物理化学_三元相图详解
- 格式:pdf
- 大小:3.43 MB
- 文档页数:54
第八章三元相图第八章三元相图三元合金系(ternery system)中含有三个组元,因此三元相图是表示在恒压下以温度变量为纵轴,两个成分变量为横轴的三维空间图形。
由一系列空间区面及平面将三元图相分隔成许多相区。
第一节三元相图的基础知识三元相图的基本特点:(1) 完整的三元相图是三维的立体模型;(2) 三元系中可以发生四相平衡转变。
四相平衡区是恒温水平面;(3) 三元相图中有单相区、两相区、三相区和四相区。
除四相平衡区外,一、二、三相平衡区均占有一定空间,是变温转变。
一、三元相图成分表示方法三元相图成分通常用浓度(或成分)三角形(concentration/composition triangle)表示。
常用的成分三角形有等边成分三角形、等腰成分三角形或直角成分三角形。
(一) 等边成分三角形-图形1. 等边成分三角形图形在等边成分三角形中,三角形的三个顶点分别代表三个组元A、B、C,三角形的三个边的长度定为0~100%,分别表示三个二元系(A—B系、B—C系、C—A系)的成分坐标,则三角形内任一点都代表三元系的某一成分。
其成分确定方法如下:由浓度三角形所给定点S,分别向A、B、C顶点所对应的边BC、CA、AB 作平行线(sa、sb、sc),相交于三边的c、a、b点,则A、B、C组元的浓度为:WA = sc = Ca WB = sa= AbWC = sb= Bc注:sa+ sb+ sc = 1 Ca + Ab+ Bc= 12. 等边成分三角形中特殊线(1) 平行等边成分三角形某一边的直线。
凡成分点位于该线上的各三元相,它们所含与此线对应顶角代表的组元的质量分数(浓度)均相等。
(2) 通过等边成分三角形某一顶点的直线位于该线上的所有三元系,所含另外两顶点所代表的的组元质量分数(浓度)比值为恒定值。
(二) 成分的其它表示法1.等腰成分三角形当三元系中某一组元B含量较少,而另外两组元(A、C)含量较多,合金点成分点必然落在先靠近成分三角形的某一边(如AC)附近的狭长地带内。