《固体物理学》房晓勇主编教材-习题解答参考04第四章 晶体结构中的缺陷
- 格式:pdf
- 大小:103.75 KB
- 文档页数:4
第四章 晶体的缺陷思 考 题1.设晶体只有弗仑克尔缺陷, 填隙原子的振动频率、空位附近原子的振动频率与无缺陷时原子的振动频率有什么差异?[解答]正常格点的原子脱离晶格位置变成填隙原子, 同时原格点成为空位, 这种产生一个填隙原子将伴随产生一个空位的缺陷称为弗仑克尔缺陷. 填隙原子与相邻原子的距离要比正常格点原子间的距离小,填隙原子与相邻原子的力系数要比正常格点原子间的力系数大. 因为原子的振动频率与原子间力系数的开根近似成正比, 所以填隙原子的振动频率比正常格点原子的振动频率要高. 空位附近原子与空位另一边原子的距离, 比正常格点原子间的距离大得多, 它们之间的力系数比正常格点原子间的力系数小得多, 所以空位附近原子的振动频率比正常格点原子的振动频率要低.2.热膨胀引起的晶体尺寸的相对变化量L L /∆与X 射线衍射测定的晶格常数相对变化量a a /∆存在差异, 是何原因?[解答]肖特基缺陷指的是晶体内产生空位缺陷但不伴随出现填隙原子缺陷, 原空位处的原子跑到晶体表面层上去了. 也就是说, 肖特基缺陷将引起晶体体积的增大. 当温度不是太高时, 肖特基缺陷的数目要比弗仑克尔缺陷的数目大得多. X 射线衍射测定的晶格常数相对变化量a a /Δ, 只是热膨胀引起的晶格常数相对变化量. 但晶体尺寸的相对变化量L L /Δ不仅包括了热膨胀引起的晶格常数相对变化量, 也包括了肖特基缺陷引起的晶体体积的增大. 因此, 当温度不是太高时, 一般有关系式L L Δ>a aΔ.3.KCl 晶体生长时,在KCl 溶液中加入适量的CaCl 2溶液,生长的KCl 晶体的质量密度比理论值小,是何原因?[解答]由于+2Ca 离子的半径(0.99o A )比+K 离子的半径(1.33oA )小得不是太多, 所以+2Ca 离子难以进入KCl 晶体的间隙位置, 而只能取代+K 占据+K 离子的位置. 但+2Ca比+K 高一价, 为了保持电中性(最小能量的约束), 占据+K 离子的一个+2Ca 将引起相邻的一个+K 变成空位. 也就是说, 加入的CaCl 2越多, +K 空位就越多. 又因为Ca 的原子量(40.08)与K 的原子量(39.102)相近, 所以在KCl 溶液中加入适量的CaCl 2溶液引起+K 空位, 将导致KCl 晶体的质量密度比理论值小.4.为什么形成一个肖特基缺陷所需能量比形成一个弗仑克尔缺陷所需能量低?[解答]形成一个肖特基缺陷时,晶体内留下一个空位,晶体表面多一个原子. 因此形成形成一个肖特基缺陷所需的能量, 可以看成晶体表面一个原子与其它原子的相互作用能, 和晶体内部一个原子与其它原子的相互作用能的差值. 形成一个弗仑克尔缺陷时,晶体内留下一个空位,多一个填隙原子. 因此形成一个弗仑克尔缺陷所需的能量, 可以看成晶体内部一个填隙原子与其它原子的相互作用能, 和晶体内部一个原子与其它原子相互作用能的差值. 填隙原子与相邻原子的距离非常小, 它与其它原子的排斥能比正常原子间的排斥能大得多. 由于排斥能是正值, 包括吸引能和排斥能的相互作用能是负值, 所以填隙原子与其它原子相互作用能的绝对值, 比晶体表面一个原子与其它原子相互作用能的绝对值要小. 也就是说, 形成一个肖特基缺陷所需能量比形成一个弗仑克尔缺陷所需能量要低.5.金属淬火后为什么变硬?[解答]我们已经知道 晶体的一部分相对于另一部分的滑移, 实际是位错线的滑移, 位错线的移动是逐步进行的, 使得滑移的切应力最小. 这就是金属一般较软的原因之一. 显然, 要提高金属的强度和硬度, 似乎可以通过消除位错的办法来实现. 但事实上位错是很难消除的. 相反, 要提高金属的强度和硬度, 通常采用增加位错的办法来实现. 金属淬火就是增加位错的有效办法. 将金属加热到一定高温, 原子振动的幅度比常温时的幅度大得多, 原子脱离正常格点的几率比常温时大得多, 晶体中产生大量的空位、填隙缺陷. 这些点缺陷容易形成位错. 也就是说, 在高温时, 晶体内的位错缺陷比常温时多得多. 高温的晶体在适宜的液体中急冷, 高温时新产生的位错来不及恢复和消退, 大部分被存留了下来. 数目众多的位错相互交织在一起, 某一方向的位错的滑移, 会受到其它方向位错的牵制, 使位错滑移的阻力大大增加, 使得金属变硬.6.在位错滑移时, 刃位错上原子受的力和螺位错上原子受的力各有什么特点?[解答]在位错滑移时, 刃位错上原子受力的方向就是位错滑移的方向. 但螺位错滑移时, 螺位错上原子受力的方向与位错滑移的方向相垂直.7.试指出立方密积和六角密积晶体滑移面的面指数.[解答]滑移面一定是密积面, 因为密积面上的原子密度最大, 面与面的间距最大, 面与面之间原子的相互作用力最小. 对于立方密积, {111}是密积面. 对于六角密积, (001)是密积面. 因此, 立方密积和六角密积晶体滑移面的面指数分别为{111}和(001).8.离子晶体中正负离子空位数目、填隙原子数目都相等, 在外电场作用下, 它们对导电的贡献完全相同吗?[解答]由(4.48)式可知, 在正负离子空位数目、填隙离子数目都相等情况下, -+B A 离子晶体的热缺陷对导电的贡献只取决于它们的迁移率μ. 