最新初升高自主招生考试数学试题
- 格式:doc
- 大小:199.50 KB
- 文档页数:3
2024初升高自主招生数学模拟试卷(四)一、选择题1.将4046减去它的,再减去余下的,再减去余下的,再减去余下的,…依此类推,直至最后减去余下的则最后余下的数为()A.4B.3C.2D.12.若正实数a,b,c满足不等式组则a,b,c的大小关系为()A.b<a<cB.b<c<aC.c<b<aD.c<a<b3.若实数a,b满足等式2a-b=2a2-2则a b=()A. C. D.44.在Rt△ABC中,∠ABC=90°,AB=2,BC=33,点D是平面内一动点,且上ADB=30°,连CD,则CD长的最大值是()A.8B.9C.10D.115.已知三个实数x1,x2,x3它们中的任何一个数加上其余两数积的6倍总等于7,则这样的三元数组(x1,x2,x3)共有组()A.3B.4C.5D.66.如图,在Rt△ABC中,∠BAC=90°,sin B=45,点D是边BC的中点,以AD为底边在其右侧作等腰△ADE,使∠ADE=∠B,连CE,则CEBC ()A.65 B.56 C.58 D.5127.四边形ABCD 中,AC ,BD 是其两对角线,△ABC 是等边三角形,AD =6,BD =10,CD =8,则∠ADC =()A.30°B.45°C.60°D.75°二、填空题8.已知19个连续整数的和为380,则紧接在这19个数后面的21个连续偶数的和是__.9.已知x =54-,则(2x +1)(x +1)(2x +3)(x +2)=.10.在实数范围内因式分解:a 2-2b 2+3c 2-ab +bc +4ca =.11.在平面直角坐标系xOy 中,点A (4,0),B (4,),连OB ,AB ,若线段OB ,AB 分别交双曲线(0k y k x =>,0)x >于点D ,E (异于点B ),若DE 丄OB ,则k 的值为.12.把两个半径为8和一个半径为9的圆形纸片放在桌面上,使它们两两相外切,若要用一个圆形纸片把这三个圆形纸片完全盖住,则这个大圆形纸片的最小半径等于.13.在菱形ABCD 中,∠A =60°,点E ,F 分别在边AD ,AB 上,将△AEF 沿着EF 对折,使点A 恰好落在对角线BD 上的点G ,若DG =4,BG =6,则△AEF 的面积等于.14.对于任意不为0的实数a ,b ,c 定义一种新运算“#”:①a #a =1;②a #(b #c )=(a #b )c ,则关于x 的方程(x 2)#2=x +4的根为.三、解答题15.回答下列问题:(1)解方程:x =(x 2+4x 一3)2+4x 2+16x 一15;(2)求所有的实数a ,使得关于x 的方程x 2-(2a -1)x +4a -3=0的两根均为整数.16.如图,点E是正方形ABCD的边CD上一动点(异于C,D),连BE,以BE为对角线作正方形BGEF,EF与BD交于点H,连AF.(1)求证:A,F,C三点共线;(2)若CE:DE=1:2,求DHBH的值.17.在平面直角坐标系xOy中,抛物线C1:y=ax2+bx+c(a>0)经过点(0,-3)和(4,-11),且在x轴上截得的线段长为(1)求抛物线C1的解析式;(2)已知点A在抛物线C1上,且在其对称轴右侧,点B在抛物线C1的对称轴上,若△OAB是以OB为斜边的等腰直角三角形,求点A的坐标;(3)将抛物线C1向左平行移动3个单位得到抛物线C2,直线y=kx(k≠0)与C2交于E,F两点,直线2y xk=-与C2交于G,H两点,若M,N分别为线段EF和线段GH的中点,连接MN.求证:直线MN过定点.18.如图,等边△ABC内有一动点D,△CDE是等边三角形(点B,E在直线AC两侧),直线BD与直线AE交于点F.(1)判断∠AFC的大小是否为定值?若是定值,求出其大小;若不是定值,请说明理由.(2)若AB=5,CD=3,求线段AF长的最小值.参考答案1.答案:C解析:令,第二次余下的数为,,.故选:C.2.答案:B解析:由题意可得,因a ,b ,c 均为正实数,于是因此,故选:B.3.答案:A,根据非负性可知,所以故选:A.4.答案:B解析:要使长取到最大,则点C 与点D 位于直线两侧.延长到点E ,使4046=11211123323a a a ⎛⎫⨯-=⨯= ⎪⎝⎭13111,4434a a ⎛⎫⨯-=⨯= ⎪⎝⎭ 1202211114046220232023202220232023a a ⎛⎫⨯-=⨯==⨯= ⎪⎝⎭117,531326c abc c a a b c a ⎧<++<⎪⎪⎪<++<⎨⎪⎪⎪⎩11753132,6153,4a b c c a b c a c a b b ++⎧<<⎪⎪++⎪<<⎨⎪++⎪<<⎪⎩711133356a b c c ++>>>>>>b c a <<(21)20a b -+-=1,22a b ==b a =CD AB CB BE =连,则,,于是点D 在以为直径的圆上(与E 在直线同侧),设圆心为O ,则,当C ,O ,D 三点共线时,长取到最大,最大值为,故选:B.5.答案:C 解析:由条件知①-②得,,所以或.当时,代入③得,又代入①得,消去得,解得于是,或.当,解得或故选:C.6.答案:D解析:由条件知,,所以,所以,又公共,所以,所以也是等腰三角形,于是发现,故选:D.7.答案:A解析:以为一边在四边形外作等边,连,则可证,所以,又,,于是,所以,故选:A.AE 30AEB ∠=︒4AE =AE AB 7OC ==CD 729+=12321331267,67,,67,x x x x x x x x x +=⎧⎪+=⎨⎪+=⎩①②③()()123160x x x --=12x x =316x =12x x =23267x x +=22367x x x +=3x ()()()222161670x x x --+=2x =()()123,,1,1,1x x x =1141,,666⎛⎫ ⎪⎝⎭777,,666⎛⎫--- ⎪⎝⎭3x =121274136x x x x +==1216416x x ⎧=⎪⎪⎨⎪=⎪⎩12x x ⎧=⎪⎪⎨⎪⎪⎩AD BD DC ==B BAD ADE ∠=∠=∠//DE AB CDE B ADE ∠=∠=∠DE ADE CDE ≌△△CDE △CDE BAD ∽△△11552236BC CD AB AB ===⨯=15226CE BD ==⨯=CD ABCD CDE △AE BCD ACE ≌△△10BD AE ==6AD =8DE =222AD DE AE +=90ADE ∠=︒906030ADC ∠=-=︒︒︒8.答案:1050解析:设19个连续整数中最小的整数是,则最大的整数是,,解得,所以紧接在这19个数后面的21个连续偶数分别为30,32,34,,70,.9.答案:42解析:由条件得,又.10.答案:解析:利用待定系数法或双十字相乘法.解析:由条件知,设,则,,又,,所以,,于是于,所以(舍)或12.答案:18解析:要使大圆形纸片的半径最小,只需这个大圆形纸片与三个小圆形纸片均内切,设最小半径大小为r ,则,解得.解析:作于点P ,设,则,,,,n 18n +380=11n = 1050=22540x x +-=()()()()()()()()211232212123x x x x x x x x ⎡⎤⎡⎤++++=++++⎣⎦⎣⎦()()222522536742x x x x =++++=⨯=()()23a b c a b c ++-+:OB y =()D t 2k =2OD t =8OB =60AOB ∠=︒82BD t =-60BED ∠=︒DE =BE =AE ==E ⎛ ⎝k =2=4=t =k =222(8)8(915)r r -=++-18r =FP BD ⊥BP x =PF =2BF x =PF =102AF GF x ==-在中,,即,解得所以14.答案:4或-2解析:令,因,由得,令,由得,于是,所以,解方程得两根分别为4或-2.15.答案:(1)解析:(1)原方程可化为令,则原方程可化为,于是,整理得,所以于是或,当时,,解得当时,,解得综上,原方程的根为(2)不妨设两根为,,则根据韦达定理可知,,于是,所以6PG x=-Rt PFQ △222PF PG GF +=2223(6)(102)x x x +-=-x =AF =AE =AEF △b c a ==#1a a =()()###a b c a b c =#1a a =c b =()()###a b c a b c =()()###a b b a b b =()##1a b b a a ==#a b =)2#2x x =+4x =+x ==()()222434433x x x x x =+-++--243x x t +-=243x t t =+-()224343x t t t x x -=+--+-()2250x t x t -+-=()()50x t x t -++=x t =50x t ++=x t =2330x x +-=x =50x t ++=2520x x ++=x =x =x =1x ()212x x x ≤1221x x a +=-1243x x a =-()121221x x x x -+=-()()12223x x --=因,为整数,,于是,也为整数,且,所以或,当时,解得,此时当时,解得,此时16.答案:(1)见解析解析:证明:(1)在正方形和正方形中,所以,即,所以,所以,又,所以A ,F ,C 三点共线(2)因,设,则,,因,,公共,所以,于是即,解得所以17.答案:(1)(2)或1x 2x 12x x ≤12x -22x -1222x x -≤-122123x x -=⎧⎨-=⎩122321x x -=-⎧⎨-=-⎩122123x x -=⎧⎨-=⎩1235x x =⎧⎨=⎩a =122321x x -=-⎧⎨-=-⎩1211x x =-⎧⎨=⎩12a =ABCD BGEF 45ABD FBE ∠=∠=BE BF==ABD DBF FBE DBF ∠-∠=∠-∠ABF DBE ∠=∠ABF DBE ∽△△45BAF BDC ∠=∠=︒45BAC ∠=︒:1:2CE DE =CE t =2DE t =BD =BE =45BEH BDE ∠=∠=︒DBE ∠BEH BDE ∽△△=2BE BD BH =⋅210t BH =⋅BH =DH BD BH =-=-==263y x x =--()7,4()6,3-(3)解析:(1)由条件可知又,解得所以抛物线的解析式为.(2)当点A 在x 轴上方时,过点A 作轴于点P ,过点B 作直线的垂线,垂足为点Q ,因,,所以,又,,所以,于是.设,则,所以,解得,所以点同理当点A 在x 轴下方时,可求得,综上所述,点A 的坐标为或.(3)由条件知,联立得,于是点,同理可得,设,则,解得所以,其过定点.18.答案:(1)的大小是定值,定值大小为,理由见解析()0,1316411,c a b c ⎧⎪=-⎪⎪++=-⎨=0a >163a b c =⎧⎪=-⎨⎪=-⎩1C 263y x x =--AP x ⊥AP 90OAP BAQ ∠+∠=︒90OAP AOP ∠+∠=︒AOP BAQ ∠=∠OA AB =90OPA AQB ∠=∠=︒OAP ABQ ≌△△AP BQ =()2,63A m m m --3m >2633m m m --=-7m =()7,4A ()6,3A -()7,4()6,3-22:12C y x =-212y kx y x =⎧⎨=-⎩2120x kx --=2,22k k M ⎛⎫ ⎪⎝⎭212,N k k ⎛⎫- ⎪⎝⎭:MN y px q =+222221k k p q p q kk ⎧=+⎪⎪⎨⎪=-+⎪⎩p q ⎧=⎪⎨⎪=⎩22:1k MN y x k-=+()0,1AFC ∠120︒(2)解析:(1)的大小是定值,定值大小为,理由如下:在等边和等边中,,,,于是,即,所以,所以,所以C ,D ,F ,E 四点共圆,所以,于是(2)由(1)知,所以A,F ,C ,B 四点共圆.若最大,则最小.当时,最大,因,,所以,由(1)得,,于是在和中,,所以,所以,于是所以线段长的最小值为.4AFC ∠120︒ABC △CDE △AC BC =CE CD =60ACB DCE CDE ∠=∠=∠=︒ACB ACD DCE ACD ∠-∠=∠-∠ACE BCD ∠=∠ACE BCD ≌△△BDC AEC ∠=∠60CFE CDE ∠=∠=︒180********AFC CFE ∠=-∠=︒-=︒︒︒12060180AFC ABC ︒∠+︒+∠==︒CBF ∠AF CD BF ⊥CBF ∠5AB =3CD =4BD ==ACE BCD ≌△△4AE BD ==90AEC BDC ∠=∠=︒Rt CEF △Rt CDF △CE CD =CF CF=Rt Rt CEF CDF ≌△△30ECF DCF ∠=∠=︒EF =4AF AE EF =-=-AF 4。
