误差精度与不确定度有什么关系
- 格式:doc
- 大小:24.00 KB
- 文档页数:3
如何正确区分误差、不确定度、精密度、准确度、偏差、方差?在日常分析测试工作中,测量误差、测量不确定度、精密度、准确度、偏差、方差等是经常运用的术语,它直接关系到测量结果的可靠程度和量值的准确一致。
如何区分这些概念呢?一起来看看吧!传统的方法多是用精密度和准确度来衡量。
但是,通常说的准确度和误差只是一个定性的、理想化的概念,因为实际样品的真值是不知道的。
而精密度只是表示最终测定数据的重复性,不能真正衡量其测定的可靠程度。
作为一名分析测试人员,这些术语是应该搞清楚的概念,但这些概念互相联系又有区别,也常常使人不知所云。
在此略作论述,希望能引起大家讨论。
测量误差测量误差表示测量结果偏离真值的程度。
真值是一个理想的概念,严格意义上的真值是通过实际测量是不能得到的,因此误差也就不能够准确得到。
在实际误差评定过程中,常常以约定真值作为真值来使用,约定真值本身有可能存在误差,因而得到的只能是误差的估计值。
此外,误差本身的概念在实际应用过程中容易出现混乱和错误理解。
按照误差的定义,误差应是一个差值。
当测量结果大于真值时,误差为正,反之亦然。
误差在数轴上应该是一个点,但实际上不少情况下对测量结果的误差都是以一个区间来表示(从一定程度上也反映了误差定义的不合理),这实际上更像不确定度的范围,不符合误差的定义。
在实际工作中,产生误差的原因很多,如方法、仪器、试剂产生的误差,恒定的个人误差,恒定的环境误差,过失误差,可控制或未加控制的因素变动等。
由于系统误差和随机误差是两个性质不同的量,前者用标准偏差或其倍数表示,后者用可能产生的最大误差表示。
数学上无法解决两个不同性质的量之间的合成问题。
因此,长期以来误差的合成方法上一直无法统一。
这使得不同的测量结果之间缺乏可比性。
不确定度测量不确定度为“表征合理地赋予被测量之值的分散性,与测量结果想联系的参数”。
定义中的参数可能是标准偏差或置信区间宽度。
不确定度是建立在误差理论基础上的一个新概念,它表示由于测量误差的存在而对被测量值不能肯定的程度,是定量说明测量结果质量的重要参数。
不确定度和误差的关系一、引言在科学研究和实验中,我们经常会遇到测量和计算的结果与真实值之间存在差异的情况。
这种差异通常被称为误差。
而对于测量结果的可信程度,则可以通过不确定度来衡量。
不确定度和误差之间存在一定的关系,在本文中我们将探讨这一关系。
二、误差的定义和分类误差可以被定义为测量结果与真实值之间的差异。
在实际测量中,误差可以分为系统误差和随机误差两类。
1. 系统误差系统误差是由于测量仪器或方法本身的固有缺陷而产生的误差。
例如,仪器的刻度不准确、环境条件的影响等都可以引起系统误差。
系统误差通常是可预测和可纠正的,因此在实验设计和数据处理中应该尽量避免系统误差的产生。
2. 随机误差随机误差是由于测量过程中的各种偶然因素导致的误差。
例如,人的视觉判断误差、仪器读数的波动等都属于随机误差。
随机误差是不可避免的,但可以通过多次重复测量来减小其影响。
三、不确定度的定义和计算不确定度是对测量结果的可信程度的度量。
在实际测量中,不确定度可以通过多种方法来计算,例如重复测量法、类比法、标准差法等。
1. 重复测量法重复测量法是指对同一物理量进行多次独立测量,然后计算这些测量结果的标准差作为不确定度的估计值。
重复测量法适用于随机误差主导的情况,并且要求测量结果符合正态分布。
2. 类比法类比法是指通过与已知精度的标准样品进行比较,来估计待测物理量的不确定度。
例如,通过与已知质量的标准物体进行比较,来估计待测物体的质量不确定度。
3. 标准差法标准差法是指通过对测量结果进行统计分析,计算其标准差来估计不确定度。
标准差法适用于随机误差主导的情况,并且要求测量结果符合正态分布。
四、不确定度和误差的关系不确定度和误差之间存在一定的关系。
一方面,误差是指测量结果与真实值之间的差异,而不确定度则是对测量结果的可信程度的度量。
因此,误差越大,不确定度也就越大。
另一方面,误差可以分为系统误差和随机误差两类,而不确定度则可以通过重复测量法等方法来估计。
误差、精确度、不确定度、估读、有效数字广州番禺王耀强1、误差系统误差:仪器误差△仪、方法误差等。
随机误差:可以采取多次测量,以算术平均值代表真值的方法减小随机误差。
随机误差常用标准偏差来衡量。
过失误差:操作错误所致2、精确度与准确度、精密度准确度是多次测量时,平均值与真值之间的差距。