设正离子空位附近的离子和填隙离子的振动频率分别为+v A ν和+i A ν, 正离子空位附近的离子和填隙离子跳过的势垒高度分别为+v A E 和+i A E , 负离子空位附近的离子和填隙离子的振动频率分别为-v B ν和-i B ν, 负离子空位附近的离子和填隙离子跳过的势垒高度分别-v B E 为-iB E , 则由(4.47)矢可得 Tk E B A A B v A v v e T k ea /2+++-=νμ,T k E B A A B i A i i e Tk ea /2+++-=νμ, T k E B B B B v B v v e Tk ea /2----=νμ, Tk E B B B B i B i i e T k ea /2----=νμ.由空位附近的离子跳到空位上的几率, 比填隙离子跳到相邻间隙位置上的几率大得多, 可以推断出空位附近的离子跳过的势垒高度, 比填隙离子跳过的势垒高度要低, 即+v A E <+i A E ,-v B E <-i B E . 由问题 1.已知, 所以有+v A ν<+i A ν, -v B ν<-i B ν. 另外, 由于+A 和-B 的离子半径不同, 质量不同, 所以一般-+≠B A E E , -+≠B A νν. 也就是说, 一般--++≠≠≠i v i vB B A A μμμμ. 因此, 即使离子晶体中正负离子空位数目、填隙离子数目都相等, 在外电场作用下, 它们对导电的贡献一般也不会相同.9.晶体结构对缺陷扩散有何影响?[解答]扩散是自然界中普遍存在的现象, 它的本质是离子作无规则的布郎运动. 通过扩散可实现质量的输运. 晶体中缺陷的扩散现象与气体分子的扩散相似, 不同之处是缺陷在晶体中运动要受到晶格周期性的限制, 要克服势垒的阻挡, 对于简单晶格, 缺陷每跳一步的间距等于跳跃方向上的周期.10.填隙原子机构的自扩散系数与空位机构自扩散系数, 哪一个大? 为什么?[解答]填隙原子机构的自扩散系数 Tk E u B ae D /)(0222221+-=ν,空位机构自扩散系数Tk E u B ae D /)(0111121+-=ν.自扩散系数主要决定于指数因子, 由问题4.和8.已知, 1u <2u ,1E <2E , 所以填隙原子机构的自扩散系数小于空位机构的自扩散系数.11.一个填隙原子平均花费多长时间才被复合掉? 该时间与一个正常格点上的原子变成间隙原子所需等待的时间相比, 哪个长?[解答]与填隙原子相邻的一个格点是空位的几率是N n /1, 平均来说, 填隙原子要跳1/n N 步才遇到一个空位并与之复合. 所以一个填隙原子平均花费T k E u B e n N t /)(0221211+==ντ的时间才被空位复合掉.由(4.5)式可得一个正常格点上的原子变成间隙原子所需等待的时间T k E u u B e n n N P /)(022********++===νττ.由以上两式得2/2n Ne t T k u B ==τ>>1.这说明, 一个正常格点上的原子变成间隙原子所需等待的时间, 比一个填隙原子从出现到被空位复合掉所需要的时间要长得多.12.一个空位花费多长时间才被复合掉?[解答]对于借助于空位进行扩散的正常晶格上的原子, 只有它相邻的一个原子成为空位时,它才扩散一步, 所需等待的时间是1τ. 但它相邻的一个原子成为空位的几率是N n /1, 所以它等待到这个相邻原子成为空位, 并跳到此空位上所花费的时间T k E u B e n N t /)(0111111+==ντ.13.自扩散系数的大小与哪些因素有关?[解答]填隙原子机构的自扩散系数与空位机构自扩散系数可统一写成RTN T k e a e a D B /20/2002121εενν--==.可以看出, 自扩散系数与原子的振动频率0ν, 晶体结构(晶格常数a ), 激活能(ε0N )三因素有关.14.替位式杂质原子扩散系数比晶体缺陷自扩散系数大的原因是什么?[解答]占据正常晶格位置的替位式杂质原子, 它的原子半径和电荷量都或多或少与母体原子半径和电荷量不同. 这种不同就会引起杂质原子附近的晶格发生畸变, 使得畸变区出现空位的几率大大增加, 进而使得杂质原子跳向空位的等待时间大为减少, 加大了杂质原子的扩散速度.15.填隙杂质原子扩散系数比晶体缺陷自扩散系数大的原因是什么?[解答]正常晶格位置上的一个原子等待了时间τ后变成填隙原子, 又平均花费时间21τn N后被空位复合重新进入正常晶格位置, 其中2τ是填隙原子从一个间隙位置跳到相邻间隙位置所要等待的平均时间. 填隙原子自扩散系数反比于时间21ττn N t +=.因为τ>>21τn N ,所以填隙原子自扩散系数近似反比于τ. 填隙杂质原子不存在由正常晶格位置变成填隙原子的漫长等待时间τ, 所以填隙杂质原子的扩散系数比母体填隙原子自扩散系数要大得多.16.你认为自扩散系数的理论值比实验值小很多的主要原因是什么?[解答]目前固体物理教科书对自扩散的分析, 是基于点缺陷的模型, 这一模型过于简单, 与晶体缺陷的实际情况可能有较大差别. 实际晶体中, 不仅存在点缺陷, 还存在线缺陷和面缺陷, 这些线度更大的缺陷可能对扩散起到重要影响. 也许没有考虑线缺陷和面缺陷对自扩散系数的贡献是理论值比实验值小很多的主要原因.17.-+B A 离子晶体的导电机构有几种?[解答]离子晶体导电是离子晶体中的热缺陷在外电场中的定向飘移引起的. -+B A 离子晶体中有4种缺陷: +A 填隙离子, -B 填隙离子, +A 空位, -B 空位. 也就是说, -+B A 离子晶体的导电机构有4种. 空位的扩散实际是空位附近离子跳到空位位置, 原来离子的位置变成了空位. -+B A 离子晶体中, +A 空位附近都是负离子, -B 空位附近都是正离子. 由此可知, +A 空位的移动实际是负离子的移动, -B 空位的移动实际是正离子的移动. 因此, 在外电场作用下, +A 填隙离子和-B 空位的漂移方向与外电场方向一致, 而-B 填隙离子和+A 空位的漂移方向与外电场方向相反.。
