(完整版)2018全国卷3理数含答案
- 格式:doc
- 大小:960.19 KB
- 文档页数:15
1.2018年全国卷Ⅲ理】的展开式中的系数为A. 10B. 20C. 40D. 80【答案】C【解析】分析:写出,然后可得结果详解:由题可得,令,则,所以故选C.2.【2018年浙江卷】二项式的展开式的常数项是___________.【答案】7【解析】分析:先根据二项式展开式的通项公式写出第r+1项,再根据项的次数为零解得r,代入即得结果.详解:二项式的展开式的通项公式为,令得,故所求的常数项为3.【2018年理数天津卷】在的展开式中,的系数为____________. 【答案】决问题的关键.4.【山西省两市2018届第二次联考】若二项式中所有项的系数之和为,所有项的系数的绝对值之和为,则的最小值为()A. 2B.C.D.【答案】B5.【安徽省宿州市2018届三模】的展开式中项的系数为__________.【答案】-132【解析】分析:由题意结合二项式展开式的通项公式首先写出展开式,然后结合展开式整理计算即可求得最终结果.详解:的展开式为:,当,时,,当,时,,据此可得:展开式中项的系数为.6.【2017课标1,理6】621(1)(1)x x++展开式中2x 的系数为 A .15B .20C .30D .35【答案】C【解析】试题分析:因为6662211(1)(1)1(1)(1)x x x x x ++=⋅++⋅+,则6(1)x +展开式中含2x 的项为2226115C x x ⋅=,621(1)x x ⋅+展开式中含2x 的项为44262115C x x x⋅=,故2x 前系数为151530+=,选C.情况,尤其是两个二项式展开式中的r 不同.7.【2017课标3,理4】()()52x y x y +-的展开式中x 3y 3的系数为 A .80-B .40-C .40D .80【答案】C 【解析】8.【2017浙江,13】已知多项式()1x +3()2x +2=5432112345x a x a x a x a x a +++++,则4a =________,5a =________.【答案计数.9.【2017山东,理11】已知()13nx +的展开式中含有2x 项的系数是54,则n = . 【答案】4【解析】试题分析:由二项式定理的通项公式()1C 3C 3rr r r r r n n x x +T ==⋅⋅,令2r =得:22C 354n ⋅=,解得4n =.【考点】二项式定理10.【2015高考陕西,理4】二项式(1)()n x n N ++∈的展开式中2x 的系数为15,则n =( )A .4B .5C .6D .7 【答案】C【解析】二项式()1nx +的展开式的通项是1C r r r n x +T =,令2r =得2x 的系数是2C n ,因为2x 的系数为15,所以2C 15n =,即2300n n --=,解得:6n =或5n =-,因为n +∈N ,所以6n =,故选C . 【考点定位】二项式定理.【名师点晴】本题主要考查的是二项式定理,属于容易题.解题时一定要抓住重要条件“n +∈N ”,否则很容易出现错误.解本题需要掌握的知识点是二项式定理,即二项式()na b +的展开式的通项是1C k n k k k n ab -+T =. 11.【2015高考新课标1,理10】25()x x y ++的展开式中,52x y 的系数为( )(A )10 (B )20 (C )30 (D )60 【答案】C12.【2015高考湖北,理3】已知(1)n x +的展开式中第4项与第8项的二项式系数相等,则奇数项的二项式系数和为( )A.122 B .112 C .102D .92【答案】D【解析】因为(1)n x +的展开式中第4项与第8项的二项式系数相等,所以73nn C C =,解得10=n ,所以二项式10(1)x +中奇数项的二项式系数和为9102221=⨯.13.【2015高考重庆,理12】53x ⎛+ ⎝的展开式中8x 的系数是________(用数字作答).【答案】52【解析】二项展开式通项为7153521551()()2k k kkk k k T C x C x --+==,令71582k-=,解得2k =,因此8x 的系数为22515()22C =.14.【2015高考广东,理9】在4)1(-x 的展开式中,x 的系数为 . 【答案】6.【解析】由题可知()()44214411r rrrrr r T CC x--+=-=-,令412r-=解得2r =,所以展开式中x 的系数为()22416C -=,故应填入6.【名师点睛】涉及二项式定理的题,一般利用其通项公式求解.15.【2015高考天津,理12】在614x x ⎛⎫- ⎪⎝⎭ 的展开式中,2x 的系数为 .【答案】1516【解析】614x x ⎛⎫- ⎪⎝⎭展开式的通项为6621661144r rr r r r r T C x C x x --+⎛⎫⎛⎫=-=- ⎪ ⎪⎝⎭⎝⎭,由622r -=得2r =,所以222236115416T C x x ⎛⎫=-= ⎪⎝⎭,所以该项系数为1516.16.【2015高考新课标2,理15】4()(1)a x x ++的展开式中x 的奇数次幂项的系数之和为32,则a =__________. 【答案】3【解析】由已知得4234(1)1464x x x x x +=++++,故4()(1)a x x ++的展开式中x 的奇数次幂项分别为4ax ,34ax ,x ,36x ,5x ,其系数之和为441+6+1=32a a ++,解得3a =.【考点定位】二项式定理.17.【2015高考湖南,理6】已知5-的展开式中含32x 的项的系数为30,则a =( )B. C.6 D-6 【答案】D.18.【2015高考上海,理11】在10201511x x ⎛⎫++ ⎪⎝⎭的展开式中,2x 项的系数为(结果用数值表示). 【答案】45【解析】因为10101019102015201520151111(1)(1)(1)x x x C x x x x ⎛⎫⎛⎫++=++=++++ ⎪ ⎪⎝⎭⎝⎭,所以2x 项只能在10(1)x +展开式中,即为8210C x ,系数为81045.C =19.(2016年北京高考)在6(12)x -的展开式中,2x 的系数为__________________.(用数字作答)【答案】60.20.(2016年山东高考)若(a x 25的展开式中x 5的系数是—80,则实数a =_______. 【答案】-221.(2016年上海高考)在nx x ⎪⎭⎫ ⎝⎛-23的二项式中,所有项的二项式系数之和为256,则常数项等于_________ 【答案】11222.(2016年四川高考)设i 为虚数单位,则6(i)x +的展开式中含x 4的项为(A )-15x 4 (B )15x 4 (C )-20i x 4 (D )20i x 4 【答案】A23.(2016年天津高考)281()x x-的展开式中x 2的系数为__________.(用数字作答) 【答案】56-24.(2016年全国I 高考)5(2x +的展开式中,x 3的系数是 .(用数字填写答案) 【答案】10。
3
8
7 9 9 9 9
2018年普通高等学校招生全国统一考试
理科数学
注意事项:
1 •答卷前,考生务必将自己的姓名和准考证号填写在答题卡上。
2•回答选择题时,选出每小题答案后,用铅笔把答题卡对应题目的答案标号涂黑。
如需改动,用橡皮
擦干净后,再选涂其它答案标号。
回答非选择题时,将答案写在答题卡上。
写在本试卷上无效。
3 •考试结束后,将本试卷和答题卡一并交回。
一、选择题:本题共 12小题,每小题5分,共60分•在每小题给出的四个选项中,只有一项是符合题目 要求
的.
1.已知集合 A=1x|x-1》0}, B 工0 , 1, 2,贝U A 「B 二
A .心
B .⑴
C . J ,2
D . g, 1, 2;
2• 1 i 2 3-i =
A . -3 -i
B . -3 i
C . 3-i
D . 3 i
3 •中国古建筑借助榫卯将木构件连接起来,构件的凸出部分叫榫头,凹进部分叫卯眼,图中木构件右边的
小长方体是榫头•若如图摆放的木构件与某一带卯眼的木构件咬合成长方体,则咬合时带卯眼的木构件 的俯视图可以是
1
4 .若 sin ,则 cos2± 二
D .
2 2 4
5 • x 2 •— 的展开式中x 4的系数为 绝密★启用前
3 8 7 9 9 9 9
A
C。
2018年普通高等学校招生全国统一考试(四川卷)数学(理工类)参考公式:如果事件互斥,那么球的表面积公式()()()P A B P A P B+=+24S Rp=如果事件相互独立,那么其中R表示球的半径()()()P A B P A P B?球的体积公式如果事件A在一次试验中发生的概率是p,那么343V Rp=在n次独立重复试验中事件A恰好发生k次的概率其中R表示球的半径()(1)(0,1,2,,)k k n kn nP k C p p k n-=-=…第一部分(选择题共60分)注意事项:1、选择题必须使用2B铅笔将答案标号涂在机读卡上对应题目标号的位置上。
2、本部分共12小题,每小题5分,共60分。
一、选择题:每小题给出的四个选项中,只有一项是符合题目要求的。
1、7(1)x+的展开式中2x的系数是()A、42B、35C、28D、212、复数2(1)2ii-=()A、1B、1-C、iD、i-3、函数29,3()3ln(2),3xxf x xx x⎧-<⎪=-⎨⎪-≥⎩在3x=处的极限是()A、不存在B、等于6C、等于3D、等于04、如图,正方形ABCD的边长为1,延长BA至E,使1AE=,连接EC、ED则sin CED∠=()A B C D5、函数1(0,1)xy a a aa=->≠的图象可能是()6、下列命题正确的是( )A 、若两条直线和同一个平面所成的角相等,则这两条直线平行B 、若一个平面内有三个点到另一个平面的距离相等,则这两个平面平行C 、若一条直线平行于两个相交平面,则这条直线与这两个平面的交线平行D 、若两个平面都垂直于第三个平面,则这两个平面平行7、设a 、b 都是非零向量,下列四个条件中,使||||a b a b =成立的充分条件是( ) A 、a b =- B 、//a b C 、2a b = D 、//a b 且||||a b =8、已知抛物线关于x 轴对称,它的顶点在坐标原点O ,并且经过点0(2,)M y 。
2018全国高考(理数)真题冲刺140分专题训练 2018年普通高等学校招生全国统一考试1卷21. (本小题15分)在平面直角坐标系xoy 中,过定点(,0)C p 作直线m 与抛物线22(0)y px p =>相交于A 、B 两点.(I )设(,0)N p -,求NA NB u u u r u u u rg 的最小值;(II )是否存在垂直于x 轴的直线l ,使得l 被以AC 为直径的圆截得的弦长恒为定值?若存在,求出l 的方程;若不存在,请说明理由.22.(本小题15分)已知函数2()ln f x ax x=+(a ∈R).(1)当12a =时,求f (x )在区间[]1,e 上的最大值和最小值; (2)如果函数12(),(),()g x f x f x ,在公共定义域D 上,满足)()()(21x f x g x f <<,那么就称)(x g 为)x (f ),x (f 21的“活动函数”.已知函数2221211()()2(1)ln ,()222f x a x ax a x f x x ax =-++-=+.若在区间()1+∞,上,函数()f x 是12(),()f x f x 的“活动函数”, 求a 的取值范围;2018年普通高等学校招生全国统一考试2卷19.(12分)设抛物线24C y x =:的焦点为F ,过F 且斜率为(0)k k >的直线l 与C 交于A ,B 两点,||8AB =.(1)求l 的方程;(2)求过点A ,B 且与C 的准线相切的圆的方程.21.(12分)已知函数2()e x f x ax =-.(1)若1a =,证明:当0x ≥时,()1f x ≥; (2)若()f x 在(0,)+∞只有一个零点,求a .2018年普通高等学校招生全国统一考试3卷20.(12分)已知斜率为k 的直线l 与椭圆22143x y C +=:交于A ,B 两点.线段AB 的中点为()()10M m m >,.(1)证明:12k <-;(2)设F 为C 的右焦点,P 为C 上一点,且0FP FA FB ++=u u u r u u u r u u u r.证明:FA u u u r ,FP u u u r ,FBu u u r 成等差数列,并求该数列的公差.21.(12分)已知函数()()()22ln 12f x x ax x x =+++-.(1)若0a =,证明:当10x -<<时,()0f x <;当0x >时,()0f x >; (2)若0x =是()f x 的极大值点,求a .2018年普通高等学校招生全国统一考试数 学(理)(北京卷)(18)(本小题13分)设函数()f x =[2(41)43ax a x a -+++]e x .(Ⅰ)若曲线y= f (x )在点(1,(1)f )处的切线与x 轴平行,求a ; (Ⅱ)若()f x 在x =2处取得极小值,求a 的取值范围.(19)(本小题14分)已知抛物线C :2y =2px 经过点P (1,2).过点Q (0,1)的直线l 与抛物线C 有两个不同的交点A ,B ,且直线PA 交y 轴于M ,直线PB 交y 轴于N . (Ⅰ)求直线l 的斜率的取值范围;(Ⅱ)设O 为原点,QM QO λ=u u u u r u u u r ,QN QO μ=u u u r u u u r ,求证:11λμ+为定值.(20)(本小题14分)设n 为正整数,集合A =12{|(,,,),{0,1},1,2,,}n n t t t t k n αα=∈=L L .对于集合A 中的任意元素12(,,,)n x x x α=L 和12(,,,)n y y y β=L ,记M (αβ,)=111122221[(||)(||)(||)]2n n n n x y x y x y x y x y x y +--++--+++--L .(Ⅰ)当n =3时,若(1,1,0)α=,(0,1,1)β=,求M (,αα)和M (,αβ)的值; (Ⅱ)当n =4时,设B 是A 的子集,且满足:对于B 中的任意元素,αβ,当,αβ相同时,M (αβ,)是奇数;当,αβ不同时,M (αβ,)是偶数.求集合B 中元素个数的最大值; (Ⅲ)给定不小于2的n ,设B 是A 的子集,且满足:对于B 中的任意两个不同的元素,αβ, M (αβ,)=0.写出一个集合B ,使其元素个数最多,并说明理由.2018年普通高等学校招生全国统一考试(天津卷)数学(理工类)(19)(本小题满分14分)设椭圆22221x x a b+=(a >b >0)的左焦点为F ,上顶点为B . 已知椭圆的,点A 的坐标为(,0)b ,且FB AB ⋅=(I )求椭圆的方程;(II )设直线l :(0)y kx k =>与椭圆在第一象限的交点为P ,且l 与直线AB 交于点Q .若sin 4AQ AOQ PQ=∠(O 为原点) ,求k 的值.(20)(本小题满分14分)已知函数()x f x a =,()log a g x x =,其中a >1. (I )求函数()()ln h x f x x a =-的单调区间;(II )若曲线()y f x =在点11(,())x f x 处的切线与曲线()y g x =在点22(,())x g x 处的切线平行,证明122ln ln ()ln ax g x a+=-; (III )证明当1ee a ≥时,存在直线l ,使l 是曲线()yf x =的切线,也是曲线()yg x =的切线.2018年普通高等学校招生全国统一考试(浙江卷)数学21.