半导体器件物理4
- 格式:ppt
- 大小:1.66 MB
- 文档页数:75
《半导体器件物理学》第4版
半导体器件物理学是研究半导体器件物理性质和物理特性的科学学科。
第4版《半导体器件物理学》着力于系统讲解了半导体器件物理学的概念、原理和技术,实现对半导体器件物理学的研究和实际应用的提供优质支持,是学习和研究半导体器件物理学的必备书籍。
本书由国际知名的学者编写,主要从原子结构、材料特性、半导体光电技术、动力学和控制、电子传输
和电路模拟、统计物理和可靠性等方面进行了系统的阐述。
本书对半导体器件物理学的基本理论和实验技术进行了较为系统、深
入和完善的论述,全面介绍了当前半导体器件物理学研究的最新发展和进展,如修正的半导体量子力学,新型半导体材料性能和原理,新型器件实
现材料及其特性,功率空间和照明技术,半导体外延片和反射体技术,功
率器件工程等。
在叙述理论知识的同时,还增加了多项习题来便于帮助读
者了解书中所述内容。
本书是一本具有重要参考价值的高质量著作,深受学习和研究半导体
器件物理学领域的师生们的认可。
它不仅贴近实际,易于理解,而且实例
生动,对物理理论知识的讲解更为深入。
半导体物理与器件第四版答案【篇一:半导体物理第五章习题答案】>1. 一个n型半导体样品的额外空穴密度为1013cm-3,已知空穴寿命为100?s,计算空穴的复合率。
解:复合率为单位时间单位体积内因复合而消失的电子-空穴对数,因此1013u1017cm?3?s ?6100102. 用强光照射n型样品,假定光被均匀吸收,产生额外载流子,产生率为gp,空穴寿命为?,请①写出光照开始阶段额外载流子密度随时间变化所满足的方程;②求出光照下达到稳定状态时的额外载流子密度。
解:⑴光照下,额外载流子密度?n=?p,其值在光照的开始阶段随时间的变化决定于产生和复合两种过程,因此,额外载流子密度随时间变化所满足的方程由产生率gp和复合率u的代数和构成,即 d(?p)?pgp dtd(?p)0,于是由上式得⑵稳定时额外载流子密度不再随时间变化,即 dtppp0gp3. 有一块n型硅样品,额外载流子寿命是1?s,无光照时的电阻率是10??cm。
今用光照射该样品,光被半导体均匀吸收,电子-空穴对的产生率是1022/cm3?s,试计算光照下样品的电阻率,并求电导中少数载流子的贡献占多大比例?解:光照被均匀吸收后产生的稳定额外载流子密度pngp10221061016 cm-3取?n?1350cm2/(v?s),?p?500cm/(v?s),则额外载流子对电导率的贡献2pq(?n??p)?1016?1.6?10?19?(1350?500)?2.96 s/cm无光照时?0?10.1s/cm,因而光照下的电导率0?2.96?0.1?3.06s/cm相应的电阻率 ??110.33cm 3.06少数载流子对电导的贡献为:?p?pq?p??pq?p?gp?q?p代入数据:?p?(p0??p)q?p??pq?p?1016?1.6?10?19?500?0.8s/cm∴p00.80.2626﹪ 3.06即光电导中少数载流子的贡献为26﹪4.一块半导体样品的额外载流子寿命? =10?s,今用光照在其中产生非平衡载流子,问光照突然停止后的20?s时刻其额外载流子密度衰减到原来的百分之几?解:已知光照停止后额外载流子密度的衰减规律为p(t)p0e因此光照停止后任意时刻额外载流子密度与光照停止时的初始密度之比即为t??p(t)e p0t当t?20?s?2?10?5s时20??p(20)e10e20.13513.5﹪ ?p05. 光照在掺杂浓度为1016cm-3的n型硅中产生的额外载流子密度为?n=?p= 1016cm-3。
Semiconductor Device PhysicsSui-Dong Wang 2010-2011Outline章 节 一 二 三 四 五 六 七 合 计 内 容 半导体器件简介 半导体晶体结构 半导体能带理论基础 P-N二极管 MOS场效应晶体管 MES场效应晶体管 半导体光电器件 周 时 1 1 3 2 2 2 5 16 授 课 王穗东 王穗东 王穗东 王穗东 王穗东 王穗东 唐建新What Is A Diode ?A two-terminal electronic component that conduct electric current in only one directionWhat Is A P-N Diode ?Depletion region Î Space charge region Î Current modulation Electric field and potential distribution?Gauss’s Law / Poisson EquationAn example: Point chargeDepletion Region in P-N JunctionDepletion Region – Electric FieldDepletion Region – PotentialDepletion Region – PotentialOne-side P-N JunctionWDHeavily-doped P++Lightly-doped NDebye LengthThe Debye length LD, is a characteristic length for semiconductors and is defined as:At thermal equilibrium the depletion-layer widths of abrupt junctions are about 8LD for Si, and 10LD for GaAs.Linearly Graded P-N JunctionLinearly Graded P-N JunctionLinearly Graded P-N JunctionP-N Junction under Forward BiasDepletion layer width ? Build-in potential ? Current ?P-N Junction under Reverse BiasDepletion layer width ? Build-in potential ? Current ?I-V Characteristics of P-N JunctionReverse breakdown mechanism?Breakdown Mechanism - TunnelingBreakdown Mechanism Avalanche MultiplicationImpact ionization under high electric fieldApplications - Diode TypesApplications -RectifierRectifier gives a very low resistance to current flow inone direction and a very high resistance in the other direction.Applications -Zener DiodeZener breakdown occurs at a precisely defined voltage, allowing the diode to be used as a precision voltage reference.Applications -VaristorVaristor shows non-ohmic voltage-dependent resistance.Applications -Varactor Varactor works at reverse bias acting as a capacitor.Applications -Tunnel DiodeTunnel diode is heavily doped with narrow depletion region.Applications -Photodiode Photodiode works as a switch controlled by light.Applications -Light Emitting Diode Light emitting diode emits light under electrical bias.Questions(1)How to calculate energy potential in a space chargeregion in semiconductors ?(2)How do you understand the physical term“Junction”? Homojunction ? Heterojunction ?。
半导体器件物理进展第四章CMOS的等比例缩小、优化设计及性能因子CMOS Scaling, Design Optimization, and Performance FactorsPart 1 MOSFET模型及小尺寸效应内容提要:MOSFET结构及其偏置条件MOSFET的漏极电流模型MOSFET的亚阈区特性与温度特性 MOSFET的小尺寸效应MOSFET的缩比特征长度MOSFET的速度饱和效应1. MOSFET结构及其偏置条件MOSFET在实际集成电路中的剖面结构如下图所示。
横向:源-沟道-漏;纵向:M-O-S;几何参数L:沟道长度;W:沟道宽度;t ox:栅氧化层厚度;x j:源漏结深;MOSFET的发展简史:早期:主要采用铝栅电极,栅介质采用热氧化二氧化硅,扩散形成源、漏区,其与栅电极之间采用非自对准结构,场区采用厚氧化层隔离;中期:栅极采用N型掺杂的多晶硅栅,源、漏区与栅极之间采用自对准离子注入结构,场区采用硅的局部氧化工艺(LOCOS)实现器件隔离;后期:栅极采用互补双掺杂(N型和P型)的多晶硅栅,源漏区与栅极之间采用LDD(轻掺杂漏)结构和金属硅化物结构,场区采用浅沟槽隔离(STI)技术。
近期:栅极采用难熔金属栅极(例如W、Mo等),栅介质采用高K介质材料(例如氧化铪等),源、漏区与栅极之间采用自对准金属硅化物结构,场区采用浅沟槽隔离或其它介质隔离技术。
一个自对准MOSFET的工艺制造过程以NMOS器件为例,包含四个结构化的光刻掩模:(1)场区光刻掩模:利用氮化硅掩蔽的LOCOS局部氧化工艺,在P型掺杂的硅单晶衬底上定义出器件有源区和场氧化层隔离区;(2)栅极光刻掩模:通过多晶硅的淀积、光刻和刻蚀工艺,定义出器件的多晶硅栅电极;(3)接触孔光刻掩模:通过对源漏有源区及多晶硅栅电极上二氧化硅绝缘层的光刻和刻蚀工艺,定义出相应的欧姆接触窗口;(4)铝引线光刻掩模:通过铝布线金属的溅射、光刻和刻蚀工艺,定义出器件各引出端的铝引线电极;对于包含PMOS器件的CMOS工艺,则还需要增加一步N阱区的掩模及其光刻定义。
第四章 半导体中载流子的输运现象在前几章我们研究了热平衡状态下,半导体导带和价带中的电子浓度和空穴浓度。
我们知道电子和空穴的净流动将会产生电流,载流子的运动过程称谓输运。
半导体中的载流子存在两种基本的输运现象:一种是载流子的漂移,另一种是载流子的扩散。
由电场引起的载流子运动称谓载流子的漂移运动;由载流子浓度梯度引起的运动称谓载流子扩散运动。
其后我们会将会看到,漂移运动是由多数载流子(简称多子)参与的运动;扩散运动是有少数载流子(简称少子)参与的运动。
载流子的漂移运动和扩散运动都会在半导体内形成电流。
此外,温度梯度也会引起载流子的运动,但由于温度梯度小或半导体的特征尺寸变得越来越小,这一效应通常可以忽略。
载流子运动形成电流的机制最终会决定半导体器件的电流-电压特性。
因此,研究半导体中载流子的输运现象非常必要。
4.1漂移电流密度如果导带和价带都有未被电子填满的能量状态,那么在外加电场的作用下,电子和空穴将产生净加速度和净移位。
电场力的作用下使载流子产生的运动称为“漂移运动”。
载流子电荷的净漂移会产生“漂移电流”。