固体物理习题参考答案(部分)第一章 晶体结构1.氯化钠:复式格子,基元为Na +,Cl -金刚石:复式格子,基元为两个不等价的碳原子 氯化钠与金刚石的原胞基矢与晶胞基矢如下:原胞基矢)ˆˆ()ˆˆ()ˆˆ(213212211j i a a i k a a k j a a +=+=+= , 晶胞基矢 ka a j a a ia a ˆˆˆ321===2. 解:31A A O ':h:k;l;m==-11:211:11:111:1:-2:1 所以(1 1 2 1) 同样可得1331B B A A :(1 1 2 0); 5522A B B A :(1 1 0 0);654321A A A A A A :(0 0 0 1)3.简立方: 2r=a ,Z=1,()63434r 2r a r 3333πππ===F体心立方:()πππ833r4r 342a r 3422a 3r 4a r 4a 33333=⨯=⨯=∴===F Z ,,则面心立方:()πππ622r 4r 34434442r 4a r 4a 233ar 33=⨯=⨯=∴===F Z ,,则 六角密集:2r=a, 60sin 2c a V C = a c 362=,πππ622336234260sin 34223232=⨯⨯⨯=⨯=⎪⎭⎫ ⎝⎛a a c a r F a金刚石:()πππ163r 38r 348a r 3488Z r 8a 33333=⨯=⨯===F ,, 4. 解:'28109)31arccos(312323)ˆˆˆ()ˆˆˆ(cos )ˆˆˆ()ˆˆˆ(021*******12211=-=-=++-⋅+-=⋅=++-=+-=θθa a k j i a k j i a a a a a kj i a a kj i a a 5.解:对于(110)面:2a 2a a 2S =⋅=所包含的原子个数为2,所以面密度为22a2a22=对于(111)面:2a 2323a 22a 2S =⨯⨯= 所包含的原子个数为2,所以面密度为223a34a 232=8.证明:ABCD 是六角密堆积结构初基晶胞的菱形底面,AD=AB=a 。
晶体缺陷习题与答案1 解释以下基本概念肖脱基空位、弗仑克尔空位、刃型位错、螺型位错、混合位错、柏氏矢量、位错密度、位错的滑移、位错的攀移、弗兰克—瑞德源、派—纳力、单位位错、不全位错、堆垛层错、汤普森四面体、位错反应、扩展位错、表面能、界面能、对称倾侧晶界、重合位置点阵、共格界面、失配度、非共格界面、内吸附。
2 指出图中各段位错的性质,并说明刃型位错部分的多余半原子面。
3 如图,某晶体的滑移面上有一柏氏矢量为b 的位错环,并受到一均匀切应力τ。
(1)分析该位错环各段位错的结构类型。
(2)求各段位错线所受的力的大小及方向。
(3)在τ的作用下,该位错环将如何运动?(4)在τ的作用下,若使此位错环在晶体中稳定不动,其最小半径应为多大?4 面心立方晶体中,在(111)面上的单位位错]101[2ab =,在(111)面上分解为两个肖克莱不全位错,请写出该位错反应,并证明所形成的扩展位错的宽度由下式给出πγ242Gb s d ≈(G 切变模量,γ层错能)。
5 已知单位位错]011[2a能与肖克莱不全位错]112[6a 相结合形成弗兰克不全位错,试说明:(1)新生成的弗兰克不全位错的柏氏矢量。
(2)判定此位错反应能否进行?(3)这个位错为什么称固定位错?6 判定下列位错反应能否进行?若能进行,试在晶胞上作出矢量图。
(1)]001[]111[]111[22a a a→+(2)]211[]112[]110[662a a a+→(3)]111[]111[]112[263a a a→+7 试分析在(111)面上运动的柏氏矢量为]101[2a b =的螺位错受阻时,能否通过交滑移转移到(111),(111),(111)面中的某个面上继续运动?为什么?8 根据晶粒的位向差及其结构特点,晶界有哪些类型?有何特点属性?9 直接观察铝试样,在晶粒内部位错密度为5×1013/m 2,如果亚晶间的角度为5o ,试估算界面上的位错间距(铝的晶格常数a=2.8×10-10m)。
《固体物理学》习题解答第一章 晶体结构1. 氯化钠与金刚石型结构是复式格子还是布拉维格子,各自的基元为何?写出这两种结构的原胞与晶胞基矢,设晶格常数为a 。
解:氯化钠与金刚石型结构都是复式格子。
氯化钠的基元为一个Na +和一个Cl -组成的正负离子对。
金刚石的基元是一个面心立方上的C原子和一个体对角线上的C原子组成的C原子对。
由于NaCl 和金刚石都由面心立方结构套构而成,所以,其元胞基矢都为:123()2()2()2a a a ⎧=+⎪⎪⎪=+⎨⎪⎪=+⎪⎩a j k a k i a i j相应的晶胞基矢都为:,,.a a a =⎧⎪=⎨⎪=⎩a ib jc k2. 六角密集结构可取四个原胞基矢123,,a a a 与4a ,如图所示。
试写出13O A A '、1331A A B B 、2255A B B A 、123456A A A A A A 这四个晶面所属晶面族的晶面指数()h k l m 。
解:(1).对于13O A A '面,其在四个原胞基矢上的截矩分别为:1,1,12-,1。