精密度是数据的一致性,体现出数据分布的分散性(集中性)。
精确度是准确度和精密度的综合。
形象的理解见下图的射击分布:一般来说,仪器的精密度越高,精确度也越高,仪器误差△仪越小。
精确度、仪器误差尽管与分度值的大小有关,但并不等同于分度值的大小。
比如,两个分度值相同的不同型号电流表,它们的精确度、仪器误差△仪未必相同。
不同仪器的允许误差(极限误差)数值的确定依据不同。
有的看仪器上标示的精确度等级(电流表等仪表),有的看感量(天平),有的看分度值(刻度尺、螺旋测微器),要不就查阅说明书等等。
3、不确定度:由于测量数据的真值是不可知的,所以误差也是不可得的,只能通过统计等方法进行估算。
不确定度是对测量结果的评定,表征测量结果的分散性,在一定置信概率内,真值的分布区间大小。
测量结果以平均值表示,也就是评定这个平均值代表真值的信度。
不确定度虽然需综合系统、随机误差的考量,但不等同于误差。
(1)A类不确定度uA :取平均值的样本标准偏差,uu AA xxσσxx1ii2nn。
其中,xx是平均值,σσxx是测量值的样本标准偏差,σσxx是平均值的样本标准偏差。
:常取为 u BB=∆仪√3。
其中,△仪为仪器误差。
B类不确定度uB总不确定度U=�uu AA2+uu BB2。
不确定度的数值一般只取一位(有时会是两位)有效数字。
(2)一次直接测量时,数据的不确定度只是B类不确定度uB(3)多次直接测量时,不确定度U=�uu AA2+uu BB2理论上,测量次数越多就越好。
但是,一般多于10次后,不确定度的变化已经不大,而趋于恒值了。
所以一般来说,只需测量5至10次就足够了。
误差偏差和不确定度摘要:测量误差与不确定度是计量学中的2个重要基本概念,两者之间既有区别又有联系,通过对两者的比较,指出了使用测量不确定度评价测量结果的意义。
误差理论的应用中,要深刻地认识和了解实验及现象,深入地研究实验,应该借助实验误差理论。
在测量中,我们所要测的物理量在一定的条件下总有一个客观的真正大小,称为真值。
但在实际测量过程中,由于测量仪器的精度限制,测量原理和方法不完善,测量者感官能力的限制,所得的测量结果和真值总存在一定的差异。
物理实验离不开对物理量的测量,测量有直接的,也有间接的。
由于仪器、实验条件、环境等因素的限制,测量不可能无限精确,物理量的测量值与客观存在的真实值之间总会存在着一定的差异,这种差异就是测量误差。
测量不确定度是目前对于误差分析中的最新理解和阐述,以前用测量误差来表述,但两者具有完全不同的含义.关键字:误差 ;偏差 ;不确定度Error, error and uncertaintyAbstracMeasurement error and uncertainty are the metrology two important basic concept, both between both distinction to have connection again, through the comparison of two, points out the use of measuring uncertainty evaluation of measurement results. The application of the error theory,To know and understand profoundly the phenomenon of experiment and research, experiment, experiment of the error theory should be using. During measurement, we have to measure the parameters under certain conditions have an objective real size, called the true value. But in actual measurement process, because of the limited, precision measuring instrument measuring principle and method is not perfect, the measurement of the senses, the measurement results obtained