一、烧结基本原理精讲
- 格式:doc
- 大小:66.00 KB
- 文档页数:9
一、烧结(1)、烧结基本原理烧结就是粉末冶金生产过程中最基本的工序之一。
烧结对最终产品的性能起着决定性作用,因为由烧结造成的废品就是无法通过以后的工序挽救的;相反,烧结前的工序中的某些缺陷,在一定的范围内可以通过烧结工艺的调整, 例如适当改变温度,调节升降温时间与速度等而加以纠正。
烧结就是粉末或粉末压坯,加热到低于其中基本成分的熔点温度,然后以一定的方法与速度冷却到室温的过程。
烧结的结果就是粉末颗粒之间发生粘结,烧结体的强度增加。
在烧结过程中发生一系列物理与化学的变化,把粉末颗粒的聚集体变成为晶粒的聚结体,从而获得具有所需物理,机械性能的制品或材料。
烧结时,除了粉末颗粒联结外,还可能发生致密化,合金化,热处理,联接等作用。
人们一般还把金属粉末烧结过程分类为:1、单相粉末(纯金属、古熔体或金属化合物)烧结;2、多相粉末(金属—金属或金属—非金属)固相烧结;3、多相粉末液相烧结;4、熔浸。
通常在目前PORITE微小轴承所接触的与需要了解的为前三类烧结。
通常在烧结过程中粉末颗粒常发生有以下几个阶段的变化:1、颗粒间开始联结;2、颗粒间粘结颈长大;3、孔隙通道的封闭;4、孔隙球化;5、孔隙收缩;6、孔隙粗化。
上述烧结过程中的种种变化都与物质的运动与迁移密切相关。
理论上机理为:1、蒸发凝聚;2、体积扩散;3、表面扩散;4、晶间扩散;5、粘性流动;6、塑性流动。
(2)、烧结工艺2-1、烧结的过程粉末冶金的烧结过程大致可以分成四个温度阶段:1、低温预烧阶段,在此阶段主要发生金属的回复及吸附气体与水分的挥发,压坯内成形剂的分解与排除等。
在PORITE微小铜、铁系轴承中,用R、B、O(Rapid Burning Off)来代替低温预烧阶段,且铜、铁系产品经过R、B、O后会氧化,但在本体中可以被还原,同时还可以促进烧结。
2、中温升温烧结阶段,在此阶段开始出现再结晶,首先在颗粒内,变形的晶粒得以恢复,改组为新晶粒,同时颗粒表面氧化物被完全还原,颗粒界面形成烧结颈。
一、烧结(1)、烧结基本原理烧结是粉末冶金生产过程中最基本的工序之一。
烧结对最终产品的性能起着决定性作用,因为由烧结造成的废品是无法通过以后的工序挽救的;相反,烧结前的工序中的某些缺陷,在一定的范围内可以通过烧结工艺的调整,例如适当改变温度,调节升降温时间与速度等而加以纠正。
烧结是粉末或粉末压坯,加热到低于其中基本成分的熔点温度,然后以一定的方法和速度冷却到室温的过程。
烧结的结果是粉末颗粒之间发生粘结,烧结体的强度增加。
在烧结过程中发生一系列物理和化学的变化,把粉末颗粒的聚集体变成为晶粒的聚结体,从而获得具有所需物理,机械性能的制品或材料。
烧结时,除了粉末颗粒联结外,还可能发生致密化,合金化,热处理,联接等作用。
人们一般还把金属粉末烧结过程分类为:1、单相粉末(纯金属、古熔体或金属化合物)烧结;2、多相粉末(金属—金属或金属—非金属)固相烧结;3、多相粉末液相烧结;4、熔浸。
通常在目前PORITE微小轴承所接触的和需要了解的为前三类烧结。
通常在烧结过程中粉末颗粒常发生有以下几个阶段的变化:1、颗粒间开始联结;2、颗粒间粘结颈长大;3、孔隙通道的封闭;4、孔隙球化;5、孔隙收缩;6、孔隙粗化。
上述烧结过程中的种种变化都与物质的运动和迁移密切相关。
理论上机理为:1、蒸发凝聚;2、体积扩散;3、表面扩散;4、晶间扩散;5、粘性流动;6、塑性流动。
(2)、烧结工艺2-1、烧结的过程粉末冶金的烧结过程大致可以分成四个温度阶段:1、低温预烧阶段,在此阶段主要发生金属的回复及吸附气体和水分的挥发,压坯内成形剂的分解和排除等。
在PORITE微小铜、铁系轴承中,用R、B、O(Rapid Burning Off)来代替低温预烧阶段,且铜、铁系产品经过R、B、O 后会氧化,但在本体中可以被还原,同时还可以促进烧结。
2、中温升温烧结阶段,在此阶段开始出现再结晶,首先在颗粒内,变形的晶粒得以恢复,改组为新晶粒,同时颗粒表面氧化物被完全还原,颗粒界面形成烧结颈。
一烧结基本原理集团标准化办公室:[VV986T-J682P28-JP266L8-68PNN]一、烧结(1)、烧结基本原理烧结是粉末冶金生产过程中最基本的工序之一。
烧结对最终产品的性能起着决定性作用,因为由烧结造成的废品是无法通过以后的工序挽救的;相反,烧结前的工序中的某些缺陷,在一定的范围内可以通过烧结工艺的调整,例如适当改变温度,调节升降温时间与速度等而加以纠正。
烧结是粉末或粉末压坯,加热到低于其中基本成分的熔点温度,然后以一定的方法和速度冷却到室温的过程。
烧结的结果是粉末颗粒之间发生粘结,烧结体的强度增加。
在烧结过程中发生一系列物理和化学的变化,把粉末颗粒的聚集体变成为晶粒的聚结体,从而获得具有所需物理,机械性能的制品或材料。
烧结时,除了粉末颗粒联结外,还可能发生致密化,合金化,热处理,联接等作用。
人们一般还把金属粉末烧结过程分类为:1、单相粉末(纯金属、古熔体或金属化合物)烧结;2、多相粉末(金属—金属或金属—非金属)固相烧结;3、多相粉末液相烧结;4、熔浸。
