴BF=EF.22.(1)解:如图,直线DE为所求;(2)证明:DE交BC于F,如图,∵DE垂直平分BC,∴BF=CF,EB=EC,又∵BH∥AC,∴∠1=∠2,∠3=∠4在△BDF和△CEF中,,∴△BDF≌△CEF(AAS),∴BD=CE,∵BD∥CE,∴四边形BECD是平行四边形.23.解:(1)设A型消毒液的单价是x元,B型消毒液的单价是y元,得,解得.答:A型消毒液的单价是7元;B型消毒液的单价是9元.(2)设购进A型消毒液a瓶,则购进B型消毒液(90﹣a)瓶,费用为w元,依题意可得:w=7a+9(90﹣a)=﹣2a+810,∵k=﹣2<0,∴w随a的增大而减小.∵B型消毒液的数量不少于A型消毒液数量的,∴90﹣a≥a.解得a≤67 ,∴当a=67时,w取得最小值,此时w=﹣2×67+810=676,90﹣a=23.答:最省钱的购买方案是购进A型消毒液67瓶,购进B型消毒液23瓶;最低费用为676元.24.(1)证明:∵四边形ABCD是平行四边形,∴AD∥BC,AD=BC,DO=BO=BD,∴∠ADB=∠DBC,∵BD=2AD,∴AD=DO,∴BC=BO,∵E是CO中点,∴∠OBE=∠OBC,∴∠OBE=∠ADO;(2)①证明:∵BC=BO,∴△BOC是等腰三角形,∵E是CO中点,∴EB⊥CO,∴∠BEA=90°,∵G为AB中点,∴EG=AB,∵四边形ABCD是平行四边形,∴AB=CD,∵E、F分别是OC、OD的中点,∴EF=CD∴EG=EF,∴△EFG是等腰三角形;②解:由①得EF∥AB,∵EF⊥EG,∴EG⊥AB,∵G是AB的中点,∴AE=BE,设CE=x,则AO=CO=2CE=2x,∴BE=AE=3x,在Rt△BEC中,BC=10,∴EC2+BE2=BC2,即x2+(3x)2=102,解得x=,∴AC=,BE=,∴S▱ABCD=2S△ABC=.25.解:(1)∵A(5,1),B(1,1),DA=DB,∴D(3,5),将x=3,y=5代入y=﹣2x+b,∴b=11;(2)∵四边形ABDE为平行四边形,∴DE=AB=4,∵E(n,5),∴D(n﹣4,5),当5=﹣2x+9时,x=2,∵直线y=﹣2x+9与边DE有交点,∴2≤n≤6;(3)∵四边形ABDE为平行四边形,∴DF=F A,∵D(q,5),A(5,1),∴,即,将,y=3代入y=﹣2x+b,∴q=b﹣8.。
第1页,共6页第2页,共6页学校 班级 姓名 座号装 订 线2011—2012学年度第二学期八年级数学月考测试题(一)考试时间:100分钟 满分:110分一、选择题。
(本大题满分30分,每小题3分)1.代数式-32x ,4x y-,x+y ,21x π+,78,53b a 中是分式的有( )A .1个B .2个C .3个D .4个 2.分式||22x x --的值为零,则x 的值为( ) A .0 B .2 C .-2 D .2或-2 3.如果把分式x yxy+中的x 、y 同时扩大2倍,那么该分式的值( ) A .扩大为原来的2倍; B .缩小为原来的12; C .不变; D .缩小为原来的144.若分式方程231x x -=1m x -有增根,则m 的值为( )A .3B .-3C .1D .-15.人体中成熟红细胞的平均直径为0.0000077m ,用科学记数法表示为( ) A .7.7×10-5m B .77×10-6m ; C .77×10-5m D .7.7×10-6m 6.下列函数关系式中不是表示反比例函数的是( )A .xy=5B .y=C .y=-3x-1D .y=7.如果矩形的面积为6cm 2,那么它的长y cm 与宽x cm 之间的函数关系用图象表示大致( )AB C D8.满足函数y=k (x-1)和函数y=kx(k ≠0)的图象大致是( )9.如果反比例函数y=kx的图象经过点(-4,-5),那么这个函数的解析式为( ) A .y=-20x B .y=20x C .y=20x D .y=-20x10.在反比例函数y=-1x的图象上有三点(x 1,y 1),(x 2,y 2),(x 3,y 3),若x 1>x 2>0>x 3,则下列各式正确的是( )A .y 3>y 1>y 2B .y 3>y 2>y 1C .y 1>y 2>y 3D .y 1>y 3>y 2 二、填空题。
2019-2020学年陕西省西安市碑林区西北工大附中八年级(下)第二次月考数学试卷一、选择题(共10小题,每小题3分,计30分,每小题只有一个选项是符合题意的)1.若m>n,则下列不等式一定成立的是()A.1+m<1+n B.m﹣2<n﹣2C.>D.﹣4m>﹣4n 2.下列汽车标志中,既是轴对称图形又是中心对称图形的是()A.B.C.D.3.下列等式从左到右的变形,属于因式分解的是()A.m(a+b)=ma+mb B.x2+2x+1=x(x+2)+1C.x2+x=x2(1+)D.x2﹣9=(x+3)(x﹣3)4.如图,在△ABC中,AB=AC,点D是BC边上的中点,∠BAD=50°,则∠C的大小为()A.20°B.30°C.40°D.50°5.在直角坐标系中,点O为坐标原点,点A(3,4),把线段OA绕点O顺时针旋转90°得到线段OA',则点A'的坐标为()A.(4,3)B.(4,﹣3)C.(﹣4,3)D.(3,﹣4)6.如图,在平行四边形ABCD中,AB⊥AC,若AB=8,AC=12,则BD的长是()A.22B.16C.18D.207.如图,直线y=kx+b交x轴于点A(﹣1,0),直线y=mx+n交x轴于点B(3,0),这两条直线相交于点C(1,3),则不等式kx+b<mx+n的解集为()A.x<1B.x>1C.x<﹣2D.x<58.如图,在△ABC中,∠B=60°,AB=3.将△ABC绕点A按逆时针方向旋转得到△ADE,若点B的对应点D恰好落在BC边上,且DC=2,则DE的长为()A.3B.4C.5D.69.若,则的值为()A.B.3C.5D.710.如图,△ABC中,D、E分别是BC、AC的中点,BF平分∠ABC,交DE于点F,若AB=10,BC=8,则EF的长是()A.B.1C.D.1.5二、填空题(共4小题,共12分)11.若已知分式的值为0,则m的值为.12.有一个正多边形的内角和等于它外角和的2倍,则这个正多边形每一个内角的大小为.13.若关于x的分式方程﹣=1有增根,则a的值.14.如图,在Rt△ABC中,∠ACB=90°,∠BAC=30°,AB=4.如果在三角形内部有一条动线段MN∥AC,且MN=2,则AM+BN+CN的最小值为.三、解答题(共9小题,共58分)15.将下列各式因式分解:(1)2a2﹣4a+2;(2)x2﹣25﹣10(x﹣5).16.解不等式组并把解集在数轴上表示出来.17.尺规作图:如图,已知▱ABCD,在DC边上求作一点M,使得MA=MC.(不写作法,保留作图痕迹)18.如图,已知△ABC,作∠BAC的角平分线与BC的垂直平分线相交于点P,过点P作PM⊥AB于点M,PN⊥AC交AC的延长线于点N,连接BP、CP.求证:∠BPM=∠CPN.19.先化简:(﹣)÷,再从﹣3、﹣2、﹣1、0、1中选一个合适的数作为a的值代入求值.20.如图,▱ABCD的对角线AC、BD交于点O,M,N分别是AB、AD的中点.(1)求证:四边形AMON是平行四边形;(2)若AC=6,BD=4,∠AOB=90°,求四边形AMON的周长.21.“垃圾分一分,环境美十分”.某校为积极响应有关垃圾分类的号召,从百货商场购进了A,B两种品牌的垃圾桶作为可回收垃圾桶和其他垃圾桶.已知B品牌垃圾桶比A品牌垃圾桶每个贵50元,用4000元购买A品牌垃圾桶的数量是用3000元购买B品牌垃圾桶数量的2倍.(1)求购买一个A品牌、一个B品牌的垃圾桶各需多少元?(2)若该中学决定再次准备用不超过6000元购进A,B两种品牌垃圾桶共50个,恰逢百货商场对两种品牌垃圾桶的售价进行调整:A品牌按第一次购买时售价的九折出售,B 品牌比第一次购买时售价提高了20%,那么该学校此次最多可购买多少个B品牌垃圾桶?22.如图,直线l1:y=2x+4与x轴交于点A,与y轴交于点B,直线l2:y=﹣x+2与y轴交于点C.(1)直接写出点A、B、C的坐标分别为:A,B,C;(2)是否存在将直线l2:y=﹣x+2向上或向下平移使其经过点D,且使得以A、B、C、D为顶点的四边形为平行四边形?若存在,求出所有可能的平移方式;若不存在,请说明理由.23.问题探究(1)如图①,已知∠A=45°,∠ABC+∠ADC=60°,则∠BCD的大小为;(2)如图②,在四边形ABCD中,AB=BC,∠ABC=∠ADC=90°,对角线BD=6,求四边形ABCD的面积;问题解决(3)如图③,四边形ABCD是正在建设的地铁站的施工围挡,受地方限制,要求AB=BC;∠ABC=∠ADC=45°,对角线BD=6米,那么四边形ABCD的面积是否存在最小值?若存在,求出这个最小值;若不存在,请说明理由.2019-2020学年陕西省西安市碑林区西北工大附中八年级(下)第二次月考数学试卷参考答案与试题解析一.选择题(共10小题)1.若m>n,则下列不等式一定成立的是()A.1+m<1+n B.m﹣2<n﹣2C.>D.﹣4m>﹣4n 【分析】利用不等式的性质,直接判断得结论.【解答】解:A、∵m>n,∴1+m>1+n,不等式不成立,不符合题意;B、∵m>n,∴m﹣2>n﹣2,不等式不成立,不符合题意;C、∵m>n,∴,不等式成立,符合题意;D、∵m>n,∴﹣4m<﹣4n,不等式不成立,不符合题意;故选:C.2.下列汽车标志中,既是轴对称图形又是中心对称图形的是()A.B.C.D.【分析】直接利用轴对称图形和中心对称图形的概念求解.【解答】解:A、既是中心对称图形也是轴对称图形,故此选项符合题意;B、不是轴对称图形,也不是中心对称图形,故此选项不合题意;C、是轴对称图形,不是中心对称图形,故此选项不合题意;D、不是轴对称图形,是中心对称图形,故此选项不合题意;故选:A.3.下列等式从左到右的变形,属于因式分解的是()A.m(a+b)=ma+mb B.x2+2x+1=x(x+2)+1C.x2+x=x2(1+)D.x2﹣9=(x+3)(x﹣3)【分析】根据因式分解是把一个多项式化为几个整式的积的形式,可得答案.【解答】解:A、是整式的乘法,不是因式分解,故此选项不符合题意;B、没把一个多项式化为几个整式的积的形式,故此选项不符合题意;C、没把一个多项式化为几个整式的积的形式,故此选项不符合题意;D、把一个多项式化为几个整式的积的形式,故此选项符合题意;故选:D.4.如图,在△ABC中,AB=AC,点D是BC边上的中点,∠BAD=50°,则∠C的大小为()A.20°B.30°C.40°D.50°【分析】根据等腰三角形的三线合一定理可得AD⊥BC,然后根据三角形的内角和定理求得∠B的度数,然后根据等腰三角形中等边对等角即可求解.【解答】解:∵AB=AC,点D为BC的中点,∴AD⊥BC,又∵∠BAD=50°,∴∠B=90°﹣∠BAD=90°﹣50°=40°,又∵AB=AC,∴∠C=∠B=40°.故选:C.5.在直角坐标系中,点O为坐标原点,点A(3,4),把线段OA绕点O顺时针旋转90°得到线段OA',则点A'的坐标为()A.(4,3)B.(4,﹣3)C.(﹣4,3)D.(3,﹣4)【分析】解题的关键是抓住旋转的三要素:旋转中心O,旋转方向顺时针,旋转角度90°,通过画图得A′的坐标.【解答】解:如图,由题意A(3,4),把线段OA绕点O顺时针旋转90°得到线段OA',观察图象可知A′(4,﹣3).故选:B.6.如图,在平行四边形ABCD中,AB⊥AC,若AB=8,AC=12,则BD的长是()A.22B.16C.18D.20【分析】由四边形ABCD是平行四边形,根据平行四边形的对角线互相平分,可得OA 的长,然后由AB⊥AC,AB=8,OA=6,根据勾股定理可求得OB的长,继而求得答案.【解答】解:∵四边形ABCD是平行四边形,AC=12,∴OA=AC=6,BD=2OB,∵AB⊥AC,AB=8,∴OB==10,∴BD=2OB=20.故选:D.7.如图,直线y=kx+b交x轴于点A(﹣1,0),直线y=mx+n交x轴于点B(3,0),这两条直线相交于点C(1,3),则不等式kx+b<mx+n的解集为()A.x<1B.x>1C.x<﹣2D.x<5【分析】结合函数图象,写出直线y=kx+b不在直线y=mx+n的上方所对应的自变量的范围即可.【解答】解:根据函数图象,当x<1时,kx+b<mx+n,所以不等式kx+b<mx+n的解集为x<1.故选:A.8.如图,在△ABC中,∠B=60°,AB=3.将△ABC绕点A按逆时针方向旋转得到△ADE,若点B的对应点D恰好落在BC边上,且DC=2,则DE的长为()A.3B.4C.5D.6【分析】根据等边三角形的判定与性质,可以得到BD的长,再根据DC的长,即可得到BC的长,然后根据旋转的性质可知,△ABC≌△ADE,从而可以得到BC=DE,然后即可得到DE的长.【解答】解:由题意可得,AB=AD,∵∠B=60°,∴△ABD是等边三角形,AB=3.∴BD=AB=3,∵DC=2,∴BC=BD+DC=3+2=5,由题意可知,△ABC≌△ADE,∴BC=DE,∴DE=5,故选:C.9.若,则的值为()A.B.3C.5D.7【分析】法1:已知等式整理得到关系式5=(+)(a+b),计算即可求出值;法2:已知等式左边通分并利用同分母分式的加法法则运算,整理后得到a2+b2=3ab,原式变形后代入计算即可求出值.【解答】解:法1:∵+=,∴5=(+)(a+b)=2++,则+=5﹣2=3;法2:已知等式变形得:=,即(a+b)2=5ab,整理得:a2+2ab+b2=5ab,即a2+b2=3ab,则+===3.故选:B.10.如图,△ABC中,D、E分别是BC、AC的中点,BF平分∠ABC,交DE于点F,若AB=10,BC=8,则EF的长是()A.B.1C.D.1.5【分析】根据三角形中位线定理得到DE∥AB,DE=AB=5,根据平行线的性质、角平分线的定义求出DF,计算即可.【解答】解:∵D、E分别是BC、AC的中点,∴DE∥AB,DE=AB=5,BD=BC=4,∴∠ABF=∠BFD,∵BF平分∠ABC,∴∠ABF=∠DBF,∴∠DBF=∠BFD,∴DF=DB=4,∴EF=DE﹣DF=1,故选:B.二.填空题(共4小题)11.若已知分式的值为0,则m的值为﹣1.【分析】分式的值为0的条件是:(1)分子为0;(2)分母不为0.两个条件需同时具备,缺一不可.据此可以解答本题.【解答】解:由题意可得m2﹣1=0且m﹣1≠0,解得m=﹣1.故答案为:﹣1.12.有一个正多边形的内角和等于它外角和的2倍,则这个正多边形每一个内角的大小为120°.【分析】根据一个正多边形的内角和等于它外角和的2倍,任意多边形的外角和都是360°,可以得到这个多边形的内角和,然后根据内角和公式,可以得到这个多边形的边数,从而可以得到这个正多边形每一个内角的度数.【解答】解:∵一个正多边形的内角和等于它外角和的2倍,任意多边形的外角和都是360°,∴这个多边形的内角和是360°×2=720°,设这个正多边形的边数为n,则(n﹣2)×180°=720°,解得n=6,故这个正多边形每一个内角的大小为720°÷6=120°,故答案为:120°.13.若关于x的分式方程﹣=1有增根,则a的值4.【分析】增根是化为整式方程后产生的不适合分式方程的根.所以应先确定增根的可能值,让最简公分母x﹣2=0,确定可能的增根;然后代入化为整式方程的方程求解,即可得到正确的答案.【解答】解:﹣=1,去分母,方程两边同时乘以x﹣2,得:x+x﹣a=x﹣2,由分母可知,分式方程的增根可能是2,当x=2时,2+2﹣a=2﹣2,解得a=4.故答案为:4.14.如图,在Rt△ABC中,∠ACB=90°,∠BAC=30°,AB=4.