滑板-滑块模型专题
- 格式:doc
- 大小:266.00 KB
- 文档页数:4
专题20 滑板-滑块模型一、单选题1.(2020·四川省高三三模)如图所示,质量均为M 的物块A 、B 叠放在光滑水平桌面上,质量为m 的物块C 用跨过轻质光滑定滑轮的轻绳与B 连接,且轻绳与桌面平行,A 、B 之间的动摩擦因数为μ,设最大静摩擦力等于滑动摩擦力,重力加速度大小为g ,下列说法正确的是( )A.若物块A 、B 未发生相对滑动,物块A 受到的摩擦力为2f MmgF M m=+B.要使物块A 、B 发生相对滑动,应满足关系1Mm μμ>- C.若物块A 、B 未发生相对滑动,轻绳拉力的大小为mgD.若物块A 、B 未发生相对滑动时,轻绳对定滑轮的作用力为22MmgF M m=+【答案】A【解析】A .若物块A 、B 未发生相对滑动,A 、B 、C 三者加速的大小相等,由牛顿第二定律得()2mg M m a =+对A ,由牛顿第二定律得f F Ma =解得2f MmgF M m=+,故A 正确;B .当A 、B 发生相对滑动时,A 所受的静摩擦力达到最大,根据牛顿第二定律有Mg Ma μ=解得a g μ=以A 、B 、C 系统为研究对象,由牛顿第二定律得()2mg M m a =+解得21Mm μμ=- 故要使物块A 、B 之间发生相对滑动,则21Mm μμ>-,故B 错误;C .若物块A 、B 未发生相对滑动,设轻绳拉力的大小为F ,对C 受力分析,根据牛顿第二定律有mg F ma -=解得F mg ma mg =-<,故C 错误;D .若物块A 、B 未发生相对滑动时,由A 可知,此时的加速度为2f mgMmF a M ==+对C 受力分析,根据牛顿第二定律有mg F ma -=解得22MmgF M m=+根据力的合成法则,可得轻绳对定滑轮的作用力2222+=MmgN F F =故D 错误。
2.(2020·河北省唐山一中高一期中)如图,质量为M 且足够长的倾角为θ的斜面体C 始终静止在水平面上,一质量为m 的长方形木板A 上表面光滑,木板A 获得初速度v 0后恰好能沿斜面匀速下滑,当木板A 匀速下滑时将一质量也为m 的滑块B 轻轻放在木板上,滑块B 在木板A 上下滑的过程中,下列说法正确的是( )A.A 与B 组成的系统在沿斜面的方向上动量不守恒B.A 的加速度大小为2g sin θC.A 的速度为012v 时B 的速度也是012v D.水平面对斜面体有向右的摩擦力 【答案】C【解析】A .因木板A 获得初速度v 0后恰好能沿斜面匀速下滑,即沿斜面方向受合力为零,可知sin cos mg mg θμθ=当放上木块B 后,对AB 系统沿斜面方向仍满足2sin 2cos mg mg θμθ=⋅可知系统沿斜面方向受到的合外力为零,则系统沿斜面方向动量守恒,选项A 错误; B .A 的加速度大小为sin 2cos sin A mg mg a g mθμθθ-⋅==-选项B 错误;C .由系统沿斜面方向动量守恒可知012v mv mmv =+ 解得12v v =选项C 正确;D .斜面体受到木板A 垂直斜面向下的正压力大小为2cos mg θ,A 对斜面体向下的摩擦力大小为2cos =2sin mg mg μθθ⋅,这两个力的合力竖直向下,可知斜面体水平方向受力为零,即水平面对斜面体没有摩擦力作用,选项D 错误。
滑块与滑板相互作用模型【模型分析】1、相互作用:滑块之间的摩擦力分析2、相对运动:具有相同的速度时相对静止。
两相互作用的物体在速度相同,但加速度不相同时,两者之间同样有位置的变化,发生相对运动。
3、通常所说物体运动的位移、速度、加速度都是对地而言的。
在相对运动的过程中相互作用的物体之间位移、速度、加速度、时间一定存在关联。
它就是我们解决力和运动突破口。
4、求时间通常会用到牛顿第二定律加运动学公式或动量定理:应用动量定理时特别要注意条件和方向,最好是对单个物体应用动量定理求解。
5、求位移通常会用到牛顿第二定律加运动学公式或动能定理,应用动能定理时研究对象为单个物体或可以看成单个物体的整体。
另外求相对位移时:通常会用到系统能量守恒定律。
6、求速度通常会用到牛顿第二定律加运动学公式或动能定理或动量守恒定律:应用动量守恒定律时要特别注意系统的条件和方向。
1、如图所示,在光滑水平面上有一小车A ,其质量为0.2=A m kg ,小车上放一个物体B ,其质量为0.1=B m kg ,如图(1)所示。
给B 一个水平推力F ,当F 增大到稍大于3.0N 时,A 、B 开始相对滑动。
如果撤去F ,对A 施加一水平推力F ′,如图(2)所示,要使A 、B 不相对滑动,求F ′的最大值m F2.如图所示,质量M=8 kg 的小车放在水平光滑的平面上,在小车左端加一水平推力F=8 N ,当小车向右运动的速度达到1.5 m/s 时,在小车前端轻轻地放上一个大小不计,质量为m=2 kg 的小物块,物块与小车间的动摩擦因数μ=0.2,小车足够长(取g=l0 m/s 2)。
求: (1)小物块放后,小物块及小车的加速度大小各为多大? (2)经多长时间两者达到相同的速度?(3)从小物块放上小车开始,经过t=1.5 s 小物块通过的位移大小为多少?FA B 图(1)F ′A B 图(2)Mm3.如图所示,一块质量为M,长为L的均质板放在很长的光滑水平桌面上,板的左端有一质量为m的小物体(可视为质点),物体上连接一根很长的细绳,细绳跨过位于桌边的定滑轮.某人以恒定的速率v向下拉绳,物体最多只能到达板的中点,而板的右端尚未到达桌边定滑轮处.试求:(1)物体刚达板中点时板的位移.(2)若板与桌面之间有摩擦,为使物体能达到板的右端,板与桌面之间的动摩擦因数的范围是多少?4.如图所示,质量为M,长度为L的长木板放在水平桌面上,木板右端放有一质量为m长度可忽略的小木块,木块与木板之间、木板与桌面之间的动摩擦因数均为μ。
专题滑板与滑块模型1.如图1-75所示,质量2.0kg的小车放在光滑水平面上,在小车右端放一质量为1.0kg的物块,物块与小车之间的动摩擦因数为0.5,当物块与小车同时分别受到水平向左F1=6.0N的拉力和水平向右F2=9.0N的拉力,经0.4s同时撤去两力,为使物块不从小车上滑下,求小车最少要多长.(g取10m/s2)图1-752.如图1-76所示,带弧形轨道的小车放在上表面光滑的静止浮于水面的船上,车左端被固定在船上的物体挡住,小车的弧形轨道和水平部分在B点相切,且AB段光滑,BC段粗糙.现有一个离车的BC面高为h的木块由A点自静止滑下,最终停在车面上BC段的某处.已知木块、车、船的质量分别为m1=m,m2=2m,m3=3m;木块与车表面间的动摩擦因数μ=0.4,水对船的阻力不计,求木块在BC面上滑行的距离s是多少?(设船足够长)图1-763.如图1-78所示,长为L=0.50m的木板AB静止、固定在水平面上,在AB的左端面有一质量为M=0.48kg的小木块C(可视为质点),现有一质量为m=20g的子弹以v0=75m/s的速度射向小木块C并留在小木块中.已知小木块C与木板AB之间的动摩擦因数为μ=0.1.(g取10m/s2)图1-78(1)求小木块C运动至AB右端面时的速度大小v2.(2)若将木板AB固定在以u=1.0m/s恒定速度向右运动的小车上(小车质量远大于小木块C的质量),小木块C仍放在木板AB的A端,子弹以v0′=76m/s的速度射向小木块C并留在小木块中,求小木块C运动至AB右端面的过程中小车向右运动的距离s.4.如图1-79所示,一质量M=2kg的长木板B静止于光滑水平面上,B的右边放有竖直挡板.现有一小物体A(可视为质点)质量m=1kg,以速度v0=6m/s从B的左端水平滑上B,已知A和B间的动摩擦因数μ=0.2,B与竖直挡板的碰撞时间极短,且碰撞时无机械能损失.图1-791)若B的右端距挡板s=4m,要使A最终不脱离B,则木板B的长度至少多长?2)若B的右端距挡板s=0.5m,要使A最终不脱离B,则木板B的长度至少多长?5.如图所示,水平地面上静止放置一辆小车A,质量m A=4kg,上表面光滑,小车与地面间的摩擦力极小,可以忽略不计,可视为质点的物块B置于A的最右端,B的质量m B=2kg,现对A施加一个水平向右的恒力F=10N,A运动一段时间后,小车左端固定的挡板与B发生碰撞,碰撞时间极短,碰后A、B粘合在一起,共同在F的作用下继续运动,碰撞后经时间t=0.6s,二者的速度达到v t=2m/s,求(1)A开始运动时加速度a的大小;(2)A、B碰撞后瞬间的共同速度v的大小;(3)A的上表面长度l.6.