通常在目前PORITE微小轴承所接触的和需要了解的为前三类烧结。
通常在烧结过程中粉末颗粒常发生有以下几个阶段的变化:1、颗粒间开始联结;2、颗粒间粘结颈长大;3、孔隙通道的封闭;4、孔隙球化;5、孔隙收缩;6、孔隙粗化。
上述烧结过程中的种种变化都与物质的运动和迁移密切相关。
理论上机理为:1、蒸发凝聚;2、体积扩散;3、表面扩散;4、晶间扩散;5、粘性流动;6、塑性流动。
(2)、烧结工艺2-1、烧结的过程粉末冶金的烧结过程大致可以分成四个温度阶段:1、低温预烧阶段,在此阶段主要发生金属的回复及吸附气体和水分的挥发,压坯内成形剂的分解和排除等。
在PORITE微小铜、铁系轴承中,用R、B、O(Rapid Burning Off)来代替低温预烧阶段,且铜、铁系产品经过R、B、O后会氧化,但在本体中可以被还原,同时还可以促进烧结。
2、中温升温烧结阶段,在此阶段开始出现再结晶,首先在颗粒内,变形的晶粒得以恢复,改组为新晶粒,同时颗粒表面氧化物被完全还原,颗粒界面形成烧结颈。
一、烧结(1)、烧结基本原理烧结是粉末冶金生产过程中最基本的工序之一。
烧结对最终产品的性能起着决定性作用,因为由烧结造成的废品是无法通过以后的工序挽救的;相反,烧结前的工序中的某些缺陷,在一定的范围内可以通过烧结工艺的调整,例如适当改变温度,调节升降温时间与速度等而加以纠正。
烧结是粉末或粉末压坯,加热到低于其中基本成分的熔点温度,然后以一定的方法和速度冷却到室温的过程。
烧结的结果是粉末颗粒之间发生粘结,烧结体的强度增加。
在烧结过程中发生一系列物理和化学的变化,把粉末颗粒的聚集体变成为晶粒的聚结体,从而获得具有所需物理,机械性能的制品或材料。
烧结时,除了粉末颗粒联结外,还可能发生致密化,合金化,热处理,联接等作用。
人们一般还把金属粉末烧结过程分类为:1、单相粉末(纯金属、古熔体或金属化合物)烧结;2、多相粉末(金属—金属或金属—非金属)固相烧结;3、多相粉末液相烧结;4、熔浸。
通常在目前PORITE微小轴承所接触的和需要了解的为前三类烧结。
通常在烧结过程中粉末颗粒常发生有以下几个阶段的变化:1、颗粒间开始联结;2、颗粒间粘结颈长大;3、孔隙通道的封闭;4、孔隙球化;5、孔隙收缩;6、孔隙粗化。
上述烧结过程中的种种变化都与物质的运动和迁移密切相关。
理论上机理为:1、蒸发凝聚;2、体积扩散;3、表面扩散;4、晶间扩散;5、粘性流动;6、塑性流动。
(2)、烧结工艺2-1、烧结的过程粉末冶金的烧结过程大致可以分成四个温度阶段:1、低温预烧阶段,在此阶段主要发生金属的回复及吸附气体和水分的挥发,压坯内成形剂的分解和排除等。
在PORITE微小铜、铁系轴承中,用R、B、O(Rapid Burning Off)来代替低温预烧阶段,且铜、铁系产品经过R、B、O 后会氧化,但在本体中可以被还原,同时还可以促进烧结。
2、中温升温烧结阶段,在此阶段开始出现再结晶,首先在颗粒内,变形的晶粒得以恢复,改组为新晶粒,同时颗粒表面氧化物被完全还原,颗粒界面形成烧结颈。
一、烧结(1)、烧结基本原理烧结是粉末冶金生产过程中最基本的工序之一。
烧结对最终产品的性能起着决定性作用,因为由烧结造成的废品是无法通过以后的工序挽救的;相2、4、熔结颈长大;3、孔隙通道的封闭;4、孔隙球化;5、孔隙收缩;6、孔隙粗化。
上述烧结过程中的种种变化都与物质的运动和迁移密切相关。
理论上机理为:1、蒸发凝聚;2、体积扩散;3、表面扩散;4、晶间扩散;5、粘性流动;6、塑性流动。
(2)、烧结工艺2-1、烧结的过程粉末冶金的烧结过程大致可以分成四个温度阶段:1、低温预烧阶段,在此阶段主要发生金属的回复及吸附气体和水分的挥发,压坯内成形剂的分解和排除等。
在PORITE微小铜、铁系轴承中,用R、B、O (RapidBurningOff)来代替低温预烧阶段,且铜、铁系产品经过R、B、O后会氧化,但在本体中可以被还原,同时还可以促进烧结。
2341、蒸气压和蒸发速率,点阵类型与结晶形态;异晶转变新生态等。
2、粉末的性质:包括颗粒大小;颗粒的形状与形貌;颗粒的结构;颗粒的化学组成。
3、压坯的物理性能:包括压制密度,压制残余应力,颗粒表面氧化膜的变形或破坏以及压坯孔隙中气体等。
4、烧结工艺参数:包括保温时间,加热及冷却速度,烧结气氛等。
2-3、烧结时压坯的尺寸与密度的变化在生产中对制品的尺寸与形状精度要求都非常高,因此,在烧结过程中控制压坯的密度和尺寸的变化是一个极为重要的问题。
影响烧结零件密度和尺寸变化的因素有:1、孔隙的收缩与清除:烧结会导致孔隙的收缩与清除,也就是使烧结体3、4、5、6、2-4、烧结前的准备工作核对烧结制品与烧结温度及网带速度是否合适,检查待烧结的制品,把不合格的压坯剔出,一般情况按工艺图纸的要求来检查,通常检查几何尺寸及偏差制品的单重即压坯的密度和压坯外观是否掉边缺角,分层裂纹,严重拉毛等。
根据压坯的形状和尺寸确定其烧结方式(如站立、平躺以及排料等)。
再用气压喷嘴吹出残留在制品表面的粉尘。
烧结基本原理范文烧结是一种将物质加热至高温并施加压力,使其粒子间相互结合的过程。
这个过程适用于粉末材料,可以制备出高密度、高强度的固体产品。
烧结技术在陶瓷、金属、塑料等领域都有广泛应用。