(本题满分15分)如图,已知点P是y轴左侧(不含y轴)一点,抛物线C:y2=4x上存在不同的两点A,B满足PA,PB的中点均在C上.(Ⅰ)设AB中点为M,证明:PM垂直于y轴;(Ⅱ)若P是半椭圆x2+24y=1(x<0)上的动点,求△P AB面积的取值范围.22.(本题满分15分)已知函数f(xln x.(Ⅰ)若f(x)在x=x1,x2(x1≠x2)处导数相等,证明:f(x1)+f(x2)>8−8ln2;(Ⅱ)若a≤3−4ln2,证明:对于任意k>0,直线y=kx+a与曲线y=f(x)有唯一公共点.2018年高考数学理科试卷(江苏卷)数学Ⅰ18.(本小题满分16分)如图,在平面直角坐标系xOy 中,椭圆C 过点1(3,)2,焦点12(3,0),(3,0)F F ,圆O 的直径为12F F .(1)求椭圆C 及圆O 的方程;(2)设直线l 与圆O 相切于第一象限内的点P .①若直线l 与椭圆C 有且只有一个公共点,求点P 的坐标; ②直线l 与椭圆C 交于,A B 两点.若OAB △26,求直线l 的方程.19.(本小题满分16分)记(),()f x g x ''分别为函数(),()f x g x 的导函数.若存在0x ∈R ,满足00()()f x g x =且00()()f x g x ''=,则称0x 为函数()f x 与()g x 的一个“S 点”.(1)证明:函数()f x x =与2()22g x x x =+-不存在“S 点”; (2)若函数2()1f x ax =-与()ln g x x =存在“S 点”,求实数a 的值;(3)已知函数2()f x x a =-+,e ()xb g x x=.对任意0a >,判断是否存在0b >,使函数()f x 与()g x 在区间(0,)+∞内存在“S 点”,并说明理由.20.(本小题满分16分)设{}n a 是首项为1a ,公差为d 的等差数列,{}n b 是首项为1b ,公比为q 的等比数列. (1)设110,1,2a b q ===,若1||n n a b b -≤对1,2,3,4n =均成立,求d 的取值范围;(2)若*110,,a b m q =>∈∈N ,证明:存在d ∈R ,使得1||n n a b b -≤对2,3,,1n m =+L 均成立,并求d 的取值范围(用1,,b m q 表示).2018年普通高等学校招生全国统一考试上海 数学试卷20.(本题满分16分,第1小题满分4分,第2小题满分6分,第3小题满分6分) 设常数2t >,在平面直角坐标系xOy 中,已知点(2,0)F ,直线l :x t =,曲线 Γ:28y x =(0x t ≤≤,0y ≥),l 与x 轴交于点A ,与Γ交于点B 。
2018年高考理数真题试卷(全国Ⅱ卷)一、选择题1.1+2i1−2i=( )A. −45−35i B. −45+35i C. −35−45i D. −35+45i2.已知集合A={(x,y)|x2+y2≤3,x∈Z,y∈Z}.则A中元素的个数为()A. 9B. 8C. 5D. 43.函数f(x)=e x−e−xx2的图像大致为( )A. B.C. D.4.已知向量a→,b→满足|a→|=1, a→⋅b→=−1 ,则a→·(2a→-b→)=()A. 4B. 3C. 2D. 05.双曲线x2a2−y2b2=1(a>0,b>0)的离心率为√3,则其渐近线方程为()A. y=±√2xB. y=±√3xC. y=±√22x D. y=±√32x6.在ΔABC中,cos C2=√55,BC=1,AC=5则AB=()A. 4√2B. √30C. √29D. 2√57.为计算S=1−12+13−14+⋅⋅⋅+199−1100,设计了右侧的程序框图,则在空白框中应填入()A. i=i+1B. i=i+2C. i=i+3D. i=i+48.我国数学家陈景润在哥德巴赫猜想的研究中取得了世界领先的成果,哥德巴赫猜想是“每个大于2的偶数可以表示为两个素数的和”,如30=7+23.在不超过30的素数中,随机选取两个不同的数,其和等于30的概率是( )A. 112 B. 114 C. 115 D. 1189.在长方形ABCD-A 1B 1C 1D 1中,AB=BC=1,AA 1= √3 ,则异面直线AD 1与DB 1所成角的余弦值为( ) A. 15 B. √56C. √55D. √2210.若 f(x)=cosx −sinx 在 [−a,a] 是减函数,则a 的最大值是( ) A. π4 B. π2 C. 3π4 D. π11.已知 f(x) 是定义为 (−∞,+∞) 的奇函数,满足 f(1−x)=f(1+x) 。
理科数学试题 第1页(共6页) 理科数学试题 第2页(共6页)………………○………………内………………○………………装………………○………………订………………○………………线………………○………………………………○………………外………………○………………装………………○………………订………………○………………线………………○………………… 学校:______________姓名:_____________班级:_______________考号:______________________2018年第一次全国大联考【新课标Ⅰ卷】理科数学(考试时间:120分钟 试卷满分:150分)注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答第Ⅰ卷时,选出每小题答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
写在本试卷上无效。
3.回答第Ⅱ卷时,将答案写在答题卡上。
写在本试卷上无效。
4.考试结束后,将本试卷和答题卡一并交回。
第Ⅰ卷一、选择题(本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知集合2{|2}P x y x x ==--+,{|ln 1}Q x x =<,则P Q =A .(0,2]B .[2,e)-C .(0,1]D .(1,e)2.若复数z 满足42ii 1z -=-(i 为虚数单位),则下列说法正确的是 A .复数z 的虚部为1 B .||10z =C .3i z=-+D .复平面内与复数z 对应的点在第二象限3.已知角α的终边经过点(2,)P m (0m ≠),若5sin 5m α=,则3πsin(2)2α-= A .35- B .35 C .45D .45-4.已知锐角ABC △的内角,,A B C 的对边分别为,,a b c ,若3c =,36sin a A =,ABC △的面积3S =,则a b +=A .21B .17C .29D .55.已知函数()3log (7)(0,1)a f x x a a =+->≠的图象恒过点P ,若双曲线C 的对称轴为两坐标轴,一条渐近线与310x y --=垂直,且点P 在双曲线C 上,则双曲线C 的离心率等于A .2B .103C .10D .226.如图,半径为R 的圆O 内有四个半径相等的小圆,其圆心分别为,,,A B C D ,这四个小圆都与圆O 内切,且相邻两小圆外切,则在圆O 内任取一点,该点恰好取自阴影部分的概率为A .322-B .642-C .962-D .1282-7.如图为某几何体的三视图(图中网格纸上每个小正方形的边长为1),则该几何体的体积等于A .π12+B .5π123+ C .π4+D .5π43+ 8.已知函数π()3)cos (03)2f x x x ωωω=--<<的图象过点π(,0)3P ,若要得到一个偶函数的图象,则需将函数()f x 的图象A .向左平移2π3个单位长度 B .向右平移2π3个单位长度 C .向左平移π3个单位长度D .向右平移π3个单位长度9.若执行下面的程序框图,则输出的结果为理科数学试题 第3页(共6页) 理科数学试题 第4页(共6页)………………○………………内………………○………………装………………○………………订………………○………………线………………○………………此卷只装订不密封………………○………………外………………○………………装………………○………………订………………○………………线………………○………………A .180B .182C .192D .20210.当地时间2018年1月19日晚,美国参议院投票否决了一项旨在避免政府停摆的临时拨款法案,美国联邦政府非核心部门工作因此陷入停滞状态.某国家与美国计划进行6个重点项目的洽谈,考虑到停摆的现状,该国代表对项目洽谈的顺序提出了如下要求:重点项目甲必须排在前三位,且项目丙、丁必须排在一起,则这六个项目的不同安排方案共有 A .240种B .188种C .156种D .120种11.如图,已知抛物线28y x =,圆C :22430x y x +-+=,过圆心C 的直线l 与抛物线和圆分别交于,,,P Q M N ,则||9||PN QM +的最小值为A .32B .36C .42D .5012.已知{|()0}M f αα==,{|()0}N g ββ==,若存在M α∈,N β∈,使得||n αβ-<,则称函数()f x 与()g x 互为“n 度零点函数”.若2()21x f x -=-与2()e xg x x a =-互为“1度零点函数”,则实数a 的取值范围为A .214(,]e eB .214(,]e eC .242[,)e eD .3242[,)e e第Ⅱ卷二、填空题(本题共4小题,每小题5分,共20分) 13.已知向量,a b 满足(cos 2018,sin 2018)=a ,||7+=a b ,||2=b ,则,a b 的夹角等于 . 14.已知点P 在不等式组2221y xx y x ≤⎧⎪+≥⎨⎪≤⎩表示的平面区域内,(3,2)A 、(2,1)B ,则PAB △面积的最大值为 .15.我国古代数学名著《九章算术》对立体几何有深入的研究,从其中的一些数学用语可见,譬如“堑堵”意指底面为直角三角形,且侧棱垂直于底面的三棱柱.如图为一个“堑堵”,即三棱柱111ABC A B C -,其中AC BC ⊥,已知该“堑堵”的高为6,体积为48,则该“堑堵”的外接球体积的最小值为 .16.2017年吴京执导的动作、军事电影《战狼2》上映三个月,以56.8亿震撼世界的票房成绩圆满收官,该片也是首部跻身全球票房TOP100的中国电影.小明想约甲、乙、丙、丁四位好朋友一同去看《战狼2》,并把标识分别为A ,B ,C ,D 的四张电影票放在编号分别为1,2,3,4的四个不同盒子里,让四位好朋友进行猜测:甲说:第1个盒子里面放的是B ,第3个盒子里面放的是C ; 乙说:第2个盒子里面放的是B ,第3个盒子里面放的是D ;丙说:第4个盒子里面放的是D ,第2个盒子里面放的是C ;丁说:第4个盒子里面放的是A ,第3个盒子里面放的是C . 小明说:“四位朋友,你们都只说对了一半.” 可以推测,第4个盒子里面放的电影票为 .三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤) 17.(本小题满分12分)理科数学试题 第5页(共6页) 理科数学试题 第6页(共6页)………………○………………内………………○………………装………………○………………订………………○………………线………………○………………………………○………………外………………○………………装………………○………………订………………○………………线………………○………………… 学校:______________姓名:_____________班级:_______________考号:______________________已知数列{}n a 中0n a >,其前n 项和为n S ,且对任意*n ∈N ,都有2(1)4n n a S +=.等比数列{}n b 中,1330b b +=,46810b b +=.(Ⅰ)求数列{}n a 、{}n b 的通项公式;(Ⅱ)求数列{(1)}nn n a b -+的前n 项和n T .18.(本小题满分12分)据统计,仅在北京地区每天就有500万单快递等待派送,近5万多名快递员奔跑在一线,快递网点人员流动性也较强,各快递公司需要经常招聘快递员,保证业务的正常开展.下面是50天内甲、乙两家快递公司的快递员的每天送货单数统计表:送货单数30 40 50 60 天数甲1010 20 10 乙515255已知这两家快递公司的快递员的日工资方案分别为:甲公司规定底薪60元,每单抽成1元;乙公司规定底薪80元,每日前40单无抽成,超过40单的部分每单抽成t 元.(Ⅰ)分别求甲、乙快递公司的快递员的日工资12y y ,(单位:元)与送货单数n 的函数关系式; (Ⅱ)若将频率视为概率,回答下列问题:①记甲快递公司的快递员的日工资为X (单位:元),求X 的分布列和数学期望;②小赵拟到甲、乙两家快递公司中的一家应聘快递员的工作,如果仅从日收入的角度考虑,请你利用所学的统计学知识为他作出选择,并说明理由. 19.(本小题满分12分)如图所示的多面体中,下底面平行四边形ABCD 与上底面111A B C 平行,且111AA BB CC ∥∥,122AB AC AA ==,1π3A AC ∠=,AC BC ⊥,平面11ACC A ⊥平面ABC ,点M 为11BC 的中点.(Ⅰ)过点1B 作一个平面α与平面AMC 平行,并说明理由;(Ⅱ)求平面1A MC 与平面11AC D 所成锐二面角的余弦值. 20.(本小题满分12分)已知椭圆2222:1(0)x y C a b a b+=>>的上顶点为(0,1)B ,且过点22,P . (Ⅰ)求椭圆C 的方程及其离心率;(Ⅱ)斜率为k 的直线l 与椭圆C 交于,M N 两个不同的点,当直线,OM ON 的斜率之积是不为0的定值时,求此时MON △的面积的最大值. 21.(本小题满分12分)已知函数2(e ()xa f x ax =+∈R ,e 为自然对数的底数).(Ⅰ)当e2a =-时,求函数()f x 的单调区间; (Ⅱ)若()1f x x ≥+在0x ≥时恒成立,求实数a 的取值范围.请考生在第22、23两题中任选一题作答.注意:只能做所选定的题目.如果多做,则按所做的第一个题目计分.22.(本小题满分10分)选修4-4:坐标系与参数方程在平面直角坐标系xOy 中,已知曲线C 的参数方程为123x ty t⎧=⎪⎨⎪=-⎩(t 为参数),在以O 为极点,x 轴的正半轴为极轴的极坐标系中,曲线D 的极坐标方程为(1sin )2ρθ+=. (Ⅰ)求曲线C 的普通方程与曲线D 的直角坐标方程; (Ⅱ)若曲线C 与曲线D 交于,M N 两点,求||MN . 23.(本小题满分10分)选修4-5:不等式选讲已知函数()|23||1|f x x x =-+-. (Ⅰ)解不等式()2f x >;(Ⅱ)若正数,,a b c 满足123()3a b c f ++=,求123a b c++的最小值.。
绝密★启用前2018年普通高等学校招生全国统一考试理科数学(全国Ⅲ卷)注意事项:1.答卷前,考生务必将自己的姓名和准考证号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其它答案标号。
回答非选择题时,将答案写在答题卡上。