limit and the true value is always there are some differences.Physics experiment is inseparable from the physical measurement, the measurement is directly, indirectly.Due to the instrument, the experimental condition, the environmental factors, such as restrictions, measurement, and may not be infinite precision measurements of physical with the real value of the objective existence between always exist certain difference, the difference is the measurement error. Measurement uncertainty for error analysis is the latest and the measurement error, used to describe, but they have different meanings. Now more accurately defined for the measurement uncertainty. Measure refers to the degree of uncertainty.Key wordserror;declination ;uncertainty目录1误差 (1)1.1误差概论 (1)1.1.1误差的定义 (1)1.1.2引起误差的因素 (2)1.2误差的产生 (3)1.2.1系统误差 (3)1.2.2.偶然误差 (3)2 偏差 (3)2.1偏差的定义 (3)2.2标准偏差 (4)3不确定度 (4)3.1不确定的基本概念 (4)3.2标准不确定度的评定 (4)4误差偏差和不确定度的联系与区别 (5)4.1误差偏差和不确定度的区别 (5)4.2误差偏差和不确定度的联系 (6)4.3测量不确定度较测量误差在评定测量结果中的优势 (7)参考文献 (8)谢辞 (9)1误差1.1误差概论1.1.1误差的定义物理实验离不开对物理量的测量,测量有直接的,也有间接的。
浅论测量仪器的误差和测量不确定度摘要本文从概念、逻辑和形式上对测量仪器的误差和测量不确定度进行了分析与研究,深入浅出的剖析了测量仪器的示值误差、最大允许误差和测量不确定度之间的关系。
旨在引起重视、深入探讨、充分理解、促进共识。
关键词测量仪器;误差;测量不确定度中图分类号p207 文献标识码a 文章编号 1674-6708(2011)44-0058-020 引言在计量检定、校准和检测中,数据处理是一个关键步骤。
在测量过程中,由于测量仪器精度、实验条件局限和各种因素的影响,测量结果总是与实际待测量有一定差异,即存在测量误差。
因此作为一个测量结果,不但应提供测量值的大小和单位,还应对测量值本身的可靠程度作出判断,不说明可靠程度的测量值没有实际意义。
人们在使用误差理论的过程中,又发展出了不确定度概念,如何正确理解、合理表述测量仪器的误差与不确定度,是计量工作者一直关注的重要议题。
1 测量仪器测量仪器的概念是单独地或连同辅助设备一起用以进行测量的器具(又称为计量器具)。
其特点是:1)可直接进行测量;2)可以单独地或连同辅助设备一起使用的一种技术工具或装置。
在我国有关计量法律、法规中,测量仪器称为计量器具,既计量器具是测量仪器的同义语。
测量仪器按其结构特点和计量用途可分为测量用的仪器仪表、实物量具、标准物质及测量系统(或装置)。
测量仪器在生产生活中有着广泛的用途,不论是宇宙飞船探月用的信号发生器,还是平常的买米买菜用的电子称,都是测量仪器。
2 测量仪器的误差测量仪器示值误差,通常简称为测量仪器的误差,可以用绝对误差的形式表示,也可以用相对误差、引用误差的形式表示。
对于给定的测量仪器,由规程、规范所允许的误差极限值,称为测量仪器的最大允许误差,有时也称为测量仪器的允许误差限。
误差是指测量结果减去被测量的真值,误差是测量结果的重要组成部分。
测量结果包括示值、未修正测量结果、已修正测量结果以及若干次测量的平均值。