下面将介绍烧结的基本原理。
烧结的基本流程是:首先将粉末材料填充到模具或者容器中,然后通过加热使粉末颗粒结合在一起,最后进行冷却和处理。
整个过程中需要控制温度和压力,以保证烧结效果。
烧结的基本原理包括颗粒间的扩散和表面间的化学反应。
在烧结开始时,粉末颗粒之间的距离非常小,几乎接触在一起。
当加热时,颗粒开始发生扩散,相互之间会交换原子或离子。
这种扩散过程迫使颗粒间发生变形,使得颗粒间的结合更加牢固。
扩散的速度和效果受到多种因素的影响,如温度、压力和材料的性质等。
在烧结过程中,温度是一个非常重要的参数。
提高温度可以加速扩散速度,但是过高的温度可能导致颗粒熔化或者气相反应发生。
同时,压力也起到重要的作用。
适当的压力可以使得颗粒间更靠近,增加扩散概率。
除了扩散之外,表面间的化学反应也是烧结过程中的重要环节。
在高温下,粉末颗粒的表面会发生化学反应,产生新的化合物。
这些新的化合物在颗粒间形成结合点,从而增强了颗粒间的力学结合。
此外,还有一些其他的因素也会影响烧结的结果。
例如颗粒的形状、大小和分布等。
具有较大表面积的颗粒会更加容易发生扩散和化学反应。
而复杂的颗粒结构可能会导致颗粒间的结合困难。
总而言之,烧结是一种通过加热和施加压力使粉末颗粒结合的过程。
这个过程涉及到颗粒间的扩散和表面间的化学反应。
通过控制温度、压力和其他因素,可以获得高密度、高强度的烧结产品。
烧结技术在材料加工和制备中具有广泛的应用。
烧结机工作原理引言概述:烧结机是一种用于冶金和材料加工的设备,广泛应用于钢铁、有色金属和陶瓷等行业。
它通过将粉末材料加热至高温并施加压力,使粉末颗粒结合成坚固的块状物体。
本文将详细介绍烧结机的工作原理。
一、加热系统1.1 加热元件:烧结机通常采用电加热元件,如电阻丝或者电加热器。
这些元件通过电流通入产生热量,将工作室内的温度提升至所需的烧结温度。
1.2 温度控制:烧结过程中,温度控制是非常重要的。
烧结机通常配备温度传感器和控制系统,以监测和维持工作室内的温度在一个稳定的范围内。
1.3 加热方式:烧结机可以采用不同的加热方式,包括辐射加热、对流加热和传导加热。
具体选择哪种加热方式取决于烧结材料的性质和加热效果的要求。
二、压力系统2.1 压力源:烧结机通常配备一个压力源,如液压系统或者气动系统。
这些系统通过施加压力,使粉末颗粒在加热的同时密切结合。
2.2 压力控制:烧结过程中,压力的控制也非常重要。
烧结机通常配备压力传感器和控制系统,以监测和调节施加在粉末颗粒上的压力。
2.3 压力传递:烧结机通过压力传递装置,将压力从压力源传递到工作室内的烧结模具上。
这些传递装置通常包括液压缸、气动缸或者机械传动装置。
三、烧结模具3.1 模具设计:烧结模具是用于容纳和成型粉末颗粒的关键部件。
模具的设计应考虑到烧结材料的形状和尺寸要求,以及烧结过程中的温度和压力条件。
3.2 模具材料:烧结模具通常采用高温合金钢或者陶瓷材料制成,以确保其在高温和高压环境下的稳定性和耐磨性。
3.3 模具创造:烧结模具的创造通常采用数控加工技术,以确保模具的精度和表面质量。
同时,还需要进行热处理和表面处理,以提高模具的使用寿命和耐磨性。
四、烧结过程4.1 烧结温度:烧结温度是烧结过程中的一个重要参数,它决定了粉末颗粒的烧结程度和物理性质。
不同的烧结材料和应用领域有不同的烧结温度要求。
4.2 烧结时间:烧结时间是指粉末颗粒在高温和高压环境下保持一定时间,以使颗粒之间的结合更加坚固。
烧结原理所谓烧结就是将粉末压坯加热到一定温度(烧结温度)并保持一定的时间(保温时间),然后冷却下来,从而得到所需性能的材料,这种热处理工艺叫做烧结。
烧结使多孔的粉末压坯变为具有一定组织和性能的制品,尽管制品性能与烧结前的许多工艺因素有关,但是在许多情况下,烧结工艺对最终制品组织和性能有着重大的甚至是决定性的影响。
硬质合金的烧结过程是比较复杂的,但是这些基本知识又是必须掌握的。
4.1 烧结过程的分类烧结过程的分类方法很多,按烧结制品组元的多少可以分为单元系烧结和多元系烧结,如钨、钼条烧结属于单元系烧结,硬质合金绕结则属于多元系烧结。
按烧结时组元中相的状态分为固相烧结和液相烧结,如钨钼的烧结过程中不出现液相,属于固相烧结,硬质合金制品在烧结过程中会出现液相,属于液相烧结。
按工艺特征来分,可分为氢气烧结、真空烧结、活化烧结、热等静压烧结等。
许多烧结方法都能用于硬质合金的烧结。
此外,还可以依烧结材料的名称来分,如硬质合金烧结,钼顶头烧结。
从学习烧结过程的实质来说,将烧结过程分为固相烧结和液相烧结两大类是比较合理的,但在生产中多按烧结工艺特点来进行分类。
4.2 烧结过程的基本变化硬质合金压坯经过烧结后,最容易观察到的变化是压块体积收缩变小,强度急剧增大,压块孔隙度一般为50%,而烧结后制品已接近理论密度,其孔隙一般应小于0.2%,压块强度的变化就更大了,烧结前压坯强度低到无法用一般方法来测定,压坯只承受生产过程中转移时所必备的强度,而烧结后制品却能达到满足各种苛刻工作条件所需要的强度值,显然制品强度提高的幅度较之密度的提高要大得多。
制品强度及其他物理机械能的突变说明在烧结过程中压块发生了质的变化。