写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知集合,,则【C 】A .B .C .D . 2.【D 】 A .B .C .D .3.中国古建筑借助榫卯将木构件连接起来,构件的凸出部分叫榫头,凹进部分叫卯眼,图中木构件右边的小长方体是榫头.若如图摆放的木构件与某一带卯眼的木构件咬合成长方体,则咬合时带卯眼的木构件的俯视图可以是【A 】{}|10A x x =-≥{}012B =,,A B ={}0{}1{}12,{}012,,()()1i 2i +-=3i --3i -+3i -3i+4.若,则【B 】 A .B .C .D . 5.的展开式中的系数为【C 】A .10B .20C .40D .806.直线分别与轴,轴交于,两点,点在圆上,则面积的取值范围是【A 】 A .B .C .D .7.函数的图像大致为【D 】1sin 3α=cos2α=897979-89-522x x ⎛⎫+ ⎪⎝⎭4x 20x y ++=x y A B P ()2222x y -+=ABP △[]26,[]48,⎡⎣422y x x =-++8.某群体中的每位成员使用移动支付的概率都为,各成员的支付方式相互独立,设为该群体的10位成员中使用移动支付的人数,,,则【B 】 A .0.7B .0.6C .0.4D .0.39.的内角的对边分别为,,,若的面积为,则【C 】 A . B . C . D .10.设是同一个半径为4的球的球面上四点,为等边三角形且其面积为,则三棱锥体积的最大值为【B 】A .B .C .D .11.设是双曲线()的左,右焦点,是坐标原点.过作的一条渐近线的垂线,垂足为.若,则的离心率为【C 】 AB.2CD12.设,,则【B 】A .B .C .D .二、填空题:本题共4小题,每小题5分,共20分。
2018年普通高等学校招生全国统一考试(新课标Ⅰ卷)一、选择题1.设,则()A.0 B.C.D.2.已知集合,则()A.B.C.D.3.某地区经过一年的新农村建设,农村的经济收入增加了一倍.实现翻番.为更好地了解该地区农村的经济收入变化情况,统计了该地区新农村建设前后农村的经济收入构成比例.得到如下饼图:则下面结论中不正确的是()A.新农村建设后,种植收入减少B.新农村建设后,其他收入增加了一倍以上C.新农村建设后,养殖收入增加了一倍D.新农村建设后,养殖收入与第三产业收入的总和超过了经济收入的一半4.记为等差数列的前项和.若,,则()A.B.C.D.125.设函数.若为奇函数,则曲线在点处的切线方程为()A.B.C.D.6.在中,为边上的中线,为的中点,则()A.B.C.D.7.某圆柱的高为2,底面周长为16,其三视图如右图所示,圆柱表面上的点在正视图上的对应点为,圆柱表面上的点在左视图上的对应点为,则在此圆柱侧面上,从到的路径中,最短路径的长度为()A.B.C.D.28.设抛物线的焦点为,过点且斜率为的直线与交于,两点,则()A.5 B.6 C.7 D.89.已知函数,,若存在2个零点,则的取值范围是()A.B.C.D.10.下图来自古希腊数学家希波克拉底所研究的几何图形,此图由三个半圆构成,三个半圆的直径分别为直角三角形的斜边,直角边,,的三边所围成的区域记为Ⅰ,黑色部分记为Ⅱ,其余部分记为Ⅲ,在整个图形中随机取一点,此点取自Ⅰ,Ⅱ,Ⅲ的概率分别记为,,,则()A.B.C.D.11.已知双曲线,为坐标原点,为的右焦点,过的直线与的两条渐近线的交点分别为,.若为直角三角形,则()A.B.3 C.D.412.已知正方体的棱长为1,每条棱所在直线与平面所成的角都相等,则截此正方体所得截面面积的最大值为()A.B.C.D.二、填空题(本题共4小题,每小题5分,共20分)13.若满足约束条件,则的最大值为________.14.记为数列的前项和.若,则________.15.从2位女生,4位男生中选3人参加科技比赛,且至少有1位女生入选,则不同的选法共有________种.(用数字填写答案)16.已知函数,则的最小值是________.三、解答题(共70分。
解析几何真题专题1.(2021年全国高考乙卷数学(文)试题)设B 是椭圆22:15x C y +=的上顶点,点P 在C 上,则PB 的最大值为( )A .52B C D .22.(2021年全国高考乙卷数学(理)试题)设B 是椭圆2222:1(0)x y C a b a b+=>>的上顶点,若C 上的任意一点P 都满足||2PB b ≤,则C 的离心率的取值范围是( )A .⎫⎪⎪⎣⎭B .1,12⎡⎫⎪⎢⎣⎭C .⎛ ⎝⎦D .10,2⎛⎤ ⎥⎝⎦3.(2021年全国高考甲卷数学(文)试题)点()3,0到双曲线221169x y -=的一条渐近线的距离为( ) A .95B .85C .65D .454.(2021年全国新高考Ⅰ卷数学试题)已知1F ,2F 是椭圆C :22194x y +=的两个焦点,点M 在C 上,则12MF MF ⋅的最大值为( ) A .13 B .12 C .9 D .6二、多选题5.(2021年全国新高考Ⅰ卷数学试题)已知点P 在圆()()225516x y -+-=上,点()4,0A 、()0,2B ,则( )A .点P 到直线AB 的距离小于10 B .点P 到直线AB 的距离大于2C .当PBA ∠最小时,PB =.当PBA ∠最大时,PB =三、填空题6.(2021年全国高考乙卷数学(文)试题)双曲线22145x y -=的右焦点到直线280x y +-=的距离为________.7.(2021年全国高考乙卷数学(理)试题)已知双曲线22:1(0)x C y m m-=>0my +=,则C 的焦距为_________.8.(2021年全国高考甲卷数学(理)试题)已知12,F F 为椭圆C :221164x y+=的两个焦点,P ,Q 为C 上关于坐标原点对称的两点,且12PQ F F =,则四边形12PFQF 的面积为________. 9.(2021年全国新高考Ⅰ卷数学试题)已知O 为坐标原点,抛物线C :22y px =(0p >)的焦点为F ,P为C 上一点,PF 与x 轴垂直,Q 为x 轴上一点,且PQ OP ⊥,若6FQ =,则C 的准线方程为______.四、解答题10.(2021年全国高考乙卷数学(文)试题)已知抛物线2:2(0)C y px p =>的焦点F 到准线的距离为2. (1)求C 的方程;(2)已知O 为坐标原点,点P 在C 上,点Q 满足9PQ QF =,求直线OQ 斜率的最大值.11.(2021年全国高考乙卷数学(理)试题)已知抛物线()2:20C x py p =>的焦点为F ,且F 与圆22:(4)1M x y ++=上点的距离的最小值为4.(1)求p ;(2)若点P 在M 上,,PA PB 是C 的两条切线,,A B 是切点,求PAB △面积的最大值.12.(2021年全国高考甲卷数学(理)试题)抛物线C 的顶点为坐标原点O .焦点在x 轴上,直线l :1x =交C 于P ,Q 两点,且OP OQ ⊥.已知点()2,0M ,且M 与l 相切.(1)求C ,M 的方程;(2)设123,,A A A 是C 上的三个点,直线12A A ,13A A 均与M 相切.判断直线23A A 与M 的位置关系,并说明理由.13.(2021年全国新高考Ⅰ卷数学试题)在平面直角坐标系xOy 中,已知点()1F 、)2122F MF MF -=,,点M 的轨迹为C .(1)求C 的方程; (2)设点T 在直线12x =上,过T 的两条直线分别交C 于A 、B 两点和P ,Q 两点,且TA TB TP TQ ⋅=⋅,求直线AB 的斜率与直线PQ 的斜率之和.回顾1.(2020年全国统一高考数学试卷(文科)(新课标Ⅰ))已知圆2260x y x +-=,过点(1,2)的直线被该圆所截得的弦的长度的最小值为( )A .1B .2C .3D .42.(2020年全国统一高考数学试卷(文科)(新课标Ⅰ))设12,F F 是双曲线22:13y C x -=的两个焦点,O为坐标原点,点P 在C 上且||2OP =,则12PF F △的面积为( ) A .72B .3C .52D .23.(2020年全国统一高考数学试卷(理科)(新课标Ⅰ))已知A 为抛物线C :y 2=2px (p >0)上一点,点A 到C 的焦点的距离为12,到y 轴的距离为9,则p =( ) A .2B .3C .6D .94.(2020年全国统一高考数学试卷(理科)(新课标Ⅰ))已知⊙M :222220x y x y +---=,直线l :220x y ++=,P 为l 上的动点,过点P 作⊙M 的切线,PA PB ,切点为,A B ,当||||PM AB ⋅最小时,直线AB 的方程为( ) A .210x y --=B .210x y +-=C .210x y -+=D .210x y ++=5.(2020年全国统一高考数学试卷(文科)(新课标Ⅱ))若过点(2,1)的圆与两坐标轴都相切,则圆心到直线230x y --=的距离为( )A B C D 6.(2020年全国统一高考数学试卷(文科)(新课标Ⅱ))设O 为坐标原点,直线x a =与双曲线2222:1(0,0)x y C a b a b-=>>的两条渐近线分别交于,D E 两点,若ODE 的面积为8,则C 的焦距的最小值为( ) A .4B .8C .16D .327.(2020年全国统一高考数学试卷(文科)(新课标Ⅲ))在平面内,A ,B 是两个定点,C 是动点,若=1AC BC ⋅,则点C 的轨迹为( ) A .圆B .椭圆C .抛物线D .直线8.(2020年全国统一高考数学试卷(理科)(新课标Ⅲ))设O 为坐标原点,直线2x =与抛物线C :22(0)y px p =>交于D ,E 两点,若OD OE ⊥,则C 的焦点坐标为( )A .1,04⎛⎫⎪⎝⎭B .1,02⎛⎫ ⎪⎝⎭C .(1,0)D .(2,0)9.(2020年全国统一高考数学试卷(理科)(新课标Ⅲ))若直线l 与曲线y x 2+y 2=15都相切,则l 的方程为( ) A .y =2x +1B .y =2x +12C .y =12x +1 D .y =12x +1210.(2020年全国统一高考数学试卷(理科)(新课标Ⅲ))设双曲线C :22221x y a b-=(a >0,b >0)的左、右焦点分别为F 1,F 2.P 是C 上一点,且F 1P ⊥F 2P .若△PF 1F 2的面积为4,则a =( ) A .1B .2C .4D .811.(2019年全国统一高考数学试卷(文科)(新课标Ⅰ))双曲线C :22221(0,0)x y a b a b-=>>的 一条渐近线的倾斜角为130°,则C 的离心率为 A .2sin40°B .2cos40°C .1sin50︒D .1cos50︒12.(2019年全国统一高考数学试卷(文科)(新课标Ⅰ))已知椭圆C 的焦点为121,01,0F F -(),(),过F 2的直线与C 交于A ,B 两点.若222AF F B =││││,1AB BF =││││,则C 的方程为13.(2019年全国统一高考数学试卷(理科)(新课标Ⅱ))若抛物线y 2=2px (p >0)的焦点是椭圆2231x y pp+=的一个焦点,则p = A .2 B .3 C .4D .814.(2019年全国统一高考数学试卷(理科)(新课标Ⅱ))设F 为双曲线C :22221x y a b-=(a >0,b >0)的右焦点,O 为坐标原点,以OF 为直径的圆与圆x 2+y 2=a 2交于P 、Q 两点.若|PQ |=|OF |,则C 的离心率为A B .2 D 15.(2019年全国统一高考数学试卷(文科)(新课标Ⅲ))已知F 是双曲线22:145x y C 的一个焦点,点P 在C 上,O 为坐标原点,若=OP OF ,则OPF △的面积为 A .32B .52C .72D .9216.(2019年全国统一高考数学试卷(理科)(新课标Ⅲ))双曲线C :2242x y -=1的右焦点为F ,点P 在C的一条渐近线上,O 为坐标原点,若=PO PF ,则△PFO 的面积为A .4B .2C .D .17.(2018年全国普通高等学校招生统一考试文科数学(新课标I 卷))已知椭圆C :2221(0)4x y a a +=>的一个焦点为(20),,则C 的离心率为A .13B .12C .2D .318.(2018年全国普通高等学校招生统一考试理科数学(新课标I 卷))设抛物线C :y 2=4x 的焦点为F ,过点(–2,0)且斜率为23的直线与C 交于M ,N 两点,则FM FN ⋅= A .5B .6C .7D .819.(2018年全国普通高等学校招生统一考试理科数学(新课标I 卷))已知双曲线C :2213x y -=,O 为坐标原点,F 为C 的右焦点,过F 的直线与C 的两条渐近线的交点分别为M 、N .若OMN 为直角三角形,则|MN |=A .32B .3C .D .420.(2018年全国普通高等学校招生统一考试理数(全国卷II ))双曲线22221(0,0)x y a b a b-=>>的离心A .y =B .y =C .2y x =±D .y x = 21.(2018年全国普通高等学校招生统一考试文数(全国卷II ))已知1F ,2F 是椭圆C 的两个焦点,P 是C 上的一点,若12PF PF ⊥,且2160PF F ∠=︒,则C 的离心率为A .1B .2C D 122.(2018年全国普通高等学校招生统一考试理数(全国卷II ))已知1F ,2F 是椭圆22221(0)x y C a b a b+=>>:的左,右焦点,A 是C 的左顶点,点P 在过A 且斜率为的直线上,12PF F △为等腰三角形,12120F F P ∠=︒,则C 的离心率为A .23B .12C .13D .1423.(2018年全国卷Ⅲ理数高考试题)直线20x y ++=分别与x 轴,y 轴交于A ,B 两点,点P 在圆()2222x y -+=上,则ABP △面积的取值范围是A .[]26,B .[]48,C .D .⎡⎣24.(2018年全国卷Ⅲ文数高考试题)已知双曲线22221(00)x y C a b a b-=>>:,,则点(4,0)到C 的渐近线的距离为AB .2C .2D .25.(2018年全国卷Ⅲ理数高考试题)设1F ,2F 是双曲线2222:1x y C a b-=()的左、右焦点,O 是坐标原点.过2F 作C 的一条渐近线的垂线,垂足为P .若16PF OP =,则C 的离心率为A B C .2D 26.(2017年全国普通高等学校招生统一考试文科数学(新课标1卷))已知F 是双曲线C :2213y x -=的右焦点,P 是C 上一点,且PF 与x 轴垂直,点A 的坐标是(1,3),则APF 的面积为A .13B .1 2C .2 3D .3 227.(2017年全国普通高等学校招生统一考试文科数学(新课标1卷))(2017新课标全国卷Ⅰ文科)设A ,B 是椭圆C :2213x y m+=长轴的两个端点,若C 上存在点M 满足∠AMB =120°,则m 的取值范围是A .(0,1][9,)+∞B .[9,)+∞C .(0,1][4,)+∞D .[4,)+∞28.(2017年全国普通高等学校招生统一考试理科数学(新课标1卷))已知F 为抛物线C :y 2=4x 的焦点,过F 作两条互相垂直的直线l 1,l 2,直线l 1与C 交于A 、B 两点,直线l 2与C 交于D 、E 两点,则|AB |+|DE |的最小值为 A .16B .14C .12D .1029.(2017年全国普通高等学校招生统一考试文科数学(新课标2卷))若1a >,则双曲线2221x y a-=的离心率的取值范围是A .)+∞B .2)C .D .(1,2)30.(2017年全国普通高等学校招生统一考试)过抛物线C :y 2=4x 的焦点F 的直线交C 于点M (M 在x 轴的上方),l 为C 的准线,点N 在l 上且MN ⊥l ,则M 到直线NF 的距离为( )A B .C .D .31.