误差精度与不确定度有什么关系误差、精度与不确定度有什么关系?一、误差的基本概念:1.误差的定义:误差=测得值-真值;因此,误差是一个值,数学上就是坐标轴上的一个点,是具有正负号的一个数值。
2.误差的表示办法:2.1 肯定误差:肯定误差=测量值-真值(商定真值)在检定工作中,常用高一等级精确度的标准作为真值而获得肯定误差。
如:用一等活塞压力计校准二等活塞压力计,一等活塞压力计示值为100.5N/cm2,二等活塞压力计示值为100.2N/cm2,则二等活塞压力计的测量误差为-0.3N/cm2。
2.2 相对误差:相对误差=肯定误差/真值X100%相对误差没有单位,但有正负。
如:用一等标准水银温度计校准二等标准水银温度计,一等标准水银温度计测得20.2℃,二等标准水银温度计测得20.3℃,则二等标准水银温度计的相对误差为0.5%。
2.3 引用误差:引用误差=示值误差/测量范围上限(或指定值)X100%引用误差是一种简化和有用便利的仪器仪表示值的相对误差。
如测量范围上限为3000N的工作测力计,在校准示值2400N处的示值为2392.8N,则其引用误差为-0.3%。
3.误差的分类:3.1 系统误差:在重复性条件下,对同一被测量举行无限多次测量所得结果的平均值与被测量的真值之差。
3.2 随机误差:测量结果与在重复性条件下,对同一被测量举行无限多次测量所得结果的平均值之差。
3.3 粗壮误差:超出在规定条件下预期的误差。
二、精度:1.精度细分为:精确度:系统误差对测量结果的影响。
精密度:随机误差对测量结果的影响。
精确度:系统误差和随机误差综合后对测量结果的影响。
精度是误差理论中的说法,与测量不确定度是不同的概念,在误差理论中,精度定量的特征可用目前的测量不确定度(对测量结果而言)和极限误差(对测量仪器仪表)来表示。
对测量而言,精密度高的精确度不一定高,精确度高的精密度不一定高,但精确度高的精确度与精密度都高,精度是精确度的简称。
大学物理实验中的误差和不确定性在大学物理实验中,误差和不确定性是无法避免的。
它们对实验结果的精确性和可靠性有很大影响。
本文将对大学物理实验中的误差来源、误差分析方法以及不确定性进行探讨,以期帮助读者更好地理解和处理实验数据。
一、误差来源1. 人为误差:人为误差源于实验者自身的不准确操作或测量判断。
例如,实验者在读数时可能存在读数不准确、操作不规范等情况,从而引入人为误差。
2. 仪器误差:仪器本身存在的误差也是实验中常见的来源之一。
不同仪器的精度和灵敏度不尽相同,所以在进行实验时需要仔细选择和使用仪器,以减小仪器误差对实验结果的影响。
3. 随机误差:随机误差是由一系列随机因素引起的误差。
例如,由于环境的微弱变化或测量手法的不完美,导致的重复测量结果不完全一致。
二、误差分析方法1. 重复测量法:重复测量法是通过多次重复测量同一物理量的数值,然后计算平均值和标准偏差,以减小随机误差对结果的影响。
重复测量法可以提高实验结果的可靠性和精确性。
2. 构造误差概率密度分布图:通过对测量数据进行概率密度分布图的构建,可以了解误差在整个测量范围内的分布情况。
常见的误差分布有正态分布、均匀分布等,通过分析误差的概率分布情况,可以更好地理解误差的特性。
3. 方差分析法:方差分析法可以用来分析不同因素对实验结果的影响程度。
通过对实验数据进行方差分析,可以确定主要误差来源,并且对影响程度较大的因素进行优化,提高实验的精确性。
三、不确定性不确定性是物理实验中非常重要的一个概念。
不确定性是对测量结果的不确定程度进行量化的指标,一般用标准不确定度或扩展不确定度来表示。
1. 标准不确定度:标准不确定度是测量结果的一种误差范围估计值,通常用统计学的方法计算得出。
标准不确定度用来表示一个测量结果的可靠性和精确性。
2. 扩展不确定度:扩展不确定度是对标准不确定度进行修正和扩展的一种误差范围估计值,一般是用于报告测量结果。
扩展不确定度是由标准不确定度与置信度相乘得到的。
误差\准确度\精密度和不确定度的定义以及它们之间的关系在产品质量检验的实际工作中,时常会遇到误差值、准确度、精确度和不确定度问题。
特别是一次性的检验活动中,如食品、酒类样品的分析;建筑材料(水泥、砖、钢筋)的检验;轻纺产品的检测等等,都离不开这些定义的运用与归纳。
因此,作为检验、检测的技术机构应充分掌握和理解它们之间的关系,并在实际检验工作中运用好准确度与误差值、精密度和不确定度之间的关系。
对正确判定检验结论有很大的帮助。
1误差的定义误差是指测定的数值或其他近似值与真值的差。