在压制过程中,虽然由于外力的作用能增加粉末体的接触面,而颗粒中表面原子和分子还是杂乱无章的,甚至还存在有内应力,颗粒间的联结力是很弱的,但烧结后颗粒表面接触状态发生了质的变化,这是由于粉末接触表面原子﹑分子进行化学反应,以及扩散、流动、晶粒长大等物理化学变化,使颗粒间接触紧密,内应力消除,制品形成了一个强的整体,从而使其性能大大提高。
⼀、烧结基本原理精讲⼀、烧结(1)、烧结基本原理烧结是粉末冶⾦⽣产过程中最基本的⼯序之⼀。
烧结对最终产品的性能起着决定性作⽤,因为由烧结造成的废品是⽆法通过以后的⼯序挽救的;相反,烧结前的⼯序中的某些缺陷,在⼀定的范围内可以通过烧结⼯艺的调整,例如适当改变温度,调节升降温时间与速度等⽽加以纠正。
烧结是粉末或粉末压坯,加热到低于其中基本成分的熔点温度,然后以⼀定的⽅法和速度冷却到室温的过程。
烧结的结果是粉末颗粒之间发⽣粘结,烧结体的强度增加。
在烧结过程中发⽣⼀系列物理和化学的变化,把粉末颗粒的聚集体变成为晶粒的聚结体,从⽽获得具有所需物理,机械性能的制品或材料。
烧结时,除了粉末颗粒联结外,还可能发⽣致密化,合⾦化,热处理,联接等作⽤。
⼈们⼀般还把⾦属粉末烧结过程分类为:1、单相粉末(纯⾦属、古熔体或⾦属化合物)烧结;2、多相粉末(⾦属—⾦属或⾦属—⾮⾦属)固相烧结;3、多相粉末液相烧结;4、熔浸。
通常在⽬前PORITE微⼩轴承所接触的和需要了解的为前三类烧结。
通常在烧结过程中粉末颗粒常发⽣有以下⼏个阶段的变化:1、颗粒间开始联结;2、颗粒间粘结颈长⼤;3、孔隙通道的封闭;4、孔隙球化;5、孔隙收缩;6、孔隙粗化。
上述烧结过程中的种种变化都与物质的运动和迁移密切相关。
理论上机理为:1、蒸发凝聚;2、体积扩散;3、表⾯扩散;4、晶间扩散;5、粘性流动;6、塑性流动。
(2)、烧结⼯艺2-1、烧结的过程粉末冶⾦的烧结过程⼤致可以分成四个温度阶段:1、低温预烧阶段,在此阶段主要发⽣⾦属的回复及吸附⽓体和⽔分的挥发,压坯内成形剂的分解和排除等。
在PORITE微⼩铜、铁系轴承中,⽤R、B、O(Rapid Burning Off)来代替低温预烧阶段,且铜、铁系产品经过R、B、O后会氧化,但在本体中可以被还原,同时还可以促进烧结。
2、中温升温烧结阶段,在此阶段开始出现再结晶,⾸先在颗粒内,变形的晶粒得以恢复,改组为新晶粒,同时颗粒表⾯氧化物被完全还原,颗粒界⾯形成烧结颈。
烧结的原理
烧结是一种粉末冶金工艺,通过在高温和压力下将金属或陶瓷粉末进行热处理,使其形成一种固体材料的过程。
其原理主要包括以下几个步骤:
1. 混合:首先将金属或陶瓷粉末按照一定比例混合在一起,以得到所需的配料。
这些粉末可以是不同种类的金属或陶瓷材料,也可以添加一些其他的添加剂,以改变材料的性能。
2. 压制:将混合好的粉末置于模具中,然后施加一定的压力。
这样可以使粉末颗粒之间发生变形和变稠,在压力作用下相互黏结在一起。
压制过程中,常常采用均匀的压力分布,以确保整个烧结体具有均匀的压力和密度。
3. 烧结:经过压制的粉末坯体被置于高温炉中进行烧结。
在高温下,粉末颗粒会发生扩散和结晶,使得颗粒之间相互溶解或结合。
同时,由于高温下的不同原子或分子的运动,形成了新的结晶相和晶界,使得颗粒逐渐合并,并改变了材料的物理和化学性质。
4. 冷却和处理:烧结后的坯体通过冷却,使得材料固化和成型。
通常还需要进行一些后续处理,如热处理、机械加工或表面涂层等,以进一步改善材料的性能和外观。
总的来说,烧结通过压制和高温处理的方式,使粉末颗粒逐渐结合,形成了一个整体材料。
其优点包括制造成本低、能耗低、
材料利用率高以及可以生产复杂形状的工件等。
因此,烧结在金属、陶瓷、粉末冶金等领域有着广泛的应用。
烧结工艺知识点总结大全一、烧结原理1. 烧结是指将粉末材料在一定温度下加热,使其颗粒间发生结合,形成致密的块状产品。
烧结的基本原理是固相扩散,即热力学上的固相之间的扩散过程。
2. 烧结过程中主要有三种力学过程,分别为颗粒间的原子扩散、颗粒间的表面扩散和颗粒间的体扩散。
这三种扩散方式相互作用,共同促进颗粒间发生结合。
3. 烧结过程中温度、时间和压力是影响烧结效果的重要因素。
通过控制这些参数,可以使烧结过程更加均匀和有效。
二、烧结设备1. 烧结设备主要包括热处理炉、烧结炉、烧结机等。
不同的烧结设备适用于不同的烧结材料和工艺要求。
2. 烧结设备的主要部件包括燃烧室、加热炉、炉膛、热风循环系统、控制系统等。
这些部件共同作用,实现对粉末材料的加热和烧结作用。
3. 热处理炉是常见的烧结设备之一,主要通过电阻加热、气体燃烧等方式对粉末材料进行加热处理,适用于各种金属和非金属材料的烧结工艺。
三、烧结工艺控制1. 烧结工艺控制是烧结过程中的关键环节,可以通过控制温度、时间、压力等参数,实现对烧结过程的精确控制。
2. 烧结工艺控制的主要方法包括PID控制、自适应控制、模糊控制等。
这些控制方法通过对烧结过程中的各个参数进行实时监测和调整,以实现对烧结过程的精确控制。
3. 在实际生产中,烧结工艺控制可以通过计算机控制系统实现自动化,提高生产效率和产品质量。