所以,其晶面指数为()1121。
(2).对于1331A A B B 面,其在四个原胞基矢上的截矩分别为:1,1,12-,∞。
所以,其晶面指数为()1120。
(3).对于2255A B B A 面,其在四个原胞基矢上的截矩分别为:1,1-,∞,∞。
所以,其晶面指数为()1100。
(4).对于123456A A A A A A 面,其在四个原胞基矢上的截矩分别为:∞,∞,∞,1。
所以,其晶面指数为()0001。
3. 如将等体积的硬球堆成下列结构,求证球体可能占据的最大体积与总体积的比为:简立方:6π;。
证明:由于晶格常数为a ,所以:(1).构成简立方时,最大球半径为2m aR =,每个原胞中占有一个原子,334326m a V a ππ⎛⎫∴== ⎪⎝⎭36m V a π∴= (2).构成体心立方时,体对角线等于4倍的最大球半径,即:4m R =,每个晶胞中占有两个原子,334322348m V a a π⎛⎫∴=⨯= ⎪ ⎪⎝⎭328m V a ∴=(3).构成面心立方时,面对角线等于4倍的最大球半径,即:4m R =,每个晶胞占有4个原子,334244346m V a a π⎛⎫∴=⨯= ⎪ ⎪⎝⎭346m V a ∴=(4).构成六角密集结构时,中间层的三个原子与底面中心的那个原子恰构成一个正四面体,其高则正好是其原胞基矢c 的长度的一半,由几何知识易知3m R =c 。
《固体物理学答案》第四章晶体的缺陷1、求证在立方密积结构中,最大的间隙原子半径R之比为r0。
414R[解答]对于面心立方结构,如图4、1所示,1原子中心与8原子中心的距离,等于1原子中心与2原子中心的距离,对于立方密积模型,图4、1面心立方晶胞因为1原子与8原子相切,所以1原子与2原子也相切,同理,1,2,3,4原子依次相切,过1,2,3,4原子中心作一剖面,得到图4、2、1与2间的距离为图4、2通过面心立方晶胞上下左右面心的剖面图2R即R2a,2a。
与1,2,3,4相切的在1,2,3,4间隙中的小球的半径r由下式决定4 a2R2r,12()a。
24r10。
414、于是有R即r2、假设把一个Na原子从Na晶体中移到表面上所需的能量为1eV,计算室温时肖特基缺陷的浓度。
[解答]对于肖特基缺陷,在单原子晶体中空位数为n1Neu1BT式中N为原子数,u1为将一个原子由晶体内的格点移到表面所需的能量,取室温时Tu1n11、601019BTeep1、381023300肖特基缺陷的相对浓度N300K,得到温时e38。
61、7210173、在上题中,相邻原子向空位迁移时必须越过0。
5eV的势垒,设原子的振动频率为10的扩散系数。
计算温度100C时空位的扩散系数提高百分之几。
[解答]由《固体物理教程》(4、32)式可知,空们扩散系数的表示式为12Hz试估计室温下空位12av01e(u1E1)、kbT,(1)2式中a为空们跳跃一步所跨的距离,v01为与空们相邻的原子的振动频率,u1为形成一个空位所需要的能n1NeBTu1量,'E1为相邻原子抽空位迁移时必须越过的势垒高度,已知晶体是体心立方结构,晶格常数a4、282A空位每跳一步的距离为aa'、2,v011012Hz,u11eV,E10。
5eV将上述数据代入(1)式,得到T300K,373K时空位扩散系数分别为19231101012e1、51、610、(1、3810300)m2、D1300K4、28210224、5841033m2、D2373K192313101012e1、51、610、(1、3810373)m2、4、28210223、8741028m2、于是得到D1373KD1300KD1300K8。
《固体物理学》部分习题参考解答第一章1.1 有许多金属即可形成体心立方结构,也可以形成面心立方结构。
从一种结构转变为另一种结构时体积变化很小.设体积的变化可以忽略,并以R f 和R b 代表面心立方和体心立方结构中最近邻原子间的距离,试问R f /R b 等于多少?答:由题意已知,面心、体心立方结构同一棱边相邻原子的距离相等,都设为a :对于面心立方,处于面心的原子与顶角原子的距离为:R f=2 a 对于体心立方,处于体心的原子与顶角原子的距离为:R b=2a 那么,Rf Rb31.2 晶面指数为(123)的晶面ABC 是离原点O 最近的晶面,OA 、OB 和OC 分别与基失a 1,a 2和a 3重合,除O 点外,OA ,OB 和OC 上是否有格点?若ABC 面的指数为(234),情况又如何?答:根据题意,由于OA 、OB 和OC 分别与基失a 1,a 2和a 3重合,那么 1.3 二维布拉维点阵只有5种,试列举并画图表示之。
答:二维布拉维点阵只有五种类型:正方、矩形、六角、有心矩形和斜方。
分别如图所示:1.4 在六方晶系中,晶面常用4个指数(hkil )来表示,如图所示,前3个指数表示晶面族中最靠近原点的晶面在互成120°的共平面轴a 1,a 2,a 3上的截距a 1/h ,a 2/k ,a 3/i ,第四个指数表示该晶面的六重轴c 上的截距c/l.证明:i=-(h+k ) 并将下列用(hkl )表示的晶面改用(hkil )表示:(001)(133)(110)(323)(100)(010)(213)答:证明设晶面族(hkil )的晶面间距为d ,晶面法线方向的单位矢量为n °。