例如:以0. 33代替1/3,其绝对误差就是1/300;相对误差就是l%。
2准确度的定义准确度是指测量值与真实值之间相符合的程度。
准确度的高低常以误差的大小来衡量。
即误差越小,准确度越高;误差越大,准确度越低。
为了说明一些仪器测量的准确度,常用绝对误差来表示。
如:分析天平的称量误差是±0.0002g;常量滴定管的读数误差是±0. 01ml等等。
3精密度的定义精密度是指在相同条件下,n次重复测量结果彼此相符合的程度。
精密度的大小,常用偏差表示,偏差越小,说明精密度越高。
为能准确衡量精密度,一般用标准偏差来表示。
其数学公式为:样本标准偏差S= [∑(Xi - X)2/(n-1)] 。
4不确定度的定义在《国际计量学基本和通用术语词汇表》中不确定度的定义为:表征合理地赋予被测量之值的分散性与测量结果相联系的参数。
在实际工作中,结果的不确定度,可能有很多来源。
如定义不完整,取样、基体效应和干扰,环境条件,质量和容量仪器的不确定度,参考值,测量方法和程序中的估计和假定以及随机变化等。
例如,对二等铂铑10 ——铂热电偶标准装置不确定度的评定,当在800℃点时,校准证书上表明,修正值为0.6℃,测得的平均值是800. 2℃,则实际结果为:t= 800.2℃+0. 6℃=800.80℃,其中不确定度U95=1.5℃(置信概率95%时,则KP =2)。
最大允许误差和不确定度的关系哎呀,这可是个大问题啊!咱们今天就来聊聊最大允许误差和不确定度的关系,别看这个话题有点儿晦涩,其实它可是关系到咱们生活、工作、科研等方方面面呢。
所以,赶紧拿上你的小板凳,咱们一起来探讨探讨吧!咱们得明白什么是最大允许误差。
简单来说,就是咱们在测量或者计算的时候,所能承受的最大误差范围。
这个误差范围是有限的,超过了这个范围,咱们就得重新测量或者计算了。
那么,这个最大允许误差是怎么来的呢?这就要说到不确定度了。
不确定度,其实就是衡量咱们测量或者计算结果的可靠性。
咱们知道,生活中有很多因素会影响到测量结果,比如说仪器的精度、环境的变化、人为的操作等等。
这些因素都会使得测量结果有一定的误差。
而不确定度就是用来衡量这些误差的大小和分布的。
那么,最大允许误差和不确定度之间有什么关系呢?其实,它们就像是一对好兄弟,总是紧紧相依在一起。
咱们在进行测量或者计算的时候,总是希望能够得到一个尽量准确的结果。
但是,由于各种原因,咱们无法保证每次都能得到完全准确的结果。
这时候,不确定度就起到了作用。
它可以帮助咱们判断这次测量或者计算的结果是否在可接受的范围内。
如果不确定度很小,那么这次的结果就可以认为是比较可靠的;反之,如果不确定度很大,那么咱们就需要重新进行测量或者计算了。
当然啦,咱们也不能过分追求最大允许误差和不确定度的数值。
因为这也会影响到咱们的实际应用。
比如说,在科研领域,如果咱们过于追求最大允许误差和不确定度的数值,可能会导致研究成本过高,甚至影响到科研成果的产出。
所以,在实际应用中,咱们还需要根据具体情况来权衡这两个参数的大小。
那么,如何提高最大允许误差和不确定度的数值呢?这可不是一件容易的事情。
咱们要提高测量或者计算设备的精度;要减少外部因素对测量结果的影响;还要不断地改进测量或者计算方法,提高其准确性。
只有这样,才能真正提高最大允许误差和不确定度的数值。
最大允许误差和不确定度是咱们在生活、工作、科研等方面不可或缺的概念。
不确定度与精度的区别与联系摘要:本文主要介绍了测量不确定度与精度各自的定义,并论述了两者之间的区别与联系关键词:不确定度,精度,区别联系1 不确定度与精度的概念意义1.1 什么是不确定度不确定度、精度在经常出现在诸多与测量检测相关的文献、研究报告、测试报告中[1],很多人尤其是初学者对这些检测专用术语含义不能理清, 混淆概念,因此会经常导致错用现象的发生。
所以对于从事检测行业的相关人员来说,正确的理解并区分这些专业用语, 掌握它们的之间的区别与联系, 具有重要的科研意义。
测量不确定度是测量结果带有的一个参数,用于表征合理地赋予被测量值的分散性。
测量不确定度是对测量结果质量的定量评定,测量结果必须有不确定度说明时才是完整和有意义的。
1.2 什么是精度精度的一般含义比较笼统,表征了测量结果与真实值相符合程度,反映了给定条件下诸多相互独立测量结果间的分散性,用来表示测量结果中的随机误差大小的程度,所以精度高低用误差来衡量,误差大则精度低,误差小泽精度高,所以精度是误差的反义词。