四、烧结材料选型1. 烧结工艺适用于各种粉末材料,包括金属粉末、陶瓷粉末、粉末冶金材料等。
根据不同的材料性质和要求,选择合适的烧结工艺和设备。
2. 烧结材料的选型考虑因素包括原料种类、粒度、成分、形状等。
根据不同的要求,选择合适的烧结材料,可以有效提高产品质量和生产效率。
3. 在烧结材料选型过程中,也需要考虑成本、资源利用率和环境保护等方面的因素,以实现经济、环保和可持续发展。
五、烧结工艺的应用1. 烧结工艺广泛应用于金属、陶瓷、粉末冶金、电子材料等行业。
在金属制品生产中,烧结工艺可以用于制造各种粉末冶金制品、焊接材料、钎焊材料等。
烧结工艺的目的和原理烧结工艺是一种制备陶瓷、金属、合金等材料的工艺方法,其主要目的是将粉末材料在高温下加热,使其粒子之间产生相互结合和颗粒增大,从而形成致密的固体材料。
通过烧结,可以改善材料的力学性能和化学稳定性,提高材料的密度、硬度、强度和导电性等性能,并增加其使用寿命和可靠性。
1.粒子结合:烧结过程中,粉末颗粒间通过热作用力和压缩力相互结合,形成颗粒间的连接。
该连接可以是颗粒间的摩擦力和间隙力,也可以是颗粒间的化学键和晶格力。
当温度升高时,形成颗粒结合的力逐渐增强,使得粉末材料的孔隙度减小,粒径增大,颗粒之间的接触面积增大,从而提高材料的强度和致密度。
2.晶粒生长:烧结过程中,晶体表面的原子或分子在高温下扩散,并产生结晶生长。
这种晶粒生长包括晶核生成、晶体生长和晶界融合等过程。
随着温度的升高,晶粒生长速度加快,晶粒尺寸增大,从而使材料的晶界面积减少,晶格结构更加密集,提高材料的力学性能。
3.成分调整:烧结过程中,材料的成分会发生改变。
例如,由于一些元素会在高温下发生氧化、还原和挥发等反应,材料的成分可能发生偏离,从而改变材料的性能。
通过调整烧结条件,可以控制材料的成分,以获得所需的性能和化学稳定性。
4.特殊效应:在烧结工艺中,还存在一些特殊的效应,如颗粒饱满、表面收缩、孔隙扩散等。
这些效应通过烧结过程中的物理和化学变化,导致材料的结构和性能发生变化。
根据材料的需求,可以通过调整烧结条件来控制这些效应,以实现所需的材料性能。
总的来说,烧结工艺的目的是通过高温加热粉末材料,使其粒子间相互结合和颗粒增大,形成致密的固体材料;其原理主要包括粒子结合、晶粒生长、成分调整和特殊效应等。
通过控制烧结条件和方法,可以实现对材料性能的调控和优化,满足不同领域的应用需求。
一、烧结(1)、烧结基本原理烧结是粉末冶金生产过程中最基本的工序之一。
烧结对最终产品的性能起着决定性作用,因为由烧结造成的废品是无法通过以后的工序挽救的;相反,烧结前的工序中的某些缺陷,在一定的范围内可以通过烧结工艺的调整,2、4、熔浸。
上述烧结过程中的种种变化都与物质的运动和迁移密切相关。
理论上机理为:1、蒸发凝聚;2、体积扩散;3、表面扩散;4、晶间扩散;5、粘性流动;6、塑性流动。
(2)、烧结工艺2-1、烧结的过程粉末冶金的烧结过程大致可以分成四个温度阶段:1、低温预烧阶段,在此阶段主要发生金属的回复及吸附气体和水分的挥发,压坯内成形剂的分解和排除等。
在PORITE微小铜、铁系轴承中,用R、B、O(Rapid Burning Off)来代替低温预烧阶段,且铜、铁系产品经过R、B、O后会氧化,但在本体中可以被还原,同时还可以促进烧结。
2、中温升温烧结阶段,在此阶段开始出现再结晶,首先在颗粒内,变形的晶粒得以恢复,改组为新晶粒,同时颗粒表面氧化物被完全还原,颗粒界面形成烧结颈。
34段。
2-21、2、粉末的性质:包括颗粒大小;颗粒的形状与形貌;颗粒的结构;颗粒的化学组成。
3、压坯的物理性能:包括压制密度,压制残余应力,颗粒表面氧化膜的变形或破坏以及压坯孔隙中气体等。
4、烧结工艺参数:包括保温时间,加热及冷却速度,烧结气氛等。
2-3、烧结时压坯的尺寸与密度的变化在生产中对制品的尺寸与形状精度要求都非常高,因此,在烧结过程中控制压坯的密度和尺寸的变化是一个极为重要的问题。
影响烧结零件密度和尺寸变化的因素有:1、孔隙的收缩与清除:烧结会导致孔隙的收缩与清除,也就是使烧结体体积减小。
23、4、5、6、2-4、烧结前的准备工作核对烧结制品与烧结温度及网带速度是否合适,检查待烧结的制品,把不合格的压坯剔出,一般情况按工艺图纸的要求来检查,通常检查几何尺寸及偏差制品的单重即压坯的密度和压坯外观是否掉边缺角,分层裂纹,严重拉毛等。
烧结原理1在太阳能电池片的制作过程中,烧结是一道很重要的工序.其制作过程中就要用到快速烧结炉.1、烧结作用:就是把印刷到硅片上的电极在高温下烧结成电池片,最终使电极和硅片本身形成欧姆接触,从而提高电池片的开路电压和填充因子2个关键因素参数,是电极的接触具有电阻特性,达到生产高转效率电池片的目的.2、烧结原理:印刷了浆料的硅片经过烘干排焦过程后使浆料中的大部分有机溶剂挥发,膜层收缩为固状物紧密粘附在硅片上,这时可视为金属电极材料和硅片接触在一起。
所谓的烧结过程是要使电极和硅片本身形成欧姆接触,其原理为当电极里金属材料和半导体单晶硅加热到共晶温度时,单晶硅原子以一定比例融入到熔融的合金电极材料中.单晶硅原子融入到电极金属中的整个过程是相当快的,一般只需要几秒钟的时间。