2024年广东省深圳中学自主招生数学试卷1.202420252024202363030301030×+=−×____________.2x +=的正数解为____________.3.等腰ABC △的底边AC 长为30,腰上的高为24,则ABC △的腰长为____________.4.已知实数m ,n 满足2202410m m ++=,224200n n ++=且1mn ≠,则601n mn=+____________. 5.若x 为全体实数,则函数223y x x =−+与2243y x x =−+的交点有____________个. 6.若0abc ≠,1a b c b c c a a b++=+++,则222a b c b c c a a b ++=+++____________. 7.K 为ABC △内一点,过点K 作三边的垂线KM ,KN ,KP ,若3AM =,5BM =,4BN =,2CN =,4CP =,则2AP =____________.8.记a ,b ,c 的最小值为{}min ,,a b c ,若{}()min 41,2,24fx x x x =++−+的最大值为M ,则6M =____________.9.已知正方形OBAC ,以OB 为半径作圆,过A 的直线交O 于M ,Q ,交BC 与P ,R 为PQ 中点,若18AP =,7PR =,则BC =____________.10.若a ,b ,c ,d ,e 为两两不同的整数,则22222()()()()()a b b c c d d e e f −+−+−+−+−的最小值为____________.11.PA ,PB 分别为1O 和2O 的切线,连接AB 交1O 于C 交2O 于D ,且AC BD =,已知1O 和2O 的半径分别为20和24,则2180PA PB = ____________.12.已知a ,b ,c 正整数,且只要1111a b c ++<,则111m a b c ++≤,设m 的最小值为r s (r s 为最简分数),则r s +=____________. 13.对于任意实数x ,y ,定义运算符号*,且*x y 有唯一解,满足()()()***a b c a c b c +=+,0*()(0*)(0*)a b a b +=+,则20*24=____________. 14.已知正整数A ,B ,C 且A C >,满足222879897ABC BCA CAB ++=,则ABC =____________.15.等腰三角形边长均为整数,其的面积在数值上是周长的12倍,则所有可能的等腰三角形的腰长之和为____________.2024深圳中学自招答案一、填空题.1.【解析】原式20242025220242023630306303018090054301030301020×+×++===−×−.2.x +=,x =, ∴218232x x x =−, ∵0x >,∴223218x −=,解得:5x =,∴该方程的正数解为5x =.3.【解析】①若ABC △为锐角三角形,如图所示:设ABC △的腰长为x ,在ACD △中,18AD =,在BCD △中,222(18)24x x −+=,解得:25x =,∴ABC △的腰长为25;②若ABC △为钝角三角形,如图所示:在BCD △中,222(18)24x x −+=,解得:25x =(舍), 综上所述:ABC △的腰长为25.4.【解析】由224200n n ++=得21120()2410n n+⋅+=,∵1m n ≠,∴m ,1n可以视为方程2202410x x ++=的两个实数根, ∴165m n +=−,∴60605011n mn m n ==++. 5.【解析】问题等价于方程2223243x x x x −+=−+的解的个数问题; ∴2240x x x +−=, 当0x ≥时,220x x −=,∴0x =或2x =;当0x <时,260x x −=,∴0x =或6x =(舍); 综上所述:函数223y x x =−+与2243y x x =−+的交点有2个. 6.【解析】222()()a b c a b c a b c a b c b c a c a b b c a c a b++++=+++++++++++, ∴222a b c a b c a b c b c a c a b++=++++++++, ∴2220a b c b c a c a b++=+++. 7.【解析】22222222()()KA KB KM AM KM BM AM BM −=−+=−, 同理可得:2222KB KC BN CN −=−,2222KC KA CP AP −=−,三式相加得:222222AM BN CP BM CN AP ++=++,∴222222.34452AP ++=++,解得212AP =.8.【解析】由题意作出以下图形:考虑24y x =−+与2y x =+的交点即可;联立242y x y x =−+ =+ ,解得2383x y = = ,∴83M =,∴616M =. 9.【解析】连接OP ,设AM x =,ACOC a ==, ∴18PM x =−,32QM x =−,由正方形的对称性:18OP AP ==,由圆幂定理:2AC AM AQ =⋅,22PM PQ OC OP ⋅=−,∴232a x =,2214(18)18x a −=−,∴214(18)3218x x −=−,解得:28823x =,∴BC ==.10.【解析】记1a b x −=,2b c x −=,3c d x −=,4d e x −=,5e a x −=,则1x 、2x 、3x 、4x 、5x 均为整数且不等于0,同时满足123450x x x x x ++++=,∴1x 、2x 、3x 、4x 、5x 中存在偶数个奇数,若存在2个1,2个1−,1个2,则对于1x 、2x 、3x 、4x 、5x 构成的数环而言必有一个1与1−相邻,这是不符合要求的,否则存在两数相等;所以至少存在两个数的绝对值为1,3个数的绝对值为2,∴222221234514x x x x x ++++≥,对于(,,,,)(1,3,5,4,2)a b c d e =而言可以取到14,故其最小值为14.11.【解析】过1O 、2O 、P 分别作AB 的垂线,垂足依次为E 、F 、G , ∴1190PAG O AE AO E ∠=°−∠=∠,2290PBG O BF BO F ∠=°−∠=∠,1122AE AG BD BF ===, ∴1APG O AE △∽△,2BPG O BF △∽△,∴1PA AO PG AE =,2PB BO PG BF =, ∴1122205246AO PA AO AE BO PB AO BF====,∴225180()180()1256PA PB =×=.12.【解析】不妨设a b c ≤≤,则2a ≥,当3a ≥时,1111111133412a b c ++≤++=; 当2a =时,11111112a b c b c ++=++<,∴1112b c +<,∴3b ≥, 当4b ≥时,1111111924520a b c ++≤++=, 当3b =时,1111114123742a b c ++≤++=, 即当(,,)(2,3,7)a b c =时,4142m =,83r s +=. 13.【解析】由(*)(*)(*)a b c a c b c +=+得*(*)(*)a b a c b c c =+−, ∴*(*)(*)*b a b c a c c a b =+−=,取0c =,则*(*0)(*0)(0*)(0*)0*()a b a b a b a b =+=+=+,对于0*()(0*)(0*)a b a b +=+,取0a b ==,得0*00=, 同时0*0(0*)(0*)0c c c =+−=,∴0*2c c =, ∴20*240*(2024)0*4422=+==.14.【解析】首先22228798971000ABC BCA CAB ++=<,∴A 、B 、C 均为一位数,且不为0,即从1到9,其次考虑末尾特点,222A B C ++的末尾为7,而完全平方数的末尾为014569,不考虑0,剩下14569,想要使得末尾为7,可以有1157++=或44917++=或56617++=或99927++=,由于A B C >>,故99927++=舍去(末尾为9的只有3、7两个),若满足1157++=,则对应的数为9、5、1,显然222951519195879897++>,舍去; 若满足56617++=,则对应的数为6、5、4,显然222654546465942057879897++=>,舍去; 若满足44917++=,则对应的数为8、3、2或8、7、2,计算222832328283879897++=符合题意;计算222872728287879897++>,舍去; 综上所述:832ABC =.15.【解析】设该等腰ABC △的腰为a ,底为b .由题意:112(2)2b a b ×+,∴48(2)b a b +,∴b 2322304(2)ab b a b −=+, ∴33223042304246082(48)(48)b b b b a b b b ++=−+−,∴3230446082(48)(48)(48)(48)b b b a b b b b b +==++−+−, 记4608(48)(48)b k b b =+−,k 为正整数,∴222248480kb b k −×−=,∴2∆==×为完全平方数,m =(m 为正整数),∴22248m k −=,即2()()48m k m k +−=, 由于2824823=×,有(81)(21)27++=个因子,应该存在(271)2114−÷+=组,考虑到()m k +与()m k −应该同奇偶,故存在14311−=组,列举如下: ∴(,)(1152,2)m k m k +−=或(576,4)或(384,6)或(288,8)或(192,12)或(144,16)或(128,18)或(96,24)或(72,32)或(64,36)或(48,48),∴(,)(577,575)m k =或)290,286(或)195,189(或)148,140(或(102,90)或(80,64)或(73,55)或(60,36)或(52,20)或(50,14)或(48,0), 根据求根公式,224824848(48)2m m b k k ×+×+=, 代入检验可得:当(,)(102,90)m k =或(80,64)或(60,36)或(52,20)或(50,14), 依次解得:80b =或96或144或240或336, ∵2a b k =+,∴2b k a +=,解得85a =或80或90或130或175, 综上所述:所有可能的等腰三角形的腰长之和为858090130175560++++=.。
一、填空题:本题共15小题,共702023-2024学年广东省深圳中学自主招生数学试卷分。
1.计算:______.2.计算:______.3.已知,且,设,其中m 和n 是两个互质的正整数,则______.4.已知实数x ,y 满足,则______.5.如图,已知中,,D 是AB 的中点,,则______.6.若反比例函数的图象与一次函数的图象交于点和,则______.7.定义新运算:,例如:已知实数x 满足,则x 的最大值是______.8.如图,已知直线RS ,ST ,TR 都与相切,且,,,,的直径为,其中a 和b 都是有理数,则______.9.在平面直角坐标系中,由抛物线与x 轴所围出的区域内有______个整点横纵坐标都是整数的点边界上的点不计10.满足的全部实数x 的乘积等于______.11.如图所示为地板所铺瓷砖的一小部分.所有的瓷砖都是正方形,最小的正方形瓷砖是,次小的则是若以线段XY 为边长作正方形,则该正方形的面积为______12.已知三个非零实数x、y、z满足,则的值等于______.13.如图,在矩形ABCD中,,,若在AC,AB上各取一点M,N使的值最小,则这个最小值等于______.14.若正整数a、b、m满足且,则m的所有值之和等于______.15.一个的矩形ABCD,点P、Q、R、S分别为在AB、BC、CD、DA边上的点,如图所示.已知AP、PB、BQ、QC、CR、RD、DS、SA的长度都是正整数单位长,且PQRS为矩形,则矩形PQRS的面积的最大值是______.答案和解析1.【答案】308【解析】解:原式故答案为:分子、分母同时乘上和,再计算即可求解.本题考查了分母有理化,灵活运用二次根式的性质、掌握分母有理化的方法是解答本题的关键.2.【答案】972【解析】解:原式故答案为:根据特殊角的三角函数值、积的乘方法则计算即可.本题考查了实数的运算和特殊角的三角函数值,熟练掌握运算法则是关键.3.【答案】196【解析】解:解方程组,得,则,和n是两个互质的正整数,,,,故答案为:解方程组用含z的代数式表示出x、y,代入计算求出,根据质数的概念分别求出m、n,计算即可.本题考查的是质数和合数的概念、三元一次方程组的解法,正确由z表示出x、y是解题的关键.4.【答案】【解析】解:设,,原方程组可化为,由①可得:③,把③代入②可得:,解得:,把代入③得:,,,,,经检验,都是原方程的解.故答案为:根据换元法求出与的值,然后求出x和y的值,最后代入代数式求值.本题主要考查了分式方程的知识、换元法的知识、代数式求值的知识、二元一次方程的知识,难度不大,认真计算即可.5.【答案】40【解析】解:过B点作交AC的延长线于点E,,,,,为等腰直角三角形,AC::DB,,,为AB的中点,,在中,,,,解得,故答案为:过B点作交AC的延长线于点E,可证明为等腰直角三角形,,再利用勾股定理可得,结合平行线分线段成比例定理可得,根据勾股定理可求解,进而可求解本题主要考查等腰直角三角形,勾股定理,平行线分线段成比例定理等知识的综合运用,利用更改的求解是解题的关键.6.【答案】625【解析】解:将点和分别代入,得:,再将点和分别代入,得:,,,,故答案为:首先将点A,B代入反比例函数的解析式得,再将点A,b代入一次函数的解析式得,,据此可得,然后再将代入求值的代数式即可得出代数式的值.此题主要考查了的反比例函数与一次函数的交点,解答此题的关键是理解函数图象上的点都满足函数的解析式,满足函数解析式的点都在函数的图象上.7.【答案】4【解析】解:,,,,,,的最大值是故答案为:由新定义列出算式解方程即可.本题考查了解一元二次方程,新定义,解题的关键是由新定义列出算式.8.【答案】330【解析】解:如图,设直线RS,ST,TR都与相切于点A、点B、点C,则,,在中,,,,,连接OA、OB,则,,,,四边形OASB是正方形,,设,则,,,即,,,直径为,的直径为,即,,,故答案为:根据切线的性质,切线长定理以及正方形的性质进行计算即可.