[2]2 不确定度与精度之间的区别2.1 内涵不同不确定度表示的是被测量值的分散性,大多数情况一般用置信区间的板宽度表征,不是具体的数值;而精度是跟误差相关的,所以测量的精度表示的是一个具体数值。
[3]2.2 表示形式不同在常见的参考文献、仪器仪表说明书中, 测量不确定度是以标准不确定度、合成标准不确定度、扩展不确定度表示的,主要有两种表示形式, 一种是绝对形式, 另一种是相对形式。
绝对形式表示的不确定度与被测量有相同的量纲, 相对形式的不确定度无量纲。
而精度常以相对误差的形式给出。
扩展不确定度与合成标准不确定度也有绝对形式与相对形式。
在计量报告中, 测量结果一般是以扩展不确定度的形式给出,2.3 影响制约因素不同测量结果的不确定度表示在重复性或复现性条件下被测量值的分散性,其结果与测量方法有关,而精度是与测量误差相关,误差又与测量结果以及真值相关,与测量方法无关。
一0102 03二01不确定度、准确度、精度定义及比较 不确定度、准确度、精度这三个名词在计量研究报告、测试报告及仪器性能说明中经常出现,许多人对这些常见的计量测试名词含义不清,出现错用的现象,搞清这些专业术语,了解其本质含义及区别,对从事计量测试的技术人员来说具有重要的现实意义。
不确定度、准确度、精度基本含义不确定度 不确定度定义为与测量结果相关联的参数,表征合理地赋予被测量值的分散性。
它可以是标准偏差,也可以是说明了置信水平的区间半宽度,经常用标准不确定度、合成不确定度、扩展不确定度来表示。
准确度 测量准确度定义为测量结果与被测量真值的一致程度。
真值在实际测量中是较难得到的,故准确度只是一个定性的概念,所谓定性意味着可以用准确度的高低、准确度为0.25级、准确度为3级、准确度符号XX标准等说法定性地表示测量质量。
精度 精度是用来表示测量结果中的随机误差大小的程度,反映的是在规定条件下各独立测量结果间的分散性。
在测量误差理论中,精度或精确度常出现,我国长时间以来一直习惯用精度这一名词,如在仪器性能表示中经常出现这一名词,它有时指精密度,有时指准确度,比较混乱,在计量测试报告中尽量回避精度这一提法。
不确定度、准确度、精度相互之间的区别不确定度、准确度、精度的内涵不同 准确度或精度是与测量误差相关联的,表示的是测量结果与真值的偏离量,因此是一个确定的值,在数轴上表示为一个点。
测量不确定度表示被测量之值的分散性,它是以分布区间的半宽度表示的,因此在数轴上是一个区间。
严格来说,准确度与精(密)度是有区别的,准确度是测量结果中系统误差与随机误差的综合表示,是一个定性的概念,而精度是表示测量结果中随机误差的大小。
一个仪器的精度高,不能就说它的准确度一定高,精度高只说明其测量的随机误差小,但是准确度高必须使随机误差与系统误差都小。
测量结果的不确定度表示在重复性或复现性条件下被测量之值的分散性,其大小只与测量方法有关,即测量原理、测量仪器、测量环境条件、测量程序、测量人员、以及数据处理方法等有关,而准确度或精度是与测量误差有关,而误差仅与测量结果及真值有关,而与测量方法无关。
不确定度与允许误差关系在物理学和工程学等领域中,我们经常需要测量各种物理量,如长度、时间、质量等。
然而,由于各种测量方法和仪器的限制,我们无法完全精确地确定一个物理量的真实值。
因此,我们引入了不确定度这个概念,用来描述测量结果的可信度和精度。
不确定度是一个量化的指标,表示测量结果与真实值之间的差异。
它可以通过重复测量来估计,或者通过仪器的规格和精度来计算。
不确定度通常用标准差或者置信区间来表示,例如,长度测量的不确定度可以表示为±0.1毫米。
允许误差是指在实际应用中可以接受的测量误差范围。
它是根据具体的应用需求和要求来确定的,通常以一定的置信水平来界定。
例如,在制造业中,产品尺寸的允许误差可以确定为±0.5毫米,表示只要测量结果在这个范围内,就可以认为产品合格。
不确定度与允许误差之间存在一定的关系。
一般来说,允许误差应该比不确定度大,以确保测量结果在允许误差范围内。
如果允许误差小于不确定度,就意味着测量结果可能超出了允许范围,从而影响到产品的质量和可靠性。
然而,并不是所有情况下都要求允许误差大于不确定度。
在某些高精度测量中,为了确保测量结果的准确性,允许误差可能会设定得比不确定度更小。
这意味着,只有在不确定度非常小的情况下,才能获得合格的测量结果。
不确定度与允许误差还与测量方法和仪器的性能有关。
如果使用的测量方法和仪器精度高,不确定度就会相对较小,从而可以设定更小的允许误差。