如果在三角形内部有一条动线段MN∥AC,且MN=2,则AM+BN+CN的最小值为2.【分析】在AC上取一点A′,使得AA′=MN=2,连接A′N.首先证明AM+BN+CN =A′N+BN+CN,将△NCB绕点C顺时针旋转60°得到△GCT,连接NG,过点T作TH ⊥AC交AC的延长线于H.证明A′N+CN+BN=A′N+NG+GT≥A′T,求出A′T可得结论.【解答】解:在AC上取一点A′,使得AA′=MN=2,连接A′N.∵AA′=MN,AA′∥MN,∴四边形AMNA′是平行四边形,∴AM=A′N,∴AM+BN+CN=A′N+BN+CN,将△NCB绕点C顺时针旋转60°得到△GCT,连接NG,过点T作TH⊥AC交AC的延长线于H.∵CN=CG,∠NCG=60°,∴△NCG是等边三角形,∴CN=NG,∴A′N+CN+BN=A′N+NG+GT,∵A′N+NG+GT≥A′T,∵∠ACB=90°,∠BAC=30°,AB=4,∴BC=CT=AB=2,AC=BC=6,∴CA′=6﹣2=4,∵∠ACH=90°,∠BCT=60°,∴∠TCH=30°,∵∠THC=90°,∴TH=CT=,CH=TH=3,∴A′H=4+3=7,∴A′T===2.∴AM+BN+CN≥2,∴AM+BN+CN的最小值为2,故答案为:2.三.解答题15.将下列各式因式分解:(1)2a2﹣4a+2;(2)x2﹣25﹣10(x﹣5).【分析】(1)原式提取公因式,再利用完全平方公式分解即可;(2)原式结合后,提取公因式即可.【解答】解:(1)原式=2(a2﹣2a+1)=2(a﹣1)2;(2)原式=(x+5)(x﹣5)﹣10(x﹣5)=(x﹣5)(x+5﹣10)=(x﹣5)2.16.解不等式组并把解集在数轴上表示出来.【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.【解答】解:解4(x+1)≤7x+13得:x≥﹣3,解>x﹣4得:x<2,不等式组的解集为:﹣3≤x<2,在数轴上表示:17.尺规作图:如图,已知▱ABCD,在DC边上求作一点M,使得MA=MC.(不写作法,保留作图痕迹)【分析】连接AC,作AC的垂直平分线交CD于点M即可.【解答】解:如图,点M即为所求.18.如图,已知△ABC,作∠BAC的角平分线与BC的垂直平分线相交于点P,过点P作PM⊥AB于点M,PN⊥AC交AC的延长线于点N,连接BP、CP.求证:∠BPM=∠CPN.【分析】由角平分线的性质可得PM=PN,由垂直平分线的性质可得PB=PC,由“HL”可证Rt△BPM≌Rt△CPN,可得结论.【解答】证明:∵AP平分∠BAC,PM⊥AB,PN⊥AC,∴PM=PN,∵PD是BC的垂直平分线,∴PB=PC,在Rt△BPM和Rt△CPN中,,∴Rt△BPM≌Rt△CPN(HL),∴∠BPM=∠CPN.19.先化简:(﹣)÷,再从﹣3、﹣2、﹣1、0、1中选一个合适的数作为a的值代入求值.【分析】原式括号中两项通分并利用同分母分式的减法法则计算,同时利用除法法则变形,约分得到最简结果,把a的值代入计算即可求出值.【解答】解:原式=•===,当a=﹣3,﹣1,0,1时,原式没有意义,舍去,当a=﹣2时,原式=﹣.20.如图,▱ABCD的对角线AC、BD交于点O,M,N分别是AB、AD的中点.(1)求证:四边形AMON是平行四边形;(2)若AC=6,BD=4,∠AOB=90°,求四边形AMON的周长.【分析】(1)根据平行四边形的性质得到AO=BO,BO=CO,AB∥CD,AD∥BC,根据三角形中位线的性质得到∴MO∥BC,NO∥CD,根据平行四边形的判定可证得结论;(2)由勾股定理求得AB=,根据直角三角形斜边的中线等于斜边的一半得到OM =AM=,进而可求得结论.【解答】(1)根据平行四边形的性质得到AO=OC,BO=OD,AB∥CD,AD∥BC,由三角形的中位线的性质得到MO∥BC,NO∥CD,∴MO∥AN,NO∥AM,∴四边形AMON是平行四边形;(2)解:∵AC=6,BD=4,∴AO=3,BO=2,∵∠AOB=90°,∴AB===,∴OM=AM=MB=,∴NO=AN=,四边形AMON的周长=AM+OM+AN+NO=2.21.“垃圾分一分,环境美十分”.某校为积极响应有关垃圾分类的号召,从百货商场购进了A,B两种品牌的垃圾桶作为可回收垃圾桶和其他垃圾桶.已知B品牌垃圾桶比A品牌垃圾桶每个贵50元,用4000元购买A品牌垃圾桶的数量是用3000元购买B品牌垃圾桶数量的2倍.(1)求购买一个A品牌、一个B品牌的垃圾桶各需多少元?(2)若该中学决定再次准备用不超过6000元购进A,B两种品牌垃圾桶共50个,恰逢百货商场对两种品牌垃圾桶的售价进行调整:A品牌按第一次购买时售价的九折出售,B品牌比第一次购买时售价提高了20%,那么该学校此次最多可购买多少个B品牌垃圾桶?【分析】(1)设购买一个A品牌垃圾桶需x元,则购买一个B品牌垃圾桶需(x+50)元,根据数量=总价÷单价结合购买A品牌垃圾桶数量是购买B品牌垃圾桶数量的2倍,即可得出关于x的分式方程,解之经检验后即可得出结论;(2)设该学校此次购买m个B品牌垃圾桶,则购买(50﹣m)个A品牌垃圾桶,根据总价=单价×数量结合总费用不超过6000元,即可得出关于m的一元一次不等式,解之取其中的最大值即可得出结论.【解答】解:(1)设购买一个A品牌垃圾桶需x元,则购买一个B品牌垃圾桶需(x+50)元,依题意,得:=2×,解得:x=100,经检验,x=100是原方程的解,且符合题意,∴x+50=150.答:购买一个A品牌垃圾桶需100元,购买一个B品牌垃圾桶需150元.(2)设该学校此次购买m个B品牌垃圾桶,则购买(50﹣m)个A品牌垃圾桶,依题意,得:100×0.9(50﹣m)+150×(1+20%)m≤6000,解得:m≤16.因为m是正整数,所以m最大值是16.答:该学校此次最多可购买16个B品牌垃圾桶.22.如图,直线l1:y=2x+4与x轴交于点A,与y轴交于点B,直线l2:y=﹣x+2与y轴交于点C.(1)直接写出点A、B、C的坐标分别为:A(﹣2,0),B(0,4),C(0,2);(2)是否存在将直线l2:y=﹣x+2向上或向下平移使其经过点D,且使得以A、B、C、D为顶点的四边形为平行四边形?若存在,求出所有可能的平移方式;若不存在,请说明理由.【分析】(1)用待定系数法即可求解;(2)分AB是边、AB是对角线两种情况,利用平移的性质和中点公式分别求解即可.【解答】解:(1)直线l1:y=2x+4,令x=0,则y=4,令y=2x+4=0,解得x=﹣2,对于直线l2:y=﹣x+2,令x=0,则y=2,故点A、B、C的坐标分别为(﹣2,0)、(0,4)、(0,2),故答案为(﹣2,0)、(0,4)、(0,2);(2)存在,理由:设平移后的直线表达式为y=﹣x+b,则设点D(m,﹣m+b),①当AB是边时,点A向右平移2个单位向上平移4个单位得到点B,则点C(D)向右平移2个单位向上平移4个单位得到点D(C),则0+2=m,2+4=﹣m+b或0﹣2=m,2﹣4=﹣m+b,解得:或;②当AB是对角线时,由中点公式得:(﹣2+0)=(0+4)=(2﹣m+b),解得,故平移后的直线表达式为y=﹣x+8或y=﹣x﹣4或y=﹣x,故直线l2平移的方式是:向上平移6个单位或向下平移6个单位或向下平移2个单位.23.问题探究(1)如图①,已知∠A=45°,∠ABC+∠ADC=60°,则∠BCD的大小为105°;(2)如图②,在四边形ABCD中,AB=BC,∠ABC=∠ADC=90°,对角线BD=6,求四边形ABCD的面积;问题解决(3)如图③,四边形ABCD是正在建设的地铁站的施工围挡,受地方限制,要求AB=BC;∠ABC=∠ADC=45°,对角线BD=6米,那么四边形ABCD的面积是否存在最小值?若存在,求出这个最小值;若不存在,请说明理由.【分析】(1)利用外角的性质可求解;(2)将△BCD绕点B逆时针旋转90°得到△BAF,可得∠FBD=90°,BF=BD,∠BAF =∠BCD,S△ABF=S△BCD,可得S△BDF=S四边形ABCD=18;(3)将△BCD绕点B逆时针旋转45°,得到△BAH,连接HD,过点H作HG⊥BD于G,由旋转的性质可得CD=AH,BH=BD=6(米),∠HBA=∠DBC,∠HAB=∠BCD,S△BCD=S△BAH,由四边形ABCD的面积=S△HBD﹣S△HAD,可得当△HAD的面积最大时,四边形ABCD的面积最小,即可求解.【解答】解:(1)如图1,延长BC交AD于E,∵∠BCD=∠BED+∠CDA,∠BED=∠A+∠ABC,∴∠BCD=∠A+∠ADC+∠ABC=45°+60°=105°故答案为:105°;(2)如图2,将△BCD绕点B逆时针旋转90°得到△BAF,∴△BCD≌△BAF,∠FBD=90°,∴BF=BD,∠BAF=∠BCD,CD=AF,S△ABF=S△BCD,∵∠ABC=∠ADC=90°,∴∠BAD+∠BCD=180°,∴∠BAD+∠BAF=180°,∴点F,点A,点D三点共线,∵BF=BD=6,∠DBF=90°,∴S△BDF=×BF×BD=18,∴S△BDF=S△ABF+S△ABD=S△BCD+S△ABD=S四边形ABCD=18;(3)如图3,将△BCD绕点B逆时针旋转45°,得到△BAH,连接HD,过点H作HG ⊥BD于G,∴△BCD≌△BAH,∴CD=AH,BH=BD=6(米),∠HBA=∠DBC,∠HAB=∠BCD,S△BCD=S△BAH,∵∠ABC=45°=∠ABD+∠DBC,∴∠ABD+∠ABH=45°=∠HBG,∵HG⊥BD,∴∠HBG=∠BHG=45°,∴BG=HG,∴BH=BG=6,∴BG=HG=3,∴S△HBD=BD×HG=×6×3=9,DG=6﹣3,∴HD2=DG2+HG2=(6﹣3)2+(3)2=72﹣36,∵∠ABC=∠ADC=45°,∴∠BAD+∠BCD=270°,∴∠BAD+∠BAH=270°,∴∠HAD=90°,∴HA2+AD2=HD2,∵(HA﹣AD)2≥0,∴2•HA•AD≤HA2+AD2,∴HA•AD≤36﹣18,∵四边形ABCD的面积=S△ABD+S△BCD=S△ABD+S△ABH,∴四边形ABCD的面积=S△HBD﹣S△HAD,∴当△HAD的面积最大时,四边形ABCD的面积最小,∵四边形ABCD的面积=9﹣•HA•AD,∴四边形ABCD的面积的最小值=9﹣(18﹣9)=18﹣18.。
八年级(下)月考(4月)数学测试卷一、选择题(每小题3分,共30分)1.(3分)在式子,,,,,中,是二次根式的有()A.3个B.4个C.5个D.6个2.(3分)若在实数范围内有意义,则x的取值范围是()A.x≥﹣1B.x>﹣1C.x<﹣1D.x≤﹣13.(3分)下列二次根式中,最简二次根式是()A.B.C.D.4.(3分)把a根号外的因式移入根号内的结果是()A.B.C.D.5.(3分)若的整数部分为x,小数部分为y,则x﹣y的值是()A.1B.C.3﹣3D.36.(3分)如图所示:数轴上点A所表示的数为a,则a的值是()A.+1B.﹣+1C.D.﹣17.(3分)在△ABC中,下面条件不能构成直角三角形的是()A.9,12,15B.5,12,13C.∠A:∠B:∠C=3:4:5D.1,2,8.(3分)如图,▱ABCD的对角线AC,BD交于点O,已知AD=8,BD=12,AC=6,则△OBC的周长为()A.13B.17C.20D.269.(3分)如图,▱ABCD的对角线AC与BD相交于点O,AB⊥AC,若AB=4,AC=6,则BD的长是()A.8B.9C.10D.1110.(3分)已知Rt△ABC中,∠C=90°,若a+b=14cm,c=10cm,则Rt△ABC的面积是()A.24cm2B.36cm2C.48cm2D.60cm2二、填空题{每小题3分,共15分)11.(3分)已知最简二次根式与2可以合并,则a的值是.12.(3分)已知直角三角形的两边的长分别是3和4,则第三边长为.13.(3分)如图,平行四边形ABCD中,AC、BD相交于点O,OE⊥BD交AD、BC于E、F,若△ABE的周长为10,则四边形ABCD的周长是.14.(3分)如图将矩形ABCD沿直线AE折叠,顶点D恰好落在BC边上F处,已知CE=3,AB=8,则BF=.15.(3分)如图是我国古代著名的“赵爽弦图”的示意图,它是由四个全等的直角三角形围成的,AC=3,BC=2,将四个直角三角形中边长为3的直角边分别向外延长一倍,得到图2所示的“数学风车”,则这个风车的外围周长(图中实线部分)是.三、解答题(共8个小题,共75分)16.(8分)计算:(1);(2).17.(8分)已知y=+﹣4,计算x﹣y2的值.18.(8分)某居民小区有块形状为长方形ABCD的绿地,长方形绿地的长BC为8米,宽AB为米,现要在长方形绿地中修建一个长方形花坛(即图中阴影部分),长方形花坛的长为+1米,宽为﹣1米.(1)长方形ABCD的周长是多少?(结果化为最简二次根式)(2)除去修建花坛的地方.其它地方全修建成通道,通道上要铺上造价为6元/m2的地砖,要铺完整个通道,则购买地砖需要花费多少元?(结果化为最简二次根式)19.(8分)如图,小旭放风筝时,风筝线断了,风筝挂在了树上.他想知道风筝距地面的高度.于是他先拉住风筝线垂直到地面上,发现风筝线多出1米,然后把风筝线沿直线向后拉开5米,发现风筝线末端刚好接触地面(如图为示意图).请你帮小旭求出风筝距离地面的高度AB.20.(8分)如图,E、F是▱ABCD对角线AC上的两点,AF=CE.求证:BE=DF.21.(11分)如图,在一条东西走向河流的一侧有一村庄C,河边原有两个取水点A、B,其中AB=AC,由于某种原因,由C到A的路现在已经不通,该村庄为方便村民取水,决定在河边新建一个取水点H(A、B、H在同一直线上),并新建一条路CH,测得CB =千米,CH=3千米,HB=2千米.(1)CH是不是从村庄C到河边的最近路?请通过计算加以说明;(2)求新路CH比原路CA短多少千米?22.(12分)先阅读下列的解答过程,然后作答:形如的化简,只要我们找到两个数a,b使a+b=m,ab=n,这样()2+()2=m,•=,那么便有==±(a >b),例如:化简.解:首先把化为,这里m=7,n=12;由于4+3=7,4×3=12,即()2+()2=7,•=,∴===2+.由上述例题的方法化简:(1);(2);(3).23.(12分)已知:如图,在平行四边形ABCD中,点M在边AD上,且AM=DM.CM、BA的延长线相交于点E.求证:(1)AE=AB;(2)如果BM平分∠ABC,求证:BM⊥CE.四、附加题(10分,不计入总分)24.如图,在△ABC中,AB=AC,AD⊥BC于点D,∠CBE=45°,BE分别交AC,AD于点E、F.(1)如图1,若AB=13,BC=10,求AF的长度;(2)如图2,若AF=BC,求证:BF2+EF2=AE2.。