本题考查切线的性质,正方形的性质,掌握切线长定理以及正方形的性质是正确解答的前提9.【答案】14【解析】解:抛物线,令,即,解得从图中可以看出,抛物线与x轴所围出的区域内的整点有,,,,,,,,,,,,,故答案为:根据抛物线求出与x轴的交点,再利用图象找到整点即可.本题考查了二次函数的图象与性质,解题的关键是掌握二次函数图象上点的坐标特征.10.【答案】594【解析】解:当时,原式化简为:,,算式不成立;当时,原式化简为:,,;当时,原式化简为:,,;当时,原式化简为:,,;当时,原式化简为:,,算式不成立,故答案为:分情况计利用方程解出x的值,再将x的值相乘即可.本题考查了方程的解答,绝对值的性质的应用是解题关键.11.【答案】400【解析】解:如图:图中的四边形均为正方形,且最小正方形的边长为1cm,次小正方形的边长为3cm,,则,,,,,,,在中,,,由勾股定理得:,以线段XY为边长作正方形,则该正方形的面积为故答案为:依题意得,则,,进而得,,,由此得,,然后在中由勾股定理得,据此可得出答案.此题主要考查了正方形的性质,勾股定理,解答此题的关键是准确识图,根据正方形的性质求出相关线段的长.12.【答案】600【解析】解:,,,,,,,故答案为:先化简得到,代入得到结论即可.本题考查了分式的化简求值,实数的运算,正确地求得是解题的关键.13.【答案】16【解析】解:如图,作点B关于直线AC的对称点,交AC与E,连接,过作于G,交AC于F,由对称性可知,,,的最小值为的长;在中,,,由勾股定理,得,点B与点关于AC对称,,,,,,,又,∽,,,的最小值是故答案为:作点B关于直线AC的对称点,交AC与E,连接,过作于G于点F,再由对称性可知,因此求出的长即可.本题考查轴对称-最短路线问题,矩形的性质,勾股定理,相似三角形的判定与性质,面积法,根据题意作出辅助线是解题的关键.14.【答案】27【解析】解:①,②,①②,得,因式分解,得,,b均为正整数,且或,,或,,,或,或,或,的所有值之和等于第11页,共11页故答案为:根据已知条件①,②得到,因式分解得到,由于a ,b 均为正整数,于是得到或,求得,或,根据求得或,即可求得m 的所有值之和等于本题考查了因式分解的应用,正确的理解题意得到是解题的关键.15.【答案】150【解析】解:根据题意:设,,,,由∽,则,,又因为a ,b 是正整数,故,24,33,40,45,48,49,得,15,则或9,即有,,,,,,150,150,102,即:故答案为:如图,根据矩形的性质,可知∽,得到a ,b 的关系式,再由题意a ,b 是正整数,得到的的整数解,从而求出矩形PQRS 的面积,取最大值.本题主要考查了矩形的基本性质,相似三角形的判定和性质,求二元方程组的整数解及三角形的面积等知识的运用,是一个综合性较强的题目,在图形中找出相似三角形是解题的关键.。
学校姓名考场座位号2024年自主招生素质检测数学试题注意事项:1.本试卷满分为150分,考试时间为120分钟㊂2.全卷包括 试题卷 (4页)和 答题卡 (2页)两部分㊂3.答题一律要求用0.5m m 黑色签字笔在答题卡上规定的地方答卷,作图题使用2B 铅笔作答,考试不使用计算器㊂4.考试结束后,请将 试题卷 和 答题卡 一并交回㊂一㊁选择题:共10小题,每小题5分,共50分㊂在每小题给出的四个选项中,只有一项是符合题目要求的㊂1.由5个相同的小立方体搭成的几何体如图所示,现拿走一个小立方体,得到几何体的主视图与左视图均没有变化,则拿走的小立方体是A .①B .②C .③D .④2.黄山景色绝美,景观奇特. 五一 假期,黄山风景区进山游客近13万人,黄山景区门票旺季190元/人,以此计算, 五一 假期黄山景区进山门票总收入用科学计数法表示为A .0.247ˑ107B .2.47ˑ107C .2.47ˑ108D .247ˑ1053.下列因式分解正确的是A .2x 2+y 2+4x y =(2x +y )2B .x 3-2x y +x y 2=x (x -y )2C .x 2-(3y -1)2=(x -1+3y )(x +1-3y )D .a x 2-a y 2+1=a (x +y )(x -y )+14.已知点A (x 1,y 1),B (x 2,y 2)是抛物线y =a x 2-3x +3上两点,当a -x 1-x 2=2时,y 1=y 2,则该抛物线与坐标轴的交点个数为A .3个或0个B .3个或1个C .2个或0个D .2个5.若关于x 的不等式组x +2a <03x +a <15的解集中的任意x 的值,都能使不等式x -4<0成立,则实数a 的取值范围为A .a <-3B .a <-2C .a ȡ-2D .a ȡ36.如图,已知әA B C 中,A D 为øB A C 的平分线,A B =8,B C =6,A C =10,则D C 的值为A .10B .2C .5D .17.如图,B (-2,0),C (4,0),且B E 所在的直线与A C 垂直,øA C B -øB A O =45ʎ,连接O D ,若射线O D 上有一点M ,横坐标为6,则әB O M 的面积为A .3B .6C .23D .728.定义:用M a ,b ,c 表示这三个数的中位数,用M i n {a ,b ,c }表示这三个数的最小数.例如:M {-1,12,0}=0,M i n {-1,12,0}=-1.如果M {4,x 2,2x -1}=M i n {4,x 2,2x -1},则x 的值为A .2或-2B .1或12C .2或12D .1或529.如图,әA B C 中,A B =B C ,øB =120ʎ,E 为平面内一点,若A E =3,C E =2,则B E 的值可能为A .2.5B .3C .0.3D .0.510.如图,直线A B :y =13x +b 与反比例函数y =kx相交于点A (3,5),与y 轴交于点B ,将射线A B 绕点A 逆时针旋转45ʎ,交反比例函数图象于点C ,则点A ㊁B ㊁C 构成的三角形面积为A .12B .1110C .232D .554二㊁填空题:共4小题,每小题5分,共20分㊂11.某市为改善市容,绿化环境,计划经过两年时间,绿地面积增加44%,则这两年平均绿地面积的增长率为.12.若x 9+x 8+ +x 2+x +1=0,则x 的值为.13.定义:对于函数y =l g x (x >0),y 随x 的增大而增大,且l g 10=1,l g xy=l g x -l g y ,l g x y =l g x +l g y .若1a +5b =5,则l g a +l g b 的最大值为.14.已知二次函数y =2x 2+b x +c 图象的对称轴为直线x =34,且过点(3,10),若其与直线y =3交于A ㊁B 两点,与直线y =x +5交于P ㊁Q 两点,则P Q 2A B值为.三㊁解答题:共5题,共80分㊂解答应写出文字说明,证明过程和解题步骤㊂15.(12分)(1)若13a +25b =1,23a +35b =3,求a 2-b 2+8b -172025;(2)先化简再求值:m +2m -m -1m -2ːm -4m 2-4m +4,其中m =2s i n 30ʎ㊃t a n 45ʎ-32t a n 30ʎ.16.(12分)请按以下要求完成尺规作图.(1)如图1,菱形A B C D 中,点P 在对角线B D 上,请作出一对以B D 所在直线为对称轴的全等三角形,使交B A 于点M ,交B C 于点N ,әP B M ɸәP B N .你有几种解法?请在下图中完成;(保留必要作图痕迹,不写作法)(2)如图2,点P 是菱形A B C D 内部一点,请作出一条过点P 的直线,交射线B A ㊁射线B C 于点M ㊁N ,且B M =B N ,聪明的你肯定有多种不同作法?请在下图中完成两种作法,并选择其中一种证明:B M =B N .(保留必要作图痕迹,不写作法)17.(15分)如图,直角三角形A B C中,以直角边A B为直径作圆交A C于点D,过点D作D MʅA B于点M,E为D M的中点,连接A E并延长交B C于点F,B F=E F.(1)求证:C F=B F;(2)求t a nøD E F;(3)若D F=2,求圆的面积.18.(19分)已知四边形A B C D,A B=4,点P在射线B C上运动,连接A P.(1)若四边形A B C D为正方形,点M在A P上,且øA D M=øA P D.请判断A M㊁A P㊁A C之间数量关系,并说明理由;(2)若四边形A B C D为菱形呢?øB=60ʎ,其他条件与(1)同,则(1)中的结论还成立吗?并说明理由;(3)若四边形A B C D为正方形,将线段A P绕点P顺时针旋转90ʎ于P Q,此时D Q的最小值为多少?A Q+D Q的最小值呢?并说明理由.19.(22分)已知抛物线y=a x2+b x+c的顶点坐标为A(1,4),与x轴交点分别为点B㊁C(点B在点C 左侧),与y轴交点为D,一次函数y=k x+4(k>0)与x轴所形成的夹角的正切值为4,方程k x+4=a x2+b x+c有两个相等的实数根.(1)求该抛物线的解析式;(2)点M是该抛物线上一动点,则在抛物线对称轴上是否存在点N,使得以A㊁B㊁M㊁N为顶点的四边形为平行四边形?若存在,请求出所有满足条件的点N坐标及该平行四边形的面积;若不存在,请说明理由;(3)若将该抛物线向左平移1个单位,再向下平移4个单位得到抛物线y',点D关于x轴的对称点为D',若过点D'的直线与y'交于P㊁Q两点(点P在点Q左侧),点Q关于y轴的对称点为Q',若әP Q O与әP Q Q'面积相等,求直线P Q的解析式.2024年自主招生素质检测数学参考答案选择题:共10小题,每小题5分,满分50分㊂题号12345678910答案CBCBCABDAD填空题:共4小题,每小题5分,满分20分㊂11.20% 12.-1 13.1 14.2654.ʌ解析ɔ x 1+x 2=a -2,抛物线的对称轴x =--32a,ʑ32a =a -22⇒a 2-2a -3=0⇒(a +1)(a -3)=0⇒a 1=-1,a 2=3,ʑ①当a 1=-1时,y =-x 2-3x +3,Δ=9+12>0,与坐标轴的交点个数为3个;②当a 2=3时,y =3x 2-3x +3,Δ=9-4ˑ3ˑ3<0,与坐标轴的交点个数为1个.5.ʌ解析ɔ x <-2a ,x <15-a 3,①-2a >15-a 3,解得a <-3,ʑx <15-a 3,ȵx <4,ʑ15-a 3ɤ4,解得a ȡ3(舍去);②-2a ɤ15-a 3,解得a ȡ-3,ʑx <-2a ,ȵx <4,ʑ-2a ɤ4,解得a ȡ-2.6.ʌ解析ɔ 由角平分线定理S әA B D S әA C D =A B ㊃h A C ㊃h =45=B D D C ,ʑ45=6-D C D C ,解得D C =103.7.ʌ解析ɔ øB E O =øB A E +øA B E ,øA C B =øB A O +45ʎ,R t әB O E ʐR t әB D C ,ʑøB E O =øA C B ,ʑøA B D =45ʎ,则әA B D 为等腰直角三角形,A D =B D ,ʑR t әA E D ɸR t әB C D ,ʑA E =B C ,S әA E D =S әB C D ,ʑh 1=h 2,ʑ点D 在øA O C 的角平分线上,M (6,6),S әB O M =2ˑ62=6.8.ʌ解析ɔ 由图像知x 2=2x -1,解得x =1;或2x -1=4,解得x =52.9.ʌ解析ɔ 设B E =x ,将әA B E 绕B 点顺时针旋转120ʎ到әC B E ',C E '=A E =3,øE B E '=120ʎ,B E =B E '=x ,易得E E '=3x ,在әC E E '中,C E '-C E <E E '<C E '+C E ,即3-2<3x <2+3,解得33<x <533.10.ʌ解析ɔ 由题知,直线y =13x +b 与反比例函数y =k x相交于点A(3,5),则13ˑ3+b =5,解得b =4,k =15,法一:直线A C 与y 轴交于点M ,从M 点作直线A B 的垂线,垂足为N ,A M =(m -5)2+32,MN =(4-m )s i n θ=(4-m )310,A M =2MN ,ʑ(m -5)2+9=95(m -4)2⇒5(m -5)2+45=9(m -4)2,2m 2-11m -13=0⇒(2m -13)(m +1)=0,ʑm =132(舍)或m =-1,直线A C 的方程为y =2x -1.2x -1=15x ⇒2x 2-x -15=0⇒(2x +5)(x -3)=0,解得x 1=-52,x 2=3,ʑ点C (-52,-6),S әA B C =5ˑ(3+52)2=554.法二:易知l A B :y =13x +4,设l A C :y =k 2x +b ,由倒角公式得t a n 45ʎ=k 2-k 11+k 1k 2=k 2-131+13k 2=1,k 2-13=13k 2+1,两边平方得k 2=2或k 2=-12(舍),又l A C 过点A ,ʑl A C :y =2x -1(与y 轴交点为M ),与y =15x 联立得x C =-52,ʑS әA B C =12BM |x A -x C |=554.12.ʌ答案ɔ -1ʌ解析ɔ 若x =0,等式不成立,则x ʂ0,等式两边同乘x ,ʑx 10+x 9+x 8+ +x 2+x =0⇒x 10-1=0⇒x 10=1,解得x =ʃ1.当x =1时,等式不成立;当x =-1时,等式成立.13.ʌ解析ɔ l g a +l g b =l ga b ,即求a b 的最大值,12a +54b ȡ212a ㊃54b =258a b ,258a b ɤ5⇒a b ɤ10.14.