相反,如果测量方法和仪器精度较低,不确定度就会相对较大,此时需要设定较大的允许误差。
不确定度与允许误差是测量过程中两个重要的概念。
它们互相关联,但又有一定的差异。
不确定度描述了测量结果的可信度和精度,允许误差则确定了测量结果的接受范围。
在实际应用中,我们需要合理地确定允许误差,以保证产品的质量和可靠性。
同时,通过提高测量方法和仪器的精度,可以减小不确定度,从而实现更精确的测量结果。
精密度、精确度与准确度和误差之间的关系一、测量误差的定义测量误差为测量结果减去被测量的真值的差,简称误差。
因为真值(也称理论值)无法准确得到,实际上用的都是约定真值,约定真值需以测量不确定度来表征其所处的范围,因此测量误差实际上无法准确得到。
测量不确定度:表明合理赋予被测量之值的分散性,它与人们对被测量的认识程度有关,是通过分析和评定得到的一个区间。
测量误差:是表明测量结果偏离真值的差值,它客观存在但人们无法确定得到。
例如:测量结果可能非常接近真值(即误差很小),但由于认识不足,人们赋予的值却落在一个较大区域内(即测量不确定度较大);也可能实际上测量误差较大,但由于分析估计不足,使给出的不确定度偏小。
因此在评定测量不确定度时应充分考虑各种影响因素,并对不确定度的评定进行必要的验证。
二、误差的产生误差分为随机误差与系统误差。
误差可表示为:误差=测量结果-真值=随机误差+系统误差因此任意一个误差均可分解为系统误差和随机误差的代数和。
系统误差:由于测量工具(或测量仪器)本身固有误差、测量原理或测量方法本身理论的缺陷、实验操作及实验人员本身心理生理条件的制约而带来的测量误差称为系统误差。
系统误差的特点是在相同测量条件下、重复测量所得测量结果总是偏大或偏小,且误差数值一定或按一定规律变化。
减小系统误差的方法通常可以改变测量工具或测量方法,还可以对测量结果考虑修正值。
随机误差:随机误差又叫偶然误差,即使在完全消除系统误差这种理想情况下,多次重复测量同一测量对象,仍会由于各种偶然的、无法预测的不确定因素干扰而产生测量误差,称为随机误差。
随机误差的特点是对同一测量对象多次重复测量,所得测量结果的误差呈现无规则涨落,既可能为正(测量结果偏大),也可能为负(测量结果偏小),且误差绝对值起伏无规则。
但误差的分布服从统计规律,表现出以下三个特点:单峰性,即误差小的多于误差大的;对称性,即正误差与负误差概率相等;有界性,即误差很大的概率几乎为零。
最大允许误差和不确定度的关系在我们做各种测量和计算时,常常会遇到“最大允许误差”和“不确定度”这两个词。
它们虽然看似专业,但其实在日常生活中也会碰到。
接下来,我们就用通俗的语言,来聊聊这两者之间的关系吧!1. 什么是最大允许误差?最大允许误差,顾名思义,就是在测量中可以接受的最大偏差。
比如你在量身的时候,测量尺子可能不会完全精准到毫米,但只要它的误差在某个范围内,我们就能接受。
1.1 实际案例举个简单的例子,假设你买了一件衣服,商家说尺寸允许有±1厘米的误差。
也就是说,如果你的衣服长短差别在1厘米之内,那都是可以接受的。
这就是最大允许误差的体现。
1.2 为什么要有最大允许误差?在实际生活中,完美的测量几乎是不可能的。
设定一个最大允许误差,就是为了让我们在实际操作中,不必对小的误差过于紧张。
这样既能保证测量的实际可行性,又能满足使用需求。
2. 什么是不确定度?不确定度则是对测量结果准确性的一个衡量。
它不仅包括测量工具本身的误差,还包括其他可能影响结果的因素。
可以说,它是对测量结果的一个“警示”,告诉我们结果可能会有多大的波动。
2.1 实际案例比如你用电子称称体重,称的结果是65公斤,但这65公斤有可能是64.5公斤到65.5公斤之间。
这个不确定度就是我们在称体重时需要注意的范围。
2.2 不确定度的来源不确定度不仅来自测量工具的精度,还可能受到环境因素、操作方式等影响。
比如你在高温下测量某个物体的长度,温度变化可能会导致测量结果的偏差。
3. 最大允许误差与不确定度的关系虽然最大允许误差和不确定度都是测量中需要关注的因素,但它们有着不同的侧重点。
3.1 相互联系最大允许误差通常是由产品标准或规范设定的,它是一个固定的值。
而不确定度则是对实际测量结果的波动范围的估计。
因此,不确定度应该小于等于最大允许误差,才算符合标准。
3.2 实际应用在实际工作中,我们需要确保测量的最大允许误差在可接受的范围内,同时还要尽量减小不确定度。
误差、精度与不确定度有什么关系?