融入单晶硅原子数目取决于合金温度和电极材料的体积,烧结合金温度越高,电极金属材料体积越大,则融入的硅原子数目就越多,这时的合金状态被称为晶体电极金属的合金系统.如果此时的温度降低,系统开始冷却形成再结晶层,这时原先溶入到电极金属材料中的硅原子重新以固态形式结晶出来,也就是在金属和晶体接触界面上生长出一层外延层.如果外延层内含有足够的量的与原先晶体材料导电类型相同的杂质成分,就获得了用合金法工艺形成的欧姆接触;如果在结晶层含有足够量的与原先晶体材料导电类型异型的杂质成分就获得了用合金工艺形成的P-N结。
3、烧结过程:将印刷好的上,下电极和背场的硅片经过网印刷机的传送带传到烧结炉中,经过烘干排焦、烧结和冷却过程来完成烧结工艺最终达到上下电极和电池片的欧姆接触。
⑴烘干排焦在网带的上、下都装有加热带,由温控仪控制其温度。
此温度可根据浆料厂家提供的烘干温度进行参考设置,目的是将印刷有浆料硅片烘干,并使浆料内绝大部分焦油挥发出来。
如果温度设置不合理,不能使大部分焦油从浆料中挥发出来,剩下的焦油在进入下一区域时会对烧结的效果影响很严重,对转换率有高达0.2%的影响。
烧结理论知识培训课件烧结是一种重要的金属加工工艺,它指的是将细小的金属粉末通过高温压制和烧结过程将其转化为具有一定强度和形状的金属零件。
烧结技术在航空航天、汽车、电子、化工等领域有着重要的应用。
因此,为了满足市场需求和提高企业竞争力,我们需要深入了解烧结理论知识。
一、烧结的基本原理与步骤烧结的基本原理是通过高温和压力将细小的金属粉末烧结成一定形状和尺寸的金属零件。
其步骤包括:1.混合:将不同材料的金属粉末按照一定比例混合均匀。
2.成型:将混合均匀的金属粉末按照设计要求进行成型,如挤压成型、注射成型等。
3.烧结:将成型后的金属粉末在高温环境下进行烧结处理,使其成为整体零件。
4.加工:根据实际需要,对烧结成的零件进行加工或者表面处理,如车削、磨削、喷涂等。
二、烧结的特点1.能够制造高强度和高精度的金属零件。
2.可制造各种不规则和复杂的形状。
3.烧结生产工艺简单、流程短,可以提高生产效率和节约生产成本。
4.可以使用多种不同材料的金属粉末进行混合烧结,获得具有良好性能的合金材料。
5.在烧结过程中,可以控制粉末的成分和密度,获得不同的结构和性能。
三、烧结的应用及前景1.航空航天领域:烧结技术被广泛应用于航空航天领域,用于制造发动机部件、轮毂轴承、航天器外壳及燃料结构等。
2.汽车领域:烧结技术可以用于制造汽车零件,如制动器、发动机缸体等。
3.电子领域:烧结技术可以制造具有特殊性能的电子元器件,如热敏电阻、电阻器等。
4.医疗领域:烧结技术可以用于制造人体骨骼植入物、假牙、人工关节等医疗器械。
由此可见,烧结技术在未来的制造业中具有重要的应用前景和市场需求。
一烧结基本原理烧结是一种将粉末状物质通过加热处理,使其颗粒间发生结合,形成致密坚固固体的加工工艺。
烧结的基本原理是利用粉末颗粒间的表面扩散和粘结现象。
粉末颗粒间的表面扩散是指在高温下,粉末颗粒表面的原子或离子因能量梯度而发生位移,从而扩散到颗粒表面。
在颗粒接触面上,颗粒表面扩散相遇时,就会发生粒间结合。
而粘结是颗粒间相互吸附,并形成新的键合力。
烧结的主要工艺分为两个阶段:初级焙烧和二次烧结。
初级焙烧是将粉末颗粒在升温的重力作用下接触、聚结和烧结的过程。
通过初级焙烧可以使粉末颗粒间的结合力增强,颗粒之间的间隙减小,从而增加烧结体的密实性。
在初级焙烧过程中,粉末颗粒表面的扩散使颗粒间形成颗粒接触,再通过粘结力增强颗粒间的粘结,并最终使粉末颗粒相互结合成为一体。
二次烧结是在初级焙烧的基础上进行的再烧结过程。
在初级焙烧中已形成的颗粒结合体在二次烧结中会继续收缩,使得颗粒之间的间隙进一步减小,从而提高烧结体的致密性。
在二次烧结的过程中,粉末颗粒表面扩散再次发生,使得原本疏松的颗粒结合体进一步密实与凝结。
烧结的基本原理在于高温下的颗粒表面扩散和粘结,这些现象使粉末颗粒相互结合成为一体,从而形成坚固致密的烧结体。
烧结常用于金属和陶瓷等材料的加工过程中,可以改善材料的强度、致密性、耐磨性和导热性等性能。
烧结还可以制备各种复杂形状和高精度的工件,广泛应用于航空航天、汽车、机械、电子等领域。
同时,烧结也是一种高效的资源利用方式,可以回收再利用废弃粉末,减少资源浪费。
总之,烧结的基本原理是利用粉末颗粒间的表面扩散和粘结现象,在高温下使粉末颗粒相互结合成为一体,从而形成致密坚固的固体。
烧结是一种重要的材料制备工艺,具有广泛的应用前景和重要的经济意义。
烧结的原理烧结是一种重要的冶金工艺,广泛应用于铁矿石、铬矿石、锰矿石等矿石的加工过程中。
烧结的原理是通过矿石颗粒之间的结合作用,将散乱的矿石颗粒烧结成块状物,以便于后续的冶炼和加工。
本文将从烧结的原理入手,对烧结过程中所涉及的关键原理进行介绍。
首先,烧结的原理涉及到矿石颗粒之间的结合作用。
在烧结过程中,矿石颗粒经过高温热处理,表面会产生一层熔融的物质,这些物质能够在颗粒之间形成一种粘结作用,使得颗粒能够相互结合。
同时,烧结过程中还会产生一些气体,这些气体会在颗粒之间形成一种“填隙”作用,使得颗粒之间的结合更加牢固。
其次,烧结的原理还涉及到热传导和热膨胀。