如果电荷密度为ρ的正方体以速度dυ运动,则它形成的电流密度为()4.1dr fdJ ρυ=其中ρ的单位为3C cm - ,drfJ 的单位是2Acm -或2/C cms 。
若体电荷是带正电荷的空穴,则电荷密度epρ=,e 为电荷电量191.610(e C -=⨯库仑),p 为载流子空穴浓度,单位为3cm -。
则空穴的漂移电流密度/p drfJ可以写成:()()/ 4.2p drf dpJ ep υ=dp υ表示空穴的漂移速度。
空穴的漂移速度跟那些因素有关呢?在电场力的作用下,描述空穴的运动方程为()*4.3p F m a eE==e 代表电荷电量,a 代表在电场力F 作用下空穴的加速度,*pm 代表空穴的有效质量。
如果电场恒定,则空穴的加速度恒定,其漂移速度会线性增加。
但半导体中的载流子会与电离杂质原子和热振动的晶格原子发生碰撞或散射,这种碰撞或散射改变了带电粒子的速度特性。
Chapter 1010.1(a) p-type; inversion (b) p-type; depletion (c) p-type; accumulation (d) n-type; inversion_______________________________________ 10.2(a) (i) ⎪⎪⎭⎫⎝⎛=i a t fp n N V ln φ ()⎪⎪⎭⎫ ⎝⎛⨯⨯=1015105.1107ln 0259.0 3381.0=V 2/14⎥⎦⎤⎢⎣⎡∈=a fp s dTeN x φ()()()()()2/1151914107106.13381.01085.87.114⎥⎦⎤⎢⎣⎡⨯⨯⨯=--51054.3-⨯=cm or μ354.0=dT x m(ii) ()⎪⎪⎭⎫⎝⎛⨯⨯=1016105.1103ln 0259.0fp φ3758.0=V ()()()()()2/1161914103106.13758.01085.87.114⎥⎦⎤⎢⎣⎡⨯⨯⨯=--dTx51080.1-⨯=cmor μ180.0=dT x m(b) ()03022.03003500259.0=⎪⎭⎫⎝⎛=kT V⎪⎪⎭⎫⎝⎛-=kT E N N n g c i exp 2υ ()()319193003501004.1108.2⎪⎭⎫⎝⎛⨯⨯=⎪⎭⎫⎝⎛-⨯03022.012.1exp221071.3⨯=so 111093.1⨯=i n cm 3-(i)()⎪⎪⎭⎫⎝⎛⨯⨯=11151093.1107ln 03022.0fp φ3173.0=V()()()()()2/1151914107106.13173.01085.87.114⎥⎦⎤⎢⎣⎡⨯⨯⨯=--dT x51043.3-⨯=cm or μ343.0=dT x m(ii) ()⎪⎪⎭⎫⎝⎛⨯⨯=11161093.1103ln 03022.0fp φ3613.0=V()()()()()2/1161914103106.13613.01085.87.114⎥⎦⎤⎢⎣⎡⨯⨯⨯=--dT x51077.1-⨯=cm or μ177.0=dT x m_______________________________________ 10.3(a) ()2/14m ax ⎥⎦⎤⎢⎣⎡∈=='d fn s d dT d SDeN eN x eN Q φ()()[]2/14fns d eN φ∈=1st approximation: Let 30.0=fn φV Then()281025.1-⨯()()()()()()[]30.01085.87.114106.11419--⨯⨯=dN 141086.7⨯=⇒d N cm 3-2nd approximation:()2814.0105.11086.7ln 0259.01014=⎪⎪⎭⎫⎝⎛⨯⨯=fn φV Then ()281025.1-⨯()()()()()()[]2814.01085.87.114106.11419--⨯⨯=d N 141038.8⨯=⇒d N cm 3-(b) ()2831.0105.11038.8ln 0259.01014=⎪⎪⎭⎫⎝⎛⨯⨯=fn φV()566.02831.022===fn s φφV _______________________________________10.4 p-type silicon (a) Aluminum gate ⎥⎥⎦⎤⎢⎢⎣⎡⎪⎪⎭⎫ ⎝⎛++'-'=fp g m ms e E φχφφ2 We have ⎪⎪⎭⎫ ⎝⎛=i a t fp n N V ln φ ()334.0105.1106ln 0259.01015=⎪⎪⎭⎫ ⎝⎛⨯⨯=V Then()[]334.056.025.320.3++-=ms φ or 944.0-=ms φV (b) +n polysilicon gate ⎪⎪⎭⎫⎝⎛+-=fp g ms e E φφ2()334.056.0+-= or 894.0-=ms φV (c) +p polysilicon gate ()334.056.02-=⎪⎪⎭⎫⎝⎛-=fp g ms e E φφ or226.0+=ms φV_______________________________________ 10.5()3832.0105.1104ln 0259.01016=⎪⎪⎭⎫ ⎝⎛⨯⨯=fp φV ⎪⎪⎭⎫⎝⎛++'-'=fp g m ms e E φχφφ2 ()3832.056.025.320.3++-= 9932.0-=ms φV _______________________________________10.6 (a) 17102⨯≅d N cm 3- (b) Not possible - ms φ is always positive.(c) 15102⨯≅d N cm 3-_______________________________________10.7 From Problem 10.5, 9932.0-=ms φV ox ssms FB C Q V '-=φ (a) ()()814102001085.89.3--⨯⨯=∈=ox ox ox t C 710726.1-⨯=F/cm 2()()7191010726.1106.11059932.0--⨯⨯⨯--=FB V 040.1-=V (b) ()()81410801085.89.3--⨯⨯=ox C 710314.4-⨯=F/cm 2 ()()7191010314.4106.11059932.0--⨯⨯⨯--=FB V012.1-=V _______________________________________10.8 (a) 42.0-≅ms φV 42.0-==ms FB V φV(b) ()()781410726.1102001085.89.3---⨯=⨯⨯=ox C F/cm 2 (i)()()7191010726.1106.1104--⨯⨯⨯-='-=∆ox ss FB C Q V 0371.0-=V (ii)()()7191110726.1106.110--⨯⨯-=∆FB V 0927.0-=V(c) 42.0-==ms FB V φV ()()781410876.2101201085.89.3---⨯=⨯⨯=ox C F/cm 2 (i)()()7191010876.2106.1104--⨯⨯⨯-=∆FB V 0223.0-=V (ii)()()7191110876.2106.110--⨯⨯-=∆FB V0556.0-=V _______________________________________10.9 ⎪⎪⎭⎫ ⎝⎛++'-'=fp g mms e E φχφφ2 where()365.0105.1102ln 0259.01016=⎪⎪⎭⎫ ⎝⎛⨯⨯=fp φV Then ()365.056.025.320.3++-=ms φor975.0-=ms φVNowox ss ms FB C Q V '-=φor ()ox FB ms ss C V Q -='φ We have()()814104501085.89.3--⨯⨯=∈=ox ox ox t C or 81067.7-⨯=ox C F/cm 2 So now ()[]()81067.71975.0-⨯⋅---='ssQ 91092.1-⨯=C/cm 2or10102.1⨯='e Q ss cm 2- _______________________________________10.10 ()3653.0105.1102ln 0259.01016=⎪⎪⎭⎫ ⎝⎛⨯⨯=fp φV ()()()()()2/1161914102106.13653.01085.87.114⎥⎦⎤⎢⎣⎡⨯⨯⨯=--dT x510174.2-⨯=cm()dT a SDx eN Q ='m ax ()()()5161910174.2102106.1--⨯⨯⨯=810958.6-⨯=C/cm 2()()781410301.2101501085.89.3---⨯=⨯⨯=ox C F/cm 2()fp ms ox ss SDTN C Q Q V φφ2max ++'-'= ()()71910810301.2106.110710958.6---⨯⨯⨯-⨯= ()3653.02++ms φ ms φ+=9843.0(a) n + poly gate on p-type: 12.1-≅ms φV 136.012.19843.0-=-=TN V V(b) p + poly gate on p-type: 28.0+≅ms φV 26.128.09843.0+=+=TN V V (c) Al gate on p-type: 95.0-≅ms φV0343.095.09843.0+=-=TN V V_______________________________________10.11 ()3161.0105.1103ln 0259.01015=⎪⎪⎭⎫ ⎝⎛⨯⨯=fn φV ()()()()()2/1151914103106.13161.01085.87.114⎥⎦⎤⎢⎣⎡⨯⨯⨯=--dT x 510223.5-⨯=cm ()dT d SDx eN Q ='m ax ()()()5151910223.5103106.1--⨯⨯⨯= 810507.2-⨯=C/cm 2 ()()781410301.2101501085.89.3---⨯=⨯⨯=ox C F/cm 2 ()fn ms ox ss SDTP C Q Q V φφ2m ax -+⎥⎥⎦⎤⎢⎢⎣⎡'+'-= ()()⎥⎦⎤⎢⎣⎡⨯⨯⨯+⨯-=---71019810301.2107106.110507.2 ()3161.02-+ms φ ms TP V φ+-=7898.0(a) n + poly gate on n-type: 41.0-≅ms φV 20.141.07898.0-=--=TP V V(b) p + poly gate on n-type: 0.1+≅ms φV 210.00.17898.0+=+-=TP V V (c) Al gate on n-type: 29.0-≅ms φV 08.129.07898.0-=--=TP V V _______________________________________10.12()3294.0105.1105ln 0259.01015=⎪⎪⎭⎫ ⎝⎛⨯⨯=fp φV The surface potential is ()659.03294.022===fp s φφV We have 90.0-='-=oxssms FB C Q V φV Now()FB s oxSDT V C Q V ++'=φmaxWe obtain 2/14⎥⎦⎤⎢⎣⎡∈=a fp s dTeN x φ()()()()()2/1151914105106.13294.01085.87.114⎥⎦⎤⎢⎣⎡⨯⨯⨯=-- or410413.0-⨯=dT x cm Then()()()()4151910413.0105106.1m ax --⨯⨯⨯='SDQ or()810304.3m ax -⨯='SDQ C/cm 2 We also find()()814104001085.89.3--⨯⨯=∈=ox ox ox t C or810629.8-⨯=ox C F/cm 2 Then90.0659.010629.810304.388-+⨯⨯=--T Vor142.0+=T V V_______________________________________10.13()()814102201085.89.3--⨯⨯=∈=ox ox ox t C 710569.1-⨯=F/cm 2()()1019104106.1⨯⨯='-ssQ 9104.6-⨯=C/cm 2By trial and error, let 16104⨯=a N cm 3-.Now ()⎪⎪⎭⎫⎝⎛⨯⨯=1016105.1104ln 0259.0fp φ3832.0=V()()()()()2/1161914104106.13832.01085.87.114⎥⎦⎤⎢⎣⎡⨯⨯⨯=--dT x 510575.1-⨯=cm ()m ax SDQ ' ()()()5161910575.1104106.1--⨯⨯⨯= 710008.1-⨯=C/cm 294.0-≅ms φV Then()fp ms oxss SDTN C Q Q V φφ2max ++'-'=79710569.1104.610008.1---⨯⨯-⨯=()3832.0294.0+- Then 428.0=TN V V 45.0≅V_______________________________________10.14()()814101801085.89.3--⨯⨯=∈=ox ox ox t C 7109175.1-⨯=F/cm 3- ()()1019104106.1⨯⨯='-ssQ 9104.6-⨯=C/cm 2By trial and error, let 16105⨯=d N cm 3- Now()⎪⎪⎭⎫⎝⎛⨯⨯=1016105.1105ln 0259.0fn φ3890.0=V()()()()()2/1161914105106.13890.01085.87.114⎥⎦⎤⎢⎣⎡⨯⨯⨯=--dT x510419.1-⨯=cm()m ax SDQ ' ()()()5161910419.1105106.1--⨯⨯⨯= 710135.1-⨯=C/cm 3-10.1+≅ms φV Then()()fn ms ox ss SDTP C Q Q V φφ2max -+'+'-= ()797109175.1104.610135.1---⨯⨯+⨯-= ()3890.0210.1-+Then 303.0-=TP V V, which is within thespecified value. _______________________________________ 10.15 We have 710569.1-⨯=ox C F/cm 2 9104.6-⨯='ssQ C/cm 2 By trial and error, let 14105⨯=d N cm 3-Now()⎪⎪⎭⎫⎝⎛⨯⨯=1014105.1105ln 0259.0fn φ 2697.0=V()()()()()2/1141914105106.12697.01085.87.114⎥⎦⎤⎢⎣⎡⨯⨯⨯=--dT x 410182.1-⨯=cm ()m ax SDQ ' ()()()4141910182.1105106.1--⨯⨯⨯= 910456.9-⨯=C/cm 233.0-≅ms φVThen ()()fn ms oxss SDTP C Q Q V φφ2max -+'+'-= ⎪⎪⎭⎫⎝⎛⨯⨯+⨯-=---79910569.1104.610456.9 ()2697.0233.0--970.0=V Then 970.0-=TP V V 975.0-≅ V which meets the specification._______________________________________ 10.16(a) 03.1-≅ms φV()()814101801085.89.3--⨯⨯=ox C 7109175.1-⨯=F/cm 2Now oxss ms FB C Q V '-=φ()()71019109175.1106106.103.1--⨯⨯⨯--= 08.1-=FB V V(b) ()⎪⎪⎭⎫ ⎝⎛⨯=1015105.110ln 0259.0fp φ 2877.0=V ()()()()()2/115191410106.12877.01085.87.114⎥⎦⎤⎢⎣⎡⨯⨯=--dT x 510630.8-⨯=cm()m ax SDQ ' ()()()5151910630.810106.1--⨯⨯= 810381.1-⨯=C/cm 2 Now ()fp FB oxSDTN V C Q V φ2max ++'=()2877.0208.1109175.110381.178+-⨯⨯=-- or 433.0-=TN V V_______________________________________10.17 (a) We have n-type material under the gate, so2/14⎥⎦⎤⎢⎣⎡∈==d fn s C dT eN t x φ where()288.0105.110ln 0259.01015=⎪⎪⎭⎫ ⎝⎛⨯=fn φVThen()()()()()2/115191410106.1288.01085.87.114⎥⎦⎤⎢⎣⎡⨯⨯=--dT x or 410863.0-⨯==C dT t x cm μ863.0=m (b)()()fn ms ox ox ss SD T t Q Q V φφ2max -+⎪⎪⎭⎫⎝⎛∈'+'-= For an +n polysilicon gate, ()288.056.02--=⎪⎪⎭⎫ ⎝⎛--=fn g ms e E φφ or272.0-=ms φV Now ()()()()4151910863.010106.1m ax --⨯⨯='SD Q or ()81038.1m ax -⨯='SDQ C/cm 2 We have()()91019106.110106.1--⨯=⨯='ssQ C/cm 2 We now find ()()()()81498105001085.89.3106.11038.1----⨯⨯⨯+⨯-=T V ()288.02272.0--or 07.1-=T V V _______________________________________ 10.18 (b) ⎪⎪⎭⎫⎝⎛++'-'=fp g m ms e E φχφφ2 where 20.0-='-'χφm V and()3473.0105.110ln 0259.01016=⎪⎪⎭⎫⎝⎛⨯=fp φV Then()3473.056.020.0+--=ms φ or 107.1-=ms φV (c) For 0='ss Q ()fp ms ox ox SDTN t Q V φφ2max ++⎪⎪⎭⎫⎝⎛∈'= We find()()()()()2/116191410106.13473.01085.87.114⎥⎦⎤⎢⎣⎡⨯⨯=--dT xor 41030.0-⨯=dT x cm μ30.0=m Now()()()()416191030.010106.1m ax --⨯⨯='SDQ or ()810797.4m ax -⨯='SDQ C/cm 2Then()()()()14881085.89.31030010797.4---⨯⨯⨯=T V()3473.02107.1+- or00455.0+=T V V 0≅V _______________________________________ 10.19Plot _______________________________________ 10.20 Plot_______________________________________ 10.21 Plot _______________________________________10.22 Plot_______________________________________10.23 (a) For 1=f Hz (low freq), ()()814101201085.89.3--⨯⨯=∈=ox ox ox t C 710876.2-⨯=F/cm 2a st s ox ox oxFB eNV t C ∈⎪⎪⎭⎫ ⎝⎛∈∈+∈=' ()()()()()()()16191481410106.11085.87.110259.07.119.3101201085.89.3----⨯⨯⎪⎭⎫ ⎝⎛+⨯⨯= 710346.1-⨯='FB C F/cm 2 dTs ox ox oxx t C ⋅⎪⎪⎭⎫ ⎝⎛∈∈+∈='minNow ()3473.0105.110ln 0259.01016=⎪⎪⎭⎫ ⎝⎛⨯=fp φV ()()()()()2/116191410106.13473.01085.87.114⎥⎦⎤⎢⎣⎡⨯⨯=--dTx51000.3-⨯=cmThen ()()()5814min 1000.37.119.3101201085.89.3---⨯⎪⎭⎫ ⎝⎛+⨯⨯='C 810083.3-⨯=F/cm 2 C '(inv)710876.2-⨯==ox C F/cm 2 (b) 1=f MHz (high freq), 710876.2-⨯=ox C F/cm 2 (unchanged) 710346.1-⨯='FBC F/cm 2 (unchanged) 8min10083.3-⨯='C F/cm 2 (unchanged) C '(inv)8min10083.3-⨯='=C F/cm 2 (c) 10.1-≅==ms FB V φV()fp FB oxSDTN V C Q V φ2max ++'=Now()dT a SDx eN Q ='m ax ()()()516191000.310106.1--⨯⨯=81080.4-⨯=C/cm 2 ()3473.0210.110876.21080.478+-⨯⨯=--TN V 2385.0-=TN V V_______________________________________10.24(a) 1=f Hz (low freq), ()()814101201085.89.3--⨯⨯=∈=ox ox oxt C 710876.2-⨯=F/cm 2a st s ox ox oxFB eNV t C ∈⎪⎪⎭⎫ ⎝⎛∈∈+∈='()()()()()()()141914814105106.11085.87.110259.07.119.3101201085.89.3⨯⨯⨯⎪⎭⎫ ⎝⎛+⨯⨯=---- 810726.4-⨯='FBC F/cm 2 dTs ox ox oxx t C ⋅⎪⎪⎭⎫⎝⎛∈∈+∈='minNow()2697.0105.1105ln 0259.01014=⎪⎪⎭⎫⎝⎛⨯⨯=fn φV()()()()()2/1141914105106.12697.01085.87.114⎥⎦⎤⎢⎣⎡⨯⨯⨯=--dT x 410182.1-⨯=cmThen()()()4814min 10182.17.119.3101201085.89.3---⨯⎪⎭⎫ ⎝⎛+⨯⨯='C 910504.8-⨯=F/cm 2C '(inv)710876.2-⨯==ox C F/cm 2(b) 1=f MHz (high freq),710876.2-⨯=ox C F/cm 2 (unchanged)810726.4-⨯='FBC F/cm 2 (unchanged) 9min10504.8-⨯='C F/cm 2 (unchanged) C '(inv)9min10504.8-⨯='=C F/cm 2 (c) 95.0≅=ms FB V φV()fn FB oxSDTP V C Q V φ2max -+'-=Now()dT d SDx eN