一、误差的基本概念:
1.误差的定义:
误差=测得值-真值;
因此,误差是一个值,数学上就是坐标轴上的一个点,是具有正负号的一个数值。
2.误差的表示方法:
2.1 绝对误差:
绝对误差=测量值-真值(约定真值)
在检定工作中,常用高一等级准确度的标准作为真值而获得绝对误差。
如:用一等活塞压力计校准二等活塞压力计,一等活塞压力计示值为100.5N/cm2,二等活塞压力计示值为100.2N/cm2,
则二等活塞压力计的测量误差为-0.3N/cm2。
2.2 相对误差:
相对误差=绝对误差/真值X100%
相对误差没有单位,但有正负。
如:用一等标准水银温度计校准二等标准水银温度计,一等标准水银温度计测得20.2℃,二等标准水银温度计测得20.3℃,则二等标准水银温度计的相对误差为0.5%。
2.3 引用误差:
引用误差=示值误差/测量范围上限(或指定值)X100%
引用误差是一种简化和实用方便的仪器仪表示值的相对误差。
如测量范围上限为3000N的工作测力计,在校准示值2400N处的示值为2392.8N,则其引用误差为-0.3%。
3.误差的分类:
3.1 系统误差:在重复性条件下,对同一被测量进行无限多次测量所得结果的平均值与被测量的真值之差。
3.2 随机误差:测量结果与在重复性条件下,对同一被测量进行无限多次测量所得结果的平均值之差。
3.3 粗大误差:超出在规定条件下预期的误差。
二、精度:
1.精度细分为:
准确度:系统误差对测量结果的影响。
精密度:随机误差对测量结果的影响。
精确度:系统误差和随机误差综合后对测量结果的影响。
精度是误差理论中的说法,与测量不确定度是不同的概念,在误差理论中,精度定量的特征可用目前的测量不确定度(对测量结果而言)和极限误差(对测量仪器仪表)来表示。
对测量而言,精密度高的准确度不一定高,准确度高的精密度不一定高,但精确度高的准确度与精密度都高,精度是精确度的简称。
目前,不提倡精度的说法。
三、测量不确定度:
1.定义:表征合理地赋予被测量之值地分散性,与测量结果相联系地参数。
(1)此参数可以是诸如标准差或其倍数,或说明了置信水准的区间的半宽度。
(2)测量不确定度由多个分量组成。
其中一些分量可用测量列结果的统计分布估算,并用实验标准差表征。
另一些分量则可用基于经验或其他信息的假定概率分布估算,也可用标准偏差表征。
(3)测量结果应理解为被测量之值的最佳估计,而所有的不确定度分量均贡献给了分散性,包括那些由系统效应引起的(如,与修正值和参考测量标准有关的)分量。
由此可以看出,测量不确定度与误差,精度在定义上是不同的。
因此,其概念上的差异也造成评价方法上的不同。
四、测量误差和测量不确定度的主要区别
1.定义上的区别:误差表示数轴上的一个点,不确定度表示数轴上的一个区间;
2.评价方法上的区别:误差按系统误差与随机误差评价,不确定度按A类B类评价;
3.概念上的区别:系统误差与随机误差是理想化的概念,不确定度只是使用估计值;
4.表示方法的区别:误差不能以±的形式出现,不确定度只能以±的形式出现;
5.合成方法的区别:误差以代数相加的方法合成,不确定度以方和根的方法合成;
6.测量结果的区别:误差可以直接修正测量结果,不确定度不能修正测量结果;误差按其定义,只和真值有关,不确定度和影响测量的因素有关;
7.得到方法的区别:误差是通过测量得到的,不确定度是通过评定得到的;
8.操作方法的区别:系统误差与随机误差难于操作,不确定评定易于操作;
误差与测量不确定度是相互关联的,就是说,测量误差也包含不确定度,反之,评
定得到的不确定度也还是有误差。
精度是按照误差的分类进行评价的,但在误差合成的方法上与测量不确定度是不同的,系统误差按照代数和合成,随机误差按方和根法合成,而系统误差与随机误差的合成则有按标准差合成的,有按极限误差合成的。
因此,其合成的方法并不统一。
目前,在测量领域,国际上通用的是测量不确定度方法,精度的说法目前已经不再使用,本文希望通过一些简单的介绍,能够对大家在误差,精度及测量不确定度的概念上有所明确,不致引起一些错误有所帮助。