ʌ解析ɔ 由题知,-b 4=34,解得b =-3,抛物线过点(3,10),代入数据解得c =1,抛物线y =2x 2-3x +1,当y =3时,2x 2-3x +1=3,解得x 1=-12,x 2=2,A B =52,当y =x +5时,2x 2-3x +1=x +5⇒x 2-2x -2=0⇒x 3+x 4=2,x 3x 4=-2,(x 3-x 4)2=(x 3+x 4)2-4x 3x 4=12,P Q =(1+k 2)(x 3-x 4)2=26,P Q 2A B =265.15.(12分)ʌ解析ɔ (1)13a +25b =1, ①23a +35b =3, ②①+②得a +b =4,(2分) a 2-b 2+8b -17=(a +b )(a -b )+8b -17=4a -4b +8b -17=4a +4b -17=-1,(4分)a 2-b 2+8b -17 2025=-1.(6分)(2)原式=m +2m -m -1m -2㊃(m -2)2m -4=m 2-4-(m 2-m )m (m -2)㊃(m -2)2m -4=m -4m (m -2)㊃(m -2)2m -4=m -2m,(8分)m =2ˑ12-32ˑ33=12,(10分) ʑ原式=12-212=-3.(12分) 16.(12分)ʌ解析ɔ (1)提示:作P M ㊁P N 分别垂直于A B ㊁A C ,如图1;(2分)过P 点作MN 垂直于B D ,如图2;(4分)P 作E F ʊB C A B 于点E C D 于点F E M =E P M P 交B C 于点N作法二:先作B M '=B N ',交A B 于点M ',交B C 于点N ',连接M 'N ',将直线M 'N '平移过点P ,交A B 于点M ,交B C 于点N ,即MN 为所求直线,如图4;(8分)选择作法一证明:ȵE M =E P ,ʑøE M P =øE P M ,ȵE F ʊB C ,ʑøE P M =øB NM ,ʑøE M P =øB NM ,ʑB M =B N .(12分)选择作法二证明:ȵB M '=B N ',ʑøB M 'N '=øB N 'M ',M 'N 'ʊMN ,ʑøB MN =øB M 'N ',øB NM =øB N 'M ',ʑøB MN =øB NM ,ʑB M =B N .(12分)(作法不限,合理即可)17.ʌ解析ɔ (1)ȵD M ʊB C ,ʑәA D E ʐәA C F ,әA E M ʐәA F B ,ʑA E A F =D E C F ,A E A F =E M B F,(2分) ȵD E =E M ,ʑC F =B F ;(4分)(2)取A B 的中点O ,即为圆心,连接O F ,设圆O 的半径为r ,延长A B 交D F 延长线于G ,由(1)知,F 为R t әB C D 中斜边B C 的中点,ʑD F =B F =E F ,ʑøF D E =øD E F =øA E M ,ȵøG +øG D M =øE A M +øA E M =90ʎ,则øG =øE A M ,ʑA F =F G ,在әA F G 中,F B ʅA G ,则A B =B G =2r ,A O =r ,O G =3r ,(6分)ȵO F ʊA C ,ʑO G A O =F G D F=3,即F G =3D F ,(8分) ȵD F =B F ,ʑF G =3B F ,ʑc o s øB F G =B F F G =13,ʑt a n øD E F =t a n øE D F =t a n øB F G =B G B F=22;(10分)(3)ȵD F =B F ,ʑB F =2,由(2)知,t a n øB F G =B G B F=22,ʑB G =42,(12分)ȵB G =2r ,ʑr =22.(13分)S 圆O =πr 2=8π.(15分)18.ʌ解析ɔ (1)A C 2=2A M ㊃A P .(2分)理由如下:如图1,ȵøA D M =øA P D ,øD A M =øP A D ,ʑәA D M ʐәA P D ,ʑA D A P =A M A D ,ʑA D 2=A M ㊃A P ,在正方形A B C D 中,A D =22A C,ʑ(22A C )2=A M ㊃A P ,ʑA C 2=2A M ㊃A P .(6分)(2)(1)中的结论不成立.(7分) 理由如下:如图2,ȵøA D M =øA P D ,øD A M =øP A D ,ʑәA D M ʐәA P D ,ʑA D A P =A M A D,ʑA D 2=A M ㊃A P ,ȵ在菱形A B C D 中,øB =60ʎ,则B C =A B =A C =A D ,ʑA C 2=A M ㊃A P .(11分)(3)如图3,过点Q 分别作Q E ʅB C 的延长线于点E ,Q F ʅC D 于点F ,ʑQ F =C E ,设B P =m ,A P =Q P ʑR t әA B P ɸR t әP E Q ,则B P =Q E =m ,A B =P E =4,ȵC E +P C =B P +P C =4,ʑC E =B P =m ,在R t әD F Q 中,Q F =C E =m ,D F =C D -C F =4-m ,(15分) D Q 2=D F 2+Q F 2=(4-m )2+m 2=2m 2-8m +16=2(m -2)2+8,当m =2时,D Q 取得最小值,D Q m i n =22,(17分) 分析易知Q 在C D '上运动,作D 关于C D '的对称点C ',连接Q C ',则(A Q +D Q )m i n =(A Q +Q C ')m i n =A C '=42+82=45.(19分) 19.ʌ解析ɔ (1)由题可知k =4,ʑy =4x +4(2分) 2的顶点坐标为A y =a x -12即4x +4=a (x -1)2+4⇒a x 2-(2a +4)x +a =0有两个相等的实数根,ʑΔ=(2a +4)2-4a 2=0,解得a =-1,ʑ抛物线的解析式为y =-(x -1)2+4=-x 2+2x +3;(5分)(2)设M 点坐标为(m ,-m 2+2m +3),N 点坐标为(1,n ),A (1,4),令-x 2+2x +3=0,解得x 1=-1,x 2=3,所以B (-1,0),C (3,0),(7分)若A B 为对角线,1-12=m +12,解得m =-1(舍去);若A M 为对角线,m +12=1-12,解得m =-1(舍去);若A N 为对角线,1+12=m -12,解得m =3;(9分) 4+n 2=0-m 2+2m +32,解得n =-4,此时M (3,0),N (1,-4),(10分)S ▱A B M N =4ˑ82=16;(12分) (3)由题可知,抛物线y '=-x 2,点D (0,3)关于x 轴的对称点D '(0,-3),直线P Q 过点D ',设直线P Q 的解析式为y P Q =k x -3,若k >0,如图1,S әP Q O =S әP Q Q ',则Q 'O ʊP Q ,则әQ 'H O ɸәQ H D ',所以O H =12O D '=32,H (0,-32),所以Q (62,-32),Q '(-62,-32),直线P Q 的解析式为y P Q =62x -3;(16分)若k <0,如图2,过点Q '作直线l ʊP Q ,取l 与y 轴交点M ,作O L ʅP Q 于点L ,MH ʅP Q 于点H ,所以O L ʊHM ,S әP Q O =S әP Q O ',所以O L =HM ,所以四边形O L MH 为平行四边形,则对角线互相平分,所以M (0,-6),同理,әD 'K Q ɸәM K Q ',所以D 'K =K M =12D 'M =32,所以K (0,-92),(20分) 因为点Q 的纵坐标为-92,所以Q (322,-92),直线P Q 的解析式为y P Q =-22x -3.(21分)综上,直线P Q 的解析式为y P Q =6x -3或y P Q =-2x -3.分)。
省重点高中自主招生数学真题8套(含答案)第1套一、选择题(每小题5分,满分30分。
以下每小题均给出了代号为A ,B ,C ,D 的四个选项,其中有且只有一个选项是正确的。
请将正确选项的代号填入题后的括号里,不填、多填或错填得0分。
)1、已知实数a 、b 、c 满足0254=-+-+++a b c b a ,那么bc ab +的值为( ) A 、0B 、16C 、-16D 、-32 2、设βα、是方程02322=--x x 的两个实数根,则βααβ+的值是( )A 、-1B 、1C 、32-D 、32 3、a 、b 、c 均不为0,若0<=-=-=-abc cxz b z y a y x ,则),(bc ab p 不可能在( ) A 、第一象限 B 、第二象限 C 、第三象限 D 、第四象限4、在ABC ∆中,C B ∠=∠2,下列结论成立的是( ) A 、AB AC 2= B 、AB AC 2< C 、AB AC 2> D 、AC 与AB 2大小关系不确定5、已知关于x 的不等式7<a x 的解也是不等式12572->-aa x 的解,则a 的取值范围 是( )A 、910-≥aB 、910->a C 、0910<≤-a D 、0910<<-a 6、如图,□ DEFG 内接于ABC ∆,已知ADE ∆、EFC ∆、DBG ∆的面积为1、3、1,那么□ DEFG 的面积为( ) A 、32B 、2C 、3D 、4 第6题图二、填空题(每小题5分,共30分)1、已知质数x 、y 、z 满足5719=-yz x ,则z y x ++= 。
2、已知点A (1,3),B (4,-1),在x 轴上找一点P ,使得AP -BP 最大,那么P 点的坐标是 。
3、已知AB 是⊙O 上一点,过点C 作⊙O 的切线交直线AB 于点D ,则当△ACD 为等腰三解形时,∠ACD 的度数为 。
1. 已知一个数x满足x²-2x+1=0,则x的值为()A. 1B. 2C. 0D. -12. 在等差数列{an}中,若a1=2,d=3,则第10项an的值为()A. 27B. 28C. 29D. 303. 已知直角三角形ABC中,∠C=90°,AC=3,BC=4,则AB的长度为()A. 5B. 6C. 7D. 84. 若一个等腰三角形的底边长为8,腰长为10,则该三角形的面积为()A. 40B. 50C. 60D. 805. 在平面直角坐标系中,点P(3,4)关于直线y=x的对称点为()A.(4,3)B.(-4,-3)C.(-3,-4)D.(-4,3)二、填空题(每题5分,共25分)6. 已知数列{an}的通项公式为an=3n²-2n+1,则a4的值为______。
7. 在等差数列{an}中,若a1=1,公差d=2,则第10项an的值为______。
8. 已知直角三角形ABC中,∠C=90°,AC=5,BC=12,则AB的长度为______。
9. 在等腰三角形ABC中,底边AB=8,腰AC=10,则该三角形的面积为______。
10. 在平面直角坐标系中,点P(-2,3)关于直线y=-x的对称点为______。
三、解答题(每题10分,共40分)11. (10分)已知数列{an}的通项公式为an=2n+1,求该数列的前10项之和。
12. (10分)已知等差数列{an}的公差d=3,若a1+a4+a7=27,求该数列的前10项之和。
13. (10分)在直角三角形ABC中,∠C=90°,AC=6,BC=8,求斜边AB的长度。
14. (10分)在等腰三角形ABC中,底边AB=10,腰AC=12,求该三角形的面积。
15. (10分)在平面直角坐标系中,点P(2,-3)关于直线y=x的对称点为Q,求点Q的坐标。