因为晶面族(hkil )中最靠近原点的晶面ABC 在a 1、a 2、a 3轴上的截距分别为a 1/h ,a 2/k ,a 3/i ,因此123o o o a n hda n kd a n id=== ……… (1) 正方 a=b a ^b=90° 六方 a=b a ^b=120° 矩形 a ≠b a ^b=90° 带心矩形 a=b a ^b=90° 平行四边形 a ≠b a ^b ≠90°由于a 3=–(a 1+ a 2)313()o o a n a a n =-+把(1)式的关系代入,即得()id hd kd =-+ ()i h k =-+根据上面的证明,可以转换晶面族为(001)→(0001),(133)→(1323),(110)→(1100),(323)→(3213),(100)→(1010),(010)→(0110),(213)→(2133)1.5 如将等体积的硬球堆成下列结构,求证球可能占据的最大面积与总体积之比为(1)简立方:6π(2(3)面心立方:6(4)六方密堆积:6(5)金刚石:。
固体物理课后习题答案固体物理课后习题答案固体物理是物理学中的一个重要分支,研究物质的结构和性质。
它涉及到晶体学、电子结构、磁性、声学等多个方面。
在学习固体物理的过程中,课后习题是巩固知识、提高能力的重要途径。
下面是一些固体物理课后习题的答案,供大家参考。
1. 问题:什么是晶体?晶体的特点是什么?答案:晶体是由周期性排列的原子、离子或分子组成的固体。
晶体的特点包括:- 长程有序性:晶体的原子、离子或分子按照一定的规则排列,形成周期性的结构。
- 均匀性:晶体的结构在宏观和微观尺度上都是均匀的。
- 可预测性:晶体的结构可以通过晶体学方法进行研究和预测。
- 具有特定的物理性质:晶体的结构和周期性排列导致了其特定的物理性质,如光学性质、电学性质等。
2. 问题:什么是晶体的晶格常数?答案:晶体的晶格常数是指晶体中原子、离子或分子排列的周期性重复单位的尺寸。
晶格常数可以用来描述晶体的结构和性质。
在晶体学中,晶格常数通常用晶格常数矢量a、b、c表示,它们分别表示晶格沿着三个坐标轴的长度。
3. 问题:什么是布拉维格子?答案:布拉维格子是指晶体中的离散的点阵结构,用来描述晶体的对称性。
布拉维格子的点阵可以通过晶体的晶格常数和晶体的对称操作得到。
布拉维格子的对称性决定了晶体的物理性质,如晶体的能带结构和声子谱。
4. 问题:什么是声子?声子与固体的性质有什么关系?答案:声子是固体中的一种元激发,它代表了晶格振动的量子。
声子的能量和动量由固体的结构和性质决定。
声子的存在对固体的性质有重要影响,如导热性、电导性等。
声子的研究可以揭示固体的热力学和动力学性质。
5. 问题:什么是费米面?费米面与固体的导电性有什么关系?答案:费米面是描述固体中电子分布的一个表面,它代表了能量最高的占据态和能量最低的未占据态之间的边界。
费米面的形状和位置由固体的电子结构决定。
费米面的性质与固体的导电性密切相关。
在导电体中,费米面与导电性能直接相关,如费米面的形状和移动可以解释固体的电导率和磁性等性质。
第四章 晶体的缺陷思 考 题1.设晶体只有弗仑克尔缺陷, 填隙原子的振动频率、空位附近原子的振动频率与无缺陷时原子的振动频率有什么差异?[解答]正常格点的原子脱离晶格位置变成填隙原子, 同时原格点成为空位, 这种产生一个填隙原子将伴随产生一个空位的缺陷称为弗仑克尔缺陷. 填隙原子与相邻原子的距离要比正常格点原子间的距离小,填隙原子与相邻原子的力系数要比正常格点原子间的力系数大. 因为原子的振动频率与原子间力系数的开根近似成正比, 所以填隙原子的振动频率比正常格点原子的振动频率要高. 空位附近原子与空位另一边原子的距离, 比正常格点原子间的距离大得多, 它们之间的力系数比正常格点原子间的力系数小得多, 所以空位附近原子的振动频率比正常格点原子的振动频率要低.2.热膨胀引起的晶体尺寸的相对变化量L L /∆与X 射线衍射测定的晶格常数相对变化量a a /∆存在差异, 是何原因?[解答]肖特基缺陷指的是晶体内产生空位缺陷但不伴随出现填隙原子缺陷, 原空位处的原子跑到晶体表面层上去了. 也就是说, 肖特基缺陷将引起晶体体积的增大. 当温度不是太高时, 肖特基缺陷的数目要比弗仑克尔缺陷的数目大得多. X 射线衍射测定的晶格常数相对变化量a a /Δ, 只是热膨胀引起的晶格常数相对变化量. 但晶体尺寸的相对变化量L L /Δ不仅包括了热膨胀引起的晶格常数相对变化量, 也包括了肖特基缺陷引起的晶体体积的增大. 因此, 当温度不是太高时, 一般有关系式L L Δ>a aΔ.3.KCl 晶体生长时,在KCl 溶液中加入适量的CaCl 2溶液,生长的KCl 晶体的质量密度比理论值小,是何原因?[解答]由于+2Ca 离子的半径(0.99o A )比+K 离子的半径(1.33oA )小得不是太多, 所以+2Ca 离子难以进入KCl 晶体的间隙位置, 而只能取代+K 占据+K 离子的位置. 但+2Ca比+K 高一价, 为了保持电中性(最小能量的约束), 占据+K 离子的一个+2Ca 将引起相邻的一个+K 变成空位. 也就是说, 加入的CaCl 2越多, +K 空位就越多. 又因为Ca 的原子量(40.08)与K 的原子量(39.102)相近, 所以在KCl 溶液中加入适量的CaCl 2溶液引起+K 空位, 将导致KCl 晶体的质量密度比理论值小.4.为什么形成一个肖特基缺陷所需能量比形成一个弗仑克尔缺陷所需能量低?[解答]形成一个肖特基缺陷时,晶体内留下一个空位,晶体表面多一个原子. 