2019-2020学年广东省华南师大中山附中八年级(下)第二次月考数学试卷一、选择题(每题3分,共30分)1.(3分)下列计算正确的是()A.B.C.D.2.(3分)下列根式中属于最简二次根式的是()A.B.C.D.3.(3分)下列各组数中,能构成直角三角形的是()A.4,5,6B.1,1,C.6,8,11D.5,12,23 4.(3分)如图所示:数轴上点A所表示的数为a,则a的值是()A.+1B.﹣+1C.﹣1D.5.(3分)如图,矩形ABCD中,对角线AC,BD交于点O.若∠AOD=120°,AC=4,则CD的长为()A.2B.3C.2D.26.(3分)如图,在▱ABCD中,AB=6cm,AD=8cm,AC、BD相交于点O,OE⊥BD交AD于E,则△ABE的周长为()A.12cm B.14cm C.16cm D.28cm7.(3分)如图,在四边形ABCD中,点O是对角线的交点,能判定这个四边形是正方形的是()A.AC=BD,AB∥CB,AD∥BC B.AD∥BC,∠BAD=∠BCDC.AO=CO,BO=DO,AB=BC D.AO=BO=CO=DO,AC⊥BD8.(3分)下列各命题中,原命题成立,而它逆命题不成立的是()A.平行四边形的两组对边分别平行B.矩形的对角线相等C.四边相等的四边形是菱形D.直角三角形中,斜边的平方等于两直角边的平方和9.(3分)如图,在正方形ABCD中,E是AB上一点,BE=2,AE=4,P是AC上一动点,则PB+PE的最小值是()A.6B.2C.8D.210.(3分)如图,▱ABCD中,对角线AC、BD相交于点O,AD=AC,M、N、P分别是OA、OB、CD的中点,下列结论:①CN⊥BD;②MN=NP;③四边形MNCP是菱形;④ND平分∠PNM.其中正确的有()A.1 个B.2 个C.3 个D.4 个二、填空题(每小题4分,共28分)11.(4分)=.12.(4分)若二次根式有意义,则x的取值范围是.13.(4分)如图,四边形ABCD的两条对角线AC、BD互相垂直,A1、B1、C1、D1是四边形ABCD的中点.如果AC=,BD=4,那么四边形A1B1C1D1的面积为.14.(4分)《九章算术》是我国古代最重要的数学著作之一,在“勾股”章节中记载了一道“折竹抵地”的问题:“今有竹高一尺,末折抵地,去本三尺,问折者高几何?”译文:一根竹子,原高一丈,后来竹子折断,其竹竿恰好着地,着地处离原竹子根部3尺远,如图所示,问:原处竹子(AC)还剩尺?(1丈=10尺).15.(4分)如图,正方形ABCO的顶点C、A分别在x轴、y轴上,BC是菱形BDCE的对角线,若∠D=60°,BC=2,则点D的坐标是.16.(4分)如图,DE为△ABC的中位线,点F在DE上,且∠AFB=90°,若AB=7,BC =10,则EF的长为.17.(4分)在菱形ABCD中,∠BAD=108°,AB的垂直平分线交AC于点N,点M为垂足,连接DN,则∠CDN的度数是.三、解答题(每题6分,共18分)18.(6分)计算:(1)(﹣5)﹣(4﹣);(2)4×﹣(+)÷.19.(6分)如图,在△ABC中,CD⊥AB,垂足为D,如果CD=6,AD=9,BD=4,那么△ABC是直角三角形吗?请说明理由.20.(6分)如图,在▱ABCD中,O是BD的中点,E、F分别是BC、AD的中点,M、N分别是OB、OD中点.求证:四边形MENF是平行四边形.四.解答题(每题8分,共24分)21.(8分)如图,菱形ABCD的对角线AC与BD相交于O,E是BC中点,连接OE并延长到F,使EF=OE.(1)求证:四边形OBFC是矩形.(2)如果作BG∥OF,FG∥BC,四边形BGFE是何特殊四边形?并说明理由.22.(8分)一张矩形纸ABCD,将点B翻折到对角线AC上的点M处,折痕CE交AB于点E.将点D翻折到对角线AC上的点H处,折痕AF交DC于点F,折叠出四边形AECF.(1)求证:AF∥CE;(2)当∠BAC=度时,四边形AECF是菱形?说明理由.23.(8分)如图,已知正方形ABCD的面积是8,连接AC、BD交于点O,CM平分∠ACD 交BD于点M,MN⊥CM,交AB于点N,(1)求∠BMN的度数;(2)求BN的长.五.解答题(每题10分,共20分)24.(10分)已知△ABC的三边BC=a,AC=b,AB=c,且满足|a﹣|++(c﹣3)2=0.如图,P为BC边上一动点,PM⊥AB于点M,PN⊥AC于点N.(1)求证:四边形AMPN是矩形;(2)在点P的运动过程中,MN的长度是否存在最小值?若存在,请求出最小值,若不存在,请说明理由.25.(10分)如图1,在▱ABCD中,∠ADC的平分线交AB于点E,交CB的延长线于F,以BE、BF为邻边作▱EBFH.(1)证明:▱EBFH是菱形;(2)(如图2)若∠ABC=90°.①直接写出四边形EBHF的形状;②已知AB=10,AD=6,M是EF的中点,求CM的长.(3)(如图3)若∠ABC=60°,连结HA、HB、HC、AC,求证:△ACH是等边三角形.2019-2020学年广东省华南师大中山附中八年级(下)第二次月考数学试卷参考答案与试题解析一、选择题(每题3分,共30分)1.(3分)下列计算正确的是()A.B.C.D.【分析】根据二次根式的加减法对A、B进行判断;根据二次根式的乘法法则对C进行判断;根据二次根式的除法法则对D进行判断.【解答】解:A、原式=2+=3,所以A选项错误;B、原式=,所以B选项错误;C、原式==,所以C选项正确;D、原式=2÷2=,所以D选项错误.故选:C.【点评】本题考查了二次根式的混合运算:先把二次根式化为最简二次根式,然后进行二次根式的乘除运算,再合并即可.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.2.(3分)下列根式中属于最简二次根式的是()A.B.C.D.【分析】判定一个二次根式是不是最简二次根式的方法,就是逐个检查最简二次根式的两个条件是否同时满足,同时满足的就是最简二次根式,否则就不是.【解答】解:A、该二次根式符合最简二次根式的定义,故本选项正确;B、该二次根式的被开方数中含有分母,所以它不是最简二次根式,故本选项错误;C、该二次根式的被开方数中含有能开得尽方的因数4,所以它不是最简二次根式,故本选项错误;D、该二次根式的被开方数中含有能开得尽方的因数9,所以它不是最简二次根式,故本选项错误;故选:A.【点评】本题考查最简二次根式的定义.根据最简二次根式的定义,最简二次根式必须满足两个条件:(1)被开方数不含分母;(2)被开方数不含能开得尽方的因数或因式.3.(3分)下列各组数中,能构成直角三角形的是()A.4,5,6B.1,1,C.6,8,11D.5,12,23【分析】根据勾股定理逆定理:a2+b2=c2,将各个选项逐一代数计算即可得出答案.【解答】解:A、∵42+52≠62,∴不能构成直角三角形,故A错误;B、∵12+12=,∴能构成直角三角形,故B正确;C、∵62+82≠112,∴不能构成直角三角形,故C错误;D、∵52+122≠232,∴不能构成直角三角形,故D错误.故选:B.【点评】此题主要考查学生对勾股定理的逆定理的理解和掌握,要求学生熟练掌握这个逆定理.4.(3分)如图所示:数轴上点A所表示的数为a,则a的值是()A.+1B.﹣+1C.﹣1D.【分析】先根据勾股定理求出三角形的斜边长,再根据两点间的距离公式即可求出A点的坐标.【解答】解:图中的直角三角形的两直角边为1和2,∴斜边长为:=,∴﹣1到A的距离是,那么点A所表示的数为:﹣1.故选:C.【点评】本题考查的是勾股定理及两点间的距离公式,解答此题时要注意,确定点A的符号后,点A所表示的数是距离原点的距离.5.(3分)如图,矩形ABCD中,对角线AC,BD交于点O.若∠AOD=120°,AC=4,则CD的长为()A.2B.3C.2D.2【分析】根据邻补角的定义求出∠COD=60°,再根据矩形的对角线互相平分且相等可得AO=BO=CO=DO=2,然后判断出△COD是等边三角形,根据等边三角形三条边都相等可得CD=DO=2.【解答】解:∵∠AOD=120°,∴∠COD=180°﹣∠AOD=180°﹣120°=60°,∵四边形ABCD是矩形,∴AO=BO=CO=DO=2,∴△COD是等边三角形,∴CD=DO=2,故选:A.【点评】本题考查了矩形的性质,等边三角形的判定与性质,熟记各性质并判断出△COD 是等边三角形是解题的关键.6.(3分)如图,在▱ABCD中,AB=6cm,AD=8cm,AC、BD相交于点O,OE⊥BD交AD于E,则△ABE的周长为()A.12cm B.14cm C.16cm D.28cm【分析】利用平行四边形的性质结合OE⊥BD可得EO是BD的垂直平分线,再利用线段垂直平分线的性质可得BE=DE,然后可得△ABE的周长.【解答】解:∵四边形ABCD是平行四边形,∴BO=DO,∵OE⊥BD,∴BE=DE,∵AB=6cm,AD=8cm,∴△ABE的周长=AB+AE+BE=AB+AE+ED=AB+AD=14cm,故选:B.【点评】此题主要考查了平行四边形的性质,关键是掌握平行四边形对角线互相平分.7.(3分)如图,在四边形ABCD中,点O是对角线的交点,能判定这个四边形是正方形的是()A.AC=BD,AB∥CB,AD∥BC B.AD∥BC,∠BAD=∠BCDC.AO=CO,BO=DO,AB=BC D.AO=BO=CO=DO,AC⊥BD【分析】根据正方形的判定:对角线互相垂直平分且相等的四边形是正方形进行分析从而得到最后的答案.【解答】解:A、两组对边平行,对角线相等可能是矩形,故本选项错误;B、一组对边平行,一组对角相等的四边形可能是矩形,故本选项错误;C、对角线互相平分,邻边相等的四边形有可能是菱形.故本选项错误;D、对角线互相垂直平分且相等的四边形是正方形,故本选项正确;故选:D.【点评】本题是考查正方形的判别方法,判别一个四边形为正方形主要根据正方形的概念,途经有两种:①先说明它是矩形,再说明有一组邻边相等;②先说明它是菱形,再说明它有一个角为直角.8.(3分)下列各命题中,原命题成立,而它逆命题不成立的是()A.平行四边形的两组对边分别平行B.矩形的对角线相等C.四边相等的四边形是菱形D.直角三角形中,斜边的平方等于两直角边的平方和【分析】分别判断该命题的原命题和逆命题后即可确定正确的选项.【解答】解:A、平行四边形的两组对边分别平行,成立,逆命题为两组对边分别平行的四边形是平行四边形,正确,不符合题意;B、矩形的对角线相等,成立,逆命题为对角线相等的四边形是矩形,不成立,符合题意;C、四边形相等的四边形是菱形,成立,逆命题为菱形的四条边相等,成立,不符合题意;D、直角三角形中,斜边的平方等于两直角边的平方和,成立,逆命题为两边的平方和等于第三边的平方的三角形为直角三角形,成立,不符合题意;故选:B.【点评】考查了命题与定理的知识,解题的关键是写出一个命题的逆命题,难度不大.9.(3分)如图,在正方形ABCD中,E是AB上一点,BE=2,AE=4,P是AC上一动点,则PB+PE的最小值是()A.6B.2C.8D.2【分析】由正方形的性质得出B、D关于AC对称,根据两点之间线段最短可知,连接DE,交AC于P,连接BP,则此时PB+PE的值最小,进而利用勾股定理求出即可.【解答】解:如图,连接DE,交AC于P,连接BP,则此时PB+PE的值最小,∵四边形ABCD是正方形,∴B、D关于AC对称,∴PB=PD,∴PB+PE=PD+PE=DE.∵BE=2,AE=4,∴AD=AB=6,∴DE==2,故PB+PE的最小值是2.故选:D.【点评】本题考查了轴对称﹣最短路线问题,正方形的性质,解此题通常是利用两点之间,线段最短的性质得出.10.(3分)如图,▱ABCD中,对角线AC、BD相交于点O,AD=AC,M、N、P分别是OA、OB、CD的中点,下列结论:①CN⊥BD;②MN=NP;③四边形MNCP是菱形;④ND平分∠PNM.其中正确的有()A.1 个B.2 个C.3 个D.4 个【分析】证出OC=BC,由等腰三角形的性质得CN⊥BD,①正确;证出MN是△AOB 的中位线,得MN∥AB,MN=AB,由直角三角形的性质得NP=CD,则MN=NP,②正确;周长四边形MNCP是平行四边形,无法证明四边形MNCP是菱形;③错误;由平行线的性质和等腰三角形的性质证出∠MND=∠PND,则ND平分∠PNM,④正确;即可得出结论.【解答】解:∵四边形ABCD是平行四边形,∴AB=CD,AB∥CD,BC=AD,OA=OC=AC,∵AD=AC,∴OC=BC,∵N是OB的中点,∴CN⊥BD,①正确;∵M、N分别是OA、OB的中点,∴MN是△AOB的中位线,∴MN∥AB,MN=AB,∵CN⊥BD,∴∠CND=90°,∵P是CD的中点,∴NP=CD=PD=PC,∴MN=NP,②正确;∵MN∥AB,AB∥CD,∴MN∥CD,又∵NP=PC,MN=NP,∴MN=PC,∴四边形MNCP是平行四边形,无法证明四边形MNCP是菱形;③错误;∵MN∥CD,∴∠PDN=∠MND,∵NP=PD,∴∠PDN=∠PND,∴∠MND=∠PND,∴ND平分∠PNM,④正确;正确的个数有3个,故选:C.【点评】本题考查了平行四边形性质和判定,三角形中位线定理,直角三角形斜边上的中线性质,等腰三角形的性质等;熟练掌握三角形中位线定理、等腰三角形的性质、直角三角形斜边上的中线性质是解题的关键.二、填空题(每小题4分,共28分)11.(4分)=﹣2.【分析】根据简=|a|得到原式=|2﹣|,然后根据绝对值的意义去绝对值即可.【解答】解:原式=|2﹣|=﹣(2﹣)=﹣2.故答案为﹣2.【点评】本题考查了二次根式的性质与化简:=|a|.也考查了绝对值的意义.12.(4分)若二次根式有意义,则x的取值范围是x≤.【分析】根据二次根式有意义的条件列出不等式,解不等式得到答案.【解答】解:由题意得,3﹣4x≥0,解得,x≤,故答案为:x≤.【点评】本题考查的是二次根式有意义的条件,掌握二次根式中的被开方数必须是非负数是解题的关键.13.(4分)如图,四边形ABCD的两条对角线AC、BD互相垂直,A1、B1、C1、D1是四边形ABCD的中点.如果AC=,BD=4,那么四边形A1B1C1D1的面积为3.【分析】根据三角形的中位线定理证明四边形A1B1C1D1是矩形,从而根据矩形的面积进行计算.【解答】解:∵A1,B1,C1,D1是四边形ABCD的中点四边形,且AC=,BD=4,∴A1D1是△ABD的中位线,∴A1D1=BD=×4=2,同理可得A1B1=AC=,根据三角形的中位线定理,可以证明四边形A1B1C1D1是矩形,那么四边形A1B1C1D1的面积为A1D1×A1B1=×2=3.故答案为:3.【点评】本题考查了三角形的中位线定理,是经常出现的知识点.注意:顺次连接对角线互相垂直的四边形各边中点所得四边形是矩形.14.(4分)《九章算术》是我国古代最重要的数学著作之一,在“勾股”章节中记载了一道“折竹抵地”的问题:“今有竹高一尺,末折抵地,去本三尺,问折者高几何?”译文:一根竹子,原高一丈,后来竹子折断,其竹竿恰好着地,着地处离原竹子根部3尺远,如图所示,问:原处竹子(AC)还剩 4.55尺?(1丈=10尺).【分析】设原处竹子(AC)还剩x尺,则AB=(10﹣x)尺,然后利用勾股定理列方程,再解即可.【解答】解:设原处竹子(AC)还剩x尺,由题意得:x2+32=(10﹣x)2,解得:x=4.55,故答案为:4.55.【点评】此题主要考查了勾股定理的应用,关键是从题中抽象出勾股定理这一数学模型,画出准确的示意图.领会数形结合的思想的应用.15.(4分)如图,正方形ABCO的顶点C、A分别在x轴、y轴上,BC是菱形BDCE的对角线,若∠D=60°,BC=2,则点D的坐标是(2+,1).【分析】过点D作DG⊥BC于点G,根据四边形BDCE是菱形可知BD=CD,再由BC =2,∠D=60°可得出△BCD是等边三角形,由锐角三角函数的定义求出GD及CG的长即可得出结论.【解答】解:过点D作DG⊥BC于点G,∵四边形BDCE是菱形,∴BD=CD.∵BC=2,∠D=60°,∴△BCD是等边三角形,∴BD=BC=CD=2,∴CG=1,GD=CD•sin60°=2×=,∴D(2+,1).故答案为:(2+,1).【点评】本题考查的是正方形的性质,根据题意作出辅助线,利用菱形的性质判断出△BCD是等边三角形是解答此题的关键.16.(4分)如图,DE为△ABC的中位线,点F在DE上,且∠AFB=90°,若AB=7,BC =10,则EF的长为 1.5.【分析】根据三角形中位线定理求出DE,根据直角三角形的性质求出DF,结合图形计算,得到答案.【解答】解:∵DE为△ABC的中位线,∴DE=BC=5,在Rt△AFB中,D是AB的中点,∴DF=AB=3.5,∴EF=DE﹣DF=1.5,故答案为:1.5【点评】本题考查的是三角形中位线定理、直角三角形的中线,掌握三角形的中位线等于第三边的一半、直角三角形的性质是解题的关键.17.