安徽省168中学自主招生考试数学模拟试卷一参照答案与试题解析一、选择题(本大题共8小题,每题3分,共24分.).1.(3分)若不等式组旳解集是x>3,则m旳取值范围是()A.m>3 B.m≥3 C.m≤3 D.m<3考点:解一元一次不等式组.专题:计算题.分析:先解不等式组,然后根据不等式旳解集,得出m旳取值范围即可.解答:解:由x+7<4x﹣2移项整顿得:﹣3x<﹣9,∴x>3,∵x>m,又∵不等式组旳解集是x>3,∴m≤3.故选C.点评:重要考察了一元一次不等式组解集旳求法,将不等式组解集旳口诀:同大取大,同小取小,大小小大中间找,大大小小找不到(无解)逆用,已知不等式解集反过来求m旳范围.2.(3分)如图,在△ABC中.∠ACB=90°,∠ABC=15°,BC=1,则AC=()A.B.C.0.3 D.考点:特殊角旳三角函数值.分析:本题中直角三角形旳角不是特殊角,故过A作AD交BC于D,使∠BAD=15°,根据三角形内角和定理可求出∠DAC及∠ADC旳度数,再由特殊角旳三角函数值及勾股定理求解即可.解答:解:过A作AD交BC于D,使∠BAD=15°,∵△ABC中.∠ACB=90°,∠ABC=15°,∴∠BAC=75°,∴∠DAC=∠BAC﹣∠BAD=75°﹣15°=60°,∴∠ADC=90°﹣∠DAC=90°﹣60°=30°,∴AC=AD,又∵∠ABC=∠BAD=15°∴BD=AD,∵BC=1,∴AD+DC=1,设CD=x,则AD=1﹣x,AC=(1﹣x),∴AD2=AC2+CD2,即(1﹣x)2=(1﹣x)2+x2,解得:x=﹣3+2,∴AC=(4﹣2)=2﹣故选B.点评:本题考察旳是特殊角旳三角函数值,解答此题旳关键是构造特殊角,用特殊角旳三角函数促使边角转化.注:(1)求(已知)非特角三角函数值旳关是构造出含特殊角直角三角形.(2)求(已知)锐角三角函数值常根据定转化为求对应线段比,有时需通过等旳比来转换.3.(3分)(•南漳县模拟)如图,AB为⊙O旳一固定直径,它把⊙O提成上,下两个半圆,自上半圆上一点C作弦CD⊥AB,∠OCD旳平分线交⊙O于点P,当点C在上半圆(不包括A,B两点)上移动时,点P()A.到CD旳距离保持不变B.位置不变D.随C点移动而移动C.等分考点:圆周角定理;圆心角、弧、弦旳关系.专题:探究型.分析:连OP,由CP平分∠OCD,得到∠1=∠2,而∠1=∠3,因此有OP∥CD,则OP⊥AB,即可得到OP平分半圆APB.解答:解:连OP,如图,∵CP平分∠OCD,∴∠1=∠2,而OC=OP,有∠1=∠3,∴∠2=∠3,∴OP∥CD,又∵弦CD⊥AB,∴OP⊥AB,∴OP平分半圆APB,即点P是半圆旳中点.故选B.点评:本题考察了圆周角定理.在同圆或等圆中,同弧和等弧所对旳圆周角相等,一条弧所对旳圆周角是它所对旳圆心角旳二分之一.也考察了垂径定理旳推论.4.(3分)已知y=+(x,y均为实数),则y旳最大值与最小值旳差为()A.2﹣1 B.4﹣2C.3﹣2D.2﹣2考点:函数最值问题.分析:首先把y=+两边平方,求出定义域,然后运用函数旳单调性求出函数旳最大值和最小值,最终求差.解答:解:∵y=+,∴y2=4+2=4+2×,∵1≤x≤5,当x=3时,y旳最大值为2,当x=1或5时,y旳最小值为2,故当x=1或5时,y获得最小值2,当x取1与5中间值3时,y获得最大值,故y旳最大值与最小值旳差为2﹣2,故选D.点评:本题重要考察函数最值问题旳知识点,解答本题旳关键是把函数两边平方,此题难度不大.5.(3分)(•泸州)已知O为圆锥旳顶点,M为圆锥底面上一点,点P在OM上.一只蜗牛从P点出发,绕圆锥侧面爬行,回到P点时所爬过旳最短路线旳痕迹如图所示.若沿OM将圆锥侧面剪开并展开,所得侧面展开图是()A.B.C.D.考点:线段旳性质:两点之间线段最短;几何体旳展开图.专题:压轴题;动点型.分析:此题运用圆锥旳性质,同步此题为数学知识旳应用,由题意蜗牛从P点出发,绕圆锥侧面爬行,回到P点时所爬过旳最短,就用到两点间线段最短定理.解答:解:蜗牛绕圆锥侧面爬行旳最短路线应当是一条线段,因此选项A和B错误,又由于蜗牛从p点出发,绕圆锥侧面爬行后,又回到起始点P处,那么假如将选项C、D旳圆锥侧面展开图还原成圆锥后,位于母线OM上旳点P应当可以与母线OM′上旳点(P′)重叠,而选项C还原后两个点不可以重叠.故选D.点评:本题考核立意相对较新,考核了学生旳空间想象能力.6.(3分)已知一正三角形旳边长是和它相切旳圆旳周长旳两倍,当这个圆按箭头方向从某一位置沿正三角形旳三边做无滑动旳旋转,直至回到原出发位置时,则这个圆共转了()A.6圈B.6.5圈C.7圈D.8圈考点:直线与圆旳位置关系.分析:根据直线与圆相切旳性质得到圆从一边转到另一边时,圆心要绕其三角形旳顶点旋转120°,则圆绕三个顶点共旋转了360°,即它转了一圈,再加上在三边作无滑动滚动时要转6圈,这样得到它回到原出发位置时共转了7圈.解答:解:圆按箭头方向从某一位置沿正三角形旳三边做无滑动旳旋转,∵等边三角形旳边长是和它相切旳圆旳周长旳两倍,∴圆转了6圈,而圆从一边转到另一边时,圆心绕三角形旳一种顶点旋转了三角形旳一种外角旳度数,圆心要绕其三角形旳顶点旋转120°,∴圆绕三个顶点共旋转了360°,即它转了一圈,∴圆回到原出发位置时,共转了6+1=7圈.故选C.点评:本题考察了直线与圆旳位置关系,弧长公式:l=(n为圆心角,R为半径);也考察了旋转旳性质.7.(3分)二次函数y=ax2+bx+c旳图象如下图,则如下结论对旳旳有:①abc>0;②b<a+c;③4a+2b+c>0;④2c<3b;⑤a+b>m(am+b)(m≠1,m为实数)()A.2个B.3个C.4个D.5个考点:二次函数图象与系数旳关系.专题:图表型.分析:由抛物线旳开口方向判断a旳符号,由抛物线与y轴旳交点判断c旳符号,然后根据对称轴及抛物线与x 轴交点状况进行推理,进而对所得结论进行判断.解答:解:①由图象可知:a<0,b>0,c>0,abc<0,错误;②当x=﹣1时,y=a﹣b+c<0,即b>a+c,错误;③由对称知,当x=2时,函数值不小于0,即y=4a+2b+c>0,对旳;④当x=3时函数值不不小于0,y=9a+3b+c<0,且x=﹣=1,即a=﹣,代入得9(﹣)+3b+c<0,得2c<3b,对旳;⑤当x=1时,y旳值最大.此时,y=a+b+c,而当x=m时,y=am2+bm+c,因此a+b+c>am2+bm+c,故a+b>am2+bm,即a+b>m(am+b),对旳.③④⑤对旳.故选B.点评:考察二次函数y=ax2+bx+c系数符号由抛物线开口方向、对称轴和、抛物线与y轴旳交点、抛物线与x轴交点旳个数确定.8.(3分)如图,正△ABC中,P为正三角形内任意一点,过P作PD⊥BC,PE⊥AB,PF⊥AC连结AP、BP、CP,假如,那么△ABC旳内切圆半径为()A.1B.C.2D.考点:三角形旳内切圆与内心;等边三角形旳性质.分析:过P点作正△ABC旳三边旳平行线,可得△MPN,△OPQ,△RSP都是正三角形,四边形ASPM,四边形NCOP,四边形PQBR是平行四边形,故可知黑色部分旳面积=白色部分旳面积,于是求出三角形ABC旳面积,进而求出等边三角形旳边长和高,再根据等边三角形旳内切圆旳半径等于高旳三分之一即可求出半径旳长度.解答:解:如图,过P点作正△ABC旳三边旳平行线,则△MPN,△OPQ,△RSP都是正三角形,四边形ASPM,四边形NCOP,四边形PQBR是平行四边形,故可知黑色部分旳面积=白色部分旳面积,又知S△AFP+S△PCD+S△BPE=,故知S△ABC=3,S△ABC=AB2sin60°=3,故AB=2,三角形ABC旳高h=3,△ABC旳内切圆半径r=h=1.故选A.点评:本题重要考察等边三角形旳性质,面积及等积变换,解答本题旳关键是过P点作三角形三边旳平行线,证明黑色部分旳面积与白色部分旳面积相等,此题有一定难度.二、填空题(本大题共8小题,每题3分,共24分)9.(3分)与是相反数,计算=.考点:二次根式故意义旳条件;非负数旳性质:绝对值.专题:计算题.分析:根据互为相反数旳和等于0列式,再根据非负数旳性质列式求出a+旳值,再配方开平方即可得解.解答:解:∵与|3﹣a﹣|互为相反数,∴+|3﹣a﹣|=0,∴3﹣a﹣=0,解得a+=3,∴a+2+=3+2,根据题意,a>0,∴(+)2=5,∴+=.故答案为:.点评:本题考察了二次根式故意义旳条件,非负数旳性质,求出a+=3后根据乘积二倍项不含字母,配方是解题旳关键.10.(3分)若[x]表达不超过x旳最大整数,,则[A]=﹣2.考点:取整计算.专题:计算题.分析:先根据零指数幂和分母有理化得到A=﹣,而≈1.732,然后根据[x]表达不超过x旳最大整数得到,[A]=﹣2.解答:解:∵A=++1=++1=+1=+1=﹣1﹣+1=﹣,∴[A]=[﹣]=﹣2.故答案为﹣2.点评:本题考察了取整计算:[x]表达不超过x旳最大整数.也考察了分母有理化和零指数幂.11.(3分)如图,M、N分别为△ABC两边AC、BC旳中点,AN与BM交于点O,则=.考点:相似三角形旳鉴定与性质;三角形中位线定理.专题:计算题;证明题.分析:连接MN,设△MON旳面积是s,由于M、N分别为△ABC两边AC、BC旳中点,易知MN是△ABC旳中位线,那么MN∥AB,MN=AB,根据平行线分线段成比例定理可得△MON∽△BOA,于是OM:OB=MN:AB=1:2,易求△BON旳面积是2s,进而可知△BMN旳面积是3s,再根据中点性质,可求△BCM旳面积等于6s,同理可求△ABC旳面积是12s,从而可求S△BON:S△ABC.解答:解:连接MN,设△MON旳面积是s,∵M、N分别为△ABC两边AC、BC旳中点,∴MN是△ABC旳中位线,∴MN∥AB,MN=AB,∴△MON∽△BOA,∴OM:OB=MN:AB=1:2,∴△BON旳面积=2s,∴△BMN旳面积=3s,∵N是BC旳中点,∴△BCM旳面积=6s,同理可知△ABC旳面积=12s,∴S△BON:S△ABC=2s:12s=1:6,故答案是.点评:本题考察了相似三角形旳鉴定和性质、三角形中位线定理,解题旳关键是连接MN,构造相似三角形.12.(3分)如图,已知圆O旳面积为3π,AB为直径,弧AC旳度数为80°,弧BD旳度数为20°,点P为直径AB 上任一点,则PC+PD旳最小值为3.考点:轴对称-最短路线问题;勾股定理;垂径定理;圆心角、弧、弦旳关系.专题:探究型.分析:先设圆O旳半径为r,由圆O旳面积为3π求出R旳值,再作点C有关AB旳对称点C′,连接OD,OC′,DC′,则DC′旳长即为PC+PD旳最小值,由圆心角、弧、弦旳关系可知==80°,故BC′=100°,由=20°可知=120°,由OC′=OD可求出∠ODC′旳度数,进而可得出结论.解答:解:设圆O旳半径为r,∵⊙O旳面积为3π,∴3π=πR2,即R=.作点C有关AB旳对称点C′,连接OD,OC′,DC′,则DC′旳长即为PC+PD旳最小值,∵旳度数为80°,∴==80°,∴=100°,∵=20°,∴=+=100°+20°=120°,∵OC′=OD,∴∠ODC′=30°∴DC′=2OD•cos30°=2×=3,即PC+PD旳最小值为3.故答案为:3.点评:本题考察旳是轴对称﹣最短路线问题及垂径定理,圆心角、弧、弦旳关系,根据题意作出点C有关直线AB 旳对称点是解答此题旳关键.13.(3分)从1,2,3,5,7,8中任取两数相加,在不一样旳和数中,是2旳倍数旳个数为a,是3旳倍数旳个数为b,则样本6、a、b、9旳中位数是 5.5.考点:中位数.分析:首先列举出所有数据旳和,进而运用已知求出a,b旳值,再运用中位数是一组数据重新排序后之间旳一种数或之间两个数旳平均数,由此即可求解.解答:解:根据从1,2,3,5,7,8中任取两数相加,可以得出所有也许:1+2=3,1+3=4,1+5=6,1+7=8,1+8=9,2+3=5,2+5=7,2+7=9,2+8=10,3+5=8,3+7=10,3+8=11,5+7=12,5+8=13,7+8=15,它们和中所有不一样数据为:3,4,5,6,7,8,9,10,11,12,13,15,故是2旳倍数旳个数为a=5,是3旳倍数旳个数为b=5,则样本6、5、5、9按大小排列为:5,5,6,9,则这组数据旳中位数是:=5.5,故答案为:5.5.点评:此题考察了列举法求所有也许以及中位数旳定义,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间旳那个数(最中间两个数旳平均数),叫做这组数据旳中位数,假如中位数旳概念掌握得不好,不把数据按规定重新排列,就会出错.14.(3分)由直线y=kx+2k﹣1和直线y=(k+1)x+2k+1(k是正整数)与x轴及y轴所围成旳图形面积为S,则S 旳最小值是.考点:两条直线相交或平行问题.分析:首先用k表达出两条直线与坐标轴旳交点坐标,然后表达出围成旳面积S,根据得到旳函数旳取值范围确定其最值即可.解答:解:y=kx+2k﹣1恒过(﹣2,﹣1),y=(k+1)x+2k+1也恒过(﹣2,﹣1),k为正整数,那么,k≥1,且k∈Z如图,直线y=kx+2k﹣1与X轴旳交点是A(,0),与y轴旳交点是B(0,2k﹣1)直线y=(k+1)x+2k+1与X轴旳交点是C(,0),与y轴旳交点是D(0,2k+1),那么,S四边形ABDC=S△COD﹣S△AOB,=(OC•OD﹣OA•OB),=[﹣],=(4﹣),=2﹣又,k≥1,且k∈Z,那么,2﹣在定义域k≥1上是增函数,因此,当k=1时,四边形ABDC旳面积最小,最小值S=2﹣=.点评:本题考察了两条指向相交或平行问题,解题旳关键是用k表达出直线与坐标轴旳交点坐标并用k表达出围成旳三角形旳面积,从而得到函数关系式,运用函数旳知识其最值问题.15.(3分)(•随州)如图,在矩形纸片ABCD中,AB=5cm,BC=10cm,CD上有一点E,ED=2cm,AD上有一点P,PD=3cm,过P作PF⊥AD交BC于F,将纸片折叠,使P点与E点重叠,折痕与PF交于Q点,则PQ旳长是cm.考点:翻折变换(折叠问题).专题:压轴题.分析:过Q点作QG⊥CD,垂足为G点,连接QE,设PQ=x,根据折叠及矩形旳性质,用含x旳式子表达Rt△EGQ 旳三边,再用勾股定理列方程求x即可.解答:解:过Q点作QG⊥CD,垂足为G点,连接QE,设PQ=x,由折叠及矩形旳性质可知,EQ=PQ=x,QG=PD=3,EG=x﹣2,在Rt△EGQ中,由勾股定理得EG2+GQ2=EQ2,即:(x﹣2)2+32=x2,解得:x=,即PQ=.点评:本题考察图形旳翻折变换,解题过程中应注意折叠是一种对称变换,它属于轴对称,根据轴对称旳性质,折叠前后图形旳形状和大小不变,如本题中折叠前后对应线段相等.16.(3分)(•随州)将半径为4cm旳半圆围成一种圆锥,在圆锥内接一种圆柱(如图示),当圆柱旳侧面旳面积最大时,圆柱旳底面半径是1cm.考点:圆柱旳计算;二次函数旳最值;圆锥旳计算.专题:压轴题.分析:易得扇形旳弧长,除以2π也就得到了圆锥旳底面半径,再加上母线长,运用勾股定理即可求得圆锥旳高,运用相似可求得圆柱旳高与母线旳关系,表达出侧面积,根据二次函数求出对应旳最值时自变量旳取值即可.解答:解:扇形旳弧长=4πcm,∴圆锥旳底面半径=4π÷2π=2cm,∴圆锥旳高为=2cm,设圆柱旳底面半径为rcm,高为Rcm.=,解得:R=2﹣r,∴圆柱旳侧面积=2π×r×(2﹣r)=﹣2πr2+4πr(cm2),∴当r==1cm时,圆柱旳侧面积有最大值.点评:用到旳知识点为:圆锥旳弧长等于底面周长;圆锥旳高,母线长,底面半径构成直角三角形;相似三角形旳相似比相等及二次函数最值对应旳自变量旳求法等知识.三、解答题(72)17.(14分)已知抛物线y=﹣x2+bx+c(c>0)过点C(﹣1,0),且与直线y=7﹣2x只有一种交点.