如图所示,质量为M=4kg的木板静置于足够大的水平地面上,木板与地面间的动摩擦因数μ=0.01,板上最左端停放着质量为m=1kg可视为质点的电动小车,车与木板右端的固定挡板相距L=5m.现通电使小车由静止开始从木板左端向右做匀加速运动,经时间t=2s,车与挡板相碰,车与挡板粘合在一起,碰撞时间极短且碰后自动切断小车的电源.(计算中取最大静摩擦力等于动摩擦力,并取g=10m/s2.)(1)试通过计算说明:车与挡板相碰前,木板相对地面是静止还是运动的?(2)求出小车与挡板碰撞前,车的速率v1和板的速率v2;(3)求出碰后木板在水平地面上滑动的距离S.7.如图所示,将质量均为m厚度不计的两物块A、B用轻质弹簧相连接,只用手托着B物块于H高处,A在弹簧弹力的作用下处于静止,将弹簧锁定.现由静止释放A、B,B物块着地时解除弹簧锁定,且B物块的速度立即变为0,在随后的过程中当弹簧恢复到原长时A物块运动的速度为υ0,且B物块恰能离开地面但不继续上升.已知弹簧具有相同形变量时弹性势能也相同.(1)B物块着地到B物块恰能离开地面但不继续上升的过程中,A物块运动的位移△x;(2)第二次用手拿着A、B两物块,使得弹簧竖直并处于原长状态,此时物块B离地面的距离也为H,然后由静止同时释放A、B,B物块着地后速度同样立即变为0.求第二次释放A、B后,B刚要离地时A的速度υ2.8.一质量为2m的物体P静止于光滑水平地面上,其截面如图所示.图中ab为粗糙的水平面,长度为L;bc为一光滑斜面,斜面和水平面通过与ab和bc均相切的长度可忽略的光滑圆弧连接.现有一质量为m的木块以大小为v0的水平初速度从a点向左运动,在斜面上上升的最大高度为h,返回后在到达a点前与物体P相对静止.重力加速度为g.求:(1)木块在ab段受到的摩擦力f;(2)木块最后距a点的距离s.9.如图所示,光滑水平直轨道上放置长木板B和滑块C,滑块A置于B的左端,且A、B间接触面粗糙,三者质量分别为m A=1kg、m B=2kg、m C=23kg.开始时 A、B一起以速度v0=10m/s 向右运动,与静止的C发生碰撞,碰后C向右运动,又与竖直固定挡板碰撞,并以碰前速率弹回,此后B与C不再发生碰撞.已知B足够长,A、B、C最终速度相等.求B与C碰后瞬间B的速度大小.10.如图所示,一质量为m的平板车左端放有质量为M的滑块,滑块与平板车之间的动摩擦因数为开始时,平板车和滑块共同以速度沿光滑水平面向右运动,并与竖直墙壁发生碰撞,设碰撞时间极短,且碰撞后平板车速度大小保持不变,但方向与原来相反.平板车足够长,滑块不会滑出平板车右端,重力加速度为g.求:(1)平板车第一次与墙壁碰撞后再次与滑块速度相同时,两者的共同速度;(2)平板车第一次与墙壁碰撞后再次与滑块速度相同时,平板车右端距墙壁的距离.11.如图所示,光滑的水平地面上有一木板,其左端放有一重物,右方有一竖直的墙.重物质量为木板质量的2倍,重物与木板间的动摩擦因数为.使木板与重物以共同的速度向右运动,某时刻木板与墙发生弹性碰撞,碰撞时间极短.求:(1)木板第二次与墙碰撞前的速度;(2)木板从第一次与墙碰撞到再次碰撞所经历的时间.设木板足够长,重物始终在木板上.重力加速度为g.。
《滑块—滑板模型专题练习》1.如图所示,一质量M =50kg、长L=3m的平板车静止在光滑水平地面上,平板车上表面距地面的高度h=1.8m。
一质量m=10kg可视为质点的滑块,以v0=7.5m/s的初速度从左端滑上平板车,滑块与平板车间的动摩擦因数μ=0.5,取g =10m/s2。
(1)分别求出滑块在平板车上滑行时,滑块与平板车的加速度大小;(2)计算说明滑块能否从平板车的右端滑出。
2.如图,A为一石墨块,B为静止于水平面的足够长的木板,已知A的质量m A和B的质量m B均为2kg,A、B之间的动摩擦因数μ1 = 0.05,B与水平面之间的动摩擦因数μ2=0.1 。
t=0时,电动机通过水平细绳拉木板B,使B做初速度为零,加速度a B=1m/s2的匀加速直线运动。
最大静摩擦力与滑动摩擦力大小视为相等,重力加速度g=10m/s2。
求:(1)当t1=1.0s时,将石墨块A轻放在木板B上,此时A的加速度a A大小;(2)当A放到木板上后,保持B的加速度仍为a B=1m/s2,此时木板B所受拉力F的大小;(3)当B做初速度为零,加速度a B=1m/s2的匀加速直线运动,t1=1.0s时,将石墨块A轻放在木板B上,则t2=2.0s时,石墨块A在木板B上留下了多长的划痕?3.如图,一块质量为M = 2kg、长L = 1m的匀质木板放在足够长的光滑水平桌面上,初始时速度为零.板的最左端放置一个质量m = 1kg的小物块,小物块与木板间的动摩擦因数为μ = 0.2,小物块上连接一根足够长的水平轻质细绳,细绳跨过位于桌面边缘的定滑轮(细绳与滑轮间的摩擦不计,木板与滑轮之间距离足够长,g = 10m/s2)。
⑴若木板被固定,某人以恒力F= 4N向下拉绳,则小木块滑离木板所需要的时间是多少?⑵若木板不固定,某人仍以恒力F= 4N向下拉绳,则小木块滑离木板所需要的时间是多少?4、一个小圆盘静止在桌布上,桌布位于一方桌的水平桌面的中央。
牛顿运动定律滑块与传送带专题一“滑块—滑板”模型1.模型特点上、下叠放两个物体,在摩擦力的相互作用下两物体发生相对滑动.2.两种位移关系滑块由滑板的一端运动到另一端的过程中,若滑块和滑板同向运动,位移之差等于板长;反向运动时,位移之和等于板长.3.解题思路处理此类问题,必须弄清滑块和滑板的加速度、速度、位移等关系.(1) 加速度关系如果滑块和滑板之间没有发生相对运动,可以用“整体法”求出它们一起运动的加速度;如果滑块和滑板之间发生相对运动,应采用“隔离法”分别求出滑块和滑板的加速度.应注意找出滑块和滑板之间是否发生相对运动等隐含的条件.(2) 速度关系滑块和滑板之间发生相对运动时,分析速度关系,从而确定滑块受到的摩擦力的方向.应注意当滑块和滑板的速度相同时,摩擦力会发生突变的情况.(3) 位移关系滑块和滑板叠放在一起运动时,应仔细分析滑块和滑板的运动过程,认清对地位移和相对位移之间的关系.这些关系就是解题过程中列方程所必需的关系,各种关系找到了,自然也就容易列出所需要的方程了.例一、如图,两个滑块A和B的质量分别为m A=1 kg和m B=5 kg,放在静止于水平地面上的木板的两端,两者与木板间的动摩擦因数均为μ1=0.5;木板的质量为m=4 kg,与地面间的动摩擦因数为μ2=0.1.某时刻A、B两滑块开始相向滑动,初速度大小均为v0=3 m/s.A、B相遇时,A与木板恰好相对静止.设最大静摩擦力等于滑动摩擦力,取重力加速度大小g=10 m/s2.求:(1)B与木板相对静止时,木板的速度;(2)A、B开始运动时,两者之间的距离.解析:(1)滑块A和B在木板上滑动时,木板也在地面上滑动.设A、B和木板所受的摩擦力大小分别为F f1、F f2和F f3,A和B相对于地面的加速度大小分别为a A和a B,木板相对于地面的加速度大小为a1,在物块B与木板达到共同速度前有F f1=μ1m A g ①F f2=μ1m B g ②F f3=μ2(m+m A+m B)g ③由牛顿第二定律得F f1=m A a A ④F f2=m B a B ⑤F f2-F f1-F f3=ma1 ⑥设在t1时刻,B与木板达到共同速度,其大小为v1,由运动学公式有v1=v0-a B t1 ⑦v1=a1t1 ⑧联立①②③④⑤⑥⑦⑧式,代入已知数据得v1=1 m/s,方向与B的初速度方向相同⑨(2)在t1时间间隔内,B相对于地面移动的距离为s B=v0t1-12a B t21⑩设在B与木板达到共同速度v1后,木板的加速度大小为a2,对于B与木板组成的体系,由牛顿第二定律有F f1+F f3=(m B+m)a2 ⑪由①②④⑤式知,a A=a B;再由⑦⑧式知,B与木板达到共同速度时,A的速度大小也为v1,但运动方向与木板相反.由题意知,A和B相遇时,A与木板的速度相同,设其大小为v2,设A的速度大小从v1变到v2所用的时间为t2,则由运动学公式,对木板有v2=v1-a2t2 ⑫对A有v2=-v1+a A t2 ⑬在t2时间间隔内,B(以及木板)相对地面移动的距离为s1=v1t2-12a2t22⑭在(t1+t2)时间间隔内,A相对地面移动的距离为s A=v0(t1+t2)-12a A(t1+t2)2 ⑮A和B相遇时,A与木板的速度也恰好相同,因此A和B开始运动时,两者之间的距离为s0=s A+s1+s B ⑯联立以上各式,并代入数据得s0=1.9 m.(也可用如图所示的速度-时间图线求解)答案:(1)1 m/s方向与B的初速度方向相同(2)1.9 m【题后反思】求解“滑块—滑板”模型问题的方法技巧(1)弄清各物体初态对地的运动和相对运动(或相对运动趋势),根据相对运动(或相对运动趋势)情况,确定物体间的摩擦力方向.(2)正确地对各物体进行受力分析,并根据牛顿第二定律确定各物体的加速度,结合加速度和速度的方向关系确定物体的运动情况.(3)速度相等是这类问题的临界点,此时往往意味着物体间的相对位移最大,物体的受力和运动情况可能发生突变.跟踪练习1. (水平面光滑的“滑块—滑板”模型)如图所示,质量M=8 kg的小车静止在光滑水平面上,在小车右端施加一水平拉力F=8 N.当小车速度达到1.5 m/s 时,在小车的右端由静止轻放一大小不计、质量m=2 kg的物体,物体与小车间的动摩擦因数μ=0.2,小车足够长.从物体放上小车开始经t=1.5 s 的时间,物体相对地面的位移为(g取10 m/s2)()A.1 m B.2.1 mC.2.25 m D.3.1 m解析:选B.放上物体后,物体的加速度a1=μg=2 m/s2,小车的加速度:a2=F-μmgM=0.5 m/s2,物体的速度达到与小车共速的时间为t1,则a1t1=v0+a2t1,解得t1=1 s;此过程中物体的位移:s1=12a1t21=1 m;共同速度为v=a1t1=2 m/s;当物体与小车相对静止时,共同加速度为a=FM+m=0.8 m/s2,再运动0.5 s的位移s2=vt′+12at′2=1.1 m,故从物体放上小车开始的1.5 s时间内,物体相对地面的位移为1 m+1.1 m=2.1 m,选项B正确.2. (水平面粗糙的“滑块—滑板”模型)如图所示,一长木板在水平地面上运动,在某时刻(t=0)将一相对于地面静止的物块轻放到木板上.已知物块与木板的质量相等,物块与木板间及木板与地面间均有摩擦,物块与木板间的最大静摩擦力等于滑动摩擦力,且物块始终在木板上.在物块放到木板上之后,木板运动的速度—时间图象可能是图中的()解析:选A.放上小物块后,长木板受到小物块施加的向左的滑动摩擦力和地面向左的滑动摩擦力,在两力的共同作用下减速,小物块受到向右的滑动摩擦力作用,做匀加速运动,当两者速度相等后,可能以共同的加速度一起减速,直至速度为零,共同减速时的加速度小于两者相对运动时木板的加速度,故A 正确,B、C错误;由于水平面有摩擦,故两者不可能一起匀速运动,D错误.3.(多个板块的组合模型)如图所示,两木板A、B并排放在地面上,A左端放一小滑块,滑块在F=6 N的水平力作用下由静止开始向右运动.已知木板A、B长度均为l=1 m,木板A的质量m A=3 kg,小滑块及木板B的质量均为m=1 kg,小滑块与木板A、B间的动摩擦因数均为μ1=0.4,木板A、B与地面间的动摩擦因数均为μ2=0.1,重力加速度g=10 m/s2.求:(1)小滑块在木板A上运动的时间;(2)木板B获得的最大速度.解析:(1)小滑块对木板A的摩擦力F f1=μ1mg=4 N,木板A与B整体受到地面的最大静摩擦力F f2=μ2(2m+m A)g=5 N.F f1<F f2,小滑块滑上木板A后,木板A保持静止设小滑块滑动的加速度为a1,则:F-μ1mg=ma1,l=12a1t21,解得:t1=1 s.(2)设小滑块滑上B时,小滑块速度为v1,B的加速度为a2,经过时间t2滑块与B脱离,滑块的位移为x块,B的位移为x B,B的最大速度为v B,则:μ1mg-2μ2mg=ma2,v B=a2t2,x B=12a2t22,v1=a1t1,x块=v1t2+12a1t22,x块-x B=l,联立以上各式可得:v B=1 m/s.答案:(1)1 s(2)1 m/s4.(斜面上的“滑块—滑板”问题)如图所示,在足够长的光滑固定斜面底端放置一个长度L=2 m、质量M=4 kg 的木板,木板的最上端放置一质量m=1 kg 的小物块(可视为质点).现沿斜面向上对木板施加一个外力F使其由静止开始向上做匀加速直线运动.已知斜面倾角θ=30°,物块和木板间的动摩擦因数μ=3 2,g取10 m/s2.(1)当外力F=30 N时,物块和木板保持相对静止,求二者共同运动的加速度大小;(2)当外力F=53.5 N时,物块和木板之间将会相对滑动,则二者完全分离时的速度各为多大?解析:(1)物块和木板共同运动时,分析整体的受力情况,由牛顿第二定律得F-(M+m)g sin θ=(M+m)a解得a=1 m/s2.(2)设木板和物块的加速度分别为a1、a2,二者完全分离的时间为t,分离时速度分别为v1、v2,分析木板和物块的受力情况,由牛顿第二定律可得F-Mg sin θ-μmg cos θ=Ma1μmg cos θ-mg sin θ=ma2又L=12(a1-a2)t2v1=a1tv2=a2t联立解得v1=6.5 m/s,v2=2.5 m/s. 答案:(1)1 m/s2(2)6.5 m/s 2.5 m/s二、传送带模型(一)、水平传送带问题1.情景特点分析项目图示滑块可能的运动情况情景1(1)可能一直加速(2)可能先加速后匀速情景2(1)v0>v时,可能一直减速,也可能先减速再匀速(2)v0<v时,可能一直加速,也可能先加速再匀速情景3(1)传送带较短时,滑块一直减速达到左端(2)传送带较长时,滑块还要被传送带传回右端.其中v0>v返回时速度为v,当v0<v返回时速度为v0水平传送带问题:求解关键在于对物体所受摩擦力进行正确的分析判断.物体的速度与传送带速度相等的时刻摩擦力发生突变.例1、水平传送带被广泛地应用于机场和火车站,如图所示为一水平传送带装置示意图.紧绷的传送带AB始终保持恒定的速率v=1 m/s运行,一质量为m=4 kg的行李无初速度地放在A处,传送带对行李的滑动摩擦力使行李开始做匀加速直线运动,随后行李又以与传送带相等的速率做匀速直线运动.设行李与传送带之间的动摩擦因数μ=0.1,A、B间的距离L=2 m,g取10 m/s2.(1)求行李刚开始运动时所受滑动摩擦力的大小与加速度的大小;(2)求行李做匀加速直线运动的时间;(3)如果提高传送带的运行速率,行李就能被较快地传送到B处,求行李从A处传送到B处的最短时间和传送带对应的最小运行速率.解析:(1)行李所受滑动摩擦力大小F f=μmg=0.1×4×10 N=4 N,根据牛顿第二定律得F f=ma,加速度大小a=μg=0.1×10 m/s2=1 m/s2.(2)行李达到与传送带相同速率后不再加速,则v=at1,得t1=va=11s=1 s.(3)行李始终匀加速运行时,所需时间最短,加速度大小仍为a=1 m/s2,当行李到达右端时,有v2min=2aL,得v min=2aL=2×1×2 m/s=2 m/s,所以传送带对应的最小运行速率为2 m/s.由v min=at min得行李最短运行时间t min=v mina=21s=2 s.答案:(1)4 N 1 m/s2(2)1 s(3)2 s 2 m/s(二)倾斜传送带问题1.情景特点分析项目图示滑块可能的运动情况情景1(1)可能一直加速(2)可能先加速后匀速情景2(1)可能一直加速(2)可能先加速后匀速(3)可能先以a1加速后以a2加速2.解题的关键在于分析清楚物体与传送带的相对运动情况,从而确定物体所受摩擦力的大小和方向.当物体速度与传送带速度相等时,物体所受摩擦力可能发生突变.例2、如图所示为货场使用的传送带的模型,传送带倾斜放置,与水平面夹角为θ=37°,传送带AB足够长,传送皮带轮以大小为v=2 m/s的恒定速率顺时针转动.一包货物以v0=12 m/s的初速度从A端滑上倾斜传送带,若货物与皮带之间的动摩擦因数μ=0.5,且可将货物视为质点.(1)求货物刚滑上传送带时加速度为多大?(2)经过多长时间货物的速度和传送带的速度相同?这时货物相对于地面运动了多远?(3)从货物滑上传送带开始计时,货物再次滑回A端共用了多少时间?