(4分)在菱形ABCD中,∠BAD=108°,AB的垂直平分线交AC于点N,点M为垂足,连接DN,则∠CDN的度数是18°.【分析】由菱形的性质可得AD=AB,∠ABC=72°,∠CAB=54°,由线段垂直平分线的性质可得AN=NB,可求∠CBN=72°﹣54°=18°,由“SAS”可证△DCN≌△BCN,可得∠CDN=∠CBN=18°.【解答】解:如图,连接BN,∵在菱形ABCD中,∠BAD=108°,∴AD=AB,∠ABC=72°,∠CAB=54°,∵AB的垂直平分线交AC于点N,∴AN=NB,∴∠CAB=∠ABN=54°,∴∠CBN=72°﹣54°=18°,在△DCN和△BCN中,,∴△DCN≌△BCN(SAS),∴∠CDN=∠CBN=18°,故答案为:18°.【点评】本题考查了菱形的性质,全等三角形的判定和性质,线段垂直平分线的性质,灵活运用这些性质解决问题是本题的关键.三、解答题(每题6分,共18分)18.(6分)计算:(1)(﹣5)﹣(4﹣);(2)4×﹣(+)÷.【分析】(1)先把二次根式化为最简二次根式,然后合并即可;(2)根据二次根式的乘除法则运算.【解答】解:(1)原式=2﹣﹣2+3=2;(2)原式=4﹣(+)=20﹣4﹣=19﹣4.【点评】本题考查了二次根式的混合运算:先把二次根式化为最简二次根式,然后合并同类二次根式即可.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.19.(6分)如图,在△ABC中,CD⊥AB,垂足为D,如果CD=6,AD=9,BD=4,那么△ABC是直角三角形吗?请说明理由.【分析】利用勾股定理计算出AC2、CB2,然后利用勾股定理逆定理证明结论即可.【解答】解:△ABC是直角三角形,理由:∵CD⊥AB,∴∠ADC=∠CDB=90°,∵CD=6,AD=9,BD=4,∴AC2=CD2+AD2=36+81=117,CB2=CD2+BD2=36+16=52,∴AC2+BC2=169=132=AB2,∴∠ACB=90°,∴△ABC是直角三角形.【点评】此题主要考查了勾股定理逆定理,以及勾股定理,关键是掌握勾股定理的逆定理将数转化为形,作用是判断一个三角形是不是直角三角形.必须满足较小两边平方的和等于最大边的平方才能做出判断.20.(6分)如图,在▱ABCD中,O是BD的中点,E、F分别是BC、AD的中点,M、N分别是OB、OD中点.求证:四边形MENF是平行四边形.【分析】证△DNF≌△BME(SAS),得FN=EM,∠DNF=∠BME,则∠FNM=∠EMN,证出FN∥EM,即可得出四边形MENF是平行四边形.【解答】证明:∵四边形ABCD是平行四边形,∴AD=BC,AD∥BC,∴∠FDN=∠EBM,∵E、F分别是BC、AD的中点,∴DF=BE,∵O是BD的中点,∴OD=OB,∵M、N分别是OB、OD中点,∴DN=BM,在△DNF和△BME中,,∴△DNF≌△BME(SAS),∴FN=EM,∠DNF=∠BME,∴∠FNM=∠EMN,∴FN∥EM,∴四边形MENF是平行四边形.【点评】本题考查了平行四边形的判定与性质,全等三角形的判定和性质等知识,熟练掌握平行四边形的判定和性质,证明三角形全等是解题的关键.四.解答题(每题8分,共24分)21.(8分)如图,菱形ABCD的对角线AC与BD相交于O,E是BC中点,连接OE并延长到F,使EF=OE.(1)求证:四边形OBFC是矩形.(2)如果作BG∥OF,FG∥BC,四边形BGFE是何特殊四边形?并说明理由.【分析】(1)证出四边形OBFC是平行四边形,由菱形的性质得AC⊥BD,则∠BOC=90°,即可得出结论;(2)先证出四边形BGFE是平行四边形,由矩形的性质得BE=EF,即可得出四边形BGFE 是菱形.【解答】(1)证明:∵E是BC中点,∴BE=CE,∵EF=OE,∴四边形OBFC是平行四边形,∵四边形ABCD是菱形,∴AC⊥BD,∴∠BOC=90°,∴平行四边形OBFC是矩形;(2)解:四边形BGFE是菱形,理由如下:∵BG∥OF,FG∥BC,∴四边形BGFE是平行四边形,由(1)得:BE=CE,EF=OE,四边形OBFC是矩形,∴OF=BC,∴BE=EF,∴四边形BGFE是菱形.【点评】本题考查了矩形的判定与性质、菱形的判定与性质、平行四边形的判定与性质等知识;熟练掌握矩形的判定与性质和菱形的判定与性质是解题的关键.22.(8分)一张矩形纸ABCD,将点B翻折到对角线AC上的点M处,折痕CE交AB于点E.将点D翻折到对角线AC上的点H处,折痕AF交DC于点F,折叠出四边形AECF.(1)求证:AF∥CE;(2)当∠BAC=30度时,四边形AECF是菱形?说明理由.【分析】(1)证出∠HAF=∠MCE,即可得出AF∥CE;(2)证出四边形AECF是平行四边形,再证出AF=CF,即可得出四边形AECF是菱形.【解答】(1)证明:∵四边形ABCD为矩形,∴AD∥BC,∴∠DAC=∠BCA,由翻折知,∠DAF=∠HAF=∠DAC,∠BCE=∠MCE=∠BCA,∴∠HAF=∠MCE,∴AF∥CE;(2)解:当∠BAC=30°时四边形AECF为菱形,理由如下:∵四边形ABCD是矩形,∴∠D=∠BAD=90°,AB∥CD,由(1)得:AF∥CE,∴四边形AECF是平行四边形,∵∠BAC=30°,∴∠DAC=60°.∴∠ACD=30°,由折叠的性质得∠DAF=∠HAF=30°,∴∠HAF=∠ACD,∴AF=CF,∴四边形AECF是菱形;故答案为:30.【点评】本题考查了菱形的判定、平行四边形的判定与性质、矩形的性质、折叠的性质、等腰三角形的判定等知识;熟练掌握平行四边形的判定与性质和菱形的判定是解题的关键.23.(8分)如图,已知正方形ABCD的面积是8,连接AC、BD交于点O,CM平分∠ACD 交BD于点M,MN⊥CM,交AB于点N,(1)求∠BMN的度数;(2)求BN的长.【分析】(1)先由正方形ABCD的面积是8,求得正方形的边长及其对角线的长;再由正方形的性质及CM平分∠ACD,求得∠DCO、∠BCO、∠CDO、∠MBN、∠DCM、∠MCO及∠BMC的度数;然后由MN⊥CM得∠CMN=90°,则∠BMN的度数等于∠CMN 的度数减去∠BMC即可得出答案;(2)先证明∠BCM=∠BMC,从而可得BM=BC=CD,则由DM=BD﹣BM可得DM 的长;再证明△DCM≌△BMN(ASA),从而可得BN=DM,问题得解.【解答】解:(1)∵正方形ABCD的面积是8,∴BC=CD==2,∴BD=×2=4.∵四边形ABCD为正方形,∴∠DCO=∠BCO=∠CDO=∠MBN=45°,∵CM平分∠ACD,∴∠DCM=∠MCO=22.5°,∴∠BMC=∠CDO+∠DCM=45°+22.5°=67.5°.∵MN⊥CM,∴∠CMN=90°,∴∠BMN=90°﹣67.5°=22.5°,∴∠BMN的度数为22..5°.(2)∵∠MCO=22.5°,∠BCO=45°,∴∠BCM=∠BCO+∠MCO=67.5°,又∵∠BMC=67.5°,∴∠BCM=∠BMC,∴BM=BC=CD=2,∴DM=BD﹣BM=4﹣2.∵∠DCM=22.5°,∠BMN=22.5°,∴∠DCM=∠BMN.∴在△DCM和△BMN中,,∴△DCM≌△BMN(ASA),∴BN=DM=4﹣2,∴BN的长为4﹣2.【点评】本题考查了正方形的性质、全等三角形的判定与性质及等腰三角形的判定与性质等知识点,熟练掌握相关性质及定理是解题的关键.五.解答题(每题10分,共20分)24.(10分)已知△ABC的三边BC=a,AC=b,AB=c,且满足|a﹣|++(c﹣3)2=0.如图,P为BC边上一动点,PM⊥AB于点M,PN⊥AC于点N.(1)求证:四边形AMPN是矩形;(2)在点P的运动过程中,MN的长度是否存在最小值?若存在,请求出最小值,若不存在,请说明理由.【分析】(1)根据“矩形的定义”证明结论;(2)连结AP.当AP⊥BC时AP最短,结合矩形的两对角线相等和面积法来求MN的值.【解答】(1)证明:∵|a﹣|++(c﹣3)2=0,∴a=,b=2,c=3,∵b2+c2=22+32=13=a2,∴∠BAC=90°,∵PM⊥AB于点M,PN⊥AC于点N,∴∴∠AMP=∠ANP=90°,∴∠BAC=∠AMP=∠ANP=90°,∴四边形AMPN是矩形;(2)存在.理由如下:连结AP.∵四边形AMPN是矩形,∴MN=AP.∵当AP⊥BC时AP最短.∴2×3=•AP.∴AP=,∴MN的长度的最小值.【点评】本题考查了矩形的判定与性质.解答(2)题时,注意“矩形的对角线相等”和“面积法”的正确应用.25.(10分)如图1,在▱ABCD中,∠ADC的平分线交AB于点E,交CB的延长线于F,以BE、BF为邻边作▱EBFH.(1)证明:▱EBFH是菱形;(2)(如图2)若∠ABC=90°.①直接写出四边形EBHF的形状;②已知AB=10,AD=6,M是EF的中点,求CM的长.(3)(如图3)若∠ABC=60°,连结HA、HB、HC、AC,求证:△ACH是等边三角形.【分析】(1)证明∠HEF=∠HFE,则EH=FH,即可求解;(2)①∠ABC=90°,则平行四边形ABCD为矩形,菱形EBFH为正方形;②MN=2=BN,CN=BC+NB,则CM=,即可求解;(3)证明四边形DCFG为菱形,则△DGC、△CGF均为等边三角形;证明△CAG≌△CHF(SAS),则CA=CH,再证明∠ACH=60°,即可求解.【解答】解:(1)∵DE是∠ADC的平分线,∴∠CDE=∠ADE,∵CD∥AB,AB∥HF,∴∠CDE=∠AED=∠HFE,∵AD∥BC,∴∠EDA=∠FEH,∴∠HEF=∠HFE,∴EH=FH,∴▱EBFH为菱形;(2)①∠ABC=90°,则平行四边形ABCD为矩形,菱形EBFH为正方形;②由(1)知△ADE为等腰直角三角形,故AE=AD=6,则BE=10﹣6=4,∵连接BH,过点M作MN⊥BF于点N,∵M是EF的中点,故点M时正方形EBFH对角线的交点,则MN=EB=×4=2=BN,则CN=BC+NB=6+2=8,∴CM===2;(3)延长DA交FH的延长线于点G,连接CG,∵四边形ABCD为平行四边形,故AB∥CD,AD∥BC,而四边形EBFH为菱形,故EB∥HF,∴DG∥CF,CD∥FG,∴四边形DCFG为平行四边形,∵DE是∠ADC的角平分线,∵∠CDF=∠GDF,∵CD∥GF,∴∠CDF=∠GFD=∠GDF,∴DG=GF,∴平行四边形DCFG为菱形,∵∠ABC=60°,∴△DGC、△CGF均为等边三角形,∴∠CGD=∠CGF=60°,CG=CF,同理可得:四边形AEHG为平行四边形,故AG=EH=HF,在△CAG和△CHF中,CG=CF,AG=HF,∠CGD=∠CGF=60°,∴△CAG≌△CHF(SAS),∴CA=CH,∠ACG=∠HCF,∵∠ACH=∠ACG+∠GCH=∠GCH+∠HCF=60°,∴△ACH是等边三角形.【点评】本题是几何综合题,考查了勾股定理、等边三角形、三角形全等、平行四边形和特殊四边形的判定与性质等知识点,涉及考点较多,有一定的难度.。
八年级学业评测数学试题教材版本:人教版 命题范围:第16章——第19章第Ⅰ卷 (选择题 共30分)一、选择题:本大题共10小题,每小题3分,共30分,在每小题给出的四个选项中,只有一项符合题目要求。
1.下列各式正确的是( ) A.416±= B. 3)3(2-=- C. 24-=- D. 3327=2.下列根式中,最简二次根式是( ) A.51B. 5.0C. 5D. 503.下列各做线段中,能构成直角三角形的是( )A.2,3,4B.5,12,13C. 3,4,6D.4,6,7 4.菱形和矩形都具有的性质是( )A.对角线相等B.对角线相互垂直C.对角线相互平分D.对角线相互平分且相等 5.若(-4,y 1),(2,y 2)两点都在直线y=2x-4上,则y 1与y 2的大小关系是( ) A. y 1>y 2 B. y 1=y 2 C. y 1<y 2 D.无法确定 6.下列各式中,y 不是x 的函数的是( ) A. x y = B.y=x C.y=-x D.y=±x7.如图,一次函数y=(m-2)x-1的图像经过第二、三、四象限,则m 的取值范围是( ) A.m >0 B.m <2 C. m >2 D.m <08.如图,点O 是矩形ABCD 的对角线AC 的中点,M 是CD 边的中点。
若AB=8,OM=3, 则线段OB 的长为( )A.5B.6C. 8D. 109.如图,矩形ABCD 中,AB=3,BC=4,点E 是BC 边上一点,连接AE ,把∠B 沿AE 折叠,使点B 落在点点B ′处.当△CEB ′为直角三角形时,BE 的长为( )A.5B.3C.23 D. 233或10.如图,在平面直角坐标系xoy 中,菱形ABCD 的顶点A 的坐标为(2,0),点B 的坐标为(0,1),点C 在第一象限,对角线BD 与x 轴平行.直线y=x+3与x 轴、y 轴分别交于点E ,F .将菱形ABCD 沿x 轴向左平移m 个单位,当点D 落在△EOF 的内部时(不包括三角形的边),m 的值可能是( ) A .3 B .4 C .5 D .6第Ⅱ卷(非选择题 共70分)二、填空题:本题共5小题,每小题3分,共15分。
初二数学集中作业八一、选择题(每小题3分,共30分) 1.下列运算正确的是( ) A.236a a a ⋅=B.()2236x x -=C.220a a ÷=D.326a b ab ⋅=2.若()()232215x x m x nx +-=+-,则( ) A.5m =-,1n =B.5m =-,1n =-C.5m =,1n =D.5m =,1n =-3.若多项式2249x mxy y ++是完全平方式,则m 的值为( ) A.6或6-B.12或12-C.12D.12-4.下列各式从左到右的变形正确的是( ) A.220.220.33a a a a a a --=-- B.11x x x y x y+--=-- C.22b a a b a b-=-+D.116321623aa a a --=++ 5.把分式22xyx y-中的x 、y 的值都扩大到原来的2倍,则分式的值( ) A.不变B.扩大到原来的2倍C.扩大到原来的4倍D.缩小到原来的126.已知a ,b 满足()210a -+=,则a b +的值是( ) A.2-B.2C.1-D.07.已知5a b -=,则2210a b b --的值为( ) A.30B.25C.15D.108.关于x 的方程211x ax -=-的解是正数,则a 的取值范围是( ) A.1a >- B.1a <-且2a ≠- C.1a <- D.1a >且2a ≠9.已知:1132x y -=,则22356x xy yx xy y--+-的值是( ) A.813 B.138C.813-D.138- 10.已知实数a ,b ,c 满足10a b c ++=,且1111417a b b c c a ++=+++,则a b cb c c a a b+++++的值是( )A.8917B.1317C.2D.117二、填空题(第11-12题每空3分,第13-18题每空4分) 11.用科学记数法表示0.0000028,结果是__________. 12.当x =____________时,分式2x x-的值为0. 13.若()20221a =-,2202120232022b =⨯-,()2023202280.125c =⨯-,则a 、b 、c 的大小关系是___________(用“>”连接). 14.三个分式:22y x,13yz ,15xy 的最简公分母是_____________. 15.若关于x 的方程2213m x x x+-=-无解,则m 的值是____________. 