因此形成形成一个肖特基缺陷所需的能量, 可以看成晶体表面一个原子与其它原子的相互作用能, 和晶体内部一个原子与其它原子的相互作用能的差值. 形成一个弗仑克尔缺陷时,晶体内留下一个空位,多一个填隙原子. 因此形成一个弗仑克尔缺陷所需的能量, 可以看成晶体内部一个填隙原子与其它原子的相互作用能, 和晶体内部一个原子与其它原子相互作用能的差值. 填隙原子与相邻原子的距离非常小, 它与其它原子的排斥能比正常原子间的排斥能大得多. 由于排斥能是正值, 包括吸引能和排斥能的相互作用能是负值, 所以填隙原子与其它原子相互作用能的绝对值, 比晶体表面一个原子与其它原子相互作用能的绝对值要小. 也就是说, 形成一个肖特基缺陷所需能量比形成一个弗仑克尔缺陷所需能量要低.5.金属淬火后为什么变硬?[解答]我们已经知道 晶体的一部分相对于另一部分的滑移, 实际是位错线的滑移, 位错线的移动是逐步进行的, 使得滑移的切应力最小. 这就是金属一般较软的原因之一. 显然, 要提高金属的强度和硬度, 似乎可以通过消除位错的办法来实现. 但事实上位错是很难消除的. 相反, 要提高金属的强度和硬度, 通常采用增加位错的办法来实现. 金属淬火就是增加位错的有效办法. 将金属加热到一定高温, 原子振动的幅度比常温时的幅度大得多, 原子脱离正常格点的几率比常温时大得多, 晶体中产生大量的空位、填隙缺陷. 这些点缺陷容易形成位错. 也就是说, 在高温时, 晶体内的位错缺陷比常温时多得多. 高温的晶体在适宜的液体中急冷, 高温时新产生的位错来不及恢复和消退, 大部分被存留了下来. 数目众多的位错相互交织在一起, 某一方向的位错的滑移, 会受到其它方向位错的牵制, 使位错滑移的阻力大大增加, 使得金属变硬.6.在位错滑移时, 刃位错上原子受的力和螺位错上原子受的力各有什么特点?[解答]在位错滑移时, 刃位错上原子受力的方向就是位错滑移的方向. 但螺位错滑移时, 螺位错上原子受力的方向与位错滑移的方向相垂直.7.试指出立方密积和六角密积晶体滑移面的面指数.[解答]滑移面一定是密积面, 因为密积面上的原子密度最大, 面与面的间距最大, 面与面之间原子的相互作用力最小. 对于立方密积, {111}是密积面. 对于六角密积, (001)是密积面. 因此, 立方密积和六角密积晶体滑移面的面指数分别为{111}和(001).8.离子晶体中正负离子空位数目、填隙原子数目都相等, 在外电场作用下, 它们对导电的贡献完全相同吗?[解答]由(4.48)式可知, 在正负离子空位数目、填隙离子数目都相等情况下, −+B A 离子晶体的热缺陷对导电的贡献只取决于它们的迁移率μ. 设正离子空位附近的离子和填隙离子的振动频率分别为+v A ν和+i A ν, 正离子空位附近的离子和填隙离子跳过的势垒高度分别为+v A E 和+i A E , 负离子空位附近的离子和填隙离子的振动频率分别为−v B ν和−i B ν, 负离子空位附近的离子和填隙离子跳过的势垒高度分别−v B E 为−iB E , 则由(4.47)矢可得 T k E B A A B v A v v e Tk ea /2+++−=νμ, Tk E B A A B i A i i e T k ea /2+++−=νμ,T k E B B B B v B v v e Tk ea /2−−−−=νμ, Tk E B B B B i B i i e T k ea /2−−−−=νμ.由空位附近的离子跳到空位上的几率, 比填隙离子跳到相邻间隙位置上的几率大得多, 可以推断出空位附近的离子跳过的势垒高度, 比填隙离子跳过的势垒高度要低, 即+v A E <+i A E , −v B E <−i B E . 由问题 1.已知, 所以有+v A ν<+i A ν, −v B ν<−i B ν. 另外, 由于+A 和−B 的离子半径不同, 质量不同, 所以一般−+≠B A E E , −+≠B A νν.也就是说, 一般−−++≠≠≠i v i vB B A A μμμμ. 因此, 即使离子晶体中正负离子空位数目、填隙离子数目都相等, 在外电场作用下, 它们对导电的贡献一般也不会相同.9.晶体结构对缺陷扩散有何影响?[解答]扩散是自然界中普遍存在的现象, 它的本质是离子作无规则的布郎运动. 通过扩散可实现质量的输运. 晶体中缺陷的扩散现象与气体分子的扩散相似, 不同之处是缺陷在晶体中运动要受到晶格周期性的限制, 要克服势垒的阻挡, 对于简单晶格, 缺陷每跳一步的间距等于跳跃方向上的周期.10.填隙原子机构的自扩散系数与空位机构自扩散系数, 哪一个大? 为什么?[解答]填隙原子机构的自扩散系数 Tk E u B ae D /)(0222221+−=ν,空位机构自扩散系数Tk E u B ae D /)(0111121+−=ν.自扩散系数主要决定于指数因子, 由问题4.和8.已知, 1u <2u ,1E <2E , 所以填隙原子机构的自扩散系数小于空位机构的自扩散系数.11.一个填隙原子平均花费多长时间才被复合掉? 该时间与一个正常格点上的原子变成间隙原子所需等待的时间相比, 哪个长?[解答]与填隙原子相邻的一个格点是空位的几率是N n /1, 平均来说, 填隙原子要跳1/n N 步才遇到一个空位并与之复合. 所以一个填隙原子平均花费T k E u B e n N t /)(0221211+==ντ的时间才被空位复合掉.由(4.5)式可得一个正常格点上的原子变成间隙原子所需等待的时间T k E u u B e n n N P /)(022********++===νττ.