(2017年全国普通高等学校招生统一考试理科数学(新课标2卷))若双曲线C:22221x y a b-=(0a >,0b >)的一条渐近线被圆()2224x y -+=所截得的弦长为2,则C 的离心率为A .2B CD .332.(2017年全国普通高等学校招生统一考试文科数学(新课标3卷)已知椭圆C :22221(0)x y a b a b+=>>的左、右顶点分别为A 1,A 2,且以线段A 1A 2为直径的圆与直线20bx ay ab -+=相切,则C 的离心率为A BC .3D .1333.(2016年全国普通高等学校招生统一考试文科数学新课标Ⅱ卷))已知双曲线2222:1(0,0)x y C a b a b -=>>的一条渐近线方程为y x =,且与椭圆221123x y +=有公共焦点.则C 的方程为( )A .221810x y -=B .22145x y -=C .22154x y -=D .22143x y -= 34.(2016年全国普通高等学校招生统一考试)已知方程222213x y m n m n-=+-表示双曲线,且该双曲线两焦点间的距离为4,则n 的取值范围是A .(–1,3)B .(–C .(0,3)D .35.(2016年全国普通高等学校招生统一考试)以抛物线C 的顶点为圆心的圆交C 于A 、B 两点,交C 的准线于D 、E 两点.已知|AB |=,|DE |=C 的焦点到准线的距离为 A .8B .6C .4D .236.()设F 为抛物线2:4C y x =的焦点,曲线()0ky k x=>与C 交于点P ,PF x ⊥轴,则k = A .12B .1C .32D .237.(2016年全国普通高等学校招生统一考试)圆2228130+--+=x y x y 的圆心到直线10ax y +-=的距离为1,则a =A .43- B .34-CD .238.((2016新课标全国Ⅱ理科)已知F 1,F 2是双曲线E :22221x y a b-=的左,右焦点,点M 在E 上,M F 1与x 轴垂直,sin 2113MF F ∠= ,则E 的离心率为A B .32C D .239.(2016年全国普通高等学校招生统一考试)已知O 为坐标原点,F 是椭圆C :22221(0)x y a b a b+=>>的左焦点,A ,B 分别为C 的左,右顶点.P 为C 上一点,且PF ⊥x 轴.过点A 的直线l 与线段PF 交于点M ,与y 轴交于点E .若直线BM 经过OE 的中点,则C 的离心率为A .13B .12C .23D .3440.(2015年全国普通高等学校招生统一考试文科数学(新课标Ⅰ))已知椭圆E 的中心为坐标原点,离心率为12,E 的右焦点与抛物线2:8C y x =的焦点重合,,A B 是C 的准线与E 的两个交点,则AB = A .3 B .6C .9D .1241.(2015年全国普通高等学校招生统一考试理科数学(新课标Ⅰ))已知00(,)M x y 是双曲线C :2212x y -=上的一点,1F ,2F 是C 的两个焦点,若120MF MF ⋅<,则0y 的取值范围是A .(B .(C .(D .(42.(2015年全国普通高等学校招生统一考试理科数学(新课标Ⅱ))已知A ,B 为双曲线E 的左,右顶点,点M 在E 上,∆ABM 为等腰三角形,且顶角为120°,则E 的离心率为A B .2 CD43.(2014年全国普通高等学校招生统一考试文科数学(新课标Ⅰ)已知双曲线的离心率为2,则A .2B .C .D .144.(2014年全国普通高等学校招生统一考试文科数学(新课标Ⅰ))已知抛物线C :的焦点为,是C 上一点,,则A .1B .2C .4D .845.(2014年全国普通高等学校招生统一考试理科数学(新课标Ⅰ))已知抛物线C :的焦点为F ,准线为,P 是上一点,Q 是直线PF 与C 得一个交点,若4FP FQ =,则A .B .C .D .46.(2014年全国普通高等学校招生统一考试文科数学(全国Ⅱ卷))设F 为抛物线2:3C y x =的焦点,过F 且倾斜角为30的直线交C 于A ,B 两点,则AB =A .3B .6C .12D .47.(2014年全国普通高等学校招生统一考试文科数学(全国Ⅱ卷))设点()0,1M x ,若在圆22:+1O x y =上存在点N ,使得45OMN ∠=︒,则0x 的取值范围是( )A .[]1,1- B .11,22⎡⎤-⎢⎥⎣⎦C .⎡⎣D .,22⎡-⎢⎣⎦48.(2014年全国普通高等学校招生统一考试理科数学(全国Ⅱ卷))设F 为抛物线C:23y x =的焦点,过F 且倾斜角为30°的直线交C 于A,B 两点,O 为坐标原点,则 △OAB 的面积为A B C.6332D.9449.(2013年全国普通高等学校招生统一考试文科数学(新课标1卷))为坐标原点,为抛物线的焦点,为上一点,若,则的面积为A.B.C.D.50.(2013年全国普通高等学校招生统一考试理科数学(新课标1卷)已知椭圆22xa+22yb=1(a>b>0)的右焦点为F(3,0),过点F的直线交椭圆于A、B两点.若AB的中点坐标为(1,-1),则E的方程为A.245x+236y=1 B.236x+227y=1C.227x+227x=1 D.218y+218x=151.(2012年全国普通高等学校招生统一考试理科数学)设1F、2F是椭圆E:22221(0)x ya ba b+=>>的左、右焦点,P为直线32ax=上一点,21F PF∆是底角为30的等腰三角形,则E的离心率为A.12B.23C.34D.45二、填空题52.(2020年全国统一高考数学试卷(理科)(新课标Ⅰ))已知F为双曲线2222:1(0,0)x yC a ba b-=>>的右焦点,A为C的右顶点,B为C上的点,且BF垂直于x轴.若AB的斜率为3,则C的离心率为______________.53.(2020年全国统一高考数学试卷(文科)(新课标Ⅲ))设双曲线C:22221x ya b-= (a>0,b>0)的一条渐近线为y x,则C的离心率为_________.54.(2019年全国统一高考数学试卷(理科)(新课标Ⅰ))已知双曲线C:22221(0,0)x ya ba b-=>>的左、右焦点分别为F 1,F 2,过F 1的直线与C 的两条渐近线分别交于A ,B 两点.若1F A AB =,120F B F B ⋅=,则C 的离心率为____________.55.(2019年全国统一高考数学试卷(文科)(新课标Ⅲ))设12F F ,为椭圆22:+13620x y C =的两个焦点,M为C 上一点且在第一象限.若12MF F △为等腰三角形,则M 的坐标为___________.56.(2018年全国卷Ⅲ理数高考试题)已知点()11M ,-和抛物线24C y x =:,过C 的焦点且斜率为k 的直线与C 交于A ,B 两点.若90AMB ∠=︒,则k =________.57.(2017年全国普通高等学校招生统一考试理科数学(新课标1卷))已知双曲线C :22221(0,0)x y a b a b-=>>的右顶点为A ,以A 为圆心,b 为半径作圆A ,圆A 与双曲线C 的一条渐近线于交M 、N 两点,若60MAN ∠=,则C 的离心率为__________.58.(2017年全国普通高等学校招生统一考试理科数学(新课标2卷))已知F 是抛物线C:28y x =的焦点,M 是C 上一点,F M 的延长线交y 轴于点N .若M 为F N 的中点,则F N =____________.59.(2017年全国普通高等学校招生统一考试文科数学(新课标3卷))(2017新课标全国III 文科)双曲线22219x y a -=(a >0)的一条渐近线方程为35y x =,则a =______________.60.(2016年全国普通高等学校招生统一考试))设直线2y x a =+与圆C :x 2+y 2-2ay -2=0相交于A ,B 两点,若AB =,则圆C 的面积为________61.(2016年全国普通高等学校招生统一考试文科数学(新课标3卷))已知直线l :60x +=与圆2212x y +=交于,A B 两点,过,A B 分别作l 的垂线与x 轴交于,C D 两点.则CD =_________.62.(2016年全国普通高等学校招生统一考试理科数学(全国3卷))已知直线l :30mx y m ++=与圆2212x y +=交于A ,B 两点,过A ,B 分别作l 的垂线与x 轴交于C ,D 两点,若||AB =,则||CD =__________.63.(2015年全国普通高等学校招生统一考试文科数学(新课标Ⅰ))已知F 是双曲线22:18y C x -=的右焦点,P 是C 左支上一点,(A ,当APF ∆周长最小时,该三角形的面积为 .64.(2015年全国普通高等学校招生统一考试理科数学(新课标Ⅰ))一个圆经过椭圆221164x y +=的三个顶点,且圆心在x 轴的正半轴上,则该圆的标准方程为___________.65.(2014年全国普通高等学校招生统一考试理科数学(全国Ⅱ卷带解析))设点M (0x ,1),若在圆O:221x y +=上存在点N ,使得∠OMN=45°,则0x 的取值范围是________.三、解答题66.(2020年全国统一高考数学试卷(文科)(新课标Ⅰ))已知A 、B 分别为椭圆E :2221x y a+=(a >1)的左、右顶点,G 为E 的上顶点,8AG GB ⋅=,P 为直线x =6上的动点,PA 与E 的另一交点为C ,PB 与E 的另一交点为D . (1)求E 的方程;(2)证明:直线CD 过定点.67.(2020年全国统一高考数学试卷(文科)(新课标Ⅱ))已知椭圆C 1:22221x y a b+=(a >b >0)的右焦点F与抛物线C 2的焦点重合,C 1的中心与C 2的顶点重合.过F 且与x 轴垂直的直线交C 1于A ,B 两点,交C 2于C ,D 两点,且|CD |=43|AB |. (1)求C 1的离心率;(2)若C 1的四个顶点到C 2的准线距离之和为12,求C 1与C 2的标准方程.68.(2020年全国统一高考数学试卷(理科)(新课标Ⅱ))已知椭圆C 1:22221x y a b+=(a >b >0)的右焦点F与抛物线C 2的焦点重合,C 1的中心与C 2的顶点重合.过F 且与x 轴垂直的直线交C 1于A ,B 两点,交C 2于C ,D 两点,且|CD |=43|AB |. (1)求C 1的离心率;(2)设M 是C 1与C 2的公共点,若|MF |=5,求C 1与C 2的标准方程.69.(2020年全国统一高考数学试卷(理科)(新课标Ⅲ))已知椭圆222:1(05)25x y C m m +=<<,A ,B 分别为C 的左、右顶点.(1)求C 的方程;(2)若点P 在C 上,点Q 在直线6x =上,且||||BP BQ =,BP BQ ⊥,求APQ 的面积.70.(2019年全国统一高考数学试卷(文科)(新课标Ⅰ))已知点A ,B 关于坐标原点O 对称,│AB │ =4,⊙M 过点A ,B 且与直线x +2=0相切.(1)若A 在直线x +y =0上,求⊙M 的半径.(2)是否存在定点P ,使得当A 运动时,│MA │-│MP │为定值?并说明理由.71.(2019年全国统一高考数学试卷(理科)(新课标Ⅰ))已知抛物线C :y 2=3x 的焦点为F ,斜率为32的直线l 与C 的交点为A ,B ,与x 轴的交点为P .(1)若|AF |+|BF |=4,求l 的方程; (2)若3AP PB =,求|AB |.72.(2019年全国统一高考数学试卷(文科)(新课标Ⅱ))已知12,F F 是椭圆2222:1(0)x y C a b a b+=>>的两个焦点,P 为C 上一点,O 为坐标原点.(1)若2POF 为等边三角形,求C 的离心率;(2)如果存在点P ,使得12PF PF ⊥,且12F PF △的面积等于16,求b 的值和a 的取值范围.73.(2019年全国统一高考数学试卷(理科)(新课标Ⅱ))已知点A (−2,0),B (2,0),动点M (x ,y )满足直线AM 与BM 的斜率之积为−12.记M 的轨迹为曲线C . (1)求C 的方程,并说明C 是什么曲线;(2)过坐标原点的直线交C 于P ,Q 两点,点P 在第一象限,PE ⊥x 轴,垂足为E ,连结QE 并延长交C 于点G .(i )证明:PQG 是直角三角形; (ii )求PQG 面积的最大值.74.(2019年全国统一高考数学试卷(理科)(新课标Ⅲ))已知曲线C :y =22x ,D 为直线y =12-上的动点,过D 作C 的两条切线,切点分别为A ,B . (1)证明:直线AB 过定点: (2)若以E (0,52)为圆心的圆与直线AB 相切,且切点为线段AB 的中点,求四边形ADBE 的面积.75.(2018年全国普通高等学校招生统一考试文科数学(新课标I 卷))设抛物线22C y x =:,点()20A ,,()20B -,,过点A 的直线l 与C 交于M ,N 两点.(1)当l 与x 轴垂直时,求直线BM 的方程; (2)证明:ABM ABN ∠=∠.76.(2018年全国普通高等学校招生统一考试理科数学(新课标I 卷))设椭圆22:12x C y +=的右焦点为F ,过F 的直线l 与C 交于,A B 两点,点M 的坐标为(2,0). (1)当l 与x 轴垂直时,求直线AM 的方程; (2)设O 为坐标原点,证明:OMA OMB ∠=∠.77.(2018年全国普通高等学校招生统一考试理数(全国卷II ))设抛物线24C y x =:的焦点为F ,过F 且斜率为(0)k k >的直线l 与C 交于A ,B 两点,||8AB =. (1)求l 的方程;(2)求过点A ,B 且与C 的准线相切的圆的方程.78.(2018年全国卷Ⅲ文数高考试题)已知斜率为k 的直线l 与椭圆22143x y C +=:交于A ,B 两点.线段AB 的中点为(1,)(0)M m m >. (1)证明:12k <-; (2)设F 为C 的右焦点,P 为C 上一点,且0FP FA FB ++=.证明:2FP FA FB =+.79.(2018年全国卷Ⅲ理数高考试题)已知斜率为k 的直线l 与椭圆22143x y C +=:交于A ,B 两点,线段AB 的中点为()()10M m m >,. (1)证明:12k <-; (2)设F 为C 的右焦点,P 为C 上一点,且0FP FA FB ++=.证明:FA ,FP ,FB 成等差数列,并求该数列的公差.80.(2017年全国卷文数高考试题)设A ,B 为曲线C :24x y =上两点,A 与B 的横坐标之和为4.(1)求直线AB 的斜率;(2)设M 为曲线C 上一点,C 在M 处的切线与直线AB 平行,且AM ⊥BM ,求直线AB 的方程.81.(2017年全国普通高等学校招生统一考试理科数学(新课标1卷))已知椭圆C :2222=1x y a b+(a>b>0),四点P 1(1,1),P 2(0,1),P 3(–1,P 4(1C 上. (Ⅰ)求C 的方程;(Ⅱ)设直线l 不经过P 2点且与C 相交于A ,B 两点.若直线P 2A 与直线P 2B 的斜率的和为–1,证明:l 过定点.82.(2017年全国普通高等学校招生统一考试文科数学(新课标2卷))设O 为坐标原点,动点M 在椭圆C22:12x y +=上,过M 作x 轴的垂线,垂足为N ,点P 满足2NP NM =. (1)求点P 的轨迹方程;(2)设点Q 在直线3x =-上,且1OP PQ ⋅=.证明:过点P 且垂直于OQ 的直线l 过C 的左焦点F .83.