16.已知:6413a m n =-+,22b m n =--,且a b ≤,则n m 的值等于_____________.17.设0a b >>,223a b ab +=,则22a b ab-=_____________.18.若x y ≠,且240x x y -+=,240y y x -+=,则332x xy y ++=____________. 三、解答题(共90分) 19.(16分)计算:(1)()10133π-⎛⎫-+- ⎪⎝⎭(2)()64342635a b a b a a ÷+⋅-;(3)222222y xy xy x x xyx -⎛⎫⋅-÷ ⎪⎝⎭; (4)221441122a a a a a a --+⎛⎫--÷⎪++⎝⎭20.(16分)因式分解: (1)33315ab a b +;(2)()()131m m --+. (3)322363x x y xy -+;(4)()()2294ax y b y x -+-21.(8分)解方程:(1)2217111x x x +=-+-(2)12233xx x --=-- 22.(7分)先化简分式211122a a a a a a -⎛⎫-÷- ⎪++⎝⎭,然后在22a -≤≤中选择一个你喜欢的整数代入求值. 23.(7分)已知:2y >53x +-的值.24.(8分)某校为了进一步开展“阳光体育”活动,计划用2000元购买后乒乓球拍,用2800元购买羽毛球拍.已知一副羽毛球拍比一副乒乓球拍贵14元.该校购买的乒乓球拍与羽毛球拍的数量能相同吗?请说明理由.25.(14分)如图,“丰收1号”小麦的试验田是边长为a 米(1)a >的正方形去掉一个边长为1米的正方形蓄水池后余下的部分,“丰收2号”小麦的试验田是边长为()1a -米的正方形,两块试验田的小麦都收获了500kg .(1)①“丰收1号”单位面积产量为__________2kg/m ,“丰收2号”单位面积产量为___________2kg /m (以上结果均用含a 的式子表示); ②由图可知,_____________(填“1号”或“2号”)小麦的单位面积产量高; (2)若高的单位面积产量比低的单位面积产量的多()2240kg/m 1a -,求a 的值;(3)某农户试种“丰收1号”、“丰收2号”两种小麦种子,两种小麦试种的单位面积产量与实验田一致,“丰收1号”小麦种植面积为n 平方米(n 为整数),“丰收2号”小麦种植面积比“丰收1号”少55平方米.若两种小麦种植后,收获的产量相同,当8a <且a 为整数时,符合条件的n 的值为___________(直接写出结果). 26.(14分)我们己经学习了整式、分式和二次根式,当被除数是一个二次根式,除数是一个整式时,求得的商就会出现类似a a(1x 的取值范围__________(直接写出答案)(2)已知两个根分式M =N =. ①是否存在x 的值使得221N M -=,若存在,请求出x 的值,若不存在,请说明理由; ②当22M N +是一个整数时,求无理数x 的值.(31=时,采用了下面的方法:2=①()()2224816x x=-=---=8=②①+②,可得53==5=两边平方可解得1x=-,经检验:1x=-是原方程的解.∴原方程的解为:1x=-请你学习小明的方法,解下面的方程:①方程11818+=的解是_____________;(直接写出答案)②方程144x x+=的解是_____________;(直接写出答案)集中作业8参考答案一、选择题二、填空:11-12:3分,13-18:4分11.62.810-⨯12.213.a c b>>14.230x yz15.12-或32-16.918.60。
一、选择题1.在菱形ABCD 中,60ADC ∠=︒,点E 为AB 边的中点,点P 与点A 关于DE 对称,连接DP 、BP 、CP ,下列结论:①DP CD =;②222AP BP CD +=;③75DCP ∠=︒;④150CPA ∠=︒,其中正确的是( )A .①②B .①②③C .①②④D .①②③④2.如图,在矩形ABCD 中,AB=2,BC=4,P 为边AD 上一动点,连接BP ,把△ABP 沿BP 折叠,使A 落在A′处,当△A′DC 为等腰三角形时,AP 的长为( )A .2B .233C .2或233D .2或4333.如图所示,正方形ABCD 中,E 为BC 边上一点,连接AE ,作AE 的垂直平分线交AB 于G ,交CD 于F ,若2DF =,4BG =,则AE 的长为( )A .47B .310C .10D .124.如图,在矩形ABCD 中,P 是边AD 上的动点,PE AC ⊥于E ,PF BD ⊥于F ,如果3, 4AB AD ==,那么( )A .125PE PF +=B .121355PE PF <+<C .5PE PF +=D .34PE PF <+<5. 如图,平行四边形ABCD 对角线AC 、BD 交于点O ,∠ADB=20°,∠ACB=50°,过点O 的直线交AD 于点E ,交BC 于点F 当点E 从点A 向点D 移动过程中(点E 与点A 、点D 不重合),四边形AFCE 的形状变化依次是( )A .平行四边形→矩形→平行四边形→菱形→平行四边形B .平行四边形→矩形→平行四边形→正方形→平行四边形C .平行四边形→菱形→平行四边形→矩形→平行四边形D .平行四边形→矩形→菱形→正方形→平行四边形6.如图,在矩形ABCD 中,AB =6,BC =8,E 是BC 边上一点,将矩形沿AE 折叠,点B 落在点B '处,当△B 'EC 是直角三角形时,BE 的长为( )A .2B .6C .3或6D .2或3或67.如图,正方形ABCD (四边相等、四内角相等)中,AD =5,点E 、F 是正方形ABCD 内的两点,且AE =FC =4,BE =DF =3,则EF 的平方为( )A .2B .125C .3D .48.下列命题中,真命题的个数有( ) ①对角线相等的四边形是矩形; ②三条边相等的四边形是菱形;③一组对边平行且相等的四边形是平行四边形. A .3个B .2个C .1个D .0个9.如图,45A ABC C ∠=∠=∠=︒,E 、F 分别是AB 、BC 的中点,则下列结论:①EF BD ⊥,②12EF BD =,③ADC BEF BFE ∠=∠+∠,④AD DC =,其中正确有( )A.1个B.2个C.3个D.4个10.如图,在边长为6的正方形ABCD中,E是边CD的中点,将ADE沿AE对折至AFE,延长交BC于点G,连接AG.则BG的长()A.1 B.2 C.3D.3二、填空题11.如图,正方形ABCD的对角线相交于点O,对角线长为1cm,过点O任作一条直线分别交AD,BC于E,F,则阴影部分的面积是_____.12.已知:点B是线段AC上一点,分别以AB,BC为边在AC的同侧作等边ABD△和等边BCE,点M,N分别是AD,CE的中点,连接MN.若AC=6,设BC=2,则线段MN的长是__________.13.已知在矩形ABCD中,3,3,2AB BC==点P在直线BC上,点Q在直线CD上,且,AP PQ⊥当AP PQ=时,AP=________________.14.如图,在矩形ABCD 中,AD =2AB ,∠BAD 的平分线交BC 于点E ,DH ⊥AE 于点H ,连接BH 并延长交CD 于点F ,连接DE 交BF 于点O ,下列结论:①∠AED =∠CED ;②OE =OD ;③BH =HF ;④BC ﹣CF =2HE ;⑤AB =HF ,其中正确的有_____.15.如图,Rt ABE ∆中,90,B AB BE ︒∠==, 将ABE ∆绕点A 逆时针旋转45︒,得到,AHD ∆过D 作DC BE ⊥交BE 的延长线于点C ,连接BH 并延长交DC 于点F ,连接DE 交BF 于点O .下列结论:①DE 平分HDC ∠;②DO OE =; ③CD HF =; ④2BC CF CE -=; ⑤H 是BF 的中点,其中正确的是___________16.菱形OBCD 在平面直角坐标系中的位置如图所示,顶点B (23,0),∠DOB =60°,点P 是对角线OC 上一个动点,E (0,-1),则EP 十BP 的最小值为__________.17.如图,在平行四边形ABCD ,AD =2AB ,F 是AD 的中点,作CE ⊥AB ,垂足E 在线段AB上,连接EF 、CF ,则下列结论:①∠BCD =2∠DCF ;②EF =CF ;③S △CDF =S △CEF ;④∠DFE =3∠AEF ,-定成立的是_________.(把所有正确结论的序号都填在横线上)18.在ABC 中,AB=12,AC=10,BC=9,AD 是BC 边上的高.将ABC 按如图所示的方式折叠,使点A 与点D 重合,折痕为EF ,则DEF 的周长为______.19.如图,在正方形ABCD 中,点F 为CD 上一点,BF 与AC 交于点E ,若∠CBF=20°,则∠AED 等于__度.20.如图,矩形纸片ABCD ,AB =5,BC =3,点P 在BC 边上,将△CDP 沿DP 折叠,点C 落在点E 处,PE ,DE 分别交AB 于点O ,F ,且OP =OF ,则AF 的值为______.三、解答题21.如图,在矩形ABCD 中,AD nAB =,E ,F 分别在AB ,BC 上. (1)若1n =,①如图,AF DE ⊥,求证:AE BF =;②如图,点G 为点F 关于AB 的对称点,连结AG ,DE 的延长线交AG 于H ,若AH AD =,猜想AE 、BF 、AG 之间的数量关系,并证明你的猜想.(2)如图,若M 、N 分别为DC 、AD 上的点,则EMFN的最大值为_____(结果用含n 的式子表示);(3)如图,若E 为AB 的中点,ADE EDF ∠=∠.则CFBF的值为_______(结果用含n 的式子表示).22.在一次数学探究活动中,小明对对角线互相垂直的四边形进行了探究,得出了如下结论:如图1,四边形ABCD 的对角线AC 与BD 相交于点O ,AC BD ⊥,则2222AB CD AD BC +=+.(1)请帮助小明证明这一结论;(2)根据小明的探究,老师又给出了如下的问题:如图2,分别以Rt ACB 的直角边AC 和斜边AB 为边向外作正ACFG 和正方形ABDE ,连结CE 、BG 、GE .已知4AC =,5AB =,求GE 的长,请你帮助小明解决这一问题.23.如图,点E 为▱ABCD 的边AD 上的一点,连接EB 并延长,使BF =BE ,连接EC 并延长,使CG =CE ,连接FG .H 为FG 的中点,连接DH ,AF .(1)若∠BAE =70°,∠DCE =20°,求∠DEC 的度数; (2)求证:四边形AFHD 为平行四边形;(3)连接EH ,交BC 于点O ,若OC =OH ,求证:EF ⊥EG .24.如图1,在正方形ABCD 中,点M 、N 分别在边BC 、CD 上,AM 、AN 分别交BD 于点P 、Q ,连接CQ 、MQ .且CQ MQ =. (1)求证:QAB QMC ∠=∠ (2)求证:90AQM ∠=︒(3)如图2,连接MN ,当2BM =,3CN =,求AMN 的面积图1 图225.如图,点A 的坐标为(6,6)-,AB x ⊥轴,垂足为B ,AC y ⊥轴,垂足为C ,点,D E 分别是射线BO 、OC 上的动点,且点D 不与点B 、O 重合,45DAE ︒∠=.(1)如图1,当点D 在线段BO 上时,求DOE ∆的周长;(2)如图2,当点D 在线段BO 的延长线上时,设ADE ∆的面积为1S ,DOE ∆的面积为2S ,请猜想1S 与2S 之间的等量关系,并证明你的猜想.26.已知正方形ABCD 与正方形(点C 、E 、F 、G 按顺时针排列),是的中点,连接,.(1)如图1,点E 在上,点在的延长线上, 求证:DM =ME ,DM ⊥.ME简析: 由是的中点,AD ∥EF ,不妨延长EM 交AD 于点N ,从而构造出一对全等的三角形,即 ≌ .由全等三角形性质,易证△DNE 是 三角形,进而得出结论. (2)如图2, 在DC 的延长线上,点在上,(1)中结论是否成立?若成立,请证明你的结论;若不成立,请说明理由.(3)当AB=5,CE=3时,正方形的顶点C 、E 、F 、G 按顺时针排列.若点E 在直线CD 上,则DM= ;若点E 在直线BC 上,则DM= .27.如图,四边形ABCD 为正方形.在边AD 上取一点E ,连接BE ,使60AEB ∠=︒.(1)利用尺规作图(保留作图痕迹):分别以点B 、C 为圆心,BC 长为半径作弧交正方形内部于点T ,连接BT 并延长交边AD 于点E ,则60AEB ∠=︒;(2)在前面的条件下,取BE 中点M ,过点M 的直线分别交边AB 、CD 于点P 、Q . ①当PQ BE ⊥时,求证:2BP AP =;②当PQ BE =时,延长BE ,CD 交于N 点,猜想NQ 与MQ 的数量关系,并说明理由. 28.如图,在四边形ABCD 中,AD BC =,AD BC ∥,连接AC ,点P 、E 分别在AB 、CD 上,连接PE ,PE 与AC 交于点F ,连接PC ,D ∠=BAC ∠,DAE AEP ∠=∠. (1)判断四边形PBCE 的形状,并说明理由; (2)求证:CP AE =;(3)当P 为AB 的中点时,四边形APCE 是什么特殊四边形?请说明理由.29.如图,已知正方形ABCD与正方形CEFG如图放置,连接AG,AE.(1)求证:AG AE=(2)过点F作FP AE⊥于P,交AB、AD于M、N,交AE、AG于P、Q,交BC于H,.求证:NH=FM30.在四边形ABCD中,对角线AC、BD相交于点O,过点O的直线EF,GH分别交边AB、CD,AD、BC于点E、F、G、H.(1)观察发现:如图①,若四边形ABCD是正方形,且EF⊥GH,易知S△BOE=S△AOG,又因为S△AOB=14S四边形ABCD,所以S四边形AEOG=S正方形ABCD;(2)类比探究:如图②,若四边形ABCD是矩形,且S四边形AEOG=14S矩形ABCD,若AB=a,AD=b,BE=m,求AG的长(用含a、b、m的代数式表示);(3)拓展迁移:如图③,若四边形ABCD是平行四边形,且S四边形AEOG=14S▱ABCD,若AB=3,AD=5,BE=1,则AG=.【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【分析】如图,设DE交AP于0,根据菱形的性质、翻折不变性-判断即可解决问题;【详解】解:如图,设DE交AP于O.∵四边形ABCD是菱形∴DA=DC=AB∵A.P关于DE对称,∴DE⊥AP,OA=OP∴DA=DP∴DP=CD,故①正确∵AE=EB,AO=OP∴OE//PB,∴PB⊥PA∴∠APB=90°∴2222+==,故②正确PA PB AB CD若∠DCP=75°,则∠CDP=30°∵LADC=60°∴DP平分∠ADC,显然不符合题意,故③错误;∵∠ADC=60°,DA=DP=DC∴∠DAP=∠DPA,∠DCP=∠DPC,∠CPA=(360°-60°)=150°,故④正确.故选:C【点睛】本题考查菱形的性质、轴对称的性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.2.C解析:C【解析】【分析】根据△A′DC为等腰三角形,分三种情况进行讨论:①A'D=A'C,②A'D=DC,③CA'=CD,分别求得AP的长,并判断是否符合题意.