Q ='m ax ()()()4141910182.1105106.1--⨯⨯⨯= 910456.9-⨯=C/cm 2Then()2697.0295.010876.210456.979-+⨯⨯-=--TP V378.0+=TP V V_______________________________________10.25The amount of fixed oxide charge at x is ()x x ∆ρ C/cm 2By lever action, the effect of this oxide charge on the flatband voltage is()x x t x C V ox ox FB ∆⎪⎪⎭⎫⎝⎛-=∆ρ1 If we add the effect at each point, we must integrate so that ()dx t x x C V oxt oxoxFB⎰-=∆01ρ _______________________________________10.26 (a) We have ρx Q t SS ()='∆ Then∆V C x x t dx FB ox ox ox t=-()z 10ρ ≈-'F H G I K J F H I K-z 1C t t Q t dx ox ox oxox oxSSt t t ∆∆b g =-'--=-'F H I K 1C Q t t t t Q C ox SS ox ox SSox ∆∆a for ∆V Q t FB SS ox ox=-'∈F H G I K J =-⨯⨯⨯⨯---()16108102001039885101910814...b g b g b gb gor∆V FB =-00742.V(b) We have ρx Q t SS ox()='=⨯⨯⨯--16108102001019108.b g b g =⨯=-64103.ρONow ∆V C x x t dx C t xdx FB oxox oxOox oxoxt t =-=-()zz10ρρor ∆V t FB O oxox=-∈ρ22=-⨯⨯⨯---()6410200102398851038214...bg b g b gor∆V FB =-00371.V (c) ρρx x t O ox()F H G I KJ =We find12216108102001019108t Q ox O SS O ρρ='⇒=⨯⨯⨯--.b gb g or ρO =⨯-128102. Now ∆V C t x x t dx FB ox ox O ox t ox =-⋅⋅F H G I KJ z110ρ =-⋅z122C t x dx ox O oxox t ρaf which becomes ∆V t t x t FB ox oxO oxox O oxox t =-∈⋅⋅=-∈F H G I KJ 1332302ρρaf Then∆V FB =-⨯⨯⨯---()12810200103398851028214...b g b g b gor 0494.0-=∆FB V V_______________________________________10.27 Sketch_______________________________________10.28 Sketch_______________________________________10.29 (b)⎪⎪⎭⎫⎝⎛-=-=2ln i d a t bi FB n N N V V V ()()()()⎥⎥⎦⎤⎢⎢⎣⎡⨯-=2101616105.11010ln 0259.0or695.0-=FB V V(c) Apply 3-=G V V, 3≅ox V VFor 3+=G V V,sdx d ∈-=Eρ n-side: d eN =ρ1C x eN eN dx d sd s d +∈-=E ⇒∈-=E0=E at n x x -=, then snd x eN C ∈-=1 so()n s dx x eN +∈-=E for 0≤≤-x x n In the oxide, 0=ρ, so=E ⇒=E 0dxd constant. From the boundary conditions, in the oxidesn d x eN ∈-=E In the p-region,2C x eN eN dx d sa sa s+∈=E ⇒∈+=∈-=Eρ 0=E at ()p ox x t x +=, then ()[]x x teN p oxsa-+∈-=EAt ox t x =, snd sp a x eN x eN ∈-=∈-=E So that n d p a x N x N = Since d a N N =, then p n x x = The potential is ⎰E -=dx φFor zero bias, we can write bi p ox n V V V V =++where p ox n V V V ,, are the voltage drops acrossthe n-region, the oxide, and the p-region, respectively. For the oxide:soxn d ox ox t x eN t V ∈=⋅E =For the n-region:()C x x x eN x V n s d n '+⎪⎪⎭⎫ ⎝⎛⋅+∈=22Arbitrarily, set 0=n V at n x x -=, thensnd x eN C ∈='22so that()()22n sdn x x eN x V +∈=At 0=x , snd n x eN V ∈=22which is the voltagedrop across the n-region. Because ofsymmetry, p n V V =. Then for zero bias, wehavebi ox n V V V =+2 which can be written as bi sox n d s n d V t x eN x eN =∈+∈2or 02=∈-+ds bi ox n n eN V t x x Solving for n x , we obtain dbis ox ox n eN V t t x ∈+⎪⎪⎭⎫ ⎝⎛+-=222 If we apply a voltage G V , then replace bi V by G bi V V +, so ()dG bi s ox ox p n eN V V t t x x +∈+⎪⎪⎭⎫ ⎝⎛+-==222 We find2105008-⨯-==p n x x()()()()()1619142810106.1695.31085.87.11210500---⨯⨯+⎪⎪⎭⎫ ⎝⎛⨯+ which yields510646.4-⨯==p n x x cmNow soxn d ox t x eN V ∈=()()()()()()148516191085.87.111050010646.410106.1----⨯⨯⨯⨯=or359.0=ox V V We also findsnd p n x eN V V ∈==22()()()()()142516191085.87.11210646.410106.1---⨯⨯⨯=or67.1==p n V V V_______________________________________10.30(a) n-type (b) We have731210110210200---⨯=⨯⨯=ox C F/cm 2Also ()()7141011085.89.3--⨯⨯=∈=⇒∈=ox ox ox ox ox ox C t t C or 61045.3-⨯=ox t cm 5.34=nm o A 345= (c)oxssms FB C Q V '-=φ or 71050.080.0-'--=-ssQwhich yields8103-⨯='ssQ C/cm 21110875.1⨯=cm 2- (d) ⎪⎪⎭⎫ ⎝⎛∈⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛∈∈+∈='d s s ox ox ox FB eN e kT t C()()[][6141045.31085.89.3--⨯÷⨯= ()()()()()⎥⎥⎦⎤⨯⨯⨯⎪⎭⎫ ⎝⎛+--161914102106.11085.87.110259.07.119.3 which yields81082.7-⨯='FBC F/cm 2 or156=FB C pF_______________________________________10.31 (a) Point 1: Inversion 2: Threshold3: Depletion4: Flat-band5: Accumulation_______________________________________10.32 We have ()()[]fp ms x GS ox nV V C Q φφ2+---=' ()()max SD ssQ Q '+'- Now let DS x V V =, so ()⎩⎨⎧--='DS GS ox n V V C Q ()()⎪⎭⎪⎬⎫⎥⎥⎦⎤⎢⎢⎣⎡+-'+'+fp ms ox ss SD C Q Q φφ2m ax For a p-type substrate, ()max SDQ ' is a negative value, so we can write()⎩⎨⎧--='DS GS ox n V V C Q()⎪⎭⎪⎬⎫⎥⎥⎦⎤⎢⎢⎣⎡++'-'-fp ms ox ss SD C Q Q φφ2m ax Using the definition of threshold voltage T V ,we have()[]T DS GS ox nV V V C Q ---=' At saturation()T GS DS DS V V sat V V -== which then makes nQ 'equal to zero at the drain terminal._______________________________________10.33(a) ()[]222DS DS T GS n D V V V V L W k I --⋅'= ()()()()[]22.02.04.08.028218.0--⎪⎭⎫ ⎝⎛= 0864.0=mA (b) ()22T GS n D V V LW k I -⋅'= ()()24.08.08218.0-⎪⎭⎫ ⎝⎛= 1152.0=mA(c) Same as (b), 1152.0=D I mA(d) ()22T GS n D V V L W k I -⋅'=()()24.02.18218.0-⎪⎭⎫ ⎝⎛= 4608.0=mA _______________________________________ 10.34 (a) ()[]222SDSD T SG p D V V V V LW k I -+⋅'= ()()()()[]225.025.04.08.0215210.0--⎪⎭⎫ ⎝⎛= 103.0=D I mA(b) ()22T SG p D V V LW k I +⋅'= ()()24.08.015210.0-⎪⎭⎫ ⎝⎛= 12.0=mA(c) ()22T SG p D V V L W k I +⋅'=()()24.02.115210.0-⎪⎭⎫ ⎝⎛=48.0=mA(d) Same as (c), 48.0=D I mA_______________________________________10.35(a) ()22T GS n D V V LW k I -⋅'=()28.04.126.00.1-⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛=L W26.9=⇒LW(b) ()()28.085.126.926.0-⎪⎭⎫ ⎝⎛=D I06.3=mA(c) ()[]222DSDS T GS n D V V V V L W k I --⋅'= ()()()()[]215.015.08.02.1226.926.0--⎪⎭⎫ ⎝⎛=271.0=mA_______________________________________10.36(a) Assume biased in saturation region()22T SG p D V V L W k I +⋅'=()()2020212.010.0T V +⎪⎭⎫ ⎝⎛=289.0+=⇒T V VNote: 0.1=SD V V 289.00+=+>T SG V V V So the transistor is biased in the saturation region.