初中数学课堂教学精彩教学案例设计集锦范文
- 格式:docx
- 大小:28.94 KB
- 文档页数:8
题。其实,这两个问题本质是一样的,就是用数形结合的方法解决问题。为了训练学生领会并运用数形结合的思想方法解决问题,我在完成课本内容之后,我又着重安排三个训练学生数形结合思想的题型,通过训练使学生进一步理解数形结合的思想,掌握运用的方法。
例1:当x为何值时,不等式x2+5x6>0 成立
先让学生自己解,多数学生试图类比解方程的方法去解解不等式,得出错误结果。
引导学生分析错误原因之后,提示学生,这个问题与我们正在学习的二次函数有什么联系能否借助函数图象解决这个问题
仅这一句话,就让学生恍然大悟。
教师点评:此题最好的方法是利用二次函数图象解决,先求出抛物线y= x2+5x6与x轴的两个交点,画出抛物线草图,很易在图像上观察出当x<-6或x>1时不等式成立。
例2:已知二次函数 y= x2+2mx+m-7与x轴的两个交点在点(1,0)两侧,判断关于x的方程1/4x2+(m+1)x+m2+5=0的根情况。
此题有一定的难度,学生能想到解决此题的关键是由y= x2+2mx+m-7判断m的范围,但是怎样求m 的范围成了难点。个别学生想到利用根与系数关系,因为与x轴的两个交点在点(1,0)两侧,所以一个根大于1,一个根小于1,由此得知m必须满足不等式(x1-1)(x2-1)<0.由此解不等式可求m的范围,虽说能求,但是确实不易想到,并且还要用到许多方程的知识。
教师提示:利用数形结合的方法,根据已知条件画出抛物线y= x2+2mx+m-7的草图,再结合图象去观察,你能有什么发现呢
学生结合图象发现,y= x2+2mx+m-7的开口向上,两个交点在点(1,0)两侧,说明x=1时y<0,即1+2m+m-7<0,则m<2。那么,关于x的一元二次方程的判别式:△=(m+1)2-(m2+5)=2(m-2) <0,方程无实根。
简便的方法使学生对数形结合的数学思想更感兴趣。我又给出第三题。
例3:判断方程–x2+5x-2=2/x的正根的个数
这时,那些思维快的同学很快得出结论:如果按一般的方法去分母,将会出现一元三次方程,解起来非常困难,如果运用函数的思想,把它们看作是求二次函数图像与反比例函数图像的交点问题,利用函数图象解就非常轻松了。
把左边的二次函数y=–x2+5x-2,可知顶点在第一象限,右边看做反比例函数y=2/x图象也在第一、三象限,并且两个图象在第一象限有两个交点,所以方程有两个正根。
感悟:数形结合是初中数学的一个重要方法,通过一定训练使学生领会其中的思想并能根据问题的特点灵活、巧妙地运用,对提高学生综合能力非常有益。
15 通过例题引申培养探究能力
文登二中毕建永
六年级上册第五章一元一次方程第三节“月历中的方程”中,有这样一道题,原题如下:在某张月历上圈出一个竖列上相邻的三个日期,如果三个数的和是60,请说出这三天分别是几号
思考:
(1)如果小颖说出三个数的和是75,你能求出这三天分别是几号
(2)如果小颖说出三个数的和是21,你能求出这三天分别是几号
待小组活动完毕,以小组为单位进行汇报,教师总结:第一个箱子里一定能摸出一个黄球,第二个箱子里一定不能摸出一个黄球,第三个箱子里有可能摸出黄球.
活动二:试验验证学生的猜想:
师:请各小组按下列要求进行验证猜想活动:
(1)请各小组长用不透明号码纸蒙上箱子,箱子号码背对同学,猜测箱子的号码,体验不确定性.
(2)用随机的办法确定三名学生分别在三个箱子里每人摸6次球,其余学生做好记录.
(3)根据你组学生试验结果验证猜想的正确性。
注意:在摸球之前要将箱子里的球摇匀并且每摸一次球要把球放回原箱子中。
按组进行汇报:
A组:第一个盒子因为全都是黄球,所以摸到黄球是必然的.(同时板书:肯定能)
师:引导学生归纳定义。象这样,在一个全部是黄色球的箱子里摸球,事先就能肯定一定能摸到黄球的事情我们称为必然事件.(板书:必然事件)
引导学生归纳出不可能事件和不确定事件的定义。
事先能肯定一定会发生的事情称为必然事件;
事先能肯定一定不会发生的事情称为不可能事件;事先不能肯定会不会发生的事情称为不确定事件.