(2017年全国普通高等学校招生统一考试文科数学(新课标3卷))在直角坐标系xOy 中,曲线22y x mx =+-与x 轴交于A ,B 两点,点C 的坐标为(0,1).当m 变化时,解答下列问题:(1)能否出现AC ⊥BC 的情况?说明理由;(2)证明过A ,B ,C 三点的圆在y 轴上截得的弦长为定值.84.(2017年全国普通高等学校招生统一考试理科数学(新课标3卷))已知抛物线C :y 2=2x ,过点(2,0)的直线l 交C 于A ,B 两点,圆M 是以线段AB 为直径的圆. (1)证明:坐标原点O 在圆M 上;(2)设圆M 过点()4,2P -,求直线l 与圆M 的方程.85.(2016新课标全国卷Ⅰ文科)在直角坐标系xOy 中,直线l :y =t (t ≠0)交y 轴于点M ,交抛物线C :22(0)y px p =>于点P ,M 关于点P 的对称点为N ,连结ON 并延长交C 于点H .(Ⅰ)求OH ON;(Ⅱ)除H 以外,直线MH 与C 是否有其它公共点?说明理由.86.(2016新课标全国卷Ⅰ)设圆222150x y x ++-=的圆心为A ,直线l 过点B (1,0)且与x 轴不重合,l 交圆A 于C ,D 两点,过B 作AC 的平行线交AD 于点E .(I )证明EA EB +为定值,并写出点E 的轨迹方程;(II )设点E 的轨迹为曲线C 1,直线l 交C 1于M ,N 两点,过B 且与l 垂直的直线与圆A 交于P ,Q 两点,求四边形MPNQ 面积的取值范围.87.(2016新课标全国卷)已知A 是椭圆E :22143x y +=的左顶点,斜率为()0k k >的直线交E 于A ,M两点,点N 在E 上,MA NA ⊥.(Ⅰ)当AM AN =时,求AMN 的面积(Ⅱ) 当2AM AN =2k <<.88.(2016年全国普通高等学校招生统一考试理科数学(新课标2卷))已知椭圆E:2213x y t +=的焦点在x轴上,A 是E 的左顶点,斜率为k (k > 0)的直线交E 于A ,M 两点,点N 在E 上,MA ⊥NA . (Ⅰ)当t=4,AM AN =时,求△AMN 的面积; (Ⅱ)当2AM AN =时,求k 的取值范围.89.(2016年全国普通高等学校招生统一考试)已知抛物线C :22y x =的焦点为F ,平行于x 轴的两条直线12,l l 分别交C 于A B ,两点,交C 的准线于P Q ,两点. (Ⅰ)若F 在线段AB 上,R 是PQ 的中点,证明//AR FQ ;(Ⅱ)若PQF ∆的面积是ABF ∆的面积的两倍,求AB 中点的轨迹方程.90.(2015年全国普通高等学校招生统一考试文科数学(新课标Ⅰ))已知过点A (0,1)且斜率为k 的直线l 与圆C :(x -2)2+(y -3)2=1交于M ,N 两点.(1)求k 的取值范围;(2)若OM ON ⋅=12,其中O 为坐标原点,求|MN |.91.(2015年全国普通高等学校招生统一考试理科数学(新课标Ⅰ))在直角坐标系xoy 中,曲线C :y=24x与直线(),0y kx a a =+>交与M,N 两点,(Ⅰ)当k =0时,分别求C 在点M 和N 处的切线方程;(Ⅱ)y 轴上是否存在点P ,使得当k 变动时,总有∠OPM =∠OPN ?说明理由.92.(2015年全国普通高等学校招生统一考试文科数学(新课标Ⅱ))已知椭圆2222:1(0)x y C a b a b+=>>的,点在C 上 (1)求C 的方程(2)直线l 不过原点O 且不平行于坐标轴,l 与C 有两个交点,A B ,线段AB 的中点为M .证明:直线OM 的斜率与直线l 的斜率的乘积为定值.93.(2015年全国普通高等学校招生统一考试理科数学(新课标Ⅱ))已知椭圆222:9(0)C x y m m +=>,直线l 不过原点O 且不平行于坐标轴,l 与C 有两个交点A ,B ,线段AB 的中点为M . (Ⅰ)证明:直线OM 的斜率与l 的斜率的乘积为定值; (Ⅱ)若l 过点(,)3mm ,延长线段OM 与C 交于点P ,四边形OAPB 能否为平行四边形?若能,求此时l 的斜率,若不能,说明理由.94.(2014年全国普通高等学校招生统一考试文科数学(新课标Ⅰ))已知点,圆:,过点的动直线与圆交于两点,线段的中点为,为坐标原点.(1)求的轨迹方程;(2)当时,求的方程及的面积95.(2014年全国普通高等学校招生统一考试理科数学(新课标Ⅰ))已知点A (0,-2),椭圆E :22221x y a b+=(a >b >0)的离心率为2,F 是椭圆E 的右焦点,直线AF 的斜率为3,O 为坐标原点.(1)求E 的方程;(2)设过点A 的动直线l 与E 相交于P ,Q 两点.当△OPQ 的面积最大时,求l 的方程.96.(2014年全国普通高等学校招生统一考试文科数学(全国Ⅱ卷))设12,F F 分别是椭圆22221(0)x y a b a b+=>>的左右焦点,M 是C 上一点且2MF 与x 轴垂直,直线1MF 与C 的另一个交点为N . (1)若直线MN 的斜率为34,求C 的离心率; (2)若直线MN 在y 轴上的截距为2,且15MN F N =,求,a b .97.(2013年全国普通高等学校招生统一考试文科数学(新课标1卷))(本小题满分12分)已知圆()22:11M x y ++=,圆()22:19N x y -+=,动圆P 与圆M 外切并且与圆N 内切,圆心P 的轨迹为曲线C .(Ⅰ)求C 的方程;(Ⅱ)l 是与圆P ,圆M 都相切的一条直线,l 与曲线C 交于A ,B 两点,当圆P 的半径最长时,求AB . 98.(2013年全国普通高等学校招生统一考试理科数学(新课标1卷))已知圆M :(x +1)2+y 2=1,圆N :(x -1)2+y 2=9,动圆P 与圆M 外切并与圆N 内切,圆心P 的轨迹为曲线 C (1)求C 的方程;(2)l 是与圆P ,圆M 都相切的一条直线,l 与曲线C 交于A ,B 两点,当圆P 的半径最长时,求|AB|.99.(2012年全国普通高等学校招生统一考试文科数学(课标卷))设抛物线C :22x py =(p >0)的焦点为F ,准线为l ,A 为C 上一点,已知以F 为圆心,FA 为半径的圆F 交l 于B ,D 两点.(Ⅰ)若090BFD ∠=,ABD ∆的面积为,求p 的值及圆F 的方程;(Ⅱ)若A ,B ,F 三点在同一条直线m 上,直线n 与m 平行,且n 与C 只有一个公共点,求坐标原点到m ,n 距离的比值.100.(2012年全国普通高等学校招生统一考试理科数学(课标卷))设抛物线2:2(0)C x py p =>的焦点为F ,准线为,l AC ,已知以F 为圆心,FA 为半径的圆F 交l 于,BD 两点;(1)若90,BFD ABD ∠=︒△的面积为;求p 的值及圆F 的方程;(2)若,,A B F 三点在同一直线m 上,直线n 与m 平行,且n 与C 只有一个公共点,求坐标原点到,m n 距离的比值.解析几何真题专题答案1.(2021年全国高考乙卷数学(文)试题)设B 是椭圆22:15x C y +=的上顶点,点P 在C 上,则PB 的最大值为( )A .52B C D .2【答案】A【分析】设点()00,P x y ,因为()0,1B ,220015x y +=,所以()()()222222200000001251511426444PB x y y y y y y ⎛⎫=+-=-+-=--+=-++ ⎪⎝⎭,而011y -≤≤,所以当014y =-时,PB 的最大值为52. 故选:A .2.(2021年全国高考乙卷数学(理)试题)设B 是椭圆2222:1(0)x y C a b a b+=>>的上顶点,若C 上的任意一点P 都满足||2PB b ≤,则C 的离心率的取值范围是( )A .2⎫⎪⎪⎣⎭B .1,12⎡⎫⎪⎢⎣⎭C .0,2⎛ ⎝⎦D .10,2⎛⎤⎥⎝⎦【答案】C【分析】设()00,P x y ,由()0,B b ,因为2200221x y a b+=,222a b c =+,所以()()2223422222220000022221y c b b PB x y b a y b y a b b b c c ⎛⎫⎛⎫=+-=-+-=-++++ ⎪ ⎪⎝⎭⎝⎭,因为0b y b -≤≤,当32bb c-≤-,即22b c ≥时,22max 4PB b =,即max 2PB b =,符合题意,由22b c ≥可得222a c ≥,即02e <≤; 当32b b c ->-,即22b c <时,42222max b PB a b c=++,即422224b a b b c ++≤,化简得,()2220c b-≤,显然该不等式不成立. 故选:C .3.(2021年全国高考甲卷数学(文)试题)点()3,0到双曲线221169x y -=的一条渐近线的距离为( ) A .95B .85C .65D .45【答案】A【分析】由题意可知,双曲线的渐近线方程为:220169x y -=,即340±=x y ,结合对称性,不妨考虑点()3,0到直线340x y +=的距离:95d ==.故选:A.4.(2021年全国新高考Ⅰ卷数学试题)已知1F ,2F 是椭圆C :22194x y +=的两个焦点,点M 在C 上,则12MF MF ⋅的最大值为( ) A .13 B .12 C .9 D .6【答案】C【分析】由题,229,4a b ==,则1226MF MF a +==,所以2121292MF MF MF MF ⎛+⎫⋅≤= ⎪⎝⎭(当且仅当123MF MF ==时,等号成立). 故选:C .二、多选题5.(2021年全国新高考Ⅰ卷数学试题)已知点P 在圆()()225516x y -+-=上,点()4,0A 、()0,2B ,则( )A .点P 到直线AB 的距离小于10 B .点P 到直线AB 的距离大于2C .当PBA ∠最小时,PB =D .当PBA ∠最大时,PB =【答案】ACD【分析】圆()()225516x y -+-=的圆心为()5,5M ,半径为4,直线AB 的方程为142x y+=,即240x y +-=, 圆心M 到直线AB的距离为45==>,所以,点P 到直线AB42<410+<,A 选项正确,B 选项错误; 如下图所示:当PBA ∠最大或最小时,PB 与圆M 相切,连接MP 、BM ,可知PM PB ⊥,BM ==4MP =,由勾股定理可得BP ==CD 选项正确.故选:ACD.三、填空题6.(2021年全国高考乙卷数学(文)试题)双曲线22145x y -=的右焦点到直线280x y +-=的距离为________.【分析】由已知,3c ===,所以双曲线的右焦点为(3,0),所以右焦点(3,0)到直线280x y +-===7.(2021年全国高考乙卷数学(理)试题)已知双曲线22:1(0)x C y m m-=>0my +=,则C 的焦距为_________. 【答案】40my +=化简得y =,即b a =,同时平方得2223b a m =,又双曲线中22,1a m b ==,故231m m=,解得3,0m m ==(舍去),2223142c a b c =+=+=⇒=,故焦距24c = 故答案为:48.(2021年全国高考甲卷数学(理)试题)已知12,F F 为椭圆C :221164x y+=的两个焦点,P ,Q 为C 上关于坐标原点对称的两点,且12PQ F F =,则四边形12PFQF 的面积为________. 【答案】8【分析】因为,P Q 为C 上关于坐标原点对称的两点, 且12||||PQ F F =,所以四边形12PFQF 为矩形, 设12||,||PF m PF n ==,则228,48m n m n +=+=, 所以22264()2482m n m mn n mn =+=++=+,8mn =,即四边形12PFQF 面积等于8.故答案为:8.9.(2021年全国新高考Ⅰ卷数学试题)已知O 为坐标原点,抛物线C :22y px =(0p >)的焦点为F ,P为C 上一点,PF 与x 轴垂直,Q 为x 轴上一点,且PQ OP ⊥,若6FQ =,则C 的准线方程为______. 【答案】32x =-【分析】抛物线C :22y px = (0p >)的焦点,02p F ⎛⎫⎪⎝⎭,∵P 为C 上一点,PF 与x 轴垂直, 所以P 的横坐标为2p,代入抛物线方程求得P 的纵坐标为p ±, 不妨设(,)2pP p , 因为Q 为x 轴上一点,且PQ OP ⊥,所以Q 在F 的右侧,又||6FQ =,(6,0),(6,)2pQ PQ p ∴+∴=- 因为PQ OP ⊥,所以PQ OP ⋅=2602pp ⨯-=, 0,3p p >∴=,所以C 的准线方程为32x =- 故答案为:32x =-.四、解答题10.(2021年全国高考乙卷数学(文)试题)已知抛物线2:2(0)C y px p =>的焦点F 到准线的距离为2. (1)求C 的方程;(2)已知O 为坐标原点,点P 在C 上,点Q 满足9PQ QF =,求直线OQ 斜率的最大值. 【答案】(1)24y x =;(2)最大值为13. 【分析】(1)抛物线2:2(0)C y px p =>的焦点,02p F ⎛⎫⎪⎝⎭,准线方程为2p x =-,由题意,该抛物线焦点到准线的距离为222p p p ⎛⎫--== ⎪⎝⎭, 所以该抛物线的方程为24y x =;(2)设()00,Q x y ,则()00999,9PQ QF x y ==--, 所以()00109,10P x y -, 由P 在抛物线上可得()()200104109y x =-,即20025910y x +=,。
完整版)2018年高考理科数学全国三卷试题及答案解析2018年高考理科全国三卷1.已知集合 A={1,2,3,4}。
B={2,3,4}。
C={3,4}。
D={4},则(A∩B)∪(C∩D) 的元素个数是多少?2.已知函数 f(x)=x^2-2x+1,g(x)=2x-1,则 f(g(x)) 的值为多少?3.中国古建筑借助榫卯将木构件连接起来,构建的突出部分叫榫头,凹进部分叫卯眼。
图中木构件右边的小长方体是榫头,若如图摆放的木构件与某一带卯眼的木构件咬合成长方体,则咬合时带卯眼的木构件的俯视图可以是哪一个?4.若 a,b,c 是正整数,且 a^2+b^2=c^2,则 a+b+c 的值是多少?5.将 (2x-y+3z)^4 展开后,x^2y^2z^2 的系数是多少?6.平面直角坐标系中,直线与 x 轴交于 A,与 y 轴交于B,直线与 x 轴交于 C,与 y 轴交于 D。
点 P 在圆 x^2+y^2=1 上,且线段 AP 与线段 CD 相交于点 O。
则△AOD 的面积的取值范围是什么?7.已知函数 f(x)=x^3-3x,则 f(x+2)-f(x-2) 的图像大致是什么?8.某群体中的每位成员使用移动支付的概率为 p,各成员的支付方式相互独立。
设 N 为该群体的成员数,X 为使用移动支付的人数,则 P(X=k) 的值是多少?9.△ABC 中,∠A=60°,BC=2,AD 是 BC 的中线,点 E 在 AB 上,使得 AE=AD。
若△ADE 为等边三角形且其面积为 1/3,则△ABC 的面积是多少?10.设 V 是半径为 R 的球的球面上四点 A,B,C,D 所构成的四面体的体积,V 的最大值是多少?11.双曲线 H 的左、右焦点分别为 F1(-c,0)、F2(c,0),坐标原点为 O,过 F1 作 H 的一条渐近线,垂足为 P。