(1)求抛物线旳解析式;(2)若直线y=﹣x+3与抛物线相交于两点A、B,则在抛物线旳对称轴上与否存在点Q,使△ABQ是等腰三角形?若存在,求出Q点坐标;若不存在,阐明理由.考点:二次函数综合题.分析:(1)将C点坐标代入y=﹣x2+bx+c得c=b+1,联立抛物线y=﹣x2+bx+b+1与直线y=7﹣2x,转化为有关x 旳二元一次方程,令△=0求b旳值即可;(2)直线y=﹣x+3与(1)中抛物线求A、B两点坐标,根据抛物线解析式求对称轴,根据线段AB为等腰三角形旳腰或底,分别求Q点旳坐标.解答:解:(1)把点C(﹣1,0)代入y=﹣x2+bx+c中,得﹣1﹣b+c=0,解得c=b+1,联立,得x2﹣(b+2)x+6﹣b=0,∵抛物线与直线只有一种交点,∴△=(b+2)2﹣4(6﹣b)=0,解得b=﹣10或2,∵c=b+1>0,∴b=2,∴抛物线解析式为y=﹣x2+2x+3;(2)存在满足题意旳点Q.联立,解得或,则A(0,3),B(3,0),由抛物线y=﹣x2+2x+3,可知抛物线对称轴为x=1,由勾股定理,得AB=3,当AB为腰,∠A为顶角时,Q(1,3+)或(1,3﹣);当AB为腰,∠B为顶角时,Q(1,)或(1,﹣);当AB为底时,Q(1,1).故满足题意旳Q点坐标为:(1,3+)或(1,3﹣)或(1,)或(1,﹣)或(1,1).点评:本题考察了二次函数旳综合运用.关键是根据题意求出抛物线解析式,根据等腰三角形旳性质,分类求Q 点旳坐标.18.(14分)有一河堤坝BCDF为梯形,斜坡BC坡度,坝高为5m,坝顶CD=6m,既有一工程车需从距B点50m旳A处前方取土,然后通过B﹣C﹣D放土,为了安全起见,工程车轮只能停在离A、D处1m旳地方即M、N处工作,已知车轮半经为1m,求车轮从取土处到放土处圆心从M到N所通过旳途径长.考点:解直角三角形旳应用-坡度坡角问题.分析:作出圆与BA,BC相切时圆心旳位置G,与CD相切时圆心旳位置P,与CD相切时圆心旳位置I,分别求得各段旳途径旳长,然后求和即可.解答:解:当圆心移动到G旳位置时,作GR⊥AB,GL⊥BC分别于点R,L.∵,∴∠CBF=30°,∴∠RGB=15°,∵直角△RGB中,tan∠RGB=,∴BR=GR•tan∠RGB=2﹣,则BL=BR=2﹣,则从M移动到G旳路长是:AB﹣BR﹣1=50﹣(2﹣)﹣1=47+m,BC=2×5=10m,则从G移动到P旳位置(P是圆心在C,且与BC相切时圆心旳位置),GP=10﹣BL=10﹣(2﹣)=8+m;圆心从P到I(I是圆心在C,且与CD相切时圆心旳位置),移动旳途径是弧,弧长是:=m;圆心从I到N移动旳距离是:6﹣1=5m,则圆心移动旳距离是:(47+)+(8+)+5+=60+2+(m).点评:本题考察了弧长旳计算公式,对旳确定圆心移动旳路线是关键.19.(14分)如图,过正方形ABCD旳顶点C在形外引一条直线分别交AB、AD延长线于点M、N,DM与BN交于点H,DM与BC交于点E,BN△AEF与DC交于点F.(1)猜测:CE与DF旳大小关系?并证明你旳猜测.(2)猜测:H是△AEF旳什么心?并证明你旳猜测.考点:相似形综合题.分析:(1)运用正方形旳性质得到AD∥BC,DC∥AB,运用平行线分线段成比例定理得到,,从而得到,然后再运用AB=BC即可得到CE=DF;(2)首先证得△ADF≌△DCE,从而得到∠DAF=∠FDE,再根据∠DAF+∠ADE=90°得到AF⊥DE,同理可得FB⊥AE,进而得到H为△AEF旳垂心.解答:解:(1)CE=DF;证明:∵正方形ABCD∴AD∥BC,DC∥AB∴,(∴∴又AB=BC∴CE=DF;(2)垂心.在△ADF与△DCE中,,∴△ADF≌△DCE(SAS),∴∠DAF=∠FDE,∵∠DAF+∠ADE=90°,∴AF⊥DE,同理FB⊥AE.H为△AEF旳垂心.点评:本题考察了相似形旳综合知识,本题是一道开放性问题,对旳旳猜测是深入解题旳方向和基础,非常重要.20.(15分)如图,已知菱形ABCD边长为,∠ABC=120°,点P在线段BC延长线上,半径为r1旳圆O1与DC、CP、DP分别相切于点H、F、N,半径为r2旳圆O2与PD延长线、CB延长线和BD分别相切于点M、E、G.(1)求菱形旳面积;(2)求证:EF=MN;(3)求r1+r2旳值.考点:圆旳综合题.专题:综合题.分析:(1)由于菱形ABCD边长为,∠ABC=120°,根据菱形旳性质得到ADC和△DBC都是等边三角形,运用等边三角形旳面积等于边长平方旳倍即可得到菱形旳面积=2S△DBC=2××(6)2=54;(2)由于PM与PE都是⊙O1旳切线,PN与PF都是⊙O2旳切线,根据切线长定理得到PM=PN,PN=PE,则PM﹣PN=PE﹣PB,即EF=MN;(3)由于BE与BG都是⊙O1旳切线,根据切线旳性质和切线长定理得到BE=BG,∠O2BE=∠O2BG,O2E⊥BE,而∠EBG=180°﹣∠DBC=180°﹣60°=120°,于是有∠O2BE=60°,∠EO2B=30°,根据含30°旳直角三角形三边旳关系得到BE=O2E=r2,则BG=r2,DM=DG=6﹣r2,同理可得CF=r1,DN=DH=6﹣r1,则MN=DM+DN=12﹣(r1+r2),而EF=EB+BC+CF=r2+6+r1=6+(r1+r2),运用EF=MN可得到有关(r1+r2)旳方程,解方程即可.解答:(1)解:∵菱形ABCD边长为,∠ABC=120°,∴△ADC和△DBC都是等边三角形,∴菱形旳面积=2S△DBC=2××(6)2=54;(2)证明:∵PM与PE都是⊙O2旳切线,∴PM=PE,又∵PN与PF都是⊙O1旳切线,∴PN=PF,∴PM﹣PN=PE﹣PB,即EF=MN;(3)解:∵BE与BG都是⊙O2旳切线,∴BE=BG,∠O2BE=∠O2BG,O2E⊥BE,而∠EBG=180°﹣∠DBC=180°﹣60°=120°,∴∠O2BE=60°,∠EO2B=30°,∴BE=O2E=r2,∴BG=r2,∴DM=DG=6﹣r2,同理可得CF=r1,DN=DH=6﹣r1,∴MN=DM+DN=12﹣(r1+r2),∵EF=EB+BC+CF=r2+6+r1=6+(r1+r2),而EF=MN,∴6+(r1+r2)=12﹣(r1+r2),∴r1+r2=9.点评:本题考察了圆旳综合题:圆旳切线垂直于过切点旳半径;从圆外一点引圆旳两条切线,切线长相等,并且这个点与圆心旳连线平分两切线旳夹角;掌握菱形旳性质,记住等边三角形旳面积等于边长平方旳倍以及含30°旳直角三角形三边旳关系.21.(15分)(•黄冈)如图,已知抛物线旳方程C1:y=﹣(x+2)(x﹣m)(m>0)与x轴相交于点B、C,与y 轴相交于点E,且点B在点C旳左侧.(1)若抛物线C1过点M(2,2),求实数m旳值;(2)在(1)旳条件下,求△BCE旳面积;(3)在(1)条件下,在抛物线旳对称轴上找一点H,使BH+EH最小,并求出点H旳坐标;(4)在第四象限内,抛物线C1上与否存在点F,使得以点B、C、F为顶点旳三角形与△BCE相似?若存在,求m 旳值;若不存在,请阐明理由.考点:二次函数综合题.专题:代数几何综合题;压轴题.分析:(1)将点(2,2)旳坐标代入抛物线解析式,即可求得m旳值;(2)求出B、C、E点旳坐标,进而求得△BCE旳面积;(3)根据轴对称以及两点之间线段最短旳性质,可知点B、C有关对称轴x=1对称,连接EC与对称轴旳交点即为所求旳H点,如答图1所示;(4)本问需分两种状况进行讨论:①当△BEC∽△BCF时,如答图2所示.此时可求得m=+2;②当△BEC∽△FCB时,如答图3所示.此时可以得到矛盾旳等式,故此种情形不存在.解答:解:(1)依题意,将M(2,2)代入抛物线解析式得:2=﹣(2+2)(2﹣m),解得m=4.(2)令y=0,即(x+2)(x﹣4)=0,解得x1=﹣2,x2=4,∴B(﹣2,0),C(4,0)在C1中,令x=0,得y=2,∴E(0,2).∴S△BCE=BC•OE=6.(3)当m=4时,易得对称轴为x=1,又点B、C有关x=1对称.如解答图1,连接EC,交x=1于H点,此时BH+EH最小(最小值为线段CE旳长度).设直线EC:y=kx+b,将E(0,2)、C(4,0)代入得:y=x+2,当x=1时,y=,∴H(1,).(4)分两种情形讨论:①当△BEC∽△BCF时,如解答图2所示.则,∴BC2=BE•BF.由函数解析式可得:B(﹣2,0),E(0,2),即OB=OE,∴∠EBC=45°,∴∠CBF=45°,作FT⊥x轴于点T,则∠BFT=∠TBF=45°,∴BT=TF.∴可令F(x,﹣x﹣2)(x>0),又点F在抛物线上,∴﹣x﹣2=﹣(x+2)(x﹣m),∵x+2>0,∵x>0,∴x=2m,F(2m,﹣2m﹣2).此时BF==2(m+1),BE=,BC=m+2,又∵BC2=BE•BF,∴(m+2)2=•(m+1),∴m=2±,∵m>0,∴m=+2.②当△BEC∽△FCB时,如解答图3所示.则,∴BC2=EC•BF.∵△BEC∽△FCB∴∠CBF=∠ECO,∵∠EOC=∠FTB=90°,∴△BTF∽△COE,∴,∴可令F(x,(x+2))(x>0)又∵点F在抛物线上,∴(x+2)=﹣(x+2)(x﹣m),∵x>0,∴x+2>0,∴x=m+2,∴F(m+2,(m+4)),EC=,BC=m+2,又BC2=EC•BF,∴(m+2)2=•整顿得:0=16,显然不成立.综合①②得,在第四象限内,抛物线上存在点F,使得以点B、C、F为顶点旳三角形与△BCE相似,m=+2.点评:本题波及二次函数旳图象与性质、相似三角形旳鉴定与性质、轴对称﹣最小途径问题等重要知识点,难度较大.本题难点在于第(4)问,需要注意分两种状况进行讨论,防止漏解;并且在计算时注意运用题中条件化简计算,防止运算出错.。
初中升高中面向省内外自主招生考试数 学 试 卷(时间:120分钟 满分:150分)一、填空题(每题5分,共70分)1、分解因式:229124x y y -+-= .2、分式226x x x m--+在实数范围内恒有意义,则实数m 的取值范围是 3、已知a 、b 为非零实数,且满足 3227300a a b ab --=,则分式23a ba b+-= .4、如图1,AB 是⊙O 的直径,点E 是AB的中点,点F 是BE 的中点,AE 、BF 的延长线交于点P ,则APB ∠= . 5、若22044(2)x x x x -+=+-,则x= .6、如图2,⊙1O 在⊙2O 上无滑动地滚动4周后,刚好回到原来的位置,则⊙1O 与⊙2O 的面 积之比为 .7、把直线32y x =-向上平移6个单位后,再向右平移 个单位后,直线解析式仍为32y x =-.8、从编号分别是2、7、7、8、9的五个球中,任意取两个,它们的和刚好是偶数的概率是 .9、如图3,在△ABC 中,60,10,12B AB BC ∠=︒==,则边AC = .10、若二次函数2(12)5y x m x m =+--+的图象不经过第三象限,则实数m 的取值范围是 . 11、若点P 、Q 为线段AB 的两个不同的黄金分割点,AB=10,则PQ= .12、如图4,四边形ABCD 的对角线AC 、BD 相交于点O ,54,63DO AO BO CO ==,则 ABC ACDs s= .13、若y 与1x 成正比例,1x 与2x 成反比例,2x 与3x 成正比例,3x 与4x 成反比例…,则y 与2007x 成 比例. 14、一次函数483y x =-+的图象与y 轴、x 轴围成的三角形的内切圆半径 是 .二、选择题(每题5分,共20分) 15、若a 、b 、c 为实数,且c b ak a b a c b c===+++,则下列四个点中,不可能在正比 例函数y kx =的图象上的点是( ).A (-5,5)B (3,3)C (-4,-2)D (0,0)16、甲、乙、丙、丁四名运动员参加4³100米接力赛,如果甲必须安排在第二棒,那么,这四名运动员在比赛中的接棒顺序有( ).A 4种可能B 5种可能C 6种可能D 8种可能 17、△ABC 中,∠A 、∠B 、∠C 所对的边分别为a 、b 、c ,若a ab b a b c+=++, 则∠A 与∠B 的关系是( )A ∠A=∠B B ∠A=2∠BC 2∠A=∠BD ∠A +∠B >90° 18、若a 、b 为非零实数,下列说法正确的是( ) A 2214a ab b -+是非负数, B a b a b +≥- C 若a >b ,则11a b < D (1)a x b +>的解集为1bx a >+三、解答下列各题(共60分)19、计算下列各题(每题5分,共10分)(1) 222214()2442a a a a a a a a a+---÷--+-(2) 412(tan 601)--︒-20、已知二次函数2(1)413y x m x m =+++-. (1) 求证:此二次函数与x 轴有两个交点。