师:请同学们思考:必然事件和不可能事件之间有什么相同之处
归纳总结:由于必然事件和不可能事件的结果都是事先能确定的,所以我们有把这两种事件称为确定事件.因此,我们针对一件即将发生的事情的可能性把事件分为确定事件和不确定事件,而确定事件又分为必然事件和不可能事件 (教师板书分类图) 。
以下我们应用概念解决问题。
17 宋村中学邵萍
课堂上的意外生成,教师应如何应对
面对课堂上出现的各种各样的意外生成,教师如何正确应对,如何让这些生成为我们高效的课堂教学服务,如何把自己课前的预设和课堂上的生成有效融合,从而实现教学效果的最大化,这是教师时刻面临的问题。
在一次听课中有下面的一个教学片断:教师在介绍完中位线的概念后,布置了一个操作探究活动。
师:大家把手中的三角形纸片沿其一条中位线剪开,并用剪得的纸片拼出一个四边形,由这个活动你可以得到哪些和中位线有关的结论学生正准备动手操作,一名学生举起了手。
生:我不剪彩纸也知道结论。
师:你知道什么结论
生:三角形的中位线平行于第三边并等于第三边的一半。
教师没有想到会出现这么个“程咬金”,脸冷了下来:“你怎么知道的”
生:我昨天预习了,书上这么说的。
师:就你聪明,坐下!
后面的教学是在沉闷的气氛中进行的学生操作完成后再也不敢举手发言了。
......
在课堂上,教师面对的是一群有着不同生活经历、有自己的想法,在很多方面存在差异的生命体,也正是因为有这种差异,课堂才是充满变化、丰富多彩的,教师如果不能适应这种变化,不能及时正确处理课堂的生成,那么其课堂效果将很难保证是高效的。在上面的教学片断中教师对学生直接说出中位线的性质很是不满,因为这样一来教师后面设计好的精彩探索活动就没有必要再进行了,碰上这样的意外,教师采取了生硬的处理方式,让其他学生继续探索,但此时教师的不满情绪和处理这件事情的方式使得全班同学失去了探索的兴趣和发言的勇气。教师如果换一种方式,先表扬发言学生“你真是个爱学习的学生,我相信你还是个爱思考的学生!然后让他和大家一道埃手操作、探索、验证中位线为什么会具有这们的性质,课堂效果应该更好。
生成从性质角度来说,有积极的一面,也有消极的一面,从效果角度来说有有效的一面,也有无效的一面。教师在课堂上要充分发挥好自己组织者的角色,不断地捕捉、判断、重组课堂教学中从学生那里涌现出来的各种住处并能快速断定哪些生成对教学是有效的,哪些生成是偏离了教学目标,一名优秀的数学教师应该能够正确应对课堂上出现的各种各样生成,使之为我们的数学教学服务,提高课堂教学的效果。
18 冯明友
在学习确定位置一节时我是这样设计的:假如明天我们班要开家长会,你准备如何向你的家长说明你的位置,才能使你的家长不用你的带领自己就能准确地做到你的座位上有的同学刚说完,别的同学就反驳他说的不明确。有的同学虽然说清楚了自己的位置,但是很啰嗦,我适时地提问能不能有一种简单的方法来说明你自己的座位呢我接着说明:从前向后,从左向右依次为第一排第二排......每一排从左向右一次是1,2,3.......这样第一排第一个座位就可以用(1,1)来表示。那么第一排第二个座位如何表示呢第二排第一个座位如何表示呢接着又让(4,5)的同学站起来,(5,4)的同学问,他们一样吗这样做学生不但知道了确定一个位置一般需要2个数据,还知道了:(1,2)与(2,1)表示的意义不同。
19 宋村中学房晓华
我在教学“多项式的乘法”时,采用了”握手法”让学生掌握运算法则,效果很不错.现将具体做法呈现于此,以期与同行交流.
我首先按照教材的体系正常进行教学:用大小不同的四个长方形卡片(提前准备好)拼成一个更大的长方形,通过计算面积得出法则: (m+a)(n +b)= ma+mb+an+ab.但是,从学生迷茫的眼神中我发现效果不是太理想,于是我将提前准备好的教学情景展示出来.
首先请四名学生分别代表m、a、n 、b(其中m、a为A国领导, n、b为B国领导),现在A国的两位领导将第一次出访B国, B国的领导亲自到机场迎接.
“A国领导下飞机后,他们会怎么做”
“会握手问好!”
“下面让他们表演一下这个情景,好吗”
“两国领导”在同学们的笑声中分别握手.当然,教师要根据学生的表演情况进行适当的指导与提示.我接着提出几个预先设计好的问题:
问题1 他们每个人分别握了几次手 A国的领导m 只与B国的n握手行吗