【详解】①如图,当A′D=A′C时,过A′作EF⊥AD,交DC于E,交AB于F,则EF垂直平分CD,EF 垂直平分AB∴A'A=A'B由折叠得,AB=A'B,∠ABP=∠A'BP ∴△ABA'是等边三角形∴∠ABP=30°∴AP=223333 AB==;②如图,当A'D=DC时,A'D=2由折叠得,A'B=AB=2∴A'B+A'D=2+2=4连接BD,则Rt△ABD中,BD=22222425AB AD+=+=∴A'B+A'D<BD(不合题意)故这种情况不存在;③如图,当CD=CA'时,CA'=2由折叠得,A'B=AB=2∴A'B+A'C=2+2=4∴点A'落在BC上的中点处此时,∠ABP=12∠ABA'=45°∴AP=AB=2.综上所述,当△A′DC为等腰三角形时,AP的长为2332.故选C.【点睛】本题以折叠问题为背景,主要考查了等腰三角形的性质,解决问题的关键是画出图形进行分类讨论,分类时注意不能重复,不能遗漏.3.B解析:B【分析】如图,连接GE ,作GH ⊥CD 于H .则四边形AGHD 是矩形,设AG=DH=x ,则FH=x-2.首先证明△ABE ≌△GHF ,推出BE=FH=x-2,在Rt △BGE 中,根据GE 2=BG 2+BE 2,构建方程求出x 即可解决问题.【详解】如图,连接GE ,作GH ⊥CD 于H .则四边形AGHD 是矩形,设AG=DH=x ,则FH=x-2.∵GF 垂直平分AE ,四边形ABCD 是正方形,∴∠ABE=∠GHF=90°AB=AD=GH ,AG=GE=x ,∵∠BAE+∠AGF=90°,∠AGF+∠FGH=90°,∴∠BAE=∠FGH ,∴△ABE ≌△GHF ,∴BE=FH=x-2,在Rt △BGE 中,∵GE 2=BG 2+BE 2,∴x 2=42+(x-2)2,∴x=5,∴AB=9,BE=3,在Rt △ABE 中,222293310AB BE ++=故选:B .【点睛】此题考查正方形的性质、全等三角形的判定和性质、勾股定理,解题的关键是学会添加常用辅助线,构造全等三角形解决问题.4.A解析:A【分析】设AC 、BD 交于点O ,连接OP ,根据矩形的性质及勾股定理求出OA=OD=2.5,再求出△AOD 的面积,根据面积关系即可求出答案.【详解】设AC 、BD 交于点O ,连接OP ,∵3, 4AB AD ==,∴BD=AC=5,∴OA=OD=2.5,∵1134344AOD ABCD SS ==⨯⨯=矩形, ∴3AOP DOP S S +=,∵PE AC ⊥于E ,PF BD ⊥于F ,∴112.5 2.5322PE PF ⨯+⨯=, 15()322PE PF ⨯+=, ∴125PE PF +=, 故选:A.【点睛】此题考查矩形的性质,勾股定理,根据矩形的性质求出△AOD 的面积是解题的关键.5.C解析:C【分析】先判断出点E 在移动过程中,四边形AECF 始终是平行四边形,当∠AFC=80°时,四边形AECF 是菱形,当∠AFC=90°时,四边形AECF 是矩形,即可求解.【详解】解:∵点O 是平行四边形ABCD 的对角线得交点,∴OA=OC ,AD ∥BC ,∴∠ACF=∠CAD ,∠ADB=∠DBC=20°∵∠COF=∠AOE ,OA=OC ,∠DAC=∠ACF∴△AOE ≌△COF (ASA ),∴AE=CF ,∵AE ∥CF ,∴四边形AECF 是平行四边形,∵∠ADB=∠DBC=20°,∠ACB=50°,∴∠AFC >20°当∠AFC=80°时,∠FAC=180°-80°-50°=50°∴∠FAC=∠ACB=50°∴AF=FC∴平行四边形AECF 是菱形当∠AFC=90°时,平行四边形AECF 是矩形∴综上述,当点E从D点向A点移动过程中(点E与点D,A不重合),则四边形AFCE的变化是:平行四边形→菱形→平行四边形→矩形→平行四边形.故选:C.【点睛】本题考查了平行四边形、矩形、菱形的判定的应用,主要考查学生的理解能力和推理能力,题目比较好,难度适中.6.C解析:C【分析】分以下两种情况求解:①当点B′落在矩形内部时,连接AC,先利用勾股定理计算出AC =10,根据折叠的性质得∠AB′E=∠B=90°,而当△B′EC为直角三角形时,只能得到∠EB′C=90°,所以点A、B′、C共线,即∠B沿AE折叠,使点B落在对角线AC上的点B′处,则EB=EB′,AB=AB′=6,可计算出CB′=4,设BE=x,则EB′=x,CE=8﹣x,然后在Rt△CEB′中运用勾股定理可计算出x.②当点B′落在AD边上时.此时四边形ABEB′为正方形,求出BE的长即可.【详解】解:当△B′EC为直角三角形时,有两种情况:①当点B′落在矩形内部时,如图1所示.连结AC,在Rt△ABC中,AB=6,BC=8,∴AC2210,86∵∠B沿AE折叠,使点B落在点B′处,∴∠AB′E=∠B=90°,当△B′EC为直角三角形时,得到∠EB′C=90°,∴点A、B′、C共线,即∠B沿AE折叠,使点B落在对角线AC上的点B′处,如图,∴EB=EB′,AB=AB′=6,∴CB′=10﹣6=4,设BE=x,则EB′=x,CE=8﹣x,在Rt△B′EC中,∵EB′2+CB′2=CE2,∴x2+42=(8﹣x)2,解得x=3,∴BE=3;②当点B′落在AD边上时,如图2所示.此时ABEB′为正方形,∴BE=AB=6.综上所述,BE的长为3或6.故选:C.【点睛】本题考查了折叠变换的性质、直角三角形的性质、矩形的性质,正方形的判定等知识;熟练掌握折叠变换的性质,由勾股定理得出方程是解题的关键.7.A解析:A【分析】根据AB=5,AE=4,BE=3,可以确定△ABE为直角三角形,延长BE构建出直角三角形,在利用勾股定理求出EF的平方即可.【详解】∵四边形ABCD是正方形,∴AB=BC=CD=AD=5,如图,延长BE交CF于点G,∵AB=5,AE=4,BE=3,∴AE2+BE2=AB2,∴△ABE是直角三角形,同理可得△DFC是直角三角形,∵AE=FC=4,BE=DF=3,AB=CD=5,∴△ABE≌△CDF,∴∠BAE=∠DCF,∵∠ABC=∠AEB=902,∴∠CBG=∠BAE,同理可得,∠BCG=∠CDF=∠ABE,△ABE≌△BCG,∴CG=BE=3,BG=AE=4,∴EG=4-3=1,GF=4-3=1,∴EF2=EG2+GF2=1+1=2故选择:A【点睛】此题考查三角形的判定,勾股定理的运用,根据已知条件构建直角三角形求值是解题的关键.8.C解析:C【分析】正确的命题是真命题,根据矩形的判定定理,菱形的判定定理及平行四边形的判定定理依次判断.【详解】①对角线相等且互相平分的四边形是矩形,故该项错误;②四条边相等的四边形是菱形,故该项错误;③一组对边平行且相等的四边形是平行四边形,故该项正确;故选:C .【点睛】此题考查真命题的定义,正确掌握矩形、菱形、平行四边形的判定定理是解题的关键.9.C解析:C【分析】根据三角形的中位线定理“三角形的中位线平行于第三边”可得//EF AC ,12EF AC =,再由45°角可证△ABQ 为等腰直角三角形,从而可得可得AQ BQ =,进而证明AQC BQDASA ≅△△(),利用三角形的全等性质求解即可. 【详解】解:如图所示:连接AC ,延长BD 交AC 于点M ,延长AD 交BC 于Q ,延长CD 交AB 于P .45ABC C ∠=∠=︒,CP AB ∴⊥,45ABC BAD ∠=∠=︒,AQ BC ∴⊥,点D 为两条高的交点,BM ∴为AC 边上的高,即:BM AC ⊥,由中位线定理可得//EF AC ,12EF AC =, BD EF ∴⊥,故①正确;45DBQ DCA ∠+∠=︒,45DCA CAQ ∠+∠=︒,DBQ CAQ ∴∠=∠,BAD ABC ∠=∠,AQ BQ ∴=,90BQD AQC ∠=∠=︒,∴根据以上条件得AQC BQD ASA ≅△△(),BD AC ∴=,12EF AC ∴=,故②正确; 45A ABC C ∠=∠=∠=︒,()18045DAC DCA BAD ABC BCD ∴∠+∠=︒-∠+∠+∠=︒,180135()180ADC DAC DCA BEF BFE ABC ∴∠=︒-∠+∠=︒=∠+∠=︒-∠,故③ ADC BEF BFE ∠=∠+∠成立;无法证明AD CD =,故④错误.综上所述:正确的是①②③,故选C .【点睛】本题考点在于三角形的中位线和三角形全等的判断及应用.解题关键是证明AQC BQD ASA ≅△△().10.B解析:B【分析】首先证明AB=AF=AD ,然后再证明∠AFG=90°,接下来,依据HL 可证明△ABG ≌△AFG ,得到BG=FG ,再利用勾股定理得出GE 2=CG 2+CE 2,进而求出BG 即可.【详解】解:在正方形ABCD 中,AD=AB=BC=CD ,∠D=∠B=∠BCD=90°,∵将△ADE 沿AE 对折至△AFE ,∴AD=AF ,DE=EF ,∠D=∠AFE=90°,∴AB=AF ,∠B=∠AFG=90°,又∵AG=AG ,在Rt △ABG 和Rt △AFG 中,AG AG AB AF⎧⎨⎩== ∴△ABG ≌△AFG (HL );∴BG=FG (全等三角形对应边相等),设BG=FG=x ,则GC=6-x ,∵E 为CD 的中点,∴CE=EF=DE=3,∴EG=3+x ,∴在Rt △CEG 中,32+(6-x )2=(3+x )2(勾股定理),解得x=2,∴BG=2,故选B .【点睛】此题主要考查了勾股定理的综合应用、三角形全的判定和性质以及翻折变换的性质,根据翻折变换的性质得出对应线段相等是解题关键.二、填空题11.218cm 【分析】根据正方形的性质可以证明△AEO ≌CFO ,就可以得出S △AEO =S △CFO ,就可以求出△AOD 面积等于正方形面积的14,根据正方形的面积就可以求出结论. 【详解】解:如图:∵正方形ABCD 的对角线相交于点O ,∴△AEO 与△CFO 关于O 点成中心对称,∴△AEO ≌CFO ,∴S △AEO =S △CFO ,∴S △AOD =S △DEO +S △CFO ,∵对角线长为1cm ,∴S 正方形ABCD =1112⨯⨯=12cm 2, ∴S △AOD =18cm 2, ∴阴影部分的面积为18cm 2. 故答案为:18cm 2. 【点睛】 本题考查了正方形的性质的运用,全等三角形的判定及性质的运用正方形的面积及三角形的面积公式的运用,在解答时证明△AEO ≌CFO 是关键.12【分析】如图(见解析),先根据等边三角形的性质、平行四边形的判定与性质可得//,4ME AB ME AB ==,再根据平行线的性质可得60FEM C ∠=∠=︒,然后利用直角三角形的性质、勾股定理可得2,EF MF ==,从而可得3FN =,最后在Rt FMN 中,利用勾股定理即可得.【详解】如图,连接ME ,过点M 作MF CE ⊥,交CE 延长线于点F ,ABD △和BCE 都是等边三角形,2BC =,60,2,A CBE C BE CE AD A C B B ∴∠=∠=∠=︒====,//AD BE ∴,6AC =,624AD AB ∴==-=,点M ,N 分别是AD ,CE 的中点,112,122AM AD EN CE ∴====, AM BE ∴=,∴四边形ABEM 是平行四边形,//,4ME AB ME AB ∴==, 60FEM C ∴∠=∠=︒,在Rt EFM △中,906030EMF ∠=︒-︒=︒,12,2EF ME MF ∴==== 123FN EN EF ∴=+=+=,则在Rt FMN 中,MN ===【点睛】本题考查了等边三角形的性质、勾股定理、平行四边形的判定与性质、直角三角形的性质等知识点,通过作辅助线,构造直角三角形和平行四边形是解题关键.13.322或3102【分析】 根据点P 在直线BC 上,点Q 在直线CD 上,分两种情况:1.P 、Q 点位于线段上;2.P 、Q 点位于线段的延长上,再通过三角形全等得出相应的边长,最后根据勾股即可求解.【详解】解:当P 点位于线段BC 上,Q 点位于线段CD 上时:∵四边形ABCD 是矩形,AP PQ ⊥∴∠BAP=∠CPQ ,∠APB=∠PQC∵AP PQ =∴ABP PCQ ≅∴PC=AB=32,BP=BC-PC=3-32=32∴AP=223322+()()=322当P 点位于线段BC 的延长线上,Q 点位于线段CD 的延长线上时:∵四边形ABCD 是矩形,AP PQ ⊥∴∠BAP=∠CPQ ,∠APB=∠PQC∵AP PQ =∴ABP PCQ ≅∴PC=AB=32,BP=BC+PC=3+32=92∴【点睛】 此题主要考查三角形全等的判定及性质、勾股定理,熟练运用判定定理和性质定理是解题的关键.14.①②③④【分析】①根据角平分线的定义可得∠BAE =∠DAE =45°,可得出△ABE 是等腰直角三角形,根据等腰直角三角形的性质可得AE =,从而得到AE =AD ,然后利用“角角边”证明△ABE 和△AHD 全等,根据全等三角形对应边相等可得BE =DH ,再根据等腰三角形两底角相等求出∠ADE =∠AED =67.5°,根据平角等于180°求出∠CED =67.5°,从而判断出①正确; ②求出∠AHB =67.5°,∠DHO =∠ODH =22.5°,然后根据等角对等边可得OE =OD =OH ,判断出②正确;③求出∠EBH =∠OHD =22.5°,∠AEB =∠HDF =45°,然后利用“角边角”证明△BEH 和△HDF 全等,根据全等三角形对应边相等可得BH =HF ,判断出③正确;④根据全等三角形对应边相等可得DF =HE ,然后根据HE =AE ﹣AH =BC ﹣CD ,BC ﹣CF =BC ﹣(CD ﹣DF )=2HE ,判断出④正确;⑤判断出△ABH 不是等边三角形,从而得到AB ≠BH ,即AB ≠HF ,得到⑤错误.【详解】∵在矩形ABCD 中,AE 平分∠BAD ,∴∠BAE =∠DAE =45°,∴△ABE 是等腰直角三角形,∴AE =. ∵AD =,∴AE =AD .在△ABE 和△AHD 中,∵90BAE DAE ABE AHD AE AD ∠=∠⎧⎪∠=∠=︒⎨⎪=⎩,∴△ABE ≌△AHD (AAS ),∴BE =DH ,∴AB =BE =AH =HD ,∴∠ADE =∠AED 12=(180°﹣45°)=67.5°,∴∠CED =180°﹣45°﹣67.5°=67.5°,∴∠AED =∠CED ,故①正确;∵∠AHB 12=(180°﹣45°)=67.5°,∠OHE =∠AHB (对顶角相等),∴∠OHE =∠AED ,∴OE =OH .∵∠DOH=90°﹣67.5°=22.5°,∠ODH=67.5°﹣45°=22.5°,∴∠DOH=∠ODH,∴OH=OD,∴OE=OD=OH,故②正确;∵∠EBH=90°﹣67.5°=22.5°,∴∠EBH=∠OHD.在△BEH和△HDF中,∵EBH OHDBE DHAEB HDF∠=∠⎧⎪=⎨⎪∠=∠⎩,∴△BEH≌△HDF(ASA),∴BH=HF,HE=DF,故③正确;由上述①、②、③可得CD=BE、DF=EH=CE,CF=CD﹣DF,∴BC﹣CF=(CD+HE)﹣(CD﹣HE)=2HE,所以④正确;∵AB=AH,∠BAE=45°,∴△ABH不是等边三角形,∴AB≠BH,∴即AB≠HF,故⑤错误;综上所述:结论正确的是①②③④.故答案为①②③④.【点睛】本题考查了矩形的性质,全等三角形的判定与性质,角平分线的定义,等腰三角形的判定与性质,熟记各性质并仔细分析题目条件,根据相等的度数求出相等的角,从而得到三角形全等的条件或判断出等腰三角形是解题的关键,也是本题的难点.15.