(g=10 m/s2,已知sin 37°=0.6,cos 37°=0.8)解析:(1)设货物刚滑上传送带时加速度大小为a1,货物受力如图所示:根据牛顿第二定律得沿传送带方向:mg sin θ+F f=ma1,垂直传送带方向:mg cos θ=F N,又F f=μF N由以上三式得:a1=g(sin θ+μcos θ)=10×(0.6+0.5×0.8) m/s2=10 m/s2,方向沿传送带向下.(2)货物速度从v0减至传送带速度v所用时间设为t1,位移设为x1,则有:t1=v-v0-a1=1 s,x1=v0+v2t1=7 m.(3)当货物速度与传送带速度相等时,由于mg sin θ>μmg cos θ,此后货物所受摩擦力沿传送带向上,设货物加速度大小为a2,则有mg sin θ-μmg cos θ=ma2,得:a2=g(sin θ-μcos θ)=2 m/s2,方向沿传送带向下.设货物再经时间t2,速度减为零,则t2=0-v-a2=1 s.沿传送带向上滑的位移x2=v+02t2=1 m,则货物上滑的总距离为x=x1+x2=8 m.货物到达最高点后将沿传送带匀加速下滑,下滑加速度大小等于a2.设下滑时间为t3,则x=12a2t23,代入解得t3=2 2 s.所以货物从A端滑上传送带到再次滑回A端的总时间为t=t1+t2+t3=(2+22) s.答案:(1)10 m/s2,方向沿传送带向下(2)1 s7 m(3)(2+22) s【总结提升】解答传送带问题应注意的事项(1)比较物块和传送带的初速度情况,分析物块所受摩擦力的大小和方向,其主要目的是得到物块的加速度.(2)关注速度相等这个特殊时刻,水平传送带中两者一块匀速运动,而倾斜传送带需判断μ与tan θ的关系才能决定物块以后的运动.(3)得出运动过程中两者相对位移情况,以后在求解摩擦力做功时有很大作用.跟踪练习1.(物块初速度不为零的倾斜传送带模型)(多选)如图所示,倾斜的传送带顺时针匀速转动,一物块从传送带上端A滑上传送带,滑上时速率为v1,传送带的速率为v2,且v2>v1.不计空气阻力,动摩擦因数一定.关于物块离开传送带的速率v和位置,下面哪个是可能的()A.从下端B离开,v>v1B.从下端B离开,v<v1C.从上端A离开,v=v1D.从上端A离开,v<v1解析:选ABC.物块从A端滑上传送带,在传送带上必先相对传送带向下运动,由于不确定物块与传送带间的摩擦力和物块的重力沿传送带下滑分力的大小关系和传送带的长度,若能从A端离开,由运动的对称性可知,必有v=v1,即选项C正确,D错误;若从B端离开,当摩擦力大于重力的分力时,则v<v1,选项B正确;当摩擦力小于重力的分力时,则v>v1,选项A正确;当摩擦力和重力的分力相等时,物块一直做匀速直线运动,v=v1,故本题应选A、B、C.2. (物块初速度为零的倾斜传送带模型)如图所示,传送带AB的长度为L=16 m,与水平面的夹角θ=37°,传送带以速度v0=10 m/s匀速运动,方向如图中箭头所示.在传送带最上端A处无初速度地放一个质量m=0.5 kg的小物体(可视为质点),它与传送带之间的动摩擦因数μ=0.5.g取10 m/s2,sin 37°=0.6,cos 37°=0.8.求:(1)物体从A运动到底端B所用的时间;(2)物体与传送带的相对位移大小.解析:(1)开始阶段,设物体的加速度为a1,由牛顿第二定律有mg sin θ+μmg cos θ=ma1,解得a1=10 m/s2.物体加速到与传送带的速度相等时的位移为:x1=v202a=5 m<16 m,即物体加速到10 m/s时,未达到B点,其时间t1=v0a1=1 s.由于mg sin θ=3 N>μmg cos θ=2 N,所以物体将继续做加速运动.设物体的加速度为a2,经历的时间为t2,由牛顿第二定律有mg sin θ-μmg cos θ=ma2,解得a2=2 m/s2.由位移公式L-x1=v0t2+12a2t22,解得时间t2=1 s,所以总时间t=t1+t2=2 s.(2)在传送带上取一点M.M点做匀速运动,物体一直做加速运动.法一:整体法整个过程物体的位移大小为x物=L=16 m,传送带位移大小为x传=v0t=20 m,故物体相对于传送带(M 点)的位移大小为: x =x 传-x 物=4 m.由于M 点的位移大于物体的位移,故全过程物体向后远离M 点4 m. 法二:v -t 图象法相对位移的大小为两个阴影三角形面积之差,即: x =10×12-1×(12-10)2=4(m).法三:分段法第一个过程:M 点的位移为v 0t 1=10 m , 所以物体与传送带间的相对位移大小 x 相对1=v 0t 1-x 1=5 m.由于M 点的速度大于物体的速度,故此过程物体在M 点后面5 m 处. 第二个过程:M 点的位移为v 0t 2=10 m , 物体的位移为L -x 1=11 m , 故相对位移大小为x 相对2=1 m. 此过程物体追M 点,并靠近M 点1 m.故相对位移大小x =x 相对1-x 相对2=4 m .即全过程物体向后远离M 点4 m. 答案:(1)2 s (2)4 m精选练习1.(多选)如图所示,表面粗糙、质量M =2 kg 的木板,t =0时在水平恒力F 的作用下从静止开始沿水平面向右做匀加速直线运动,加速度a =2.5 m/s 2,t =0.5 s 时,将一个质量m =1 kg 的小铁块(可视为质点)无初速度地放在木板最右端,铁块从木板上掉下时速度是木板速度的一半.已知铁块和木板之间的动摩擦因数μ1=0.1,木板和地面之间的动摩擦因数μ2=0.25,g =10 m/s 2,则( )A .水平恒力F 的大小为10 NB .铁块放上木板后,木板的加速度为2 m/s 2C .铁块在木板上运动的时间为1 sD .木板的长度为1.625 m解析:选AC .未放铁块时,对木板由牛顿第二定律:F -μ2Mg =Ma ,解得F =10 N ,选项A 正确;铁块放上木板后,对木板:F -μ1mg -μ2(M +m )g =Ma ′,解得:a ′=0.75 m/s 2,选项B 错误;0.5 s 时木板的速度v 0=at 1=2.5×0.5 m/s =1.25 m/s ,铁块滑离木板时,木板的速度:v 1=v 0+a ′t 2=1.25+0.75t 2,铁块的速度v ′=a 铁t 2=μ1gt 2=t 2,由题意:v ′=12v 1,解得t 2=1 s ,选项C 正确;铁块滑离木板时,木板的速度v 1=2 m/s ,铁块的速度v ′=1 m/s ,则木板的长度为:L =v 0+v 12t 2-v ′2t 2=1.25+22×1 m -12×1 m =1.125 m ,选项D 错误;故选A 、C .2.(多选)如图甲为应用于机场和火车站的安全检查仪,用于对旅客的行李进行安全检查.其传送装置可简化为如图乙的模型,紧绷的传送带始终保持v =1 m/s 的恒定速率运行.旅客把行李无初速度地放在A 处,设行李与传送带之间的动摩擦因数μ=0.1,A 、B 间的距离L =2 m ,g 取10 m/s 2.若乘客把行李放到传送带的同时也以v =1 m/s 的恒定速率平行于传送带运动到B 处取行李,则( )A .乘客与行李同时到达B 处B .乘客提前0.5 s 到达B 处C .行李提前0.5 s 到达B 处D .若传送带速度足够大,行李最快也要2 s 才能到达B 处解析:选BD .行李放在传送带上,传送带对行李的滑动摩擦力使行李开始做匀加速直线运动,随后行李又以与传送带相等的速率做匀速直线运动.加速度为a =μg =1 m/s 2,历时t 1=v a =1 s 达到共同速度,位移x 1=v2t 1=0.5 m ,此后行李匀速运动t 2=L -x 1v =1.5 s 到达B ,共用2.5 s ;乘客到达B ,历时t =Lv =2 s ,B 正确;若传送带速度足够大,行李一直加速运动,最短运动时间t min =2La =2×21s =2 s ,D 正确. 3.如图甲所示,倾角为37°足够长的传送带以4 m/s 的速度顺时针转动,现将小物块以2 m/s 的初速度沿斜面向下冲上传送带,小物块的速度随时间变化的关系如图乙所示,g =10 m/s 2,sin 37°=0.6,cos 37°=0.8,试求:(1)小物块与传送带间的动摩擦因数为多大; (2)0~8 s 内小物块与传送带之间的划痕为多长. 