若 OP=2c,则 H 的离心率是多少?12.设函数 f(x)=x^3-ax^2+bx-1,若 f(x) 在点 x=1 处的切线的斜率为 3,在 x=2 和抛物线 y=x^2+cx+d 的零点个数为 2,过点 (2,0) 的直线 y=kx+m 与 y=f(x) 的交点为 (3,4),则 a,b,c,d 的值分别是多少?13.已知向量 a=3i+2j,b=-2i+5j,则 a·b 的值是多少?14.曲线 y=2x^3-3x^2+6x-1 的切线在点 (1,4) 处的斜率是多少?15.函数 f(x)=x^2-2x+3 在区间 [-1,3] 上的最小值是多少?16.已知点 A(1,0,0),B(0,1,0),C(0,0,1),D(1,1,1),且 AD 与平面 BCD 垂直,AD 的长度为 2.则 BD 的长度是多少?17.等比数列 {an} 的首项为 a1=2,公比为 q=1/2.求 S10 的值和 a10 的值。
2018年普通高等学校招生全国统一考试数学(理)北京本试卷共5页,150分。
考试试卷120分钟,考生务必将答案答在答题卡上,在试卷上作答无效。
考试结束后,将本试卷和答题卡一并交回。
一、选择题(共40分,每小题5分)1.已知集合{}{}|2,2,0,1,2A x x B =<=-,则A B =( ) A. {0,1} B. {-1,0,1} C. {-2,0,1,2} D. {-1,0,1,2}2.在复平面内,复数11i- 的共轭复数对应的点位于( ) A. 第一象限 B. 第二象限 C. 第三象限 D. 第四象限3.执行如图所示的程序框图,输出的S 值为( )A. 1 2B. 5 6C. 7 6D.7 124.“十二平均律”是通用的音律体系,明代朱载堉最早用数学方法计算出半音比例,为这个理论的发展做出了重要贡献,十二平均律将一个纯八度音程分成十二份,依次得到十三个单音,从第二个单音起,每一个单音的频率与它前一个单音的频率的比都等于,若第一个单音的频率为f,则第八个单音的频率为()C.D.5.某四棱锥的三视图如图所示,在此四棱锥的侧面中,直角三角形的个数为( )A. 1B. 2C. 3D. 46.设,a b 均为单位向量,则“33a b a b -=+”是“a b ⊥”的( ) A. 充分而不必要条件 B. 必要而不充分条件 C. 充分必要条件 D. 既不充分也不必要条件7.在平面直角坐标系中,记d 为点()cos ,sin P θθ 到直线20x my --=的距离,当,m θ变化时,d 的最大值为( ) A. 1 B. 2 C. 3D. 4 8.设集合(){},|1,4,2A x y x y ax y x ay =-≥+>-≤,则( )A. 对任意实数a ,()2,1A ∈B. 对任意实数a ,()2,1A ∉C. 当且仅当0a <时,()2,1A ∉D. 当且仅当32a ≤时,()2,1A ∉ 二、填空题 (本大题共6小题,每小题5分,共30分)9.设{}n a 是等差数列, 且1253,36a a a =+=,则{}n a 的通项公式为______.10.在极坐标系中,直线()cos sin 0a a ρθρθ+=>与圆2cos ρθ=相切,则a =_____.11.设函数()()cos 06f x wx w π⎛⎫=-> ⎪⎝⎭ ,若()4f x f π⎛⎫≤ ⎪⎝⎭对任意的实数x 都成立,则w 的最小值为______.12.若,x y 满足12x y x +≤≤,则2y x -的最小值是________.13.能说明“若()()0f x f >对任意的(]0,2x ∈都成立,则()f x f 在[]0,2 上是增函数”为假命题的一个函数是______.14.已知椭圆()2222:10x y M a b a b +=>> ,双曲线2222:1x y N m n-=. 若双曲线N 的两条渐近线与椭圆M 的四个交点及椭圆M 的两个焦点恰为一个正六边形的顶点,则椭圆M 的离心率______;双曲线N 的离心率为_______.三、综合题:15.(本小题13分)在△ABC 中,17,8,cos 7a b B ===- (1)求A ∠; (2)求AC 边上的高. 16.(本小题14分)如图,在三菱柱111ABC A B C -中,1CC ⊥平面ABC ,,,,D E F G 分别1111,,,AA AC AC BB的中点,12AB BC AC AA ===。
一、选择题1.丁丁做了4道计算题:① 2018(1)2018-=;② 0(1)1--=-;③ 1111326-+-=;④11()122÷-=-请你帮他检查一下,他一共做对了( )道 A .1道B .2道C .3道D .4道2.一个因数扩大到原来的10倍,另一个因数缩小到原来的120,积( ) A .缩小到原来的12B .扩大到原来的10倍C .缩小到原来的110D .扩大到原来的2倍3.已知︱x ︱=4,︱y ︱=5且x >y ,则2x-y 的值为( ) A .-13B .+13C .-3或+13D .+3或-14.下列说法正确的是( ) A .近似数1.50和1.5是相同的 B .3520精确到百位等于3600 C .6.610精确到千分位 D .2.708×104精确到千分位 5.若,则化简|-2|+|1-|的结果是( )A .-1B .1C .+1D .-36.2017年12月17日,第二架国产大型客机C919在上海浦东国际机场完成首次飞行.飞行时间两个小时,飞行的高度达到15000英尺.15000用科学记数法表示是( ) A .0.15×105B .15×103C .1.5×104D .1.5×1057.下列说法中,正确的是( ) A .正数和负数统称有理数B .既没有绝对值最大的数,也没有绝对值最小的数C .绝对值相等的两数之和为零D .既没有最大的数,也没有最小的数 8.下列运算正确的是( ) A .()22-2-21÷= B .311-2-8327⎛⎫= ⎪⎝⎭C .1352535-÷⨯=- D .133( 3.25)6 3.2532.544⨯--⨯=-9.若|x|=7|y|=5x+y>0,,且,那么x-y 的值是 ( ) A .2或12 B .2或-12C .-2或12D .-2或-1210.当A 地高于海平面152米时,记作“海拔+152米”,那么B 地低于海平面23米时,记作( ) A .海拔23米B .海拔﹣23米C .海拔175米D .海拔129米11.有理数a ,b 在数轴上表示如图所示,则下列各式中正确的是( )A .0ab >B .b a >C .a b ->D .b a <12.下列计算结果正确的是( ) A .-3-7=-3+7=4 B .4.5-6.8=6.8-4.5=2.3 C .-2-13⎛⎫-⎪⎝⎭=-2+13=-213D .-3-12⎛⎫-⎪⎝⎭=-3+12=-212 二、填空题13.一条数轴上有点A 、B 、C ,其中点A 、B 表示的数分别是16-、9,现以点C 为折点,将放轴向右对折,若点A 对应的点A '落在点B 的右边,若3A B '=,则C 点表示的数是______.14.大肠杆菌每过20分钟便由1个分裂成2个,经过3小时后这种大肠杆菌由1个分裂成_____个.15.按下面程序计算,若开始输入x 的值为正数,最后输出的结果为656,则满足条件所有x 的值是___.16.计算1-2×(32+12)的结果是 _____. 17.某电视塔高468 m ,某段地铁高-15 m ,则电视塔比此段地铁高_____m . 18.计算:(1)(-0.8)+1.2+(-0.7)+(-2.1) =[________]+1.2 =________+1.2 =____;(2)32.5+46+(-22.5) =[____]+46 =_____+46 =____.19.我们知道,海拔高度每上升100米,温度下降0.6℃,肥城市区海拔大约100米,某时刻肥城市区地面温度为16℃,泰山的海拔大约为1530米,那么此时泰山顶部的气温大℃约为______.20.(1)圆周率π=3.141 592 6…,取近似值3.142,是精确到____位;(2)近似数2.428×105精确到___位;(3)用四舍五入法把3.141 592 6精确到百分位是____,近似数3.0×106精确到____位.三、解答题21.高速公路养护小组,乘车沿东西方向公路巡视维护,如果约定向东为正,向西为负,当天的行驶记录如下(单位:千米):+17,-9,+7,-15,-3,+11,-6,-8,+5,+16(1)养护小组最后到达的地方在出发点的哪个方向?距出发点多远?(2)若汽车耗油量为0.2升/千米,则这次养护共耗油多少升?22.某路公交车从起点经过A,B,C,D站到达终点,一路上下乘客如下表所示.(用正数表示上车的人数,负数表示下车的人数)起点A B C D终点上车人数161512780下车人数0-3-4-10-11)到终点下车还有多少人;(2)车行驶在____站至___ 站之间时,车上的乘客最多;(3)若每人乘坐一站需买票0.5元,问该车出车一次能收入多少钱?列式计算.23.点A、B在数轴上所表示的数如图所示,回答下列问题:(1)将A在数轴上向左移动1个单位长度,再向右移动9个单位长度,得到点C,求出B、C两点间的距离是多少个单位长度?(2)若点B在数轴上移动了m个单位长度到点D,且A、D两点间的距离是3,求m的值.24.定义:数轴上给定不重合两点A,B,若数轴上存在一点M,使得点M到点A的距离等于点M到点B的距离,则称点M为点A与点B的“平衡点”.请解答下列问题:(1)若点A表示的数为-3,点B表示的数为1,点M为点A与点B的“平衡点”,则点M表示的数为_______;(2)若点A表示的数为-3,点A与点B的“平衡点”M表示的数为1,则点B表示的数为________;(3)点A表示的数为-5,点C,D表示的数分别是-3,-1,点O为数轴原点,点B为线段CD上一点.①设点M表示的数为m,若点M可以为点A与点B的“平衡点”,则m的取值范围是________;②当点A以每秒1个单位长度的速度向正半轴方向移动时,点C同时以每秒3个单位长度t )秒,求t的取值范围,使得点O可的速度向正半轴方向移动.设移动的时间为t(0以为点A 与点B 的“平衡点”. 25.计算: (1)()222112136⎡⎤⎛⎫⎛⎫-+---÷-⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦(2)131121346⎛⎫-⨯-+ ⎪⎝⎭26.计算:329(1)4(2)34⎛⎫--÷-+-⨯ ⎪⎝⎭.【参考答案】***试卷处理标记,请不要删除一、选择题 1.A 解析:A 【分析】根据乘方的意义以及有理数的减法、乘法、除法法则,有理数加减混合运算法则即可判断. 【详解】①2018(1)1-=,故本小题错误; ②0(1)1--=,故本小题错误; ③1113267-+-=-,故本小题错误; ④11()122÷-=-,正确; 所以,他一共做对了1题. 故选A . 【点睛】本题考查了有理数的乘方、加法以及除法法则,熟练掌握运算法则是解题关键.2.A解析:A 【分析】根据题意列出乘法算式,计算即可. 【详解】设一个因数为a ,另一个因数为b ∴两数乘积为ab根据题意,得1110202a b ab = 故选A . 【点睛】本题考查了有理数乘法运算,根据有理数乘法运算法则计算即可.3.C解析:C 【分析】由4x =,5y =可得x=±4,y=±5,由x >y 可知y=-5,分别代入2x-y 即可得答案. 【详解】∵4x =,5y =, ∴x=±4,y=±5, ∵x >y , ∴y=-5,当x=4,y=-5时,2x-y=2×4-(-5)=13, 当x=-4,y=-5时,2x-y=2×(-4)-(-5)=-3, ∴2x-y 的值为-3或13, 故选:C . 【点睛】本题主要考查了绝对值的性质,能够根据已知条件正确地判断出x ,y 的值是解答此题的关键.4.C解析:C 【分析】相似数和原值是不相同的;3520精确到百位是3500;2.708×104精确到十位. 【详解】A 、近似数1.50和1.5是不同的,A 错B 、3520精确到百位是3500,B 错 D 、2.708×104精确到十位. 【点睛】本题考察相似数的定义和科学计数法.5.B解析:B 【解析】 【分析】绝对值的化简求值主要需要判断绝对值里面的正负,从而去掉绝对值,再对式子进行计算进而得到答案. 【详解】∵∴a-2<0,1-a<0∴|-2|+|1-|= -(a-2)-(1-a )=-a+2-1+a=1,因此答案选择B. 【点睛】本题考查的是绝对值的化简求值,注意一个正数的绝对值等于它本身,一个负数的绝对值等于它的相反数,0的绝对值还是0.6.C解析:C 【分析】科学记数法的表示形式为a ×10n 的形式,其中1≤|a |<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值≥1时,n 是正数;当原数的绝对值<1时,n 是负数. 【详解】15000用科学记数法表示是1.5×104. 故选C . 【点睛】本题考查了科学记数法的表示方法.科学记数法的表示形式为a ×10n 的形式,其中1≤|a |<10,n 为整数,表示时关键要正确确定a 的值以及n 的值.7.D解析:D 【分析】分别根据有理数的定义,绝对值的定义,有理数的大小比较逐一判断即可. 【详解】整数和分数统称为有理数,故原说法错误,故选项A 不合题意;没有绝对值最大的数,绝对值最小的数是0,故原说法错误,故选项B 不合题意; 绝对值相等的两数之和等于零或大于0,故原说法错误,故选项C 不合题意; 既没有最大的数,也没有最小的数,正确,故选项D 符合题意. 故选:D . 【点睛】本题考查有理数的定义、绝对值的定义,熟知有理数和绝对值的定义是解题的关键.8.D解析:D 【分析】根据有理数的乘方运算可判断A 、B ,根据有理数的乘除运算可判断C ,利用乘法的运算律进行计算即可判断D . 【详解】A 、()22-2-2441÷=-÷=-,该选项错误;B 、33343191217-2-332727⎛⎫⎛⎫==-=- ⎪ ⎪⎝⎭⎝⎭,该选项错误; C 、1335539355-÷⨯=-⨯⨯=-,该选项错误; D 、13132713273( 3.25)6 3.25 3.25 3.25 3.25()32.5444444⨯--⨯=-⨯-⨯=-⨯+=,该选正确; 故选:D . 【点睛】本题考查了有理数的混合运算.注意:(1)有理数混合运算顺序:先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算.(2)进行有理数的混合运算时,注意各个运算律的运用,使运算过程得到简化.9.A解析:A 【分析】由绝对值性质可知x 和y 均有两种可能取值,再根据x+y>0排除不可能取值,代入求值即可. 【详解】由x 7=可得x=±7,由y 5=可得y=±5, 由x+y>0可知:当x=7时,y=5;当x=7时,y=-5, 则x y 75122-=±=或, 故选A 【点睛】绝对值具有非负性,因此去绝对值时要根据题干条件全面考虑.10.B解析:B 【解析】由已知,当A 地高于海平面152米时,记作“海拔+152米”,那么B 地低于海平面23米时,则应该记作“海拔-23米”, 故选B.11.C解析:C 【分析】根据数轴可得0a b <<且a b >,再逐一分析即可. 【详解】由题意得0a <,0b >,a b >,A 、0ab <,故本选项错误;B 、a b >,故本选项错误;C 、a b ->,故本选项正确;D 、b a >,故本选项错误.故选:C . 【点睛】本题考查数轴,由数轴观察出0a b <<且a b >是解题的关键.12.D解析:D 【分析】本题利用有理数的加减运算法则求解各选项,即可判断正误. 【详解】A 选项:3710--=-,故错误;B 选项:4.5 6.8 4.5( 6.8) 2.3-=+-=-,故错误;C 选项:1122()21333---=-+=-,故错误; D 选项运算正确. 故选:D . 【点睛】本题考查有理数的加减运算,按照对应法则仔细计算即可.