由以上两式得2/2n Ne t T k u B ==τ>>1.这说明, 一个正常格点上的原子变成间隙原子所需等待的时间, 比一个填隙原子从出现到被空位复合掉所需要的时间要长得多.12.一个空位花费多长时间才被复合掉?[解答]对于借助于空位进行扩散的正常晶格上的原子, 只有它相邻的一个原子成为空位时,它才扩散一步, 所需等待的时间是1τ. 但它相邻的一个原子成为空位的几率是N n /1, 所以它等待到这个相邻原子成为空位, 并跳到此空位上所花费的时间T k E u B e n N t /)(0111111+==ντ.13.自扩散系数的大小与哪些因素有关?[解答]填隙原子机构的自扩散系数与空位机构自扩散系数可统一写成RTN T k e a e a D B /20/2002121εενν−−==.可以看出, 自扩散系数与原子的振动频率0ν, 晶体结构(晶格常数a ), 激活能(ε0N )三因素有关.14.替位式杂质原子扩散系数比晶体缺陷自扩散系数大的原因是什么?[解答]占据正常晶格位置的替位式杂质原子, 它的原子半径和电荷量都或多或少与母体原子半径和电荷量不同. 这种不同就会引起杂质原子附近的晶格发生畸变, 使得畸变区出现空位的几率大大增加, 进而使得杂质原子跳向空位的等待时间大为减少, 加大了杂质原子的扩散速度.15.填隙杂质原子扩散系数比晶体缺陷自扩散系数大的原因是什么?[解答]正常晶格位置上的一个原子等待了时间τ后变成填隙原子, 又平均花费时间21τn N后被空位复合重新进入正常晶格位置, 其中2τ是填隙原子从一个间隙位置跳到相邻间隙位置所要等待的平均时间. 填隙原子自扩散系数反比于时间21ττn N t +=.因为τ>>21τn N ,所以填隙原子自扩散系数近似反比于τ. 填隙杂质原子不存在由正常晶格位置变成填隙原子的漫长等待时间τ, 所以填隙杂质原子的扩散系数比母体填隙原子自扩散系数要大得多.16.你认为自扩散系数的理论值比实验值小很多的主要原因是什么?[解答]目前固体物理教科书对自扩散的分析, 是基于点缺陷的模型, 这一模型过于简单, 与晶体缺陷的实际情况可能有较大差别. 实际晶体中, 不仅存在点缺陷, 还存在线缺陷和面缺陷, 这些线度更大的缺陷可能对扩散起到重要影响. 也许没有考虑线缺陷和面缺陷对自扩散系数的贡献是理论值比实验值小很多的主要原因.17.−+B A 离子晶体的导电机构有几种?[解答]离子晶体导电是离子晶体中的热缺陷在外电场中的定向飘移引起的. −+B A 离子晶体中有4种缺陷: +A 填隙离子, −B 填隙离子, +A 空位, −B 空位. 也就是说, −+B A 离子晶体的导电机构有4种. 空位的扩散实际是空位附近离子跳到空位位置, 原来离子的位置变成了空位. −+B A 离子晶体中, +A 空位附近都是负离子, −B 空位附近都是正离子. 由此可知, +A 空位的移动实际是负离子的移动, −B 空位的移动实际是正离子的移动. 因此, 在外电场作用下, +A 填隙离子和−B 空位的漂移方向与外电场方向一致, 而−B 填隙离子和+A 空位的漂移方向与外电场方向相反.。
第一章 晶体结构1.1、 如果将等体积球分别排成下列结构,设x 表示钢球所占体积与总体积之比,证明:结构 X简单立方52.06=π体心立方68.083≈π 面心立方74.062≈π 六角密排74.062≈π 金刚石34.063≈π解:实验表明,很多元素的原子或离子都具有或接近于球形对称结构。
因此,可以把这些原子或离子构成的晶体看作是很多刚性球紧密堆积而成。
这样,一个单原子的晶体原胞就可以看作是相同的小球按点阵排列堆积起来的。
它的空间利用率就是这个晶体原胞所包含的点的数目n 和小球体积V 所得到的小球总体积nV 与晶体原胞体积Vc 之比,即:晶体原胞的空间利用率, VcnVx = (1)对于简立方结构:(见教材P2图1-1) a=2r , V=3r 34π,Vc=a 3,n=1 ∴52.06834343333====πππrra r x (2)对于体心立方:晶胞的体对角线BG=x 334a r 4a 3=⇒= n=2, Vc=a 3∴68.083)334(3423423333≈=⨯=⨯=πππr r a r x (3)对于面心立方:晶胞面对角线BC=r 22a ,r 4a 2=⇒= n=4,Vc=a 374.062)22(3443443333≈=⨯=⨯=πππr r a r x (4)对于六角密排:a=2r 晶胞面积:S=6260sin a a 6S ABO ⨯⨯=⨯∆=2a 233晶胞的体积:V=332r 224a 23a 38a 233C S ==⨯=⨯ n=1232126112+⨯+⨯=6个 74.062)22(3443443333≈=⨯=⨯=πππr r a r x (5)对于金刚石结构,晶胞的体对角线BG=3r 8a r 24a 3=⇒⨯= n=8, Vc=a 334.06333834834833333≈=⨯=⨯=πππr r a r x 1.3、证明:面心立方的倒格子是体心立方;体心立方的倒格子是面心立方。
第四章 晶格结构中的缺陷
4.1 试证明,由N 个原子组成的晶体,其肖托基缺陷数为
s
B k T s n Ne μ−=
其中s μ是形成一个空位所需要的能量。
证明:设由N 个原子组成的晶体,其肖托基缺陷数为s n ,则其微观状态数为
!()!s !
s s N P N n n =− 由于s μ个空位的出现,熵的改变
[]!ln ln
ln ()ln()ln ()!!