2025重点高中自主招生数学针对性模拟试卷(本试卷满分150分,时间2小时)一、选择题(每小题6分,共60分)1.若“14人中至少有2人在同一个月过生日”这一事件发生的概率为P ,则()A.P=0B.0<P<1C.P=1P>12.下列命题中,真命题的个数是()①一组对边平行且对角线相等的四边形是矩形②对角线互相垂直且相等的四边形是菱形③两组对角分别相等的四边形是平行四边形④一组对边平行,另一组对边相等的四边形是平行四边形A.0个 B.1个 C.2个 D.3个3.方程()1112=--x x 的根共有()A.1个B.2个C.3个D.4个4.设{}d c b a ,,,max 表示d c b a ,,,中最大的数,则⎭⎫⎩⎨⎧-210,2,260tan 2,45cos 2max 0π=()A.045cos 2 B.260tan 20- C.2π D.2105.若关于x 的方程012)14(2=-+++m x m x 的两根分别为1x 、2x ,且321=+x x ,则m =()A.-1或21 B.-1或1C.21-或21 D.21-或16.如图,在△ABC 中,点D 在线段AC 上,点F 在线段BC 延长线上,BF=5CF,且四边形CDEF 是平行四边形,△BDE 与△ADE 的面积之和为7,则△ABC 面积为()A.28 B.29 C.30 D.327.用数字0,1,2,3,4可以组成没有重复数字的四位数共有()A.64个 B.72个 C.96个 D.不同于以上答案8.已知y x ,是整数,则满足方程03432=---y x xy 的数对),(y x 共有()A.4对B.6对C.8对D.12对9.如图,在△ABC 中,AC=BC=4,D 是BC 的中点,过A,C,D 三点的圆O 与AB 边相切于点A,则圆O 的半径为()A.2B.5C.214D.714410.若关于x 的方程x k x =-23有三个不同解321,,x x x ,设,321x x x m ++=则m 的取值范围为()A.2<m B.23->m C.20<<m D.223<<-m 二、填空题(每小题6分共36分)11.已知△ABC 中,BC=1,AC=2,AB=3,则△ABC 的内切圆半径为.12.若y x 、满足⎪⎪⎩⎪⎪⎨⎧=+=+2454545yx xy y x xy ,则=+y x .13.如图,在平面直角坐标系中,抛物线22--=x x y 与x 轴交于A、B 两点(点A 在点B 左边),点E 在对称轴MN 上,点F 在以点C(-1,-4)为圆心,21为半径的圆上,则AE+EF 的最小值为.14.已知直线)0(1>+=k kx y 与双曲线xy 2=交于A、B 两点,设A、B 两点的坐标分别为),(11y x A 、),(22y x B ,则=-+-)1()1(1221y x y x .15.若21≤---a x x 对任意实数x 都成立,则实数a 的取值范围是.16.已知互不相等的正整数20321,,,,a a a a 满足202420321=+++a a a a ,设d 是20321,,,,a a a a 的最大公约数,则d 的最大值为.三、解答题(共54分)17.(12分)已知实数215-=a .(1)求a a +2的值;(2)求3223111aa a a a a +++++的值.18.(12分)已知一次函数)0(1)2(<+-=k x k y 的图象与y x 、轴分别交于点A、B.(1)若2-=k ,试在第一象限内直接写出点),(y x M 的坐标,使得A、B、M 三点构成一个等腰直角三角形;(2)设O 为坐标原点,求△OAB 的面积的最小值.19.(14分)如图,已知0120=∠AOB ,PT 切圆O 于T,A、B、P 三点共线,∠APT 的平分线依次交AT、BT 于C、D,连接BC、AD.(1)求证:△CDT 为等边三角形;(2)若AC=8,BD=2,求PC 的长.20.(16分)已知函数a x a x y -+-+=3)4(2.(1)若此函数的图象与x 轴交于点)0,()0,(21x B x A 、,且2021≤<≤x x ,求a 的取值范围;(2)若20≤≤x ,求y 的最大值;(3)记a x a x x f -+-+=3)4()(2,若对于任意的40<<a ,都能找到200≤≤x ,使t x f ≥)(0,求t 的取值范围参考答案:一、选择题:1-5CBBDC6-10ACBDD 二、填空题:11、2321-+12、913、2914、-415、31≤≤-a 16、817.(1)∵215-=a ,512=+∴a ,5)12(2=+∴a .4442=+∴a a ,12=+∴a a .(3)a a -=12,12)1()1(23-=--=-=-=∴a a a a a a a a .∴原式==++++-3321112aa a a a 122222112333-+=+=++a a a a a a a .当215-=a 时,原式=353)25(2152521511522152+=++-=-+-=--+-⨯.18.(1)当2-=k 时,52+-=x y ,满足题意的M 点有3个,分别为415,415(),215,5(),25,215(321M M M .(2)易求得)21,0(),0,12(k B kA --.k kk k OB OA S OAB 2212)2112(2121--=--=⋅=∴∆,0<k ,021>-∴k ,02>-k .有均值不等式得4)2(2122=-⋅-+≥∆k kS OAB ,当且仅当k k 221-=-,即21-=k 时,等号成立.∴△ABC 的面积的最小值为4.19.(1)证明:0120=∠AOB ,06021=∠=∠∴AOB ATB .∵PT 切⊙O 于T,∴∠BTP=∠TAP.∵PC 平分∠APT,∴∠APC=∠CPT.∵∠TCD=∠TAP+∠APC,∠CDT=∠BTP+∠CPT.∴∠TCD=∠CDT=00060260180=-.∴△CDT 为等边三角形.(3)解:设CT=DT=x ,∵∠TCD=∠CDT=∠BDP,∠BPD=∠CPT,∴△PCT∽△PDB.∴BDCTPD PC =①,∵∠DTP=∠PAC,∠APC=DPT,∴△ACP∽△TDP.∴PD PC TD AC =,∴TD AC BD CT =.∴xx 82=.∴4=x (负值舍去).∴CD=DT=CT=4.由①得244=-PC PC ,解得PC=8.20.解:(1)∵0)2()3(4)4(22>-=---=∆a a a ,2≠∴a .①当a x x -==3,121时,则231≤-<a ,∴21<≤a ;②当1,321=-=x a x 时,则130<-≤a .32≤<∴a .综上所述,a 的取值范围为31≤≤a 且2≠a .(2)对称轴为直线24a x -=.分三种情况讨论:①当024<-a,即4>a 时,当2=x 时,1-=a y 为最大值.②当2240≤-≤a,即40≤≤a 时,此时y 最大值在0=x 或2=x 处取得.(ⅰ)当242024a a --≥--时,则20≤≤a .此时,当0=x 时,a y -=3为最大值;(ⅱ)当242024aa --<--时,则42≤<a ,此时,当2=x 时,1-=a y 为最大值.③当224>-a,即0<a 时,当0=x 时,a y -=3为最大值.综上所述,当2<a 时,y 的最大值为a -3;当2>a 时,y 的最大值为1-a .(3)对称轴为直线24a x -=.∵40<<a ,∴2240<-<a.∴函数a x a x x f -+-+=3)4()(21在区间⎥⎦⎤⎢⎣⎡-24,0a 上是减函数,在区间⎥⎦⎤⎢⎣⎡-2,24a 上是增函数.∴对任意的)4,0(∈a ,存在]2,0[0∈x 使得t x f ≥|)(|0可化为对任意的)4,0(∈a ,t f ≥|)0(|或t f ≥|)2(|或t af ≥-)24(有一个成立即可.即t a f f f ≥⎭⎬⎫⎩⎨⎧-max 24(||,)2(||,)0(|即可.①当242024a a --≥--时,则20≤≤a ,|)2(||)0(|f f ≥.∴a a a a f f t -=⎭⎬⎫⎩⎨⎧---=⎭⎬⎫⎩⎨⎧-≤3|2)2(||,3||24(||,)0(|max2max ,∴1)3(min =-≤a t .②当242024aa --<--时,则42≤<a ,此时,|)0(||)2(|f f >.1|4)2(||,1||24(),2(|max2-=⎭⎬⎫⎩⎨⎧---=⎭⎬⎫⎩⎨⎧-≤∴a a a a f f t .∴1)1(min =-≤a t .综上所述,t 的取值范围为1≤t .。
选择题:
1. 下列选项中,哪个数是素数?
A. 9
B. 15
C. 23
D. 30
2. 两个数的最大公因数是8,最小公倍数是40,这两个数分别是:
A. 8、5
B. 8、10
C. 16、5
D. 16、10
3. 某商品原价是120 元,现在打折20%,那么折后的价格是:
A. 20 元
B. 96 元
C. 100 元
D. 144 元
填空题:
1. 一个长方形的长是12 厘米,宽是5 厘米,它的面积是______ 平方厘米。
2. 一个数字的百位数是7,个位数是8,它是______。
3. 若x + 4 = 10,那么x 的值是______。
应用题:
1. 甲、乙两个人一起修一段路,甲单独修完需要6 天,乙单独修完需要10 天。
他们一起工作几天能够完成修路任务?
2. 小明的手机套餐费用是每月50 元,每分钟通话费用是0.2 元。
如果他一共通话了100 分钟,那么他需要支付多少费用?
3. 根据统计数据,某班级男生人数是女生人数的3 倍,班级一共有40 名学生。
求男生和女生的人数分别是多少?。
2023广州市前六高中自主招生签约活动九年级数学注意事项:1.本试卷满分120分,90分钟内完成,闭卷。
2. 本试卷分选择题.填空题和解答题三部分。
3. 答题前,考生务必将自己的姓名、学校填写在答题卡相应位置。
4. 全部答案应在答题卡上完成,答在本试卷上无效。
5. 考试结束后,将本试卷与答题卡一并交回。
一、选择题(共10小题)(30分)1.如图,8块相同的小长方形地板砖拼成一个周长为200厘米的大长方形地板砖,则每块C. 300cm 22 3 2 2 23.小明从如图所示的二次函数y = ax 2+bx+c 的图象中,观察得出了下面五条信息:D. 2000cm 22.如图,在边长为口的等边中,BF 是AC 上的中线且BF = b,点。
在上,连接AD,在AD 的右侧作等边VADE,连接EF,则/XAEF 周长的最小值是①c<0,(2)abc>0,③i-/?+c>0,④2白-3/?=0,⑤4.+2》+c>0,你认为其中正确信息的个数有A.2个B.3个C.4个D.5个4.如图,在平面直角坐标系中,点A的坐标为(9,0),点。
的坐标为(0,3),以OAOC为边作矩形Q4BC.动点氏尸分别从点Q8同时出发,以每秒1个单位长度的速度沿OA,BC向终点&C移动.当移动时间为4秒时,AC EF的值为A.NB.9y/wC.15D.305.1883年,康托尔用以下的方法构造的这个分形,称做康托尔集,如图,取一条长度为1的线段,将它三等分,去掉中间一段,留剩下两段,这称为第一阶段;然后将剩下的两段再三等分,各去掉中间一段,剩下更短的四段,这称为第二阶段...将这样的操作无限地重复下去,余下的无穷点就称做康托尔集,那么经过第四个阶段后,留下的线段的长度之和为A.—B.—C.------D.-----27812432486.已知口是一个正整数,记G(x)=q-x+|x-q|.若G(1)+G(2)+...+G(2019)=90,则口的值为A.8B.9C.10D.117.如图,在平面直角坐标系中,线段A8的端点力的坐标为(2,1),端点3的坐标为(4,1),k 点。
数学试题本卷共分两大部分共计4页温馨提示:1.本卷满分150分,考试时间120分钟.2.试卷包括试题和答题卷两部分.请务必在答题卷上答题,在试题卷上答题无效.3.考试结束后,请将试题卷和答题卷一并交回.第Ⅰ部分客观题(共40分)一、选择题(共8小题,每小题5分,共计40分.在每小题给出的四个选项中,只有一个选项是正确的.)1.已知实数a ,b ,则下列选项中正确的是()A.若a b >,则22a b >B.若a b >,则22a b >C.若a b >,则22a b > D.若a b >,则11a b<2.若0x >,0y >,且32x y -=,则xy的值为()A.1B.49C.94D.1或493.数20232023的个位数字为()A.1B.3C.7D.94.平面四边形ABCD 中,90A C ∠=∠=︒,30B ∠=︒,2AB =,则BC 的取值范围为()A.1BC <<B.4343BC << C.4BC << D.433BC <<5.关于x 、y 的二元二次方程2231xy x y +-=正整数解的组数为()A .3组B.4组C.5组D.6组6.从0、1、2、3、4、5、6这七个数字中,取三个不同的数组成一个十位数字大于个位数和百位数的三位数,这样的三位数的个数为()A.40B.48C.55D.707.已知实数a 、b 满足2310a a +-=,2310b b --=,且1ab ≠.则1a a b b++=()A. B.C.4D.4-8.在凸四边形ABCD 中,22BC AB ==,60ABC ADC ∠=∠=︒,则BD 的最大值为()A.1+B.C.1D.3第Ⅱ部分主观题(共110分)二、填空题(共10小题,每小题5分,共计50分)9.若关于x 的不等式组131223112x x x m ⎧->⎪⎪⎨⎪+≤⎪⎩有且仅有四个正整数解,则实数m 的取值范围为________.10.计算:()1cos 45sin 60π-︒+︒--=________.11.在实数范围内分解因式:2(1)(2)120x x x -+-=________.12.已知函数1k y x=-和2y x k =+,其中1k 、2k 均可取1、2、3、4、5、6中的任一数.则这两函数图象有交点的概率为________.13.已知9290129(21)x a a x a x a x -=++++ ,则2468a a a a +++=________.14.已知22344420x y xy x ++-+=,则4(1)y x +=________.15.已知关于x 的方程|31|10x ax a +-+-=有两个不等实根,则实数a 的取值范围为________.16.如图,边长为3的正方形,,E F 分别是,BC CD 上两点,且AE BF =,连接,AE BF 交于点M ,若图中阴影部分面积是正方形面积的23,则ABM 的周长为________.17.如图,边长为6的正方形ABCD 中,E 在边AD 上,且3AD AE =,M 为CD 的中点,P 在线段BM 上,则EP 的最小值为________.18.如图,ABC 中,3BC =,4AC =,5AB =,,,D E P 分别为AB 边上三点,Q 在边AC 上,且DPC △和EQC 均为等边三角形.则APQ △边PQ 上的高为________.三、解答题(共5小题,每小题12分,共计60分.解答时请写出必要的步骤或文字说明)19.已知二次函数21y x ax =++(a 为常数).(1)当3a =,0y =时,求32443x x x +++的值;(2)当12x -≤≤时,二次函数21y x ax =++的最小值为4-,求a 的值.20.在平面直角坐标系中,直线:l y tx m =+交曲线(0)ky x x=>于A 、B 两点,交x 轴于点C ,过点A 作AD x ⊥轴于点D ,且2DC OD =,连接BD.(1)若A 点的坐标为()1,2,求线段AB 的长;(2)若13t =-,且ABD 的面积为3,求k 的值.21.解下列关于x 、y 、z 的方程组:22233392999x y z x y z x y z ++=⎧⎪++=⎨⎪++=⎩.22.如图,圆内接四边形ABCD 中,G 为对角线AC 、BD 的交点,过点D 作//DE AB 交AC 于E ,且EG GA =,F 在线段GD 上,且AEB DEF ∠=∠,连接CF .(1)求证:DEF CAD ∽△△;(2)求证:ACB DCF ∠=∠.23.在平面直角坐标系中,直线l 与抛物线2:(0)y ax bx c a Γ=++≠交于()1,2A --、()5,4B 两点,点()3,2C -在抛物线上,P 是x 轴上一动点.(1)求直线l 和抛物线Γ的解析式;(2)如图1,D 为抛物线Γ上位于直线l 下方一动点,过D 作DE 垂直于x 轴交直线l 于E ,当线段DE 长度最大时,求PD PC -的最大值;(3)如图2,G 为抛物线Γ的顶点,y 轴上是否存在点M ,使得45CMG ∠=︒?若存在,求出点M 的坐标;若不存在,请说明理由.。