在烧结过程中,矿石颗粒会受到高温的加热,从而导致颗粒内部温度升高。
当颗粒内部温度升高时,颗粒会发生热膨胀,使得颗粒之间的接触面积增大,从而促进颗粒之间的结合。
同时,热传导也会使得矿石颗粒表面的熔融物质能够向颗粒内部传导,进一步增强颗粒之间的结合作用。
另外,烧结的原理还与矿石颗粒的化学成分和结构特性有关。
不同种类的矿石在烧结过程中会产生不同的熔融物质,这些熔融物质的性质会影响矿石颗粒之间的结合情况。
同时,矿石颗粒的结构特性,如颗粒的形状、大小、表面粗糙度等也会影响烧结的效果。
最后,烧结的原理还与烧结工艺参数的选择有关。
在实际的烧结过程中,烧结温度、烧结时间、烧结气氛等参数的选择会直接影响烧结的效果。
合理选择这些参数,可以使烧结过程更加有效,提高烧结块的质量和产量。
总之,烧结的原理是一个复杂的物理化学过程,涉及到矿石颗粒之间的结合作用、热传导和热膨胀、化学成分和结构特性以及烧结工艺参数等多个方面。
只有深入理解烧结的原理,才能更好地指导烧结工艺的实际应用,提高烧结产品的质量和产量。
一、烧结(1)、烧结基本原理烧结是粉末冶金生产过程中最基本的工序之一。
烧结对最终产品的性能起着决定性作用,因为由烧结造成的废品是无法通过以后的工序挽救的;相反,烧结前的工序中的某些缺陷,在一定的范围内可以通过烧结工艺的调整,例如适当改变温度,调节升降温时间与速度等而加以纠正。
烧结是粉末或粉末压坯,加热到低于其中基本成分的熔点温度,然后以一定的方法和速度冷却到室温的过程。
烧结的结果是粉末颗粒之间发生粘结,烧结体的强度增加。
在烧结过程中发生一系列物理和化学的变化,把粉末颗粒的聚集体变成为晶粒的聚结体,从而获得具有所需物理,机械性能的制品或材料。
烧结时,除了粉末颗粒联结外,还可能发生致密化,合金化,热处理,联接等作用。
人们一般还把金属粉末烧结过程分类为:1、单相粉末(纯金属、古熔体或金属化合物)烧结;2、多相粉末(金属—金属或金属—非金属)固相烧结;3、多相粉末液相烧结;4、熔浸。
通常在目前PORITE微小轴承所接触的和需要了解的为前三类烧结。
通常在烧结过程中粉末颗粒常发生有以下几个阶段的变化:1、颗粒间开始联结;2、颗粒间粘结颈长大;3、孔隙通道的封闭;4、孔隙球化;5、孔隙收缩;6、孔隙粗化。
上述烧结过程中的种种变化都与物质的运动和迁移密切相关。
理论上机理为:1、蒸发凝聚;2、体积扩散;3、表面扩散;4、晶间扩散;5、粘性流动;6、塑性流动。
(2)、烧结工艺2-1、烧结的过程粉末冶金的烧结过程大致可以分成四个温度阶段:1、低温预烧阶段,在此阶段主要发生金属的回复及吸附气体和水分的挥发,压坯内成形剂的分解和排除等。
在PORITE微小铜、铁系轴承中,用R、B、O(Rapid Burning Off)来代替低温预烧阶段,且铜、铁系产品经过R、B、O后会氧化,但在本体中可以被还原,同时还可以促进烧结。
2、中温升温烧结阶段,在此阶段开始出现再结晶,首先在颗粒内,变形的晶粒得以恢复,改组为新晶粒,同时颗粒表面氧化物被完全还原,颗粒界面形成烧结颈。
3、高温保温完成烧结阶段,此阶段是烧结得主要过程,如扩散和流动充分地进行和接近完成,形成大量闭孔,并继续缩小,使得孔隙尺寸和孔隙总数均有减少,烧结体密度明显增加4、冷却阶段:实际的烧结过程,都是连续烧结,所以从烧结温度缓慢冷却一段时间然后快冷,到出炉量达到室温的过程,也是奥氏体分解和最终组织逐步形成阶段。
通常所说的温度,是指最高烧结温度,即保温的温度,一般是绝对熔点温度的1/2~4/5温度指数a=0.67~0.80,其低限略高于再结晶温度,其上限主要从经济及技术上考虑,而且与烧结时间同时选择。
2-2、影响烧结过程的因素:1、材料的性质,包括各种界面能与自由能:扩散系数;粘性系数;临界剪切应力,蒸气压和蒸发速率,点阵类型与结晶形态;异晶转变新生态等。
2、粉末的性质:包括颗粒大小;颗粒的形状与形貌;颗粒的结构;颗粒的化学组成。
3、压坯的物理性能:包括压制密度,压制残余应力,颗粒表面氧化膜的变形或破坏以及压坯孔隙中气体等。
4、烧结工艺参数:包括保温时间,加热及冷却速度,烧结气氛等。
2-3、烧结时压坯的尺寸与密度的变化在生产中对制品的尺寸与形状精度要求都非常高,因此,在烧结过程中控制压坯的密度和尺寸的变化是一个极为重要的问题。
影响烧结零件密度和尺寸变化的因素有:1、孔隙的收缩与清除:烧结会导致孔隙的收缩与清除,也就是使烧结体体积减小。
2、包裹的气体:压制成形时,可能在压坯中形成许多封闭的孤立孔隙,加热压坯量,这些孤立孔隙中的空气会发生膨胀。
3、化学反应:压坯内和烧结气氛中某些化学元素与压坯原料中含有一定量的氧发生反应,生成气体或挥发或残留在压坯中,使得压坯收缩或胀大。
4、合金化:两种或多种元素粉末间的合金化,一元素溶解于另一元素中形成固溶体时,基本点阵可能发生胀大或收缩。
5、润滑剂:当金属粉末中混有一定量润滑剂和将其压制成压坯时,在一定的温度下,混入的润滑剂被烧除使压坯产生收缩,可是若分解产生的气体物质不能到达烧结体表面时,则可能引起压坯胀大。
6、压制方向:在烧结时,压坯的尺寸变化,在垂直或平行于压制方向上是不等的,一般说,垂直方向(径向)尺寸变化率较大,平行方向(轴向)尺寸变化率较小。