B s B B s s s s s s N S k P k k N N N n N n n n N n n Δ===−−−−− 晶体的自由能变化为 []ln ()ln()ln s s s s B s s s F n T S n k T N N N n N n n n μμ=−Δ=−−−−−s
要使晶体的自由能最小
B ()ln 0s s s s
T n F u k T n N ⎡⎤⎛⎞∂Δ=+=⎜⎟⎢⎥∂−⎣⎦⎝⎠n 整理得
s B k T s s n e N n μ
−=− 在实际晶体中,由于,
s n N <<s s s n n N N n ≈−,得到 s
B k T s n Ne μ−=
4.2 铜中形成一个肖托基缺陷的能量为1.2eV ,若形成一个间隙原子的能量为4eV ,试分别计算1300K 时肖托基缺陷和间隙原子数目,并对二者进行比较。
已知,铜的熔点是1360K 。
解:(王矜奉4.2.4)根据《固体物理学》4-8式和4-10式,肖托基缺陷和间隙原子数目分别为 s B k T s n Ne
μ−= 11B k T n Ne μ−= 得19231.21.61051.38101300 2.2510s
B k T s n Ne Ne
N μ−−××−
−−××===× 191231.2410161.381013001 3.2110B k T n Ne Ne N μ−−××−−−××===×
4.3 设一个钠晶体中空位附近的一个钠原子迁移时,必须越过0.5eV 的势垒,原子振动频率为1012Hz 。
试估算室温下放射性钠在正常钠中的扩散系数,以及373K 时的扩散系数。
已知,形成一个钠空位所需的能
量时1eV .
解:(刘友之8.8)根据《固体物理学》4-24式,
22B ()/2021e 2
u E k T D a ν−+= 考虑沿[001]方向的扩散,()100/2 4.28210
/2a a m −==×,在室温300K 时 ()()
192322B 22B 2210(0.51)1.610/1.3810300()/()/21200202332111 4.23810e e 10e 222221.5310/u E k T u E k T a D a m s νν−−−−+××××−+−+−⎛⎞×⎛⎞===×⎜⎟⎜⎟⎝⎠⎝⎠
=× 在373K 时
()()
192322B 22B 2
210(0.51)1.610/1.3810373()/()/21200202282111 4.23810e e 10e 222221.2910/u E k T u E k T a D a m s νν−−−−+××××−+−+−⎛⎞×⎛⎞===×⎜⎟⎜⎟⎝⎠⎝⎠=× 4.4 在离子晶体中,由于电中性的要求,正、负离子多成对地产生,令sp n 代表正负离子
空位的数目,sp u 是产生一对缺陷所需的能量,N 是原有正、负离子对的数目,在理论上可推出:2sp
B u sp
k T n Be N −=
(1)试阐述产生正、负离子对后,晶体体积的变化
V V Δ,V 为原有的体积。
(2)在800℃时,用X 射线测定食盐的离子间距,再由此时测定的密度ρ算得分子量为
58.430±0.016,而用化学方法所测定的分子量是58.454,求在800℃时缺陷p n N
的数量级。
解:(参考方俊鑫电子版4.22)
(1)在弗兰克尔缺陷中,晶体的体积没有显著变化,而在肖特基缺陷中每产生一对缺陷同时便在晶体表面填了两个新的原子,增加了体积,也就减少了密度,在肖特基缺陷中所增加的体积为:
32sp V n a Δ=其中a 为正负离子间的距离。
晶体原来的体积是V
32Na =因此体积变化是 /2/sp B u k T sp
n V V Be N −Δ==
(2)这是一个著名的实验,证明食盐中有肖特基缺陷,因为X 光测点阵常数时,其值a 不随有无缺陷而改变,而用化学方法测密度则是真实的,每单位体积的质量V
m ,当晶体总质量m 不改变时,晶体的实际体积V 将随缺陷数目的改变而变化,即用化学方法测得密度ρ将由于缺陷的数目增加而变。
设NaCl 分子量为M 1每个分子占体积为2a 3,令ρ为密度,则有:
是常数和因m a m a VM V m a M 332;2===ρ
0;
0sp n dV dM dV VdM MdV V M V +==−>=又因N
458.45458.43041058.454sp n dM N M −−∴=−=≅× 所以通过这个实验充分证明了空位的存在。
通过密度的变化,说明空位存在的实验还有以下实验:在纯NaCl 或KCl 等晶体中掺入一些重量较大的正负离子杂质,例如CaCl 2,MgCl 2等不同价的正离子,似乎密度应该会增加些,增加的数量与加入MgCl 2的百分比成正比。
有人用纯KCl 内加入CaCl 2掺杂KCl ,不仅密度不增加仅而减少;这说明Ca ++入K +的位置,为使电中性维持下去,必然使晶体中处于正格点位上的一些K +去掉,这就造成了K +空位,而使晶体体积增大,密度减小。
4.5 在一维晶格中,晶格粒子的势能曲线如图所示。
设晶体中只有一种肖托基缺陷,格点上的粒子每秒从能谷1跳到能谷2的几率为
B W k T V P e l
−= 其中,l 为缺陷的最近邻格点数目。
试推导
出扩散流密度和扩散系数的表达式。
解: 格点上的粒子每秒从能谷1跳到能
谷2的几率为P ,则格点上的粒子没跳跃一步所必须的时间为 1B W
k T l P e V
τ−== 根据式4-21,布朗形成的平方均值与扩散系数和扩散粒子完成一次布朗行程所需时间的统计平均值之间满足 22x D =
在肖托基缺陷中,满足
22x a =,V s N n τ=,s B k T s n Ne μ−= 得
22221112222s s B B W W k T k T k T s V n x V D a a e e e N l μμττB Va l +−−−===××=
而扩散流密度
22s B W k T C Va j D e t l
μ+−∂∂=−=−∂∂C t。