解析:(1)根据v -t 图象的斜率表示加速度, a =Δv Δt =22m/s 2=1 m/s 2,由牛顿第二定律得μmg cos 37°-mg sin 37°=ma , 解得μ=78.(2)0~8 s 内只有前6 s 内物块与传送带发生相对滑动0~6 s 内传送带匀速运动距离为:x 带=4×6 m =24 m .速度图象的“面积”大小等于位移,则0~2 s 内物块位移为:x 1=12×2×2 m =2 m ,方向沿斜面向下,2~6 s 内物块位移为:x 2=12×4×4 m =8 m ,方向沿斜面向上.所以划痕的长度为:Δx =x 带+x 1-x 2=(24+2-8) m =18 m. 答案:(1)78(2)18 m4.如图所示,在光滑水平地面上停放着一质量为M =2 kg 的木板,木板足够长,某时刻一质量为m =1 kg 的小木块以某一速度v 0(未知)冲上木板,木板上表面粗糙,经过t =2 s 后二者共速,且木块相对地面的位移x =5 m ,g =10 m/s 2.求:(1)木块与木板间的动摩擦因数μ;(2)从木块开始运动到共速的过程中产生的热量Q .(结果可用分数表示) 解析:(1)设冲上木板后小木块的加速度大小为a 1, 对小木块,有μmg =ma 1,设木板开始运动的加速度大小为a 2,对木板, 有μmg =Ma 2,二者共速时,有v 共=a 2t =v 0-a 1t , 对小木块,有x =v 0t -12a 1t 2,联立得μ=18.(2)由(1)得a 2=58 m/s 2,得v 共=54m/s.木板发生的位移x ′=v 共2t =54m ,二者相对位移为Δx =x -x ′=154m , 产生的热量为Q =μmg ·Δx , 联立得Q =7516J. 答案:(1)18 (2)7516J5. (多选)滑沙运动是小孩比较喜欢的一项运动,其运动过程可类比为如图所示的模型,倾角为37°的斜坡上有长为1 m 的滑板,滑板与沙间的动摩擦因数为916.小孩(可视为质点)坐在滑板上端,与滑板一起由静止开始下滑.小孩与滑板之间的动摩擦因数取决于小孩的衣料,假设图中小孩与滑板间的动摩擦因数为0.5,小孩的质量与滑板的质量相等,斜坡足够长,sin 37°=0.6,cos 37°=0.8,g 取10 m/s 2,则下列判断正确的是( )A .小孩在滑板上下滑的加速度大小为2 m/s 2B .小孩和滑板脱离前滑板的加速度大小为0.5 m/s 2C .经过 2 s 的时间,小孩离开滑板D .小孩离开滑板时的速度大小为433m/s 解析:选AC .对小孩,由牛顿第二定律,加速度大小为a 1=mg sin 37°-μ1mg cos 37°m =2 m/s 2,同理对滑板,加速度大小为a 2=mg sin 37°+μ1mg cos 37°-2μ2mg cos 37°m =1 m/s2,选项A 正确,B 错误;要使小孩与滑板分离,12a 1t 2-12a 2t 2=L ,解得t = 2 s(另一解不符合,舍去),离开滑板时小孩的速度大小为v =a 1t =2 2 m/s ,选项C 正确,D 错误.6.如图甲所示,倾斜的传送带正以恒定速率v 1沿顺时针方向转动,传送带的倾角为37°.一物块以初速度v 0从传送带的底部冲上传送带并沿传送带向上运动,其运动的v -t 图象如图乙所示,物块到传送带顶端时速度恰好为零,sin 37°=0.6,cos 37°=0.8,g=10 m/s2,则()A.传送带的速度为4 m/sB.传送带底端到顶端的距离为14 mC.物块与传送带间的动摩擦因数为1 8D.摩擦力方向一直与物块运动的方向相反解析:选A.如果v0小于v1,则物块向上做减速运动时加速度不变,与题图乙不符,因此物块的初速度v0一定大于v1.结合题图乙可知物块减速运动到与传送带速度相同时,继续向上做减速运动,由此可以判断传送带的速度为4 m/s,选项A正确.传送带底端到顶端的距离等于v -t图线与横轴所围的面积,即12×(4+12)×1 m+12×1×4 m=10 m,选项B错误.0~1 s内,g sin θ+μg cos θ=8 m/s2,1~2 s内,g sin θ-μg cos θ=4 m/s2,解得μ=14,选项C错误;在1~2 s内,摩擦力方向与物块的运动方向相同,选项D错误.7.如图所示,倾角α=30°的足够长的光滑斜面固定在水平面上,斜面上放一长L=1.8 m,质量M=3 kg的薄木板,木板的最上端叠放一质量m=1 kg的小物块,物块与木板间的动摩擦因数μ=32.对木板施加沿斜面向上的恒力F,使木板沿斜面由静止开始向上做匀加速直线运动,假设物块与木板间的最大静摩擦力等于滑动摩擦力,取重力加速度g=10 m/s2.(1)为使物块不滑离木板,求力F应满足的条件;(2)若F=37.5 N,物块能否滑离木板?若不能,请说明理由;若能,求出物块滑离木板所用的时间及滑离木板后沿斜面上升的最大距离.解析:(1)若整体恰好静止,则F =(M +m )g sin α=(3+1)×10×sin 30° N =20 N. 因要拉动木板,则F >20 N ,若整体一起向上做匀加速直线运动,对物块和木板,由牛顿第二定律得 F -(M +m )g sin α=(M +m )a , 对物块有f -mg sin α=ma , 其中f ≤μmg cos α 代入数据解得F ≤30 N.向上加速的过程中为使物体不滑离木板,力F 应满足的条件为20 N<F ≤30 N.(2)当F =37.5 N>30 N 时,物块能滑离木板,由牛顿第二定律,对木板有F -μmg cos α-Mg sin α=Ma 1,对物块有μmg cos α-mg sin α=ma 2,设物块滑离木板所用的时间为t ,由运动学公式得 12a 1t 2-12a 2t 2=L , 代入数据解得t =1.2 s.物块滑离木板时的速度v =a 2t , 由-2g sin α·s =0-v 2, 代入数据解得s =0.9 m. 答案:见解析8.如图所示为车站使用的水平传送带模型,其A 、B 两端的距离L =8 m ,它与水平台面平滑连接.现有一物块以v 0=10 m/s 的初速度从A 端水平地滑上传送带.已知物块与传送带间的动摩擦因数为μ=0.6.求:(1)若传送带保持静止,物块滑到B 端时的速度大小;(2)若传送带顺时针匀速转动的速率恒为12 m/s ,物块到达B 端时的速度大小;(3)若传送带逆时针匀速转动的速率恒为4 m/s ,且物块初速度变为v 0′=6 m/s ,仍从A 端滑上传送带,物块从滑上传送带到离开传送带的总时间.解析:(1)设物块的加速度大小为a,由受力分析可知F N=mg,F f=ma,F f=μF N,得a=6 m/s2.传送带静止,物块从A到B做匀减速直线运动,又x=v202a=253m>L=8 m,则由v2B-v20=-2aL.得v B=2 m/s.(2)由题意知,传送带顺时针匀速转动的速率12 m/s>v0,物块所受的摩擦力沿传送带方向,即物块先加速到v1=12 m/s,由v21-v20=2ax1,得x1=113m<L=8 m.故物块先加速运动后匀速运动即物块到达B时的速度为v B′=v1=12 m/s.(3)当物块初速度v0′=6 m/s时,物块速度减为零时的位移x2=v0′22a=3 m<L,所以物块先向右减速后向左加速由v2=v0′-at1,得t1=1 s;当物块向左加速到v3=4 m/s时由v23-v22=2ax3得x3=43m<x2=3 m,故物块向左先加速运动后匀速运动由v3=v2+at2,得t2=23s;当物块向左匀速运动v4=v3=4 m/s,x4=x2-x3=53m.由x4=v4t3,得t3=512s,故t=t1+t2+t3=25 12s.答案:(1)2 m/s(2)12 m/s(3)25 12s。
修养提高微打破02动力学中的“滑块-滑板”模型——建立模型,培育抽象思想意识“滑块 -滑板”模型“滑块 -滑板”模型波及两个物体,而且物体间存在相对滑动。
叠放在一同的滑块和木板,它们之间存在着互相作使劲,在其余外力作用下它们或加快度同样,或加快度不一样,不论哪一种状况受力剖析和运动过程剖析都是重点,特别是对相对运动条件的剖析。
本模型深刻表现了物理运动观点、互相作用观点的核心修养。
如图( a),物块和木板叠放在实验台上,物块用一不行伸长的细绳与固定在实验台上的力传感器相连,细绳水平。
t=0 时,木板开始遇到水平外力 F 的作用,在 t=4 s 时撤去外力。