2-4、烧结前的准备工作核对烧结制品与烧结温度及网带速度是否合适,检查待烧结的制品,把不合格的压坯剔出,一般情况按工艺图纸的要求来检查,通常检查几何尺寸及偏差制品的单重即压坯的密度和压坯外观是否掉边缺角,分层裂纹,严重拉毛等。
根据压坯的形状和尺寸确定其烧结方式(如站立、平躺以及排料等)。
再用气压喷嘴吹出残留在制品表面的粉尘。
特殊情况还要排高铝板烧结。
2-5、烧结后的整理工作在烧结完成后首先要对制品进行检查,把烧结不合格的零件剔出。
然后按产品的分类浸油并堆放整齐。
特殊情况下,产品要放在共摺机(滚桶)中去毛刺和把粘在一起的零件分开。
2-6、烧结炉废次品分析烧结废次品包括工艺上无法挽救的废品和通过重新处理可以转变为合格产品的“返烧品”。
1、变化与翘曲;2、起泡与裂纹;3、麻点;4、尺寸超差;5、过烧与欠烧;6、氧化与脱膜;7、金相组织缺陷(3)烧结炉的基本结构及网带式烧结炉简介为大量生产质优价廉的粉末冶金产品,烧结时必须严格控制升温速度,烧结的温度与时间,冷却速度与时间,冷却速度及炉内气氛等因素。
因此选择合适的烧结炉是粉末冶金生产中重要的一环。
3-1、烧结炉的分类按加热方式:可分为燃料加热式与电加热式;按生产方式:可分为间歇式与连续式;按烧结产品的传送方式连续烧结炉又分为网带式、辊床式、推舟式及步进梁式。
扬州PORITE轴承烧结炉是电加热、连续网带式。
3-2、连续式烧结炉的结构粉末冶金工艺对烧结炉的结构有如下要求:1、有密封的炉壳或马弗套的保持炉内的还原气氛,并防止空气进入;2、有平稳可靠的物料传送机构;3、有预热带,用以排除压坯内润滑剂及吸附的气体;4、有足够功率的高温烧结带,使制品有充分的烧结保温过程;5、有防止氧化和形成最终金相组织的水套冷却带;6、有调节控制加热速度,烧结温度和保温时间,冷却速度等的装置;7、有严格的温度控制系统;8、炉腔截面的温度分布均匀;9、加热元件需满足烧结温度条件的要求;10、电炉的开启和关闭,进料和出料时,不发生空气倒流入炉,炉内不应有水蒸气附着。
粉末冶金烧结电炉一般由预热带、烧结带、冷却带三个部份组成。
整个炉体结构纵向通常用马弗套将其贯通连成一个整体,炉管内通以保护气体(如图所示)。
烧结炉中三个带的作用如下:1、预热带:预热粉末压坯与烧除润滑剂;2、烧结带:以使压坯在规定温度下保温足够长的时间,从而获得烧结零件所需的物理-机械性能;3、冷却带:包括预冷带和水套冷却带。
以使压坯从高温缓慢冷却到再结晶温度,然后快速冷却以得到产品的最终组织结构。
3-4、网带式烧结炉简介网带式烧结炉是烧结铁基与铜基制品最常用的烧结炉。
网带是用耐热合金制成,一般情况最高烧结温度<1150℃,网带的宽度和炉膛的尺寸按照产品的大小和多少来选择,网带由传动装置使环状网带在炉膛内作连续的循环运动来达到物料传送的目的。
产品可装在铁网中也可直接放在网带上,随网带移动,使压坯进行预热、烧结、冷却最后由出口处出炉。
其具体操作过程如《300MM烧结炉操作作业标准》新近应用的R.B.O.装置,就是用煤气或液化石油气直接燃烧加速脱腊的方法,采用RBO方式可缩短预热带的长度,节省了设备占地面积,而且有利于排出润滑剂蒸汽,大量节约保护气,同时大幅度提高炉子的产量。
其具体操作过程如《R.B.O操作程序标准》。
(4)烧结气氛4-1、烧结气氛的作用使用烧气氛的目的在于防止烧结制品氧化,控制碳势,排除杂质,净化炉气。
选择制品烧结气氛的原则是:1、烧结后制品的组分不蜕变。
即不氧化不脱碳。
2、能还原粉末颗粒表面氧化膜。
3、对烧结炉的加热元件、传送带、耐火材料腐蚀性小。
4、使用安全。
5、原料丰富,容易制取,成本低廉。
4-2、烧结气氛的种类烧结气氛可分为还原性、真空及中性(惰性)、氧化性、渗碳性(或脱碳性),氮化性等类型。
1、还原性气氛:这是最普通的烧结气氛。
工业使用的有H2、75%H2+25%N2(分解氨),煤气放热型转化气氛和吸热型转化气氛。
2、真空及中性(惰性)气氛:这类烧结气氛多用于原料对气氛有一定的溶解度或气氛可能发生有害的化学反应情况时。
真空烧结时,压坯中有有效成份的蒸汽压都必须很低。
3、氧化性气氛:包括空气、氧气或氧气中掺有空气的弱氧化性气氛。
适用于烧结那些不活泼金属或以金属氧化物为原料的铁氧体、金属陶瓷等。
铁、铜基零件在空气中预氧化烧结也是采用氧化性气氛。
4、氮基气氛:纯氮基气氛不能还原粉末表面氧化薄膜,容易造成烧结制品的氧化脱碳。
因此工业上采用的氮基气氛中常为N2>90%;碳氢化合物体0.25~5%;H 25%;CO0.5~5%。
分解氨气氛:分解氨是由液氨气化在催化剂作用下加热,分解得到的含氢气75%,氮气25%的混合气。
其化学反应为:2NH 3→3H 2+N 2_22千卡 液氨分解工艺流程为:分解氨具有可燃性与爆炸危险性,当与空气混合时,有爆炸的可能。
因此,使用分解氨气氛时,电炉在送电升温前必须先向炉内通入保护气氛,将炉内空气完全排除。
具体操作过程如《20、40、70 m/Hr 分解炉操作作业标准》以及《AX 分解炉露点、残氨测定标准》。
氨分解气液氨瓶 分解炉 冷却器 净化系统 减压气化。