(b) ()()2289.04.020212.0+⎪⎭⎫ ⎝⎛=D I570.0=mA(c) ()()[()15.0289.06.0220212.0+⎪⎭⎫⎝⎛=D I()]215.0-or293.0=D I mA_______________________________________10.37 ()()781410138.3101101085.89.3---⨯=⨯⨯=ox C F/cm 2 ()()()()2.122010138.342527-⨯==L W C K ox n n μ310111.1-⨯=A/V 2=1.111 mA/V 2(a) 0=GS V , 0=D I 6.0=GS V V, ()15.0=sat V DS V, ()()()245.06.0111.1-=sat I D 025.0=mA2.1=GS V V, ()75.0=sat V DS V, ()()()245.02.1111.1-=sat I D 625.0=mA8.1=GS V V, ()35.1=sat V DS V,()()()245.08.1111.1-=sat I D 025.2=mA4.2=GS V V, ()95.1=sat V DS V,()()()245.04.2111.1-=sat I D 225.4=mA (c)0=D I for 45.0≤GS V V 6.0=GS V V,()()()()[]21.01.045.06.02111.1--=D I 0222.0=mA 2.1=GS V V,()()()()[]21.01.045.02.12111.1--=D I 156.0=mA 8.1=GS V V,()()()()[]21.01.045.08.12111.1--=D I 289.0=mA 4.2=GS V V,()()()()[]21.01.045.04.22111.1--=D I 422.0=mA_______________________________________10.38()()814101101085.89.3--⨯⨯=∈=ox ox ox t C 710138.3-⨯=F/cm 2L WC K ox p p 2μ=()()()()2.123510138.32107-⨯=41061.9-⨯=A/V 2=0.961 mA/V 2(a) 0=SG V , 0=D I6.0=SG V V, ()25.0=sat V SD V()()()235.06.0961.0-=sat I D 060.0=mA2.1=SG V V, ()85.0=sat V SD V()()()235.02.1961.0-=sat I D 694.0=mA 8.1=SG V V, ()45.1=sat V SD V()()()235.08.1961.0-=sat I D02.2=mA4.2=SG V V, ()05.2=sat V SD V()()()235.04.2961.0-=sat I D04.4=mA (c)0=D I for 35.0≤SG V V6.0=SG V V()()()()[]21.01.035.06.02961.0--=D I 0384.0=mA 2.1=SG V V ()()()()[]21.01.035.02.12961.0--=D I154.0=mA8.1=SG V V ()()()()[]21.01.035.08.12961.0--=D I 269.0=mA 4.2=SG V V()()()()[]21.01.035.04.22961.0--=D I 384.0=mA_______________________________________10.39(a) From Problem 10.37,111.1=n K mA/V 2 For 8.0-=GS V V, 0=D I0=GS V , ()8.0=sat V DS V()()()28.00111.1+=sat I D 711.0=mA8.0+=GS V V, ()6.1=sat V DS V()()()28.08.0111.1+=sat I D 84.2=mA6.1=GS V V, ()4.2=sat V DS V()()()28.06.1111.1+=sat I D 40.6=mA_______________________________________10.40 Sketch _______________________________________10.41 Sketch _______________________________________ 10.42We have ()T DS T GS DS V V V V sat V -=-=so that()T DS DS V sat V V +=Since ()sat V V DS DS >, the transistor is always biased in the saturation region. Then()2T GS n D V V K I -=where, from Problem 10.37,111.1=n K mA/V 2and 45.0=T V V10.43From Problem 10.38, 961.0=p K mA/V 2()()[]22SD SD T SG p D V V V V K I -+=()T SG p V SDDd V V K V I g SD +=∂∂=→20For 35.0≤SG V V, 0=d g For 35.0>SG V V,()()35.0961.02-=SG d V g For 4.2=SG V V,()()35.04.2961.02-=d g 94.3=mA/V_______________________________________10.44(a) GS D m V I g ∂∂=()()[]{}22DS DS T GS n GSV V V V K V --∂∂=()DS n V K 2=()()05.0225.1n K =5.12=⇒n K mA/V 2(b) ()()()[()]205.005.03.08.025.12--=D I 594.0=mA(c) ()()23.08.05.12-=D I125.3=mA_______________________________________10.45We find that 2.0≅T V V Now ()()T GS oxn D V V LC W sat I -⋅=2μ where ()()814104251085.89.3--⨯⨯=∈=ox ox oxt C or81012.8-⨯=ox C F/cm 2We are given 10=L W . From the graph, for 3=GS V V, we have ()033.0≅sat I D , then ()2.032033.0-⋅=LC W oxn μ or310139.02-⨯=LC W oxn μor()()3810139.01012.81021--⨯=⨯n μwhich yields342=n μcm 2/V-s_______________________________________10.46 (a)()T GS DS V V sat V -= or8.48.04=⇒-=GS GS V V V(b) ()()()sat V K V V K sat I DS n T GS n D 22=-= so()244102n K =⨯- which yields μ5.12=n K A/V 2 (c) ()2.18.02=-=-=T GS DS V V sat V Vso ()sat V V DS DS > ()()()258.021025.1-⨯=-sat I Dor ()μ18=sat I D A(d)()sat V V DS DS <()[]22DS DS T GS n D V V V V K I --= ()()()()[]25118.0321025.1--⨯=-orμ5.42=D I A_______________________________________10.47(a) ()()814101801085.89.3--⨯⨯=ox C 7109175.1-⨯=F/cm 2(i)()()7109175.1450-⨯=='ox n nC k μ 510629.8-⨯=A/V 2 or μ29.86='nk A/V 2 (ii)()()22T GS nD V V L W k sat I -⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛'= ()24.02208629.08.0-⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛=L W24.7=⇒L W(b) (i) ()()7109175.1210-⨯=='ox p p C k μ 510027.4-⨯=A/V 2or μ27.40='p k A/V 2(ii) ()()22T SG p D V V L W k sat I +⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛'= ()24.02204027.08.0-⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛=L W5.15=⇒LW_______________________________________ 10.48 From Problem 10.37, 111.1=n K mA/V 2(a) ()()[]{}22DS DS T GS n GS mL V V V V K V g --∂∂= ()()()()1.02111.12==DS n V K so 222.0=mL g mA/V (b) (){}2T GS n GS ms V V K V g -∂∂=()()()45.05.1111.122-=-=T GS n V V K so 33.2=ms g mA/V _______________________________________10.49From Problem 10.38, 961.0=p K mA/V 2(a) ()()[]{}22SD SD T SG p SGmL V V V V K Vg -+∂∂= ()()()()1.02961.02==SD p V K or 192.0=mL g mA/V (b) ()[]2T SG p SGms V V K V g +∂∂=()()()35.05.1961.022-=+=T SG p V V K or 21.2=ms g mA/V_______________________________________10.50 (a) oxa s C N e ∈=2γNow ()()814101501085.89.3--⨯⨯=oxC 710301.2-⨯=F/cm 2 