二、填空题13.【分析】根据可得点为12再根据与以为折点对折即为中点即可求解【详解】解:翻折后在右侧且所以点为12∵与以为折点对折则为中点即【点睛】本题考查数轴上两点间的距离得到为中点是解题的关键 解析:2-【分析】根据3A B '=可得点A '为12,再根据A 与A '以C 为折点对折,即C 为A ,A '中点即可求解. 【详解】解:翻折后A '在B 右侧,且3A B '=.所以点A '为12, ∵A 与A '以C 为折点对折,则C 为A ,A '中点,即1216:22C -=-. 【点睛】本题考查数轴上两点间的距离,得到C 为A ,A '中点是解题的关键.14.512【解析】分析:由于3小时有9个20分而大肠杆菌每过20分便由1个分裂成2个那么经过第一个20分钟变为2个经过第二个20分钟变为22个然后根据有理数的乘方定义可得结果详解:∵3小时有9个20分而解析:512 【解析】分析:由于3小时有9个20分,而大肠杆菌每过20分便由1个分裂成2个,那么经过第一个20分钟变为2个,经过第二个20分钟变为22个,然后根据有理数的乘方定义可得结果.详解:∵3小时有9个20分,而大肠杆菌每过20分便由1个分裂成2个,那么经过第一个20分钟变为2个,经过第二个20分钟变为22个,⋯经过第九个20分钟变为29个,即:29=512个.所以,经过3小时后这种大肠杆菌由1个分裂成512个.故答案为512.点睛:乘方是乘法的特例,乘方的运算可以利用乘法的运算来进行.15.131或26或5或【分析】利用逆向思维来做分析第一个数就是直接输出656可得方程5x+1=656解方程即可求得第一个数再求得输出为这个数的第二个数以此类推即可求得所有答案【详解】用逆向思维来做:第一解析:131或26或5或45.【分析】利用逆向思维来做,分析第一个数就是直接输出656,可得方程5x+1=656,解方程即可求得第一个数,再求得输出为这个数的第二个数,以此类推即可求得所有答案.【详解】用逆向思维来做:第一个数就是直接输出其结果的:5x+1=656,解得:x=131;第二个数是(5x+1)×5+1=656,解得:x=26;同理:可求出第三个数是5;第四个数是45,∴满足条件所有x的值是131或26或5或45.故答案为131或26或5或45.【点睛】此题考查了方程与不等式的应用.注意理解题意与逆向思维的应用是解题的关键.16.-18【分析】先算乘方再算括号然后算乘法最后算加减即可【详解】解:1-2×(3+)=1-2×(9+)=1-2×=1-19=-18故答案为-18【点睛】本题考查了含乘方的有理数四则混合运算掌握相关运算解析:-18【分析】先算乘方、再算括号、然后算乘法、最后算加减即可.【详解】解:1-2×(32+12)=1-2×(9+12)=1-2×19 2=1-19=-18.故答案为-18.【点睛】本题考查了含乘方的有理数四则混合运算,掌握相关运算法则是解答本题的关键.17.483【分析】根据有理数减法进行计算即可【详解】解∶依题意得:电视塔比此段地铁高468-(-15)=483m故答案为:483【点睛】本题考查了有理数减法根据题意列出式子是解题的关键解析:483【分析】根据有理数减法进行计算即可.【详解】解∶依题意得:电视塔比此段地铁高468-(-15)=483 m.故答案为:483.【点睛】本题考查了有理数减法,根据题意列出式子是解题的关键.18.(-08)+(-07)+(-21)(-36)-24325+(-225)1056【分析】(1)先根据加法的运算律把同号的数相加再根据加法法则计算;(2)先根据加法的运算律把相加得整数的数相加再根据加法解析:(-0.8)+(-0.7)+(-2.1) (-3.6) -2.4 32.5+(-22.5) 10 56【分析】(1)先根据加法的运算律把同号的数相加,再根据加法法则计算;(2)先根据加法的运算律把相加得整数的数相加,再根据加法法则计算.【详解】解:(1)(-0.8)+1.2+(-0.7)+(-2.1)=[(-0.8)+(-0.7)+(-2.1)]+1.2=(-3.6)+1.2=-2.4;(2)32.5+46+(-22.5)=[32.5+(-22.5)]+46=10+46=56.故答案为:(-0.8)+(-0.7)+(-2.1),(-3.6),-2.4;32.5+(-22.5),10,56.【点睛】本题考查了有理数的加法,属于基本题型,熟练掌握加法运算律和加法法则是解题的关键.19.【分析】首先用泰山的海拔减去肥城市区海拔求出泰山的海拔比肥城市区海拔高多少米进而求出泰山顶部的气温比某时刻肥城市区地面温度低多少;然后用某时刻肥城市区地面温度减去此时泰山顶部低的温度即可【详解】解: 解析:7.42【分析】首先用泰山的海拔减去肥城市区海拔,求出泰山的海拔比肥城市区海拔高多少米,进而求出泰山顶部的气温比某时刻肥城市区地面温度低多少;然后用某时刻肥城市区地面温度减去此时泰山顶部低的温度即可.【详解】解:()1615301001000.6--÷⨯1614301000.6=-÷⨯168.58=-7.42=(℃);答:此时泰山顶部的气温大约为7.42℃.故答案为:7.42.【点睛】此题主要考查了有理数混合运算的实际应用,正确理解题意并列出算式是解题的关键. 20.(1)千分(2)百(3)314十万【分析】(1)根据精确到哪位就是对它后边的一位进行四舍五入即可解答;(2)根据一个数精确到了哪一位应当看这个数的末位数字实际在哪一位解答即可;(3)根据精确到哪位就解析:(1)千分 (2)百 (3)3.14 十万【分析】(1)根据精确到哪位,就是对它后边的一位进行四舍五入即可解答;(2)根据一个数精确到了哪一位,应当看这个数的末位数字实际在哪一位解答即可; (3)根据精确到哪位,就是对它后边的一位进行四舍五入以及科学记数法的精确方法解答即可.【详解】解:(1)圆周率π=3.141 592 6…,取近似值3.142,是精确到千分位;(2)近似数2.428×105中,2.428的小数点前面的2表示20万,则这一位是十万位,因而2.428的最后一位8应该是在百位上,因而这个数是精确到百位;(3)用四舍五入法把3.141 592 6精确到百分位是3.14,近似数3.0×106精确到十万位.故答案为: (1)千分; (2)百; (3)3.14、十万.【点睛】本题考查了近似数,掌握确定近似数精确的位数和科学记数法的精确方法是解答本题的关键.三、解答题21.(1)最后到达的地方在出发点的东边,距出发点15千米;(2)这次养护共耗油19.4升.【分析】(1)求出这一组数的和,结果是正数则在出发点的东边,是负数则在出发点的西侧;(2)所走的路程是这组数据的绝对值的和,然后乘以0.2,即可求得耗油量.【详解】解:(1)17﹣9+7﹣15﹣3+11﹣6﹣8+5+16,=17+7+11+5+16-(9+15+3+6+8),=15.答:最后到达的地方在出发点的东边,距出发点15千米;++-+++-+-+++-+-++++⨯,(2)(17971531168516)0.2=97×02,=19.4(升).答:这次养护共耗油19.4升.【点睛】本题主要考查了正负数的意义,解题关键是理解“正”和“负”的相对性,明确什么是一对具有相反意义的量.在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示.也考查了有理数的加减运算.22.(1)30;(2)B,C;(3)71.5元.【分析】(1)根据正负数的意义,上车为正数,下车为负数,求出A、B、C、D站以及终点站的人数,即可得解;(2)根据(1)的计算解答即可;(3)根据各站之间的人数,乘票价0.5元,然后计算即可得解.【详解】解:(1)根据题意可得:到终点前,车上有16+15-3+12-4+7-10+8-11=30,即30人;故到终点下车还有30人.故答案为:30;(2)根据图表:A站人数为:16+15-3=28(人)B站人数为:28+12-4=36(人)C站人数为:36+7-10=33(人)D站人数为:33+8-11=30(人)易知B和C之间人数最多.故答案为:B ;C ;(3)根据题意:(16+28+36+33+30)×0.5=71.5(元).答:该出车一次能收入71.5元.【点睛】本题考查了正数和负数,有理数的混合运算,读懂图表信息,求出各站点上的人数是解题的关键.23.(1)B 、C 两点间的距离是3个单位长度;(2)m 的值为2或8.【分析】(1)利用数轴上平移左移减,右移加可求点C 所表示的数为﹣3﹣1+9=5,利用绝对值求两点距离BC =|2﹣5|=3;(2)分类考虑当点D 在点A 的左侧与右侧,利用AD=3,求出点D 所表示的数,再利用BD=m 求出m 的值即可.【详解】解:(1)点C 所表示的数为﹣3﹣1+9=5,∴BC =|2﹣5|=3.(2)当点D 在点A 的右侧时,点D 所表示的数为﹣3+3=0,所以点B 移动到点D 的距离为m =|2﹣0|=2,当点D 在点A 的左侧时,点D 所表示的数为﹣3﹣3=﹣6,所以点B 移动到点D 的距离为m =|2﹣(﹣6)|=8,答:m 的值为2或8.【点睛】本题考查数轴上平移,两点距离问题,利用AD 的距离分类讨论点D 的位置是解题关键. 24.(1)-1;(2)5;(3)①43t -≤≤-;②26t ≤≤且 5t ≠【分析】(1)根据平衡点的定义进行解答即可;(2)根据平衡点的定义进行解答即可;(3)①先得出点B 的范围,再得出m 的取值范围即可;②根据点A 和点C 移动的距离,求得点A 、C 表示的数,再由平衡点的定义得出答案即可.【详解】解:(1)(1)点M 表示的数=312-+=−1; 故答案为:−1;(2)点B 表示的数=1×2−(−3)=5;故答案为:5;(3)①设点B 表示的数为b ,则31b -≤≤-,∵点A 表示的数为-5,点M 可以为点A 与点B 的“平衡点”,∴m 的取值范围为:43m -≤≤-,故答案为:43m -≤≤-;②由题意得:点A 表示的数为5t -,点C 表示的数为33t -,∵点O 为点A 与点B 的平衡点,∴点B 表示的数为:5t -,∵点B 在线段CD 上,当点B 与点C 相遇时,2t =,当点B 与点D 相遇时,6t =,∴26t ≤≤,且 5t ≠,综上所述,当26t ≤≤且 5t ≠时,点O 可以为点A 与点B 的“平衡点”.【点睛】本题考查了实数与数轴,掌握数轴上点的表示方法,以及两点的中点表示方法是解题的关键.25.(1)1;(2)9-【分析】(1)先算括号里面的,再算括号外面的即可;(2)根据乘法分配律计算即可;【详解】(1)()222112136⎡⎤⎛⎫⎛⎫-+---÷- ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦, 11463⎡⎤=-+-⨯⎢⎥⎣⎦, 121=-+=;(2)131121346⎛⎫-⨯-+ ⎪⎝⎭, ()()()431121212346=-⨯--⨯+-⨯, 16929=-+-=-;【点睛】本题主要考查了有理数的混合运算,准确计算是解题的关键.26.12-. 【分析】 根据有理数的四则混合运算顺序:“先算乘方,再算乘除,然后算加减”进行计算即可.【详解】 原式311222⎛⎫=-++-=- ⎪⎝⎭. 【点睛】本题考查了有理数的混合运算,掌握运算法则是解题的关键.。
2018-2016三年高考真题理科数学分类汇编:集合(解析附后)2018-2016三年高考真题分类汇编:集合(解析附后)考纲解读明方向考点内容解读要求常考题型预测热度1.集合的含义与表示了解集合的含义,体会元素与集合的属于关系;能用自然语言、图形语言、集合语言(列举法或描述法)描述不同的具体问题。
理解集合之间包含与相等的含义,能识别给定集合的子集;在具体情境中,了解全集与空集的含义。
理解两个集合的并集与交集的含义,会求两个简单集合的并集与交集;理解在给定集合中一个子集的补集的含义,会求给定子集的补集;能使用XXX(Venn)图表达集合间的基本关系及集合的基本运算。
选择题★★☆2.集合间的基本关系选择题★★☆3.集合间的基本运算选择题★★★分析解读1.掌握集合的表示方法,能判断元素与集合的“属于”关系、集合与集合之间的包含关系。
2.深刻理解、掌握集合的元素、子、交、并、补集的概念。
熟练掌握集合的交、并、补的运算和性质。
能用XXX(Venn)图表示集合的关系及运算。
3.本部分内容在高考试题中多以选择题或填空题的形式出现,以函数、不等式等知识为载体,以集合语言和符号语言表示为表现形式,考查数学思想方法。
4.本节内容在高考中分值约为5分,属中低档题。
命题探究练扩展2018年高考全景展示1.【2018年理北京卷】已知集合A={x|x<2},B={-2,1,2},则AB=()A。
{0,1} B。
{-1,1} C。
{-2,1,2} D。
{-1,1,2}2.【2018年理新课标I卷】已知集合A={x|x²-4x+3=0},B={x|x²-2x-3=0},则AB中元素的个数为()A。
2 B。
3 C。
4 D。
53.【2018年全国卷III理】已知集合A={x|x²-5x+6>0},B={x|x-2>0},C={x|x<3},则A∩B∩C=()A。
{x|x2} D。
18年全国3卷理科数学一、选择题:本题共12小题,每小题5分,共60分.1.已知集合AT x |x ・120}, B={0. 1. 2},贝iJACBA. {0JB. HIC. {1 . 2}D. (0. k 2}【答案】C【解析】分析:由题意先解出集合A.进而得到结果。
详解:由集合A 得X2 1,所以AOBTL2}故答案选C.2. (1 +A. -3rB. -3+iC. 3-iD. 3 + i【答案】D【解析】分析:由0数的乘法运算展开即可。
详解:(I + iX2 • i) = 2 . 1 + 2」.『=3 + l故选D.3.中国古建筑借助棵卯将木构件连接起来.构件的凸出部分叫桦头,凹进部分叫卯眼,图中 木构件右边的小长方体是桦头.若如留摆放的木构件与某一带卯眼的木构件咬合成长方体,则咬合时带卯限的木构件的俯视图可以是fS徵方向A C D. DC DA. AB. BC.【答案】A【解析】分析:观察图形可得。
详解:观擦图形图可知,俯视图为_____:故答案为A.4.若gma-,则cos2a7SA. B. C.— D.—99【答案】B【解析】分析:由公式脉2«=1”28静(1可得。
,27详解:cos2a•1-2sin"a■1--1■-99故答案为B.5.的展开式中的系数为A.10B.20C.40D.80【答案】C【解析】分析:与出然后可得结果详解:由鼬可得T"」C^x2)5'r(-)r C;2r-x10JrX令10.3r=4,则r=2所iUC;-2,=C^x2z=40故选C.6直线x+y+2=0分别与轴,轴交于,两点,点在圆(x-2)'y'=2上,则△ABP面积的取值范围是A.|2.6|B.[4.8]C.匝.^1D.[20.3因【答案】A【解析】分析:先求出A・B两点坐标得到|AB|•再计算圆心到直线距离,得到点P到直线距离范围・由而枳公式计算叩可详解:•・Fgr+2=0分别与轴,轴交于,两点•・•点P在圆&.2尸+广=2上12+0+21 l W 同心为(2, 0).则圆心到I • L .项小一f —"夕故点P 到立线x +y f =0的距离的范"I 为[也3卤则 S &AB P -*!AB|<i 2-^d,e[16]故答案选A.D. DC. C A. A B. B【答案】D 【解析】分析:由特殊值排除即可详解:% = 0时.y = 2,排除ABy ,= + ・2\(2^・ 1)•场丘• y AO,排除C故正确答案选D.8.某群体中的每位成员使用移动支付的概率都为,备成员的支付方式相互独立,设为该群体 的10位成员中使用移动支付的人数,DX = 24, P(X = 4)<P(X 6),则pA. 0.7B. 0.6C. 0.4D. 0.3【答案】B【解析】分析;判断出为二项分布.利用公mx)=np(l・p)进行计算即可•IXX)二np(l・P)••・p=04或p=06P(X=4)=C加」(】.p)6<P(X=6)=C,y(1-p)1,.-.(I『)2<^,可知1>>。