细绳对物块的拉力 f 随时间 t 变化的关系如图( b)所示,木板的速度 v 与时间 t 的关系如图( c)所示。
木板与实验台之间的摩擦能够忽视。
重力加快度取 g=10 m/s2。
由题给数据能够得出A .木板的质量为 1 kgB .2 s~4 s 内,力 F 的大小为0.4 NC.0~2 s 内,力 F 的大小保持不变D.物块与木板之间的动摩擦因数为一、水平面上的滑块—滑板模型水平面上的滑块—滑板模型是高中参照题型,一般采纳三步解题法:如下图,质量m= 1 kg 的物块 A 放在质量M= 4 kg 的木板 B 的左端,开初A、 B 静止在水平川面上。
现用一水平向左的力 F 作用在 B 上,已知 A、 B 之间的动摩擦因数为μ=,地面与 B 之间的动摩擦因1数为μ2=。
假定最大静摩擦力等于滑动摩擦力,g=10 m/s2。
求:(1)能使 A、 B 发生相对滑动的力 F 的最小值;(2)若力 F = 30 N,作用 1 s 后撤去,要想 A 不从 B 上滑落,则 B 起码多长;从开始到A、 B 均静止, A 的总位移是多少。
二、斜面上的滑块—滑板模型1、抓住重点:一个转折和两个关系一个转折两个关系滑块与滑板达到同样速度转折前、后受力状况之间的关系和滑块、滑板位移与板长之间或许滑块从滑板上滑下是的关系。
2024版新课标高中物理模型与方法专题05滑块木板模型目录【模型归纳】 (1)模型一光滑面上外力拉板 (1)模型二光滑面上外力拉块 (1)模型三粗糙面上外力拉板 (2)模型四粗糙面上外力拉块 (2)模型五粗糙面上刹车减速 (2)【常见问题分析】 (3)问题1.板块模型中的运动学单过程问题 (3)问题2.板块模型中的运动学多过程问题1——至少作用时间问题 (3)问题3.板块模型中的运动学多过程问题2——抽桌布问题 (4)问题4.板块模型中的运动学粗糙水平面减速问题 (4)【模型例析】 (5)【模型演练】 (7))g-μ抽桌布问题图(a)图(b)μ1及小物块与木板间的动摩擦因数μ2;木板右端离墙壁的最终距离。
m=高三专题练习)如图,两个滑块A和B的质量分别为A1kgμ=;木板的质量为于水平地面上的木板的两端,两者与木板间的动摩擦因数均为10.5。
某时刻A、B两滑块开始相向滑动,初速度大小均为0vg与木板恰好相对静止。
设最大静摩擦力等于滑动摩擦力,取重力加速度大小=10m 与木板相对静止时,木板的速度;开始运动时,两者之间的距离。
【例3】(2023·陕西安康·高三统考阶段练习)(1)木块与木板之间的动摩擦因数1μ,甲图木块滑行到木板中点位置时的瞬时速度;(2)对乙图,木板与木块在运动过程中的加速度大小;(3)对乙图,木块的运动时间与木板的运动时间之比以及木块与木板的相对位移。
【例4】(2023·江苏苏州·高三苏州中学校考阶段练习)如图所示,物体A 放在足够长的B 木板上,木板B 静止于水平面上,已知A 的质量A m 和B 的质量B m 均为2kg ,A 、B 之间的动摩擦因数10.2μ=,B 与水平面之间的动摩擦因数20.1μ=,最大静摩擦力与滑动摩擦力大小视为相等,重力加速度取210m /s g =。
若从0=t 开始,木板B 受116N F =的水平恒力作用,1s t =时1F 改为24N F =,方向不变,3s t =时撤去。
人教版新教材高中物理必修第一册第四章运动和力的关系相对运动模型---滑块滑板模型专题(题组分类训练)题组特训特训内容题组一外力作用下的滑块滑板(水平面)模型题组二有一定初速度的滑块滑板(水平面)模型题组三滑块滑板中的图像问题题组四倾斜面上的滑块滑板模型基础知识清单2.解题方法:(1)明确各物体对地的运动和物体间的相对运动情况,确定物体间的摩擦力方向.(2)分别隔离两物体进行受力分析,准确求出各物体在各个运动过程中的加速度(注意两过程的连接处加速度可能突变).(3)物体之间的位移(路程)关系或速度关系是解题的突破口.求解中应注意联系两个过程的纽带,即每一个过程的末速度是下一个过程的初速度.3.常见的两种位移关系: 滑块由滑板的一端运动到另一端的过程中,若滑块和滑板同向运动,位移之差等于板长;反向运动时,位移之和等于板长.4.注意摩擦力的突变: 当滑块与木板速度相同时,二者之间的摩擦力通常会发生突变,由滑动摩擦力变为静摩擦力或者消失,或者摩擦力方向发生变化,速度相同是摩擦力突变的一个临界条件.5.解题思路题组特训一:外力作用下的滑块滑板(水平面)模型1. (多选)如图所示,质量为m1的足够长木板静止在光滑水平地面上,其上放一质量为m 2的木块.t =0时刻起,给木块施加一水平恒力F .分别用a 1、a 2和v 1、v 2表示木板、木块的加速度和速度大小,下列图中可能符合运动情况的是( )【答案】AC【解析】木块和木板可能保持相对静止,一起做匀加速直线运动,加速度大小相等,故A 正确;木块可能相对于木板向前滑动,即木块的加速度a 2大于木板的加速度a 1,都做匀加速直线运动,故B 、D 错误,C 正确.2.(多选)如图所示,在光滑水平面上叠放着A 、B 两物体,已知m A = 6kg 、m B = 2kg ,A 、B 间动摩擦因数μ = 0.2,在物体A 上施加水平向右的力F ,g 取10m/s 2,则( )A .当拉力F < 12N 时,A 静止不动B .当拉力F > 16N 时,A 相对B 滑动C .当拉力F = 16N 时,B 受A 的摩擦力等于4ND .当拉力F < 48N 时,A 相对B 始终静止 【答案】CD【解析】当A 、B 发生相对运动时的加速度为 220.2610m/s 6m/s 2A Bm ga m μ⨯⨯=== 则发生相对运动时最大拉力为 ()86N 48N A B F m m a =+=⨯=当拉力0 < F < 48N 时,A 相对于B 静止,而对于地面来说是运动的,A 错误、D 正确; 由选项A 知当拉力48N > F > 16N 时,A 相对于B 静止,而对于地面来说是运动的,B 错误; 拉力F = 16N 时,A 、B 始终保持静止,当F = 16N 时,整体的加速度为2216m/s 2m/s 8A B F a m m '===+则B 对A 的摩擦力为 22N 4N B f m a '==⨯=C 正确。
滑板滑块模型专题(一)专题复习素材选择的理由1、知识与技能、过程与方法、情感态度和价值观“三维目标”是新课程的“独创”,是新课程推进素质教育的根本体现,是新课程标准异于原教学大纲的关键点,也是这次课程改革的精髓,表现了改革所承担着的“新期待”。
2、新课程高考物理试题给我们的启示:引导教学重视物理过程的分析和学生综合解决问题能力的培养,强调对考生“运用所学知识分析问题、解决问题的能力”的考查,并且把渗透和关注学生的情感、态度、价值观纳入到了考查目标中。
命题坚持能力立意、问题立意。
主干、重点知识重点考。
3、在高中物理总复习中经常会遇到一个滑块在一个木板上的相对运动问题,我们称为“滑块+木板”模型问题。
由于两个物体间存在相互作用力,相互影响,其运动过程相对复杂,致使一些同学对此类问题感到迷惑。
此类问题曾是旧教材考试中热点问题,在我省实施的新课程高考中,由于高中物理3—3和3—5系选考内容,系统不受外力所遵循的动量守恒的情况在高考必考内容中一般会回避,因此,这类问题近些年在我省有些被冷落、受忽视。
但千万记住有受外力情况下的相对运动依然是动力学的重要模型之一。
(二)专题复习素材的编制为了提高训练的有效性,针对高考题目类型,选用题组进行强化训练,我们可以将训练试题分为“典例导学”、“变式训练”和“强化闯关”三部分。
“典例导学”和“变式训练”主要起方法引领的作用,适用于课堂教学,试题以典型性、层次梯度分明的基础题、中档题为主,训练解题思路,指导解题方法,规范解题过程,培养解题能力。
“强化闯关”供学生课外进行综合训练,一般采用各地质检和历届高考经典试题,试题综合性较强,其主要目的是让学生把所掌握的解题方法和技巧应用于具体的问题情境中,不仅练习考点稳定的高考题型,还练习可能的符合时代气息的创新题型、拓展题型,特别是那些能够很好地体现高考改革最新精神和学科思想方法(如对图象、图表的理解应用和提取有效信息能力)的试题,让学生实战演练,提前进入实战状态,提早体验高考,揭去高考神秘的面纱,努力提高学生娴熟的技能技巧和敏捷的思维方式,使学生树立高考必胜的信心。