Then()()()()716141910301.21051085.87.11106.12---⨯⨯⨯⨯=γ 5594.0=γV 2/1 (b) ()3890.0105.1105ln 0259.01016=⎪⎪⎭⎫⎝⎛⨯⨯=fpφV (i)()()()()()2/1161914105106.13890.01085.87.114⎥⎦⎤⎢⎣⎡⨯⨯⨯=--dT x510419.1-⨯=cm()m ax SDQ ' ()()()5161910419.1105106.1--⨯⨯⨯=710135.1-⨯=C/cm 2 ()fp FB oxSDTO V C Q V φ2max ++'= ()3890.025.010301.210135.177+-⨯⨯=-- 7713.0=VL WC K ox n n 2μ=()()()()2.12810301.24507-⨯=410452.3-⨯=A/V 2 or 3452.0=n K mA/V 2 For 0=D I , 7713.0==TO GS V V V For 5.0=D I ()()27713.03452.0-=GS V 975.1=⇒GS V V (c) (i) For 0=SB V , 7713.0==TO T V V V (ii) 1=SB V V,()()[1389.025594.0+=∆T V()]389.02-2525.0=V024.12525.07713.0=+=T V V (iii) 2=SB V V,()()[2389.025594.0+=∆T V ()]389.02-4390.0=V210.14390.07713.0=+=T V V (iv) 4=SB V V,()()[4389.025594.0+=∆T V()]389.02-7294.0=V501.17294.07713.0=+=T V V _______________________________________10.51()3473.0105.110ln 0259.01016=⎪⎪⎭⎫⎝⎛⨯=fp φ V[]fpSBfpT V V φφγ22-+=∆()()[5.23473.0212.0+=()]3473.02- or114.0=∆T V VNow T TO T V V V ∆+= 114.05.0+=TO V 386.0=⇒TO V V _______________________________________ 10.52 (a) ()()814102001085.89.3--⨯⨯=ox C710726.1-⨯=F/cm 2oxds C N e ∈=2γ ()()()()715141910726.11051085.87.11106.12---⨯⨯⨯⨯= 2358.0=γV 2/1 (b) ()3294.0105.1105ln 0259.01015=⎪⎪⎭⎫⎝⎛⨯⨯=fnφV []fn BS fnT V V φφγ22-+-=∆()()[BS V +-=-3294.022358.022.0()]3294.02- 39.2=⇒BS V V_______________________________________10.53(a) +n poly-to-p-type 0.1-=⇒ms φV ()288.0105.110ln 0259.01015=⎪⎪⎭⎫⎝⎛⨯=fp φValso 2/14⎥⎦⎤⎢⎣⎡∈=a fp s dTeN x φ()()()()()2/115191410106.1288.01085.87.114⎥⎦⎤⎢⎣⎡⨯⨯=-- or410863.0-⨯=dT x cm Now()()()()4151910863.010106.1m ax --⨯⨯='SDQ or()81038.1m ax -⨯='SDQ C/cm 2 Also()()814104001085.89.3--⨯⨯=∈=ox ox ox t C or81063.8-⨯=ox C F/cm 2 We find ()()91019108105106.1--⨯=⨯⨯='ss Q C/cm 2 Then ()fp ms oxss SD T C Q Q V φφ2m ax ++'-'=()288.020.11063.81081038.1898+-⎪⎪⎭⎫ ⎝⎛⨯⨯-⨯=--- or 357.0-=T V V(b) For NMOS, apply SB V and T V shifts in apositive direction, so for 0=T V , we want 357.0+=∆T V V. So[]fp SB fpoxa s T V C N e V φφ222-+∈=∆or()()()()81514191063.8101085.87.11106.12357.0---⨯⨯⨯=+ ()()[]288.02288.02-+⨯SB V or[]576.0576.0211.0357.0-+=SB V which yields 43.5=SB V V_______________________________________10.54 Plot_______________________________________10.55 (a)()T GS oxn m V V L C W g -=μ()T GS oxoxn V V t L W -∈=μ ()()()()()65.0510*******.89.340010814-⨯⨯=--or26.1=m g mS Nowsm m m s m m m r g g g r g g g +=='⇒+='118.01which yields⎪⎭⎫⎝⎛-=⎪⎭⎫ ⎝⎛-=18.0126.1118.011m s g r or 198.0=s r k Ω (b) For 3=GS V V, 683.0=m g mS Then ()()602.0198.0683.01683.0=+='m g mS or 88.0683.0602.0=='m m g g which is a 12% reduction._______________________________________10.56 (a) The ideal cutoff frequency for no overlap capacitance is,()222L V V C g f T GS n gs m T πμπ-==()()()24102275.04400-⨯-=π or 17.5=T f GHz (b) Now ()M gsT m T C C g f +=π2 where ()L m gdT M R g C C +=1 We find()()4410201075.0--⨯⨯=ox gdT C C()()814105001085.89.3--⨯⨯= ()()4410201075.0--⨯⨯⨯ or1410035.1-⨯=gdT C F Also ()T GS oxn m V V LC W g -=μ()()()()()()84144105001021085.89.34001020----⨯⨯⨯⨯= ()75.04-⨯or3108974.0-⨯=m g SThen ()1410035.1-⨯=M C ()()[]331010108974.01⨯⨯+⨯- or 1310032.1-⨯=M C F Now()()W L C C ox gsT 41075.0-⨯+= ()()814105001085.89.3--⨯⨯= ()()44410201075.0102---⨯⨯+⨯⨯ or1410797.3-⨯=gsT C F We now find ()M gsT mTC C g f +=π2 ()1314310032.110797.32108974.0---⨯+⨯⨯=π or 01.1=T f GHz _______________________________________10.57 (a) For the ideal case()4610221042-⨯⨯==ππυL f ds Tor 18.3=T f GHz(b) With overlap capacitance (using the values from Problem 10.56), ()MgdT mT C C g f +=π2 We findds ox m W C g υ= ()()()()86144105001041085.89.31020---⨯⨯⨯⨯= or3105522.0-⨯=m g S We have()L m gdT M R g C C +=1 ()1410035.1-⨯=()()[]331010105522.01⨯⨯+⨯- or 1410750.6-⨯=M C F。
Chapter 44.1 where cO N and O N υ are the values at 300 K.4.2Plot_______________________________________4.3By trial and error, 5.367≅T K(b)By trial and error, 5.417≅T K_______________________________________4.4At 200=T K, ()⎪⎭⎫⎝⎛=3002000259.0kT017267.0=eVAt 400=T K, ()⎪⎭⎫ ⎝⎛=3004000259.0kT 034533.0=eVoror 318.1=g E eV Now so 371041.9⨯=o co N N υcm 6-_______________________________________4.5 For 200=T K, 017267.0=kT eV For 300=T K, 0259.0=kT eVFor 400=T K, 034533.0=kT eV(a) For 200=T K,(b) For 300=T K,(c) For 400=T K,_______________________________________4.6Let x E E c =-Then ⎪⎭⎫ ⎝⎛-∝kT x x f g F c exp To find the maximum value: which yields The maximum value occurs at (b)Let x E E =-υ Then ()⎪⎭⎫⎝⎛-∝-kT x x f g F exp 1υ To find the maximum value Same as part (a). Maximum occurs at or _______________________________________4.7 wherekT E E c 41+= and 22kT E E c += Then or _______________________________________ 4.8 Plot _______________________________________ 4.9 Plot _______________________________________4.10 Silicon: o p m m 56.0*=, o n m m 08.1*=0128.0-=-midgap Fi E E eV Germanium: o p m m 37.0*=,o n m m 55.0*=0077.0-=-midgap Fi EE eVGallium Arsenide: o p m m 48.0*=, 0382.0+=-midgapFi E E eV _______________________________________4.12 63.10-⇒meV 47.43+⇒meV _______________________________________ 4.13 Let ()==K E g c constant Then Let kT E E c-=η so that ηd kT dE ⋅= We can writeso that The integral can then be written as which