①②④⑤【分析】根据∠B=90°,AB=BE,△ABE绕点A逆时针旋转45°,得到△AHD,可得△ABE≅△AHD,并且△ABE和△AHD都是等腰直角三角形,可证AD//BC,根据DC⊥BC,可得∠HDE=∠CDE,根据三角形的内角和可得∠HDE=∠CDE,即DE平分∠HDC,所以①正确;利用∠DAB=∠ABC=∠BCD=90°,得到四边形ABCD是矩形,有∠ADC=90°,∠HDC=45°,由①有DE平分∠HDC,得∠HDO=22.5°,可得∠AHB=67.5°,∠DHO=22.5°,可证OD=OH,利用 AE=AD易证∠OHE=∠HEO=67.5°,则有OE=OH,OD=OE,所以②正确;利用AAS证明ΔDHE≅ΔDCE,则有DH=DC,∠HDE=∠CDE=22.5°,易的∠DHF=22.5°,∠DFH=112.5°,则△DHF不是直角三角形,并DH≠HF,即有:CD≠HF,所以③错误;根据△ABE是等腰直角三角形,JH⊥JE,∵J是BC的中点,H是BF的中点,得到2JH=CF,2JC=BC,JC=JE+CE,易证BC−CF=2CE,所以④正确;过H作HJ⊥BC于J,并延长HJ交AD于点I,得IJ⊥AD,I是AD的中点,J是BC的中点,H是BF的中点,所以⑤正确;【详解】∵Rt△ABE中,∠B=90°,AB=BE,∴∠BAE=∠BEA=45°,又∵将△ABE绕点A逆时针旋转45°,得到△AHD,∴△ABE≅△AHD,并且△ABE和△AHD都是等腰直角三角形,∴∠EAD=45°,AE=AD ,∠AHD=90°,∴∠ADE=∠AED,∴∠BAD=∠BAE+∠EAD=45°+45°=90°,∴AD//BC ,∴∠ADE=∠DEC ,∴∠AED=∠DEC ,又∵DC ⊥BC ,∴∠DCE=∠DHE=90°∴由三角形的内角和可得∠HDE=∠CDE ,即:DE 平分∠HDC ,所以①正确;∵∠DAB=∠ABC=∠BCD=90°,∴四边形ABCD 是矩形,∴∠ADC=90°,∴∠HDC=45°,由①有DE 平分∠HDC ,∴∠HDO=12∠HDC=12×45°=22.5°, ∵∠BAE=45°,AB=AH , ∴∠OHE=∠AHB=12 (180°−∠BAE)= 12×(180°−45°)=67.5°, ∴∠DHO=∠DHE−∠FHE=∠DHE−∠AHB=90°−67.5°=22.5°,∴OD=OH ,在△AED 中,AE=AD ,∴∠AED=12(180°−∠EAD)=12×(180°−45°)=67.5°, ∴∠OHE=∠HEO=67.5°,∴OE=OH ,∴OD=OE ,所以②正确;在△DHE 和△DCE 中,DHE DCE HDE CDE DE DE ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴ΔDHE ≅ΔDCE(AAS),∴DH=DC ,∠HDE=∠CDE=12×45°=22.5°, ∵OD=OH ,∴∠DHF=22.5°,∴∠DFH=180°−∠HDF−∠DHF=180°−45°−22.5°=112.5°,∴△DHF 不是直角三角形,并DH≠HF ,即有:CD≠HF ,所以③不正确;如图,过H 作HJ ⊥BC 于J ,并延长HJ 交AD 于点I ,∵△ABE是等腰直角三角形,JH⊥JE,∴JH=JE,又∵J是BC的中点,H是BF的中点,∴2JH=CF,2JC=BC,JC=JE+CE,∴2JC=2JE+2CE=2JH+2CE=CF+2CE=BC,即有:BC−CF=2CE,所以④正确;∵AD//BC,∴IJ⊥AD,又∵△AHD是等腰直角三角形,∴I是AD的中点,∵四边形ABCD是矩形,HJ⊥BC,∴J是BC的中点,∴H是BF的中点,所以⑤正确;综上所述,正确的有①②④⑤,故答案为:①②④⑤.【点睛】本题考查了全等三角形的判定与性质、旋转的性质、矩形的性质、角平分线的性质以及等腰直角三角形的判定与性质;证明三角形全等和等腰直角三角形是解决问题的关键.1619【分析】DP BP,再根据两点之间线段最短先根据菱形的性质可得OC垂直平分BD,从而可得=+的最小值为DE,然后利用等边三角形的判定与性质求出点D的坐标,最后可得EP BP利用两点之间的距离公式即可得.【详解】⊥于点A,如图,连接BP、DP、EP、DE、BD,过点D作DA OBB,(23,0)23∴=OB四边形ABCD是菱形,∴垂直平分BD,23OCOB OD==点P是对角线OC上的点,DP BP ∴=,EP BP EP DP ∴+=+,由两点之间线段最短可知,EP DP +的最小值为DE ,即EP BP +的最小值为DE , ,60OB OD DOB =∠=︒,BOD ∴是等边三角形,DA OB ⊥, 132OA OB ∴==,2222(23)(3)3AD OD OA =-=-=, (3,3)D ∴,又(0,1)E -,22(30)(31)19DE ∴=-++=,即EP BP +的最小值为19,故答案为:19.【点睛】本题考查了菱形的性质、等边三角形的判定与性质、两点之间的距离公式等知识点,根据两点之间线段最短得出EP BP +的最小值为DE 是解题关键.17.①②④【分析】①根据平行四边形的性质和等腰三角形的性质即可判断;②延长EF ,交CD 延长线于点M ,首先根据平行四边形的性质证明AEFDFM ≅△△,得出,FE MF AEFM =∠=∠,进而得出90ECD AEC ∠=∠=︒,从而利用直角三角形斜边中线的性质即可判断;③由FE MF =,得出EFC CFM SS =,从而可判断正误; ④设FEC x ∠= ,利用三角形内角和定理分别表示出∠DFE 和∠AEF ,从而判断正误.【详解】①∵点F 是AD 的中点,∴AF FD = .∵在平行四边形ABCD 中,AD =2AB , //,AD BC AF FD CD ∴==,,DFC FCB DFC DCF ∴∠=∠∠=∠ ,FCB DCF ∴∠=∠,∴∠BCD =2∠DCF ,故①正确;②延长EF ,交CD 延长线于点M ,∵四边形ABCD 是平行四边形,//AB CD ∴,A MDF ∴∠=∠,∵点F 是AD 的中点,∴AF FD = .在AEF 和DFM 中,A FDM AF DFAFE DFM ∠=∠⎧⎪=⎨⎪∠=∠⎩()AEF DFM ASA ∴≅△△,FE MF AEF M ∴=∠=∠.CE AB ⊥ ,90AEC ∴∠=︒,90ECD AEC ∴∠=∠=︒,12CF EM EF ∴==,故②正确; ③∵FE MF =,∴EFC CFM S S = .CFM CDF MDF S S S =+△△△CDF EFC S S ∴<△△,故③错误;④设FEC x ∠= ,则FCE x ∠=,90DCF DFC x ∴∠=∠=︒- ,1802EFC x ∴∠=︒-,9018022703EFD x x x ∴∠=︒-+︒-=︒- .90AEF x ∠=︒- ,3DFE AEF ∴∠=∠,故④正确;综上所述,正确的有①②④,故答案为 :①②④.【点睛】本题主要考查平行四边形的性质,全等三角形的判定及性质,三角形内角和定理,掌握这些性质和定理是解题的关键.18.15.5【分析】先根据折叠的性质可得,AE DE EAD EDA =∠=∠,再根据垂直的定义、直角三角形的性质可得B BDE ∠=∠,又根据等腰三角形的性质可得BE DE =,从而可得6DE AE BE ===,同理可得出5DF AF CF ===,然后根据三角形中位线定理可得1 4.52EF BC ==,最后根据三角形的周长公式即可得. 【详解】由折叠的性质得:,AE DE EAD EDA =∠=∠AD 是BC 边上的高,即AD BC ⊥90B EAD ∴∠+∠=︒,90BDE EDA ∠+∠=︒B BDE ∴∠=∠BE DE ∴=1112622DE AE BE AB ∴====⨯= 同理可得:1110522DF AF CF AC ====⨯= 又,AE BE AF CF ==∴点E 是AB 的中点,点F 是AC 的中点EF ∴是ABC 的中位线119 4.522EF BC ∴==⨯= 则DEF 的周长为65 4.515.5DE DF EF ++=++=故答案为:15.5.【点睛】本题考查了折叠的性质、等腰三角形的性质、三角形中位线定理、直角三角形的性质等知识点,利用折叠的性质和等腰三角形的性质得出BE DE =是解题关键.19.65【分析】先由正方形的性质得到∠ABF 的角度,从而得到∠AEB 的大小,再证△AEB ≌△AED ,得到∠AED 的大小【详解】∵四边形ABCD 是正方形∴∠ACB=∠ACD=∠BAC=∠CAD=45°,∠ABC=90°,AB=AD∵∠FBC=20°,∴ABF=70°∴在△ABE 中,∠AEB=65°在△ABE 与△ADE 中45AB AD BAE EAD AE AE =⎧⎪∠=∠=︒⎨⎪=⎩∴△ABE≌△ADE∴∠AED=∠AEB=65°故答案为:65°【点睛】本题考查正方形的性质和三角形全等的证明,解题关键是利用正方形的性质,推导出∠AEB 的大小.20.207【分析】根据折叠的性质可得出DC=DE 、CP=EP ,由“AAS”可证△OEF ≌△OBP ,可得出OE=OB 、EF=BP ,设EF=x ,则BP=x 、DF=5-x 、BF=PC=3-x ,进而可得出AF=2+x ,在Rt △DAF 中,利用勾股定理可求出x 的值,即可得AF 的长.【详解】解:∵将△CDP 沿DP 折叠,点C 落在点E 处,∴DC =DE =5,CP =EP .在△OEF 和△OBP 中,90EOF BOP B E OP OF ∠=∠⎧⎪∠=∠=⎨⎪=⎩, ∴△OEF ≌△OBP (AAS ),∴OE =OB ,EF =BP .设EF =x ,则BP =x ,DF =DE -EF =5-x ,又∵BF =OB +OF =OE +OP =PE =PC ,PC =BC -BP =3-x ,∴AF =AB -BF =2+x .在Rt △DAF 中,AF 2+AD 2=DF 2,∴(2+x )2+32=(5-x )2,∴x =67∴AF =2+67=207故答案为:207 【点睛】本题考查了翻折变换,矩形的性质,全等三角形的判定与性质以及勾股定理的应用,解题时常常设要求的线段长为x ,然后根据折叠和轴对称的性质用含x 的代数式表示其他线段的长度,选择适当的直角三角形,运用勾股定理列出方程求出答案.三、解答题21.(1)①见解析;②AG FB AE =+,证明见解析;(2)21n ;(3)241n -【分析】(1)①证明△ADE ≌△BAF (ASA )可得结论.②结论:AG=BF+AE .如图2中,过点A 作AK ⊥HD 交BC 于点K ,证明AE=BK ,AG=GK ,即可解决问题.(2)如图3中,设AB=a ,AD=na ,求出ME 的最大值,NF 的最小值即可解决问题. (3)如图4中,延长DE 交CB 的延长线于H .设AB=2k ,则AD=BC=2kn ,求出CF ,BF 即可解决问题.【详解】(1)①证明:如图1中,∵四边形ABCD 是矩形,n=1,∴AD=AB ,∴四边形ABCD 是正方形,∴∠DAB=∠B=90°,∵AF ⊥DE ,∴∠ADE+∠DAF=90°,∠DAF+∠BAF=90°,∴∠ADE=∠BAF ,∴△ADE ≌△BAF (ASA ),∴AE=BF ;②结论:AG=BF+AE .理由:如图2中,过点A 作AK ⊥HD 交BC 于点K ,由(1)可知AE=BK ,∵AH=AD ,AK ⊥HD ,∴∠HAK=∠DAK ,∵AD ∥BC ,∴∠DAK=∠AKG ,∴∠HAK=∠AKG ,∴AG=GK ,∵GK=GB+BK=BF+AE ,∴AG=BF+AE ;(2)如图3中,设AB=a ,AD=na ,当ME 的值最大时,NF 的值最小时,ME NF 的值最大, 当ME 是矩形ABCD 的对角线时,ME 的值最大,最大值=()222na 1a n +=+•a ,当NF ⊥AD 时,NF 的值最小,最小值=a ,∴ME NF 的最大值=21a an +⋅=21n +, 故答案为:21n +;(3)如图4中,延长DE 交CB 的延长线于H .设AB=2k ,则AD=BC=2kn ,∵AD ∥BH ,∴∠ADE=∠H ,∵AE=EB=k ,∠AED=∠BEH ,∴△AED ≌△BEH (ASA ),∴AD=BH=2kn ,∴CH=4kn ,∵∠ADE=∠EDF ,∠ADE=∠H ,∴∠H=∠EDF ,∴FD=FH ,设DF=FH=x ,在Rt △DCF 中,∵CD 2+CF 2=DF 2,∴(2k)2+(4kn-x)2=x 2, ∴2142n x k n+=⋅, ∴221441422n n CF kn k k n n +-=-⋅=⋅,241222n k BF kn k n n-=-⋅=, ∴22412412n k CF n n k BFn-⋅==-, 故答案为:241n -.【点睛】本题考查了矩形的性质,正方形的性质,全等三角形的判定和性质,等腰三角形的判定和性质,勾股定理等知识,解题的关键是学会利用参数解决问题.22.(1)证明见解析;(2【分析】(1)由题意根据勾股定理分别表示出2222,AB CD AD BC ++进行分析求证即可;(2)根据题意连接CG 、BE ,证明△GAB ≌△CAE ,进而得BG ⊥CE ,再根据(1)的结论进行分析即可求出答案.【详解】解:(1)∵AC ⊥BD ,∴∠AOD=∠AOB=∠BOC=∠COD=90°,由勾股定理得,222222AD BC AO DO BO CO +=+++,222222AB CD AO BO CO DO +=+++,∴2222AD BC AB CD +=+;(2)连接CG 、BE ,如图2,∵∠CAG=∠BAE=90°,∴∠CAG+∠BAC=∠BAE+∠BAC ,即∠GAB=∠CAE ,在△GAB 和△CAE 中,AG AC GAB CAE AB AE =⎧⎪∠=∠⎨⎪=⎩,∴△GAB ≌△CAE (SAS ),∴∠ABG=∠AEC ,又∠AEC+∠AME=90°,∴∠ABG+∠AME=90°,即CE ⊥BG ,由(1)得,2222CG BE CB GE +=+,∵AC=4,AB=5,∴BC=3,2,2,∴222273GE CG BE CB =+-=,∴73【点睛】本题考查的是正方形的性质、全等三角形的判定和性质、垂直的定义、勾股定理的应用,熟练并正确理解全等三角形的判定和性质以及灵活运用勾股定理是解题的关键.23.(1)50°;(2)见解析;(3)见解析【分析】(1)由平行四边形的性质和平行线的判定和性质得出答案即可;(2)由平行四边形的性质得出AD =BC ,AD ∥BC ;证明BC 是△EFG 的中位线,得出BC ∥FG ,BC =12FG ,证出AD ∥FH ,AD ∥FH ,由平行四边形的判定方法即可得出结论; (3)连接EH ,CH ,根据三角形的中位线定理以及平行四边形的判定和性质即可得到结论.【详解】明:(1)∵四边形ABCD 是平行四边形,∴∠BAE =∠BCD =70°,AD ∥BC ,∵∠DCE =20°,∵AB ∥CD ,。