戴氏教育新津总校——理数绝密★启用前2018年普通高等学校招生全国统一考试理科数学注意事项:1.答卷前,考生务必将自己的姓名和准考证号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其它答案标号。
回答非选择题时,将答案写在答题卡上。
写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知集合{}|10A x x =-≥,{}012B =,,,则A B =I A .{}0B .{}1C .{}12,D .{}012,, 2.()()1i 2i +-= A .3i --B .3i -+C .3i -D .3i +3.中国古建筑借助榫卯将木构件连接起来,构件的凸出部分叫榫头,凹进部分叫卯眼,图中木构件右边的小长方体是榫头.若如图摆放的木构件与某一带卯眼的木构件咬合成长方体,则咬合时带卯眼的木构件的俯视图可以是戴氏教育新津总校——理数4.若1sin 3α=,则cos2α=A .89B .79C .79-D .89-5.522x x ⎛⎫+ ⎪⎝⎭的展开式中4x 的系数为A .10B .20C .40D .806.直线20x y ++=分别与x 轴,y 轴交于A ,B 两点,点P 在圆()2222x y -+=上,则ABP △面积的取值范围是 A .[]26,B .[]48,C .232⎡⎣D .2232⎡⎣ 7.函数422y x x =-++的图像大致为戴氏教育新津总校——理数8.某群体中的每位成员使用移动支付的概率都为p ,各成员的支付方式相互独立,设X 为该群体的10位成员中使用移动支付的人数, 2.4DX =,()()46P X P X =<=,则p = A .0.7B .0.6C .0.4D .0.39.ABC △的内角A B C ,,的对边分别为a ,b ,c ,若ABC △的面积为2224a b c +-,则C =A .π2B .π3C .π4D .π610.设A B C D ,,,是同一个半径为4的球的球面上四点,ABC △为等边三角形且其面积为93锥D ABC -体积的最大值为戴氏教育新津总校——理数A .B .C .D .11.设12F F ,是双曲线22221x y C a b-=:(00a b >>,)的左,右焦点,O 是坐标原点.过2F 作C 的一条渐近线的垂线,垂足为P .若1PF =,则C 的离心率为AB .2CD12.设0.2log 0.3a =,2log 0.3b =,则A .0a b ab +<<B .0ab a b <+<C .0a b ab +<<D .0ab a b <<+二、填空题:本题共4小题,每小题5分,共20分。
13.已知向量()=1,2a ,()=2,2-b ,()=1,λc .若()2∥c a +b ,则λ=________.14.曲线()1e x y ax =+在点()01,处的切线的斜率为2-,则a =________. 15.函数()πcos 36f x x ⎛⎫=+ ⎪⎝⎭在[]0π,的零点个数为________.16.已知点()11M -,和抛物线24C y x =:,过C 的焦点且斜率为k 的直线与C 交于A ,B 两点.若90AMB =︒∠,则k =________.三、解答题:共70分。
解答应写出文字说明、证明过程或演算步骤。
第17~21题为必考题,每个试题考生都必须作答。
第22、23题为选考题,考生根据要求作答。
(一)必考题:共60分。
17.(12分)戴氏教育新津总校——理数等比数列{}n a 中,15314a a a ==,. (1)求{}n a 的通项公式;(2)记n S 为{}n a 的前n 项和.若63m S =,求m . 18.(12分)某工厂为提高生产效率,开展技术创新活动,提出了完成某项生产任务的两种新的生产方式.为比较两种生产方式的效率,选取40名工人,将他们随机分成两组,每组20人。
第一组工人用第一种生产方式,第二组工人用第二种生产方式.根据工人完成生产任务的工作时间(单位:min )绘制了如下茎叶图:(1)根据茎叶图判断哪种生产方式的效率更高?并说明理由;(2)求40名工人完成生产任务所需时间的中位数m ,并将完成生产任务所需时间超过m 和不超过m 的工人数填入下面的列联表:超过m不超过m第一种生产方式 第二种生产方式(3)根据(2)中的列联表,能否有99%的把握认为两种生产方式的效率有差异? 附:()()()()()22n ad bc K a b c d a c b d -=++++,戴氏教育新津总校——理数()2P K k ≥ 0.050 0.0100.001k3.841 6.635 10.82819.(12分)如图,边长为2的正方形ABCD 所在的平面与半圆弧»CD所在平面垂直,M 是»CD 上异于C ,D 的点. (1)证明:平面AMD ⊥平面BMC ;(2)当三棱锥M ABC -体积最大时,求面MAB 与面MCD 所成二面角的正弦值.20.(12分)已知斜率为k 的直线l 与椭圆22143x y C +=:交于A ,B 两点,线段AB 的中点为()()10M m m >,.(1)证明:12k <-;(2)设F 为C 的右焦点,P 为C 上一点,且FP FA FB ++=0u u u r u u u r u u u r .证明:FA u u u r,FP u u u r ,FB u u u r 成等差数列,并求该数列的公差. 21.(12分)已知函数()()()22ln 12f x x ax x x =+++-.(1)若0a =,证明:当10x -<<时,()0f x <;当0x >时,()0f x >; (2)若0x =是()f x 的极大值点,求a .戴氏教育新津总校——理数(二)选考题:共10分。
请考生在第22、23题中任选一题作答。
如果多做,则按所做的第一题计分。
22.[选修4—4:坐标系与参数方程](10分)在平面直角坐标系xOy 中,O ⊙的参数方程为cos sin x y θθ=⎧⎨=⎩,(θ为参数),过点()02-,且倾斜角为α的直线l 与O ⊙交于A B ,两点.(1)求α的取值范围;(2)求AB 中点P 的轨迹的参数方程. 23.[选修4—5:不等式选讲](10分)设函数()211f x x x =++-. (1)画出()y f x =的图像;(2)当[)0x +∞∈,,()f x ax b +≤,求a b +的最小值.戴氏教育新津总校——理数参考答案:13.1214.3- 15.3 16.2 17.(12分)解:(1)设{}n a 的公比为q ,由题设得1n n a q -=.由已知得424q q =,解得0q =(舍去),2q =-或2q =.故1(2)n n a -=-或12n n a -=.(2)若1(2)n n a -=-,则1(2)3n n S --=.由63m S =得(2)188m-=-,此方程没有正整数解.若12n n a -=,则21nn S =-.由63m S =得264m =,解得6m =.综上,6m =. 18.(12分)解:(1)第二种生产方式的效率更高. 理由如下:(i )由茎叶图可知:用第一种生产方式的工人中,有75%的工人完成生产任务所需时间至少80分钟,用第二种生产方式的工人中,有75%的工人完成生产任务所需时间至多79分钟.因此第二种生产方式的戴氏教育新津总校——理数效率更高.(ii)由茎叶图可知:用第一种生产方式的工人完成生产任务所需时间的中位数为85.5分钟,用第二种生产方式的工人完成生产任务所需时间的中位数为73.5分钟.因此第二种生产方式的效率更高.(iii)由茎叶图可知:用第一种生产方式的工人完成生产任务平均所需时间高于80分钟;用第二种生产方式的工人完成生产任务平均所需时间低于80分钟,因此第二种生产方式的效率更高.(iv)由茎叶图可知:用第一种生产方式的工人完成生产任务所需时间分布在茎8上的最多,关于茎8大致呈对称分布;用第二种生产方式的工人完成生产任务所需时间分布在茎7上的最多,关于茎7大致呈对称分布,又用两种生产方式的工人完成生产任务所需时间分布的区间相同,故可以认为用第二种生产方式完成生产任务所需的时间比用第一种生产方式完成生产任务所需的时间更少,因此第二种生产方式的效率更高.学科*网以上给出了4种理由,考生答出其中任意一种或其他合理理由均可得分.(2)由茎叶图知7981802m+==.列联表如下:(3)由于2240(151555)10 6.63520202020K⨯-⨯==>⨯⨯⨯,所以有99%的把握认为两种生产方式的效率有差异.19.(12分)解:(1)由题设知,平面CMD⊥平面ABCD,交线为CD.因为BC⊥CD,BC⊂平面ABCD,所以BC⊥平面CMD,故BC⊥DM.戴氏教育新津总校——理数因为M 为»CD上异于C ,D 的点,且DC 为直径,所以 DM ⊥CM . 又 BC I CM =C ,所以DM ⊥平面BMC . 而DM ⊂平面AMD ,故平面AMD ⊥平面BMC .(2)以D 为坐标原点,DA u u u r的方向为x 轴正方向,建立如图所示的空间直角坐标系D −xyz.当三棱锥M −ABC 体积最大时,M 为»CD的中点. 由题设得(0,0,0),(2,0,0),(2,2,0),(0,2,0),(0,1,1)D A B C M ,(2,1,1),(0,2,0),(2,0,0)AM AB DA =-==u u u u r u u u r u u u r设(,,)x y z =n 是平面MAB 的法向量,则0,0.AM AB ⎧⋅=⎪⎨⋅=⎪⎩u u u u r u u ur n n 即20,20.x y z y -++=⎧⎨=⎩ 可取(1,0,2)=n .DA u u u r是平面MCD 的法向量,因此戴氏教育新津总校——理数cos ,||||DA DA DA ⋅==u u u ru u u r u u u r n n n ,sin ,DA =u u u r n所以面MAB 与面MCD 所成二面角的正弦值是5. 20.(12分)解:(1)设1221(,),(,)A y x y x B ,则222212121,14343y x y x +=+=. 两式相减,并由1221y x y k x -=-得1122043y x y k x +++⋅=. 由题设知12121,22x y x ym ++==,于是 34k m=-.① 由题设得302m <<,故12k <-. (2)由题意得(1,0)F ,设33(,)P x y ,则331122(1,)(1,)(1,)(0,0)y x x y x y -+-+-=.由(1)及题设得3321213()1,()20y y x x y x m =-+==-+=-<.戴氏教育新津总校——理数又点P 在C 上,所以34m =,从而3(1,)2P -,3||2FP =u u u r .于是1||22x FA ===-u u u r .同理2||22xFB =-u u u r .所以121||||4()32FA FB x x +=-+=u u u r u u u r .故2||||||FP FA FB =+u u u r u u u r u u u r ,即||,||,||FA FP FB u u u r u u u r u u u r成等差数列.设该数列的公差为d ,则1212||||||||||2FB FA x x d =-=-=u u u r u u u r ②将34m =代入①得1k =-. 所以l 的方程为74y x =-+,代入C 的方程,并整理得2171404x x -+=.故121212,28x x x x +==,代入②解得||d =.21.(12分)解:(1)当0a =时,()(2)ln(1)2f x x x x =++-,()ln(1)1xf x x x'=+-+. 设函数()()ln(1)1xg x f x x x'==+-+,则2()(1)x g x x '=+.戴氏教育新津总校——理数当10x -<<时,()0g x '<;当0x >时,()0g x '>.故当1x >-时,()(0)0g x g ≥=,且仅当0x =时,()0g x =,从而()0f x '≥,且仅当0x =时,()0f x '=. 所以()f x 在(1,)-+∞单调递增.学.科网又(0)0f =,故当10x -<<时,()0f x <;当0x >时,()0f x >.(2)(i )若0a ≥,由(1)知,当0x >时,()(2)ln(1)20(0)f x x x x f ≥++->=,这与0x =是()f x 的极大值点矛盾.(ii )若0a <,设函数22()2()ln(1)22f x xh x x x ax x ax ==+-++++.由于当||min{x <时,220x ax ++>,故()h x 与()f x 符号相同. 又(0)(0)0h f ==,故0x =是()f x 的极大值点当且仅当0x =是()h x 的极大值点.2222222212(2)2(12)(461)()1(2)(1)(2)x ax x ax x a x ax a h x x x ax x ax x ++-++++'=-=++++++.如果610a +>,则当6104a x a +<<-,且||min{x <时,()0h x '>,故0x =不是()h x 的极大值点.如果610a +<,则224610a x ax a +++=存在根10x <,故当1(,0)x x ∈,且||min{x <时,()0h x '<,所以0x =不是()h x 的极大值点.戴氏教育新津总校——理数如果610a +=,则322(24)()(1)(612)x x h x x x x -'=+--.则当(1,0)x ∈-时,()0h x '>;当(0,1)x ∈时,()0h x '<.所以0x =是()h x 的极大值点,从而0x =是()f x 的极大值点综上,16a =-. 22.[选修4—4:坐标系与参数方程](10分)【解析】(1)O e 的直角坐标方程为221x y +=.当2απ=时,l 与O e 交于两点. 当2απ≠时,记tan k α=,则l的方程为y kx =-l 与O e交于两点当且仅当|1<,解得1k <-或1k >,即(,)42αππ∈或(,)24απ3π∈. 综上,α的取值范围是(,)44π3π.(2)l的参数方程为cos ,(sin x t t y t αα=⎧⎪⎨=⎪⎩为参数,44απ3π<<). 设A ,B ,P 对应的参数分别为A t ,B t ,P t ,则2A BP t t t +=,且A t ,B t满足2sin 10t α-+=.于是A B t t α+=,P t α=.又点P 的坐标(,)x y满足cos ,sin .P Px t y t αα=⎧⎪⎨=⎪⎩ 所以点P的轨迹的参数方程是2,cos 222x y αα⎧=⎪⎪⎨⎪=--⎪⎩(α为参数,44απ3π<<).戴氏教育新津总校——理数23.[选修4—5:不等式选讲](10分)【解析】(1)1 3,,21()2,1,23, 1.x xf x x xx x⎧-<-⎪⎪⎪=+-≤<⎨⎪≥⎪⎪⎩()y f x=的图像如图所示.(2)由(1)知,()y f x=的图像与y轴交点的纵坐标为2,且各部分所在直线斜率的最大值为3,故当且仅当3a≥且2b≥时,()f x ax b≤+在[0,)+∞成立,因此a b+的最小值为5.。