高考计算题突破动力学之---------“滑板—滑块”模型(一)[模型概述](1)滑板——滑块模型的特点①滑块未必是光滑的.②板的长度可能是有限的,也可能是足够长的.③板的上、下表面可能都存在摩擦,也可能只有一个面存在摩擦,还可能两个面都不存在摩擦.(2)滑板——滑块模型常用的物理规律匀变速直线运动规律、牛顿运动定律、动能定理、机械能守恒定律、能的转化和守恒定律、功能关系等.[模型指导](1)两种位移关系滑块由滑板的一端运动到另一端的过程中,若滑块和滑板同向运动,位移之差等于板长;反向运动时,位移之和等于板长.(2)解题思路[典例](20分)如图所示,可看成质点的小物块放在长木板正中间,已知长木板质量M=4 kg,长度L=2 m,小物块质量m=1 kg,长木板置于光滑水平地面上,两物体皆静止.现在用一大小为F的水平恒力作用于小物块上,发现只有当F超过2.5 N时,才能让两物体间产生相对滑动.设两物体间的最大静摩擦力大小等于滑动摩擦力大小,重力加速度g=10 m/s2,试求:(1)小物块和长木板间的动摩擦因数;(2)若一开始力F就作用在长木板上,且F=12 N,则小物块经过多长时间从长木板上掉下?规范解答(1)设两物体间的最大静摩擦力为F f,当F=2.5 N作用于小物块时,对整体由牛顿第二定律有F=(M+m)a①(2分)对长木板由牛顿第二定律有F f=Ma②(2分)由①②可得F f=2 N(2分)小物块竖直方向上受力平衡,所受支持力F N=mg,摩擦力F f=μmg得μ=0.2(2分)(2)F =12 N 作用于长木板上时,两物体发生相对滑动,设长木板、小物块的加速度分别为a 1、a 2,对长木板,由牛顿第二定律有F -F f =Ma 1(1分) 得a 1=2.5 m/s 2(2分)对小物块,由牛顿第二定律有F f =ma 2(1分) 得a 2=2 m/s 2(2分)由匀变速直线运动规律,两物体在t 时间内的位移分别为 s 1=12a 1t 2(1分)s 2=12a 2t 2(1分)小物块刚滑下长木板时,有s 1-s 2=12L (1分)解得t =2 s(3分) 答案 (1)0.2 (2)2 s[突破训练]1.质量M =9 kg 、长L =1 m 的木板在动摩擦因数μ1=0.1的水平地面上向右滑行,当速度v 0=2 m/s 时,在木板的右端轻放一质量m =1 kg 的小物块如图所示.小物块刚好滑到木板左端时,物块和木板达到共同速度.取g =10 m/s 2,求:(1)从物块放到木板上到它们达到相同速度所用的时间t ; (2)小物块与木板间的动摩擦因数μ2.2.(15分)有一项“快乐向前冲”的游戏可简化如下:如图所示,滑板长L =1 m ,起点A 到终点线B 的距离s=5 m.开始滑板静止,右端与A平齐,滑板左端放一可视为质点的滑块,对滑块施一水平恒力F使滑板前进.板右端到达B处冲线,游戏结束.已知滑块与滑板间动摩擦因数μ=0.5,地面视为光滑,滑块质量m1=2 kg,滑板质量m2=1 kg,重力加速度g=10 m/s2,求:(1)滑板由A滑到B的最短时间可达多少?(2)为使滑板能以最短时间到达,水平恒力F的取值范围如何?3.(15分)如图所示,薄板A长L=5 m,其质量M=5 kg,放在水平桌面上,板右端与桌边相齐.在A上距右端s=3 m处放一物体B(可看成质点),其质量m=2 kg.已知A、B间动摩擦因数μ1=0.1,A与桌面间和B与桌面间的动摩擦因数均为μ2=0.2,原来系统静止.现在在板的右端施加一大小一定的水平力F持续作用在A上直到将A从B下抽出才撤去,且使B最后停于桌的右边缘.求:(1)B运动的时间;(2)力F的大小.4.如下图所示,质量M=4.0 kg的长木板B静止在光滑的水平地面上,在其右端放一质量m=1.0 kg的小滑块A(可视为质点).初始时刻,A、B分别以v0=2.0 m/s向左、向右运动,最后A恰好没有滑离B板.已知A、B之间的动摩擦因数μ=0.40,取g=10 m/s2.求:(1)A、B相对运动时的加速度a A和a B的大小与方向;(2)A相对地面速度为零时,B相对地面运动已发生的位移大小x;(3)木板B的长度l.5.【2013江苏高考】(16 分)如图所示,将小砝码置于桌面上的薄纸板上,用水平向右的拉力将纸板迅速抽出, 砝码的移动很小,几乎观察不到,这就是大家熟悉的惯性演示实验. 若砝码和纸板的质量分别为m1和m2,各接触面间的动摩擦因数均为μ. 重力加速度为g.(1)当纸板相对砝码运动时,求纸板所受摩擦力的大小;(2)要使纸板相对砝码运动,,求需所拉力的大小;(3)本实验中m1 =0. 5 kg m2 =0. 1 kg, μ=0. 2,砝码与纸板左端的距离d =0. 1 m,取g =10 m/ s2. 若砝码移动的距离超过l =0. 002 m,人眼就能感知. 为确保实验成功,纸板所需的拉力至少多大?6. (12分)质量M=3kg的滑板A置于粗糙的水平地面上,A与地面的动摩擦因数µ1=0.3,其上表面右侧光滑段长度L1=2m,左侧粗糙段长度为L2,质量m=2kg、可视为质点的滑块B静止在滑板上的右端,滑块与粗糙段的动摩擦因数µ2=0.15,取g=10m/s2,现用F=18N的水平恒力拉动A向右运动,当A、B分离时,B对地的速度v B=1m/s,求L2的值。
(滑板-滑块模型专题)2019.111、(2019天津第2题).如图所示,A 、B 两物块叠放在一起,在粗糙的水平面上保持相对静止地向右做匀减速直线运动,运动过程中B 受到的摩擦力A .方向向左,大小不变B .方向向左,逐渐减小C .方向向右,大小不变D .方向向右,逐渐减小2、如图所示,一足够长的木板静止在光滑水平面上,一物块静止在木板上,木板和物块间有摩擦。
现用水平力向右拉木板,当物块相对木板滑动了一段距离但仍有相对运动时,撤掉拉力,此后木板和物块相对于水平面的运动情况为 ( )A .物块先向左运动,再向右运动B .物块向右运动,速度逐渐增大,直到做匀速运动C .木板向右运动,速度逐渐变小,直到做匀速运动D .木板和物块的速度都逐渐变小,直到为零 3、(新课标理综第21题).如图,在光滑水平面上有一质量为m 1的足够长的木板,其上叠放一质量为m 2的木块。
假定木块和木板之间的最大静摩擦力和滑动摩擦力相等。
现给木块施加一随时间t 增大的水平力F=kt (k 是常数),木板和木块加速度的大小分别为a 1和a 2,下列反映a 1和a 2变化的图线中正确的是()4、如图所示,A 、B 两物块的质量分别为 2 m 和 m, 静止叠放在水平地面上. A 、B 间的动摩擦因数为μ,B 及地面间的动摩擦因数为0.5μ. 最大静摩擦力等于滑动摩擦力,重力加速度为 g. 现对 A 施加一水平拉力 F,则( )A 当 F < 2 μmg 时,A 、B 都相对地面静止B 当 F =5μmg /2 时, A 的加速度为μg /3C 当 F > 3 μmg 时,A 相对 B 滑动D 无论 F 为何值,B 的加速度不会超过0.5μg5.一质量为M=4kg 的木板静止在光滑的水平面上,一个质量为m=1kg 的滑块(可以视为质点)以某一初速度V 0=5m/s 从木板左端滑上木板,二者之间的摩擦因数为µ=0.4,经过一段时间的相互作用,木块恰好不从木板上滑落,求木板长度为多少?6. 如图所示,质量M=0.2kg 的长木板静止在水平面上,长木板及水平面间的动摩擦因数μ2=0.1.现有一质量m=0.2kg 的滑块以v 0=1.2m/s 的速度滑上长板的左端,小滑块及长木板间的动摩擦因数μ1=0.4.滑块最终没有滑离长木板,求滑块在开始滑上长木板到最后静止下来的过程中,滑块滑行的距离是多少?(以地面为参考系,g=10m/s 2)?7.如图所示,m 1=40kg 的木板在无摩擦的地板上,木板上又放m 2=10kg的石块,石块及木板间的动摩擦因素μ=0.6。
滑块、滑板模型专题【学习目标】1、能正确的隔离法、整体法受力分析2、能正确运用牛顿运动学知识求解此类问题3、能正确运用动能定理和功能关系求解此类问题。
【自主学习】1、处理滑块与滑板类问题的基本思路与方法是什么?2、滑块与滑板存在相对滑动的临界条件是什么?3、滑块滑离滑板的临界条件是什么?【合作探究 精讲点拨】例题:如图所示,滑块A 的质量m =1kg ,初始速度向右v 1=8.5m/s ;滑板B 足够长,其质量M =2kg ,初始速度向左v 2=3.5m/s 。