一 、选择题(每小题3分,共30分)1. 在直角坐标系中, 点P(-2,3)向右平移3个单位长度后的坐标为( ) A. (3,6) B. (1,3) C. (1,6) D. (3,3)2.一个多边形的内角和是外角和的2倍,则这个多边形是( )A. 四边形B. 五边形C. 六边形D. 八边形3. 等腰梯形上、下差等于一腰的长,则腰与下底的夹角是( )A. ο75B. ο60C. ο45D. ο30 4. A (-3,2)关于原点的对称点是B ,B 关于x 轴的对称点是C ,则点C 的坐标是( )A .(3,2)B .(-3,2)C .(3,-2)D .(-2,3) 5. 平面直角坐标系中,一个四边形各顶点坐标分别为)21(--,A ,)24((-,B ,)34(,C ,)31((,-D ,则四边形ABCD 的形状是( )A. 平行四边形B.长方形C. 正方形D. 无法确定6. 在平面直角坐标系中有A 、B 两点,若以B 点为原点建立直角坐标系,则A 点的坐标为)32(,;若以A 点为原点建立直角坐标系(两直角坐标系x 轴、y 轴方向一致),则B 点的坐标是( )A. )32(--,B. )32(,-C. )32(-,D. )32(,7. 将平面直角坐标系内某图形上各个点的纵坐标都乘以1-,横坐标不变,所得图形与原图形的关系是( )A. 关于x 轴对称B. 关于y 轴对称C. 关于原点对称D. 沿y 轴向下平移1个单位长度8. 已知□ABCD 的对角线AC 与BD 相交于坐标原点O ,若点A 的坐标为)13(--,,则点C 的坐标为( )A. ),13( B. ),(13- C. )1,3-( D. ),31(9. 已知322)2(-+=m x m m y ,如果y 是x 的正比例函数,则m 的值为( )A.2B.-2 C 2,-2 D.010. 点(x,x 2-2x )一定不在 ( )A.第一象限B.第二象限C.第三象限D.第四象限二 、填空题(每小题3分)11.已知点)68(,-Q ,它到x 轴的距离是__________,它到y 轴的距离是__________,它到原点的距离是_____________.12.若点)2(y P ,-与),3(x Q 关于y 轴对称,则________=+y x .13.若点)123(-+a a M ,在x 轴上,则点M的坐标为_____ _ _______. 14.已知点)23(,A 且AB ∥x 轴,若AB =4,则点B 的坐标为 .15. 菱形的两条对角线长为6和8,则菱形的面积是 .16. 若点)(b a M ,在第二象限,则点)(a b b N --,在第________象限17. 已知点)26,53(--+a a P 在第二、四象限的角平分线上,则____2011=-a a18.拖拉机开始工作时,油箱中有油28升,如果每小时耗油4升,那么油箱中的剩余油量y (升)和工作时间x (时)之间的函数关系式是 .19.如下图,折叠矩形纸片ABCD ,先折出折痕BD ,再折叠使AD 边与对角线BD 重合,得折痕DG ,若AB=2,BC=1,则AG 的长是__________.20.若点A (0,4),B (4,1),在x 轴上有一动点P 则PA-PB 的最大值是 .三、解答题:(共60分)21. 在□ABCD 中,AE 平分∠BAD 交BC 于E ,EF ∥AB 交AD 于F ,试问:(1)四边形ABEF 是什么图形吗?请说明理由.(2)若∠B=60°,四边形AECD 是什么图形?请说明理由.22. 如图,点C 的坐标为(4,2)作出△ABC 关于y 轴对称的图形△A 1B 1C 1,再作出△A 1B 1C 1关于原点对称的 △A 2B 2C 2,并写出点A 2、B 2、C 2的坐标。
2023-2024 八下第二次月考数学试题一、选择题:(每小题3分,共24分)1.下列四个图形中,是中心对称图形的是( )2.下列各式:3a 2−b π,x 22x−y ,34a +b,x+3x−1,−m 2,am是分式的有( )A.2个B.3个C.4个D.5 个 3.下列各式从左到右的变形,属于因式分解的是( )A.(x −4)(x +4)=x²−16B.x²−y²+2=(x +y )(x −y )+2C.x 2+1=x (x +1x ) D.a²b +ab²=ab (a +b )4.如图,四边形ABCD 中,对角线AC 、BD 相交于点O ,下列条件不能判定这个四边形是平行四边形的是( ) A. AB//DC, AD//BC B. AB = DC, AD= BC C. A0 = CO, BO = DO D. AB =DC, AD//BC5.若关于x 的不等式组 {3x −5≥12x −a <8有且只有3 个整数解,则a 的取值范围是( )A.0≤a≤2B.0≤a<2C.0<a≤2D.0<a<26.如图,在平面直角坐标系中,等边三角形OAB 的边长为4,点A 在第二象限内,将△OAB 沿射线AO 的方向平移后得到△O'A'B',平移后点A'的横坐标为( 6√3,则点B'的坐标为( )A.(8√3,−4√3)B.(8,−4√3)C.(8√3,−4)D.(8,-4)7.精元电子厂准备生产5400套电子元件,甲车间独立生产一半后,由于要尽快投入市场,乙车间也加`了该电子元件的生产,若乙车间每天生产的电子元件套数是甲车间的1.5倍,结果用30天完成任务,问即车间每天生产电子元件多少套?在这个问题中设甲车间每天生产电子元件x 套,根据题意可得方程为( )A.2700x +27001.5x=30 B.2700x +2700x+1.5x=30 C.2700x +5400x+1.5x=30 D.5400x +2700x+1.5x=308.2.如图,菱形ABCD的对角线AC, BD相交于点O, 点P为AB边上一动点(不与点A, B重合), PE⊥OA于点E, PF⊥OB于点F.若AC=20, BD =10, 则EF的最小值为( )A.2√2B.2√3C.4D.2√5二、填空题:(每小题3分,共15分)9.如果式子√x+1x−2有意义,则实数x的取值范围是10.如图,用正多边形镶嵌地面,则图中α的大小为度.11.如图,在□ABCD中,∠ABC的平分线交AD于点E,∠BCD的平分线交AD于点F, 若AB =5, AD =6, 则EF 的长是12.如图所示, 菱形ABCD的对角线AC、BD相交于点O.若AC =6, BD =8, AE⊥BC, 垂足为E,则AE的长为 .13.如图,在矩形ABCD中, AB=3, AD =10, 点E在AD上且DE =2.点G为AE的中点, 点P为BC边上的一个动点, F为EP的中点, 则GF +EF的最小值为 .三、解答题: (共12小题, 共81分。
南通市如东县八年级数学第二学期阶段性测试卷(时间:120分钟满分:150分)一、选择题(本大题共10小题,每小题3分,共30分)1 .以下列长度的三条线段为边,能组成直角三角形的是()A2,3,4 B.6,8,10 C.5,11,12 D.7,9,112. 已知在平行四边形ABCD中,∠B+∠D=200°,则∠B的度数为()A.100°B.160°C.80°D.60°3.一次函数y=2x+1的图象经过的象限是()A.一、二、三B.一、二、四C.一、三、四D.二、三、四4.学校甲、乙两支国旗护卫队队员的平均身高均为1.7米,要想知道哪支国旗护卫队队员的身高更为整齐,通常需要比较他们身高的()A.平均数B.中位数C.众数D.方差5.一次函数的图象经过点(a,2),则a的值为()A. -1B. 0C. 1D.26.关于x的一元二次方程x²-6x+m=0有两个相等的实数根,则m的值是A.9B.10C.11D.127.如图,已知一次函数y=mx+n 的图象经过点P(-2,3)则关于x 的不等式mx+n<3的解集为()A.x>-3 B.x<-3C.x>-2 D.x<-28.若关于x 的一元二次方程ax2+bx+c=0(a≠0)有两个相等的实数根,且满足4a-2b+c=0,则()A.b=a B.c=2a C.a(x+2)2=0 D.-a(x-2)2=09.如图,在矩形ABCD中,AB=4,E,F是对角线AC上两点,AE=CF,过点E,F分别作AC的垂线,与边BC分别交于点G,H.若BG=1,CH=4,则EG+FH=()A.6B.5C.4D.310.已知y关于x的一次函数y=k(x-a)+a²-a+1,当a≤x≤a+2时,-2≤y≤3,则k的值等于()A. B.C.D.二、填空题(本大题共8小题,11,12每题3分,13—18每题4分,共30分)11.在平面直角坐标系中,点(2,3)关于原点对称的点的坐标为.▲·12.已知正比例函数y=kx的图象如图所示,则k的值可以是▲(写出一个即可)13.一组数据2,0,1,x,3的平均数是2,则x= ▲14.小明的期中数学成绩为80分,期末数学成绩为90分,将期中和期末按照4:6的比例计算,得到总评成绩,则小明的数学总评成绩为▲分.15.如图,平行四边形ABCD中,∠ABC,∠BCD的平分线分别交AD于点E,F,AB=3,AD=4,则EF的长等于▲.16.南宋数学家杨辉在《田亩比类乘除算法》中提出这样一个问题:“直田积八百六十四步,只云阔与长共六十步,问阔及长各几步?”其大意是:矩形面积为八百六十四平方步,宽和长共六十步,问宽和长各几步?若设宽为x步,则根据题意可列方程为▲.17.若m,n是方程x²-2x-1=0的两个实数根,则2m²+4n²-4n+2022的值为▲18.如图,过菱形ABCD的顶点D作DE⊥AB,垂足为E,F为BC延长线上一点,连接EF,分别与菱形的边AD,CD相交于点G,H,DG=CF,O为BD的中点,连接OE,OH.若DH=1,DE=3,则△OEH的周长等于▲三、解答题(本大题共8小题,共90分.)19.(本小题满分10分)解方程:(1)x²-4x-1=0; (2)x(3x+1)=2(3x+1).为增强学生的防疫意识,学校拟选拔一支代表队参加市级防疫知识竞赛,甲、乙两支预选队(每队各10人)参加了学校举行的选拔赛,选拔赛满分为100分.现对甲、乙两支预选队的竞赛成绩进行整理、描述和分析,下面给出了部分信息:a.甲队10名学生的竞赛成绩是:92,84,92,92,96,84,92,100,82,96b.甲、乙两队学生竞赛成绩统计表:(1)在甲、乙两队学生竞赛成绩统计表中,m=.▲ ,n=. ▲ ;(2)学校准备从甲,乙两支预选队中选取成绩前10名(包括第10名)的学生组成代表队参加市级比赛,小聪的成绩正好是甲乙两队中某一队成绩的中位数,但他却落选了,请判断小聪所属的队伍,并说明理由.21.(本小题满分10分)如图,在平面直角坐标系x0y中,直线L1经过原点,且与直线L₂:y=-x+3交于点A(m,2),直线L2与y 轴交于点B.(1)求直线L1的函数解析式;(2)点P(0,n)在y轴上,过点P作平行于x轴的直线,分别与直线L1,L₂交于点M,N.若MN=2OB,求n的值.为了满足师生的阅读需求,某校图书馆的藏书从2019年底到2021年底两年内由5万册增加到7.2万册.(1)求这两年藏书的年平均增长率;(2)该校期望2022年底藏书量达到8.6万册,按照(1)中藏书的年平均增长率,上述目标能实现吗?请通过计算说明.23.(本小题满分12分)如图,在四边形ABCD中,AC与BD交于点O,AO=CO,BO=DO,BD平分∠ABC(1)求证:四边形ABCD是菱形;⑵E为OB上一点,连接CE,若OE=1,CE=5,BC=25,求菱形ABCD的面积.学校体育器材室拟购进甲、乙两种实心球.某公司给出这两种实心球的销售方法为:甲种实心球的销售总额y(单位:元)与销售量x(单位:个)的函数关系如图所示;乙种实心球20元/个.(1)求y与x之间的函数关系;(2)若学校体育器材室拟购买这两种实心球共100个,且每种均不少于45个,请设计最省钱的方案,并说明理由.25.(本小题满分13分)如图,在正方形ABCD中,AB=4,E为BD上的动点,连接AE并延长交正方形ABCD的边于点F ,将AF绕点A逆时针旋转90°得到AG,点E的对应点为点H.(1)连接DH,求证:△ABE≌△ADH;(2)当AG=5时,求BF的长;(3)连接BH,请直接写出BH+AH的最小值.(第25题) (第25题备用图)定义:形如的函数称为正比例函数y=kx(k≠0)的“分移函数”,其中b叫“分移值”.例如,函数y=2x的“分移函数”其中“分移值”为1.(1)已知点(1,2k)在y=kx(k≠0)的“分移函数”的图象上,则k=.▲;(2)已知点P(2,1-m),P2(-3,2m+1)在函数y=2x的“分移函数”的图象上,求m的值;(3)已知矩形ABCD顶点坐标为A(1,0),B(1,2),C(-2,2),D(-2,0).函数y=kx的“分移函数”的“分移值”为3,且其图象与矩形ABCD有两个交点,直接写出k的取值范围.。
A
B C D
E O E
F D
A
B
C
O (A )
B
C
D 新人教版八年级下册数学第二次月考测试卷
题号 一 二 三 四 五 总分 得分
一、精心挑选,小心有陷阱哟!(本大题共10小题,每小题3分,共30分.每 、下列二次根式中,属于最简二次根式的是
A. 21
B. 8.0
C. 4
D. 5 、有意义的条件是二次根式3+x
.x>3 B. x>-3 C. x ≥-3 D.x ≥3
、正方形面积为36,则对角线的长为
.6 B .62 C .9 D .92
、矩形的两条对角线的夹角为60度,对角线长为15,则矩形的较短边长为 A. 12 B. 10 C. 7.5 D. 5
、13.如图,在平面直角坐标系中,ABCD 的顶点A 、B 、D 的坐标 0,0),(5,0)(2,3),则顶点C 的坐标是 A .(3,7) B.(5,3) C.(7,3) D.(8,2) 、下列条件中 能判断四边形是平行四边形的是 A .对角线互相垂直 B.对角线相等
C.对角线互相垂直且相等
D.对角线互相平分
、如图,在□ABCD 中,已知AD =5cm ,AB =3cm , 平分∠BAD 交BC 边于点E ,则EC 等于 、1cm B.2cm C.3cm D.4cm 、如图,菱形ABCD 中,E 、F 分别是AB 、AC
EF =3,则菱形ABCD 的周长是
.12 B .16 C .20 D .24
、如图,在矩形ABCD 中,AB =8,BC =4,将矩形沿AC 折叠,点D 落在点D’处,AFC 的面积为. A .6 B .8 C .10 D .12
10、如图,正方形ABCD 中,AE =AB ,直线DE 交BC 于点F ,则∠BEF =
A .45°
B .30°
C .60°
D .55°
题号 1 2 3 4 5 6 7 8 9 10 答案
二、细心填一填(本大题共有8小题,每题3分,共24分.请把结果直接填在题中的横线上.只要你理解概念,仔细运算,积极思考,相信你一定会填对的!) 11、ABCD 中一条对角线分∠A 为35°和45°,则∠B= _ _ 度。
013、已知菱形的两条对角线长为8cm 和6cm,那么这个菱形的周长是 cm,面积是 cm 2.
14、在平面直角坐标系中,点A (-1,0)与点B (0,2)的距离是_______。
15、如图,每个小正方形的边长为1.在∆ABC 中,点D 为AB 的中点,
则线段CD 的长为 .
16、如图,AD 是△ABC 的角平分线,DE∥AC 交AB 于E ,DF∥AB 交AC 于F 。
且AD 交EF 于O ,则∠AOF= 度.
17、若AD =8,AB =4,那么当BC =( ),CD =( )时,四边形ABCD 是平行四边形.
18、 观察下列各式:
学校 姓名 班级 考号
F E D C A A B C
D F D ’ 第10题图
F B A C E D
A
C B
111111
12,23,34, (334455)
+=+=+=请你找出其中规律,并将第n (n ≥1)个等式写出来 . 三、 解答题:(共54分)
(3分) 21、)227(328--+ (3分) 22.5
2
32232⨯
÷
(3分 )23 、 )3223)(3223(-+
24、若y=
31
222+
-+-x x ,求
y
x +的值.(5分)
25、(6分) 如图,已知□ABCD 中,AE 平分∠BAD ,CF 平分∠BCD ,分别交BC 、AD 于E 、F. 求证:AF=EC
证明:
26、已知:如图,四边形ABCD 四条边上的中点分别为E 、F 、G 、H ,顺次连接EF 、FG 、GH 、HE ,得到四边形EFGH (即四边形ABCD 的中点四边形). (2分)(1)四边形EFGH 的形状是 ,(4分)证明你的结论.
(2分)(2)当四边形ABCD 的对角线满足 条件时,四边形EFGH 是矩形.
证明:
27、如图平行四边形ABCD 中,对角线AC 与BD 相交于O,E 、F 是AC 上的两点,并且AE =CF.求证;四边形BFDE 是平行四边形.(8分)
28如图,矩形ABCD 中,M 是AD 的中点,CE 垂直于BM ,垂足为E ,若AB=4cm ,BC=4√2cm ,求CE 的长.(10分)
H G E
D
B
A
F E D A C B。