becomes_______________________________________ 4.14Let ()()c c E E C E g -=1 for c E E ≥ Then LetkTE E c-=η so that ηd kT dE ⋅=We can write Then orWe find that So_______________________________________ 4.15We have ⎪⎪⎭⎫⎝⎛=∈*1m m a r o r o For germanium, 16=∈r , o m m 55.0*= Then orThe ionization energy can be written as ()6.132*⎪⎪⎭⎫⎝⎛∈∈⎪⎪⎭⎫ ⎝⎛=s o o m m E eV ()()029.06.131655.02=⇒=E eV_______________________________________ 4.16We have ⎪⎪⎭⎫⎝⎛=∈*1m m a r o r o For gallium arsenide, 1.13=∈r , ThenThe ionization energy is or0053.0=E eV_______________________________________ 4.172148.0=eV90518.02148.012.1=-=eV 31090.6⨯=cm 3- (a) Holes338.0=eV_______________________________________ 4.18162.0=eV 958.0162.012.1=-=eV 31041.2⨯=cm 3-365.0=eV_______________________________________ 4.198436.0=eV2764.0=-υE E F eV1410414.2⨯=cm 3- (a) p-type_______________________________________ 4.20(a) ()032375.03003750259.0=⎪⎭⎫⎝⎛=kT eV141015.1⨯=cm 3-14.1=eV31099.4⨯=cm 3-2154.0=eV 2046.1=eV 21042.4-⨯=cm 3-_______________________________________ 4.21(a) ()032375.03003750259.0=⎪⎭⎫⎝⎛=kT eV151086.6⨯= cm 3-840.0=eV 71084.7⨯=cm 3-2153.0=eV9047.02153.012.1=-=-υE E F eV 31004.7⨯=cm 3-_______________________________________ 4.22(a) p-type(b) 28.0412.14===-g F E E E υeV141010.2⨯=cm 3- 84.028.012.1=-=eV 51030.2⨯=cm 3-_______________________________________ 4.23131033.7⨯=cm 3- 61007.3⨯=cm 3- 91080.8⨯=cm 3-21068.3⨯=cm 3-_______________________________________ 4.241979.0=eV 92212.019788.012.1=-=eV 31066.9⨯=cm 3- (a) Holes3294.0=eV _______________________________________4.25()034533.03004000259.0=⎪⎭⎫⎝⎛=kT eV1910601.1⨯=cm 3-19103109.4⨯=cm 3-1210381.2⨯=⇒i n cm 3- 2787.0=eV(a) 84127.027873.012.1=-=-F c E E eV 910134.1⨯=cm 3- (b) Holes2642.0=eV _______________________________________ 4.26141050.4⨯=cm 3-17.125.042.1=-=-F c E E eV 21013.1-⨯=cm 3- (a) 034533.0=kT eV1910078.1⨯=cm 3- 1710236.7⨯=cm 3-3482.0=eV072.13482.042.1=-=-F c E E eV41040.2⨯=cm 3-_____________________________________ 4.27141068.6⨯=cm 3-870.025.012.1=-=-F c E E eV 41023.7⨯=o n cm 3- (a) 034533.0=kT eV1910601.1⨯=cm 3- 1910311.4⨯=cm 3- 3482.0=eV7718.03482.012.1=-=-F c E E eV 91049.8⨯=cm 3-_______________________________________ 4.28(a) ()F c o F N n ηπ2/12=For 2kT E E c F +=, Then ()0.12/1≅F F η 191016.3⨯=cm 3-(b) ()F c o F N n ηπ2/12=171030.5⨯=cm 3-_______________________________________ 4.29So ()26.42/1='FF η We find kTE E FF-=≅'υη0.3()()0777.00259.00.3==-F E E υeV_______________________________________ 4.30(a) 44==-=kTkTkT E E c F F ηThen ()0.62/1≅F F η 201090.1⨯=cm 3-(b) ()()0.6107.4217⨯=πo n181018.3⨯=cm 3-_______________________________________ 4.31For the electron concentrationThe Boltzmann approximation applies, so or Define ThenTo find maximum ()()x n E n →, set orwhich yieldsFor the hole concentrationUsing the Boltzmann approximation or Define ThenTo find maximum value of ()()x p E p '→, set()0=''x d x dp Using the results from above,we find the maximum at_______________________________________ 4.32(a) Silicon: We have We can write For045.0=-d c E E eV andkT E E F d 3=-eV we can write or171045.2⨯=o n cm 3-We also haveAgain, we can write ForkT E E a F 3=- and045.0=-υE E a eVThen or161012.9⨯=o p cm 3-(b) GaAs: assume 0058.0=-d c E E eV Then or161087.1⨯=o n cm 3-Assume 0345.0=-υE E a eV Then or161020.9⨯=o p cm 3-_______________________________________ 4.33Plot_______________________________________ 4.34(a) 151510310154⨯=-⨯=o p cm 3-()415210105.7103105.1⨯=⨯⨯=on cm 3-(b) 16103⨯==d o N n cm 3- ()316210105.7103105.1⨯=⨯⨯=op cm 3-(c) 10105.1⨯===i o o n p n cm 3- 1110334.7⨯=⇒i n cm 3-15104⨯==a o N p cm 3-()8152111034.110410334.7⨯=⨯⨯=o n cm 3-1310722.1⨯=⇒i n cm 3- 1410029.1⨯=cm 3-()12142131088.210029.110722.1⨯=⨯⨯=op cm 3-_______________________________________ 4.3515103⨯=cm 3- ()3152621008.1103108.1-⨯=⨯⨯==o i o p n n cm 3-(a) 16103⨯==d o N n cm 3-()416261008.1103108.1-⨯=⨯⨯=op cm 3-(b) 6108.1⨯===i o o n p n cm 3-810580.7⨯=⇒i n cm 3- 15104⨯==a o N p cm 3-()215281044.110410580.7⨯=⨯⨯=on cm 3-1010853.3⨯=⇒i n cm 3- 1410==d o N n cm 3-()7142101048.11010853.3⨯=⨯=op cm 3-_______________________________________ 4.36(a) Ge: 13104.2⨯=i n cm 3-(i)2222i d d o n N N n +⎪⎪⎭⎫⎝⎛+= or15102⨯=≅d o N n cm 3-111088.2⨯= cm 3- (ii)151610710⨯-=-≅d a o N N p 15103⨯=cm 3- 111092.1⨯=cm 3- (b) GaAs: 6108.1⨯=i n cm 3- (i)15102⨯=≅d o N n cm()315261062.1102108.1-⨯=⨯⨯=op cm 3-(ii)15103⨯=-≅d a o N N p cm 3-()315261008.1103108.1-⨯=⨯⨯=on cm 3-(c) The result implies that there is only one minority carrier in a volume of 310cm 3. _______________________________________ 4.37(a) For the donor level or(b) We have Now or Then or_______________________________________ 4.38(a) ⇒>d a N N p-type (b) Silicon: or13105.1⨯=o p cm 3- Then()7132102105.1105.1105.1⨯=⨯⨯==o i o p n n cm 3- Germanium: or131026.3⨯=o p cm 3- Then()131321321076.110264.3104.2⨯=⨯⨯==o i o p n n cm 3-Gallium Arsenide:13105.1⨯=-=d a o N N p cm 3- and()216.0105.1108.113262=⨯⨯==o i o p n n cm 3- _______________________________________ 4.39(a) ⇒>a d N N n-type14108⨯=cm 3-()51421021081.2108105.1⨯=⨯⨯==o i o n n p cm 3-15108.4⨯='⇒aN cm 3-()41521010625.5104105.1⨯=⨯⨯=o n cm 3-_______________________________________ 