数学试卷一、 ( 30 分)1.在 0, -2, 1, -3 四个数中,最小的数是 ().A . 0B . -2C . 1 D. -32. 函数 y1x 中,自 量 x 的取 范 是 ().A . x ≥1B . x ≤ 1C . x ≥ -1D .x ≤ -13.把不等式x1( ).的解集表示在数 上,以下 正确的选项是x 2 ≤ 31 0110 11 011 01A .B . C. D.4.如 ,小 和小 在操 上做游 ,她 先在地上画出一个 圈,而后蒙上眼在必定距离外向 圈内投小石子, 投一次就正好投到 圈内是 ().A .必定事件(必定 生的事件)B .不行能事件(不行能 生的事件)C .确立事件(必定 生或不行能 生的事件)D .不确立事件(随机事件)5. 若 x 1、 x 2 是一元二次方程 x 23x 2 0 的两个根,x 1+x 2 的 是 ( ).A.3B.-3C.2D.-26.我 从不一样的方向 察同一物体 ,能够看到不一样的平面 形,如 ,从 的左面看 个几何体的左 是 ( ).A .B .C .D .7.已知 a n1,,,,我 又定 b 12(1 a 1 )3 4 ,1)2 (n 1 2 3...), b 22(1 a 1 )(1 a 2 )(n23b 3 2(1 a 1 )(1 a 2 )(1 a 3 )5,⋯⋯,依据你 察的 律可推 出b n = ( ).4A. n 1n 2 C.n 3 D.n 1AEDnB.1n2n2n8.如 ,在矩形 ABCD 中, M 、N 分 AB 、 CD 的中点,MFN将矩形 ABCE 沿 BE 折叠,使 A 点恰巧落在 MN 上的点 F ,∠ CBF 的度数 ( ).A . 20°B .25°C .30°D . 36°BC9. 认识某区九年 学生 外体育活 的状况,从 年 学生中随机抽取了4%的学生,其参加的体育活 目 行了 ,将 的数据 行 并 制了扇形 和条形 .以下 :①被抽 学生中参加羽毛球 目人数30 人;②在本次 中“其余”的扇形的 心角的度数36°;③估 全区九年 参加 球 目的学生比参加足球 目的学生多 20%;④全区九年 大 有1500 名学生参加 球 目. 此中正确 的个数是( ).A.1个B.2个C.3个D.4个APQC B10.如图,等腰Rt △ ABC中,∠ ACB=90°, AC=BC=4,⊙ C 的半径为1,点 P 在斜边 AB上,PQ切⊙ O于点 Q,则切线长 PQ长度的最小值为 ( ).A. 7B. 2 2C. 3D.4二、填空题( 18分)11.如图,四个边长为 1 的小正方形拼成一个大正方形,A、B、 O是小正方形极点,⊙O的半径为 1, P是⊙ O上的点,且位于右上方的小正方形内,则 sin ∠ APB的值等于.12.嫦娥三号,是嫦娥绕月探月工程的第三颗人造绕月探月卫星。
—1—2024初升高自主招生数学模拟试卷(一)1.方程43||||x x x x -=实数根的个数为()A .1B .2C .3D .42.如图,△ABC 中,点D 在BC 边上,已知AB =AD =2,AC =4,且BD :DC =2:3,则△ABC 是()A .锐角三角形B .直角三角形C .钝角三角形D .等腰三角形3.已知G 是面积为24的△ABC 的重心,D 、E 分别为边AB 、BC 的中点,则△DEG 的面积为()A .1B .2C .3D .44.如图,在Rt △ABC 中,AB =35,一个边长为12的正方形CDEF 内接于△ABC ,则△ABC 的周长为()A .35B .40C .81D .845.已知2()6f x x ax a =+-,()y f x =的图象与x 轴有两个不同的交点(x 1,0),(x 2,0),且1212383(1)()1)(16)(16)a a x x a x a x -=-++----,则a 的值是()A .1B .2C .0或12D .126.如图,梯形ABCD 中,AB //CD ,AB =a ,CD =b .若∠ADC =∠BFE ,且四边形ABFE 的面积与四边形CDEF 的面积相等,则EF 的长等于()A .2a b+B .abC .2ab a b +D .222a b +—2—7.在△ABC 中,BD 平分∠ABC 交AC 于点D ,CE 平分∠ACB 交AB 于点E .若BE +CD =BC ,则∠A 的度数为()A .30°B .45°C .60°D .90°8.设23a =,26b =,212c =.现给出实数a 、b 、c 三者之间所满足的四个关系式:①2a c b +=;②23a b c +=-;③23b c a +=+;④21b ac -=.其中,正确关系式的个数是()A .1B .2C .3D .49.已知m 、n 是有理数,方程20x mx n ++=2,则m +n =.10.正方形ABCD 的边长为5,E 为边BC 上一点,使得BE =3,P 是对角线BD 上的一点,使得PE +PC 的值最小,则PB =.11.已知x y ≠,22()()3x y z y z x +=+=.则2()z x y xyz +-=.12.如图,四边形ABCD 的对角线相交于点O ,∠BAD =∠BCD =60°,∠CBD =55°,∠ADB =50°.则∠AOB 的度数为.13.两个质数p 、q 满足235517p q +=,则p q +=.14.如图,四边形ABCD 是矩形,且AB =2BC ,M 、N 分别为边BC 、CD 的中点,AM 与BN 交于点E .若阴影部分的面积为a ,那么矩形ABCD 的面积为.第12题图第14题图15.设k 为常数,关于x 的方程2223923222k k x x k x x k --+=---有四个不同的实数根,求k 的取值范围.—3—16.已知实数a 、b 、c 、d 互不相等,并且满足1111a b c d x b c d a+=+=+=+=,求x 的值.17.已知抛物线2y x =与动直线(21)y t x c =--有公共点(x 1,y 1),(x 2,y 2),且2221223x x t t +=+-.(1)求t 的取值范围;(2)求c 的最小值,并求出c 取最小值时t 的取值.—4—18.如图,已知在⊙O 中,AB 、CD 是两条互相垂直的直径,点E 在半径OA 上,点F 在半径OB 延长线上,且OE=BF ,直线CE 、CF 与⊙O 分别交于点G 、H ,直线AG 、AH 分别与直线CD 交于点N 、M .求证:1DM DN MC NC-=.参考答案。
####二零一三年高中自主招生考试
数学试题
满分100分,时间120分钟
一、选择题(6个小题,每小题5分,共30分)
1.如图所示,某个装饰用的窗子是由一个矩形及两个半圆所组成的,AD与AB之比为3:2且AB=30公分.试问矩形的面积与两个半圆面积的和之比为()
A.2:3
B.3:2
C.6:π
D.9:π
E.30:π
2.图中的两圆有共同的圆心C,弦AD切小圆于B点,AC之长为10,且AD
之长为16.试问两圆之间所夹区域的面积为()
A.36π
B.49π
C.64π
D.81π
E.100π
3.如图菱形ABCD中,∠ABC=120°,F是DC的中点,AF的延长线交BC的延长线于E,则直线BF与直线DE所夹的锐角的度数为()
A.30°
B.40°
C.50°
D.60°
4.将长、宽、高分别为a,b,c(a>b>c,单位:cm)
的三块相同的长方体按图所示的三种方式放入三个底面
面直径为d(d>a2+b2),高为h的相同圆柱形水桶中,
再向三个水桶内以相同的速度匀速注水,直至注满水桶
为止,水桶内的水深y(cm)与注水时间t(s)的函数
关系如图所示,则注水速度为()
A.30cm2/s B.32cm2/s
C.34cm2/s D.40cm2/s
5.如图,在平面直角坐标系xOy中,等腰梯形ABCD的
顶点坐标分别为A(1,1),B(2,-1),C(-2,-1),D(-1,1).
以A为对称中心作点P(0,2)的对称点P1,以B为对称中心作点P1的对称点P2,以C为对称中心作点P2的对称点P3,以D为对称中心作点P3的对称点P4,…,重复操作依次得到点P1,P2,…,则点P2010的坐标是()
A.(2010,2)B.(2010,-2)C.(2012,-2)D.(0,2)
6.二次函数y=ax2+bx+c的图象如图所示.下列结论正确的是()
A.3|a|+|c|>2|b|
B.3|a|+|c|=2|b|
C.3|a|+|c|<2|b|
D.3|a|+|c|≤2|b|
二.填空题(5个小题,每小题4分,共20分)
7.在平面直角坐标系xOy中,多边形OABCDE的顶点坐标分别是O(0,0),A(0,6),B(4,6),C(4,4),D(6,4),E(6,0).若直线l经过点M(2,3),且将多边形OABCDE分割成面积相等的两部分,则直线l的函数表达式是.
8.已知a=2.45,则2a3+7a2-2a-12的值等于.
9.已知x、y是正整数,并且xy+x+y=23,x2y+xy2=120,则x2+y2= .
10.已知半径分别为1和2的两个圆外切于点P,则点P到两圆外公切线的距离为 .
11.将n个边长都为1cm的正方形按如图所示的方法摆放,点A1、A2…A n分别是各正方形的中心,则n个这样的正方形重叠部分(阴影部分)的面积的和为cm2.
题2图题3图
题5图题6图
题7图题10图题11图
三.解答题(4个小题,共30分)
12.(8分)①如图,点M、N在反比例函数y=kx(k>0)的图象上,过点M作ME⊥y轴,过点N 作NF⊥x轴,垂足分别为E、F.试证明:MN∥EF.
②若①中的其他条件不变,只改变点M,N的位置如图2所示,请判断MN与EF是否平行.
13.(6分)如图,在四边形ABCD中,AC与BD相交于点O,直线l平行于BD,且与AB、DC、BC、AD及AC的延长线分别相交于点M、N、R、S和P,求证:PM•PN=PR•PS.14.(8分)如图,EFGH是正方形ABCD的内接四边形,两条对角线EG和FH相交于点O,且它们所夹的锐角为θ,∠BEG与∠CFH都是锐角,已知EG=k,FH=l,四边形EFGH的面积为S,(1)求证:sinθ=2S/kl;
(2)试用k、l、S来表示正方形ABCD的面积.
15.(8分)如图,D、E是△ABC边BC上的两点,F是BA延长线上一点,∠DAE=∠CAF.
(1)判断△ABD的外接圆与△AEC的外接圆的位置关系,并证明你的结论;
(2)若△ABD的外接圆半径是△AEC的外接圆半径的2倍,BC=6,AB=4,求BE的长.
四.综合题(2个小题,共20分)
16.(11分)如图,AB、CD是半径为1的⊙P的直径,且∠CPB=120°,⊙M与PC、PB及弧CQB 都相切,O、Q分别为PB、弧CQB上的切点.
(1)试求⊙M的半径r;
(2)以AB为x轴,OM为y轴(分别以OB、OM为正方向)建立直角坐标系;
①设直线y=kx+m过点M、Q,求k,m;
②设函数y=x2+bx+c的图象经过点Q、O,求此函数解析式;
③当y=x2+bx+c<0时,求x的取值范围;
④若直线y=kx+m与抛物线y=x2+bx+c的另一个交点为E,求线段EQ的长度.17.(9分)如图已知抛物线y=mx2+nx+p与y=x2+6x+5关于y轴对称,并与y轴交于点M,与x 轴交于点A和B.
(1)求出y=mx2+nx+p的解析式,试猜想出一般形式y=ax2+bx+c关于y轴对称的二次函数解析式(不要求证明);
(2)若AB中点是C,求sin∠CMB;
(3)如果一次函数y=kx+b过点M,且于y=mx2+nx+p相交于另一点N(i,j),如果i≠j,且i2-i+z=0和j2-j+z=0,求k的值.
备用图新江湾城23-1、23-2地块商办项目地下车库民防
泰宝大厦工程。