4.40()155210210125.1102105.1⨯=⨯⨯==o i o p n n cm 3- ⇒>o o p n n-type_______________________________________ 4.411210376.1⨯=⇒i n cm 3-So 111088.6⨯=o n cm 3-, Then 121075.2⨯=o p cm 3-so that 1210064.2⨯=a N cm 3-_______________________________________ 4.42Plot_______________________________________ 4.43Plot_______________________________________ 4.44Plot_______________________________________ 4.45so 131074.5⨯=i n cm 3-1314272103101.1103.3⨯=⨯⨯==o i o n n p cm 3- _______________________________________ 4.46(a) ⇒>d a N N p-typeMajority carriers are holes 16105.1⨯=cm 3-Minority carriers are electrons ()4162102105.1105.1105.1⨯=⨯⨯==o i o p n n cm 3- (b) Boron atoms must be addedSo 16105.3⨯='aN cm 3-()316210105.4105105.1⨯=⨯⨯=on cm 3-_______________________________________ 4.47(a) ⇒<<i o n p n-type on ()16421010125.1102105.1⨯=⨯⨯=cm 3-⇒electrons are majority carriers4102⨯=o p cm 3-⇒holes are minority carriers so 1610825.1⨯=d N cm 3-_______________________________________ 4.482222i a a o n N N p +⎪⎪⎭⎫⎝⎛+= and1510=N cm 3-4.49For 1410cm 3-, 3249.0=-F c E E eV 1510cm 3-, 2652.0=-F c E E eV 1610cm 3-, 2056.0=-F c E E eV 1710cm 3-, 1459.0=-F c E E eV For 1410cm 3-, 2280.0=-Fi F E E eV 1510cm 3-, 2877.0=-Fi F E E eV 1610cm 3-, 3473.0=-Fi F E E eV 1710cm 3-, 4070.0=-Fi F E E eV _______________________________________ 4.50151005.105.1⨯==d o N n cm 3- so 2821025.5⨯=i n NowBy trial and error, 5.536=T K (a) At 300=T K,2652.0=eV At 5.536=T K,()046318.03005.5360259.0=⎪⎭⎫⎝⎛=kT eV1910696.6⨯=cm 3-5124.0=eV then ()2472.0=-∆F c E E eV (b) Closer to the intrinsic energy level._______________________________________ 4.51At 200=T K, 017267.0=kT eV 400=T K, 034533.0=kT eV 600=T K, 0518.0=kT eV At 200=T K,410638.7⨯=⇒i n cm 3- At 400=T K,1210381.2⨯=⇒i n cm 3- At 600=T K,1410740.9⨯=⇒i n cm 3- At 200=T K and 400=T K, 15103⨯==a o N p cm 3- At 600=T K,1510288.3⨯=cm 3-Then, 200=T K, 4212.0=-F Fi E E eV400=T K, 2465.0=-F Fi E E eV600=T K, 0630.0=-F Fi E E eV_______________________________________ 4.52(a)For 1410=a N cm 3-,4619.0=-F Fi E E eV1510=a N cm 3-,5215.0=-F Fi E E eV1610=a N cm 3-,5811.0=-F Fi E E eV1710=a N cm 3-,6408.0=-F Fi E E eV (b)For 1410=a N cm 3-, 2889.0=-υE E F eV1510=a N cm 3-,2293.0=-υE E F eV1610=a N cm 3-,1697.0=-υE E F eV1710=a N cm 3-,1100.0=-υE E F eV_______________________________________ 4.53 or0447.0+=-midgap Fi E E eV(a) Impurity atoms to be added so 45.0=-F midgap E E eV(i) p-type, so add acceptor atoms (ii)4947.045.00447.0=+=-F Fi E E eV Then or131097.1⨯==a o N p cm 3-_______________________________________ 4.54 so or16102.1⨯=d N cm 3-_______________________________________ 4.55(a) Silicon(i)⎪⎪⎭⎫⎝⎛=-d c F c N N kT E E ln()2188.0106108.2ln 0259.01519=⎪⎪⎭⎫⎝⎛⨯⨯=eV(ii)1929.00259.02188.0=-=-F c E E eV1610631.1⨯=d N cm 3-15106⨯+'=dN 1610031.1⨯='⇒dN cm 3- Additionaldonor atoms(b) GaAs(i)()⎪⎪⎭⎫ ⎝⎛⨯=-151710107.4ln 0259.0F c E E 15936.0=eV(ii)13346.00259.015936.0=-=-F c E E eV1510718.2⨯=cm 3-1510+'=dN 1510718.1⨯='⇒dN cm 3- Additionaldonor atoms _______________________________________4.56()⎪⎪⎭⎫ ⎝⎛⨯⨯=16191021004.1ln 0259.01620.0=eV ()1876.0102108.2ln 0259.01619=⎪⎪⎭⎫ ⎝⎛⨯⨯=eV(a) For part (a);16102⨯=o p cm 3- 410125.1⨯=cm 3- For part (b):16102⨯=o n cm 3- 410125.1⨯=cm 3-_______________________________________ 4.5715100.3⨯=cm 3- Add additional acceptor impurities 15104⨯=⇒a N cm 3-_______________________________________ 4.58()3161.0105.1103ln 0259.01015=⎪⎪⎭⎫⎝⎛⨯⨯=eV()3758.0105.1103ln 0259.01016=⎪⎪⎭⎫⎝⎛⨯⨯=eV2786.0=eV 06945.0=eV _______________________________________ 4.59 ()2009.0103100.7ln 0259.01518=⎪⎪⎭⎫ ⎝⎛⨯⨯=eV 360.1=eV7508.0=eV 2526.0=eV 068.1=eV_______________________________________ 4.60n-type ()3504.0105.110125.1ln 0259.01016=⎪⎪⎭⎫⎝⎛⨯⨯=eV ______________________________________ 4.61 ()030217.03003500259.0=⎪⎭⎫ ⎝⎛=kT eV ()1921910633.1300350102.1⨯=⎪⎭⎫ ⎝⎛⨯=c N cm 3-()192191045.2300350108.1⨯=⎪⎭⎫ ⎝⎛⨯=υN cm 3- Now So6257.0=⇒g E eV_______________________________________ 4.62(a) Replace Ga atoms ⇒Silicon acts as adonor()()1415105.310705.0⨯=⨯=d N cm 3-Replace As atoms ⇒Silicon acts as anacceptor()()15151065.610795.0⨯=⨯=a N cm 3-(b) ⇒>d a N N p-type(c) 1415105.31065.6⨯-⨯=-=d a o N N p 15103.6⨯=cm 3-()4152621014.5103.6108.1-⨯=⨯⨯==o i o p n n cm 3-()5692.0108.1103.6ln 0259.0615=⎪⎪⎭⎫⎝⎛⨯⨯=eV_______________________________________。
半导体物理与器件第四版课后习题答案第一章半导体材料基础知识1.1 小题一根据题目描述,当n=5时,半导体材料的载流子浓度为’n=2.5×1015cm(-3)’,求势垒能为多少?解答:根据势垒能公式E_g = E_c - E_v其中E_g为势垒能,E_c为导带底,E_v为价带顶。
根据载流子浓度和温度的关系n = 2 * (2 * pi * m_e * k * T / h^2)^(3/2) * e^(-E_g / (2 * k * T))其中m_e为载流子质量,k为玻尔兹曼常数,T为绝对温度。
可以得到E_g = -2 * k * T * ln(n / (2 * (2 * pi * m_e * k * T / h^2)^(3/2)))代入已知条件,计算得到势垒能为E_g = -2 * 1.38 * 10^(-23) * 300 * ln(2.5 * 10^15 / (2 * (2 * pi * 9.1 * 10^(-31) * 1.38 * 10^ (-23) * 300 / (6.63 * 10^(-34))^2)^(3/2)))1.1 小题二根据题目描述,当势垒能E_g=1.21eV时,求温度为多少时,载流子浓度为’n=5.0×1015cm(-3)’?解答:按照1.1 小题一的公式,可以求出温度TT = E_g / (2 * k * ln(n / (2 * (2 * pi * m_e * k * T / h^2)^(3/2))))将已知数据代入公式,计算得到温度T = 1.21 / (2 * 1.38 * 10^(-23) * ln(5 * 10^15/ (2 * (2 * pi * 9.1 * 10^(-31) * 1.38 * 10^(-2 3) * T / (6.63 * 10^(-34))^2)^(3/2))))第二章半导体材料与器件基本特性2.1 小题一根据题目描述,当Si掺杂浓度[N_b]为5×10^15 cm(-3)和[P_e]为2×1017 cm^(-3),求Si中的载流子浓度和导电类型。