已知滑块A 与滑板B 之间动摩擦因数μ1=0.4,滑板B 与地面之间动摩擦因数μ2=0.1。
取重力加速度g =10m/s 2。
且两者相对静止时,速度大小:,s m v /5 ,在两者相对运动的过程中:问题(1):刚开始a A 、a B1问题(2):B 向左运动的时间t B1及B 向左运动的最大位移S B2问题(3):A 向右运动的时间t 及A 运动的位移S A问题(4):B 运动的位移S B 及B 向右运动的时间t B2问题(5):A 对B 的位移大小△S 、A 在B 上的划痕△L 、A 在B 上相对B 运动的路程x A问题(6):B 在地面的划痕L B 、B 在地面上的路程x B问题(7):摩擦力对A 做的功W fA 、摩擦力对A 做的功W fB 、系统所有摩擦力对A 和B 的总功W f问题(8):A 、B 间产生热量Q AB 、B 与地面产生热量Q B 、系统因摩擦产生的热量Q问题(9):画出两者在相对运动过程中的示意图和v -t 图象练习:如图为某生产流水线工作原理示意图.足够长的工作平台上有一小孔A ,一定长度的操作板(厚度可忽略不计)静止于小孔的左侧,某时刻开始,零件(可视为质点)无初速地放上操作板的中点,同时操作板在电动机带动下向右做匀加速直线运动,直至运动到A 孔的右侧(忽略小孔对操作板运动的影响),最终零件运动到A 孔时速度恰好为零,并由A 孔下落进入下一道工序.已知零件与操作板间的动摩擦因数μ1=0.05,零件与与工作台间的动摩擦因数μ2=0.025,不计操作板与工作台间的摩擦.重力加速度g=10m/s2.求:(1)操作板做匀加速直线运动的加速度大小;(2)若操作板长L=2m ,质量M=3kg ,零件的质量m=0.5kg ,则操作板从A 孔左侧完全运动到右侧的过程中,电动机至少做多少功?【总结归纳】【针对训练】A工作台v v 0图1、光滑水平地面上叠放着两个物体A 和B ,如图所示.水平拉力F 作用在物体B 上,使A 、B 两物体从静止出发一起运动.经过时间t ,撤去拉力F ,再经过时间t ,物体A 、B 的动能分别设为EA 和EB ,在运动过程中A 、B 始终保持相对静止.以下有几个说法:①EA +EB 等于拉力F 做的功;②EA +EB 小于拉力F 做的功;③EA 等于撤去拉力F 前摩擦力对物体A 做的功;④EA 大于撤去拉力F 前摩擦力对物体A 做的功。
(滑板-滑块模型专题)2015.111、(2011天津第2题).如图所示,A 、B 两物块叠放在一起,在粗糙的水平面上保持相对静止地向右做匀减速直线运动,运动过程中B 受到的摩擦力 A .方向向左,大小不变 B .方向向左,逐渐减小 C .方向向右,大小不变 D .方向向右,逐渐减小2、如图所示,一足够长的木板静止在光滑水平面上,一物块静止在木板上,木板和物块间有摩擦。
现用水平力向右拉木板,当物块相对木板滑动了一段距离但仍有相对运动时,撤掉拉力,此后木板和物块相对于水平面的运动情况为 ( )A .物块先向左运动,再向右运动B .物块向右运动,速度逐渐增大,直到做匀速运动C .木板向右运动,速度逐渐变小,直到做匀速运动D .木板和物块的速度都逐渐变小,直到为零3、(新课标理综第21题).如图,在光滑水平面上有一质量为m 1的足够长的木板,其上叠放一质量为m 2的木块。
假定木块和木板之间的最大静摩擦力和滑动摩擦力相等。
现给木块施加一随时间t 增大的水平力F=kt (k 是常数),木板和木块加速度的大小分别为a 1和a 2,下列反映a 1和a 2变化的图线中正确的是()4、如图所示,A 、B 两物块的质量分别为 2 m 和 m, 静止叠放在水平地面上. A 、B 间的动摩擦因数为μ,B 与地面间的动摩擦因数为0.5μ. 最大静摩擦力等于滑动摩擦力,重力加速度为 g. 现对 A 施加一水平拉力 F,则( )A 当 F < 2 μmg 时,A 、B 都相对地面静止B 当 F =5μmg /2 时, A 的加速度为μg /3C 当 F > 3 μmg 时,A 相对 B 滑动D 无论 F 为何值,B 的加速度不会超过0.5μg5.一质量为M=4kg 的木板静止在光滑的水平面上,一个质量为m=1kg 的滑块(可以视为质点)以某一初速度V 0=5m/s 从木板左端滑上木板,二者之间的摩擦因数为µ=0.4,经过一段时间的相互作用,木块恰好不从木板上滑落,求木板长度为多少?6. 如图所示,质量M=0.2kg 的长木板静止在水平面上,长木板与水平面间的动摩擦因数μ2=0.1.现有一质量m=0.2kg 的滑块以v 0=1.2m/s 的速度滑上长板的左端,小滑块与长木板间的动摩擦因数μ1=0.4.滑块最终没有滑离长木板,求滑块在开始滑上长木板到最后静止下来的过程中,滑块滑行的距离是多少?(以地面为参考系,g=10m/s 2)?7.如图所示,m 1=40kg 的木板在无摩擦的地板上,木板上又放m 2=10kg 的石块,石块与木板间的动摩擦因素μ=0.6。
试问:(1)当水平力F=50N 时,石块与木板间有无相对滑动?(2)当水平力F=100N 时,石块与木板间有无相对滑动?(g=10m/s 2)此时m 2的加速度为多大?8. 如图所示,质量为M=4kg 的木板放置在光滑的水平面上,其左端放置着一质量为m=2kg的滑块(视作质点),某时刻起同时给二者施以反向的力,如图,已知F 1=6N ,F 2=3N ,适时撤去两力,使得最终滑块刚好可到达木板右端,且二者同时停止运动,已知力F 2在t 2=2s 时撤去,板长为S=4.5m ,g=10m/s 2,求:(1) 力F 1的作用时间t 1(2) 二者之间的动摩擦因数μ (3) t 2=2s 时滑块m 的速度大小'm v9.如图所示,固定在地面上的光滑圆弧面与车C 的上表面平滑相接,在圆弧面上有一个滑块A ,其质量为m A =2kg ,在距车的水平面高h=1.25m 处由静止下滑,车C 的质量为m C =6kg ,在车C 的左端有一个质量m B =2kg 的滑块B ,滑块A 与B 均可看作质点,滑块A 与B 碰撞后粘合一起共同运动,最终没有从车C 上滑出,已知滑块A 和B 与车C 的动摩擦因数均为0.5μ=,车C 与水平地面的摩擦忽略不计.取g= 10m/s 2.求:(1)滑块A 滑到圆弧面末端时的速度大小. (2)滑块A 与B 碰撞后瞬间的共同速度的大小. (3)车C 的最短长度.10. 如图所示,质量为M=1kg 的平板车左端放有质量为m=2kg 的物块(看成质点),物块与车之间的动摩擦因数μ=0.5.开始时车和物块以v 0=6m/s 的速度向右在光滑水平面上前进,并使车与墙发生正碰,设碰撞时间及短,且碰撞后车的速率与碰前的相等,车身足够长,使物块不能与墙相碰,取g=10m/s 2,求:(1)小车与墙第一次相碰以后小车所走的总路程.(2)为使物块始终不会滑出平板车右端,平板车至少多长?参考答案1. 【解析】:考查牛顿运动定律处理连接体问题的基本方法,简单题。
对于多个物体组成的物体系统,若系统内各个物体具有相同的运动状态,应优先选取整体法分析,再采用隔离法求解。
取A 、B 系统整体分析有A =()()A B A B f m m g m m a μ+=+地,a =μg ,B 与A 具有共同的运动状态,取B 为研究对象,由牛顿第二定律有:=AB B B f m g m a μ==常数,物体B 做速度方向向右的匀减速运动,故而加速度方向向左。
所以正确答案是A 。
2. BC 解析:对于物块由于运动过过程中与木板存在相对滑动,且始终相对木板向左运动,因此木板对物块的摩擦力向右,所以物块相对地面向右运动,且速度不断增大,直至相对静止而做匀速直线运动,B 正确;对于木板由作用力与反作用力可知受到物块给它的向左的摩擦力作用,则木板的速度不断减小,直到二者相对静止,而做直线运动,C 正确;由于水平面光滑,所以不会停止,D 错误。
3.解析:主要考查摩擦力和牛顿第二定律。
木块和木板之间相对静止时,所受的摩擦力为静摩擦力。
在达到最大静摩擦力前,木块和木板以相同加速度运动,根据牛顿第二定律2121m m kt a a +==。
木块和木板相对运动时, 121m g m a μ=恒定不变,g m kta μ-=22。
所以正确答案是A 。
4. BCD 根据题意可知,B 与地面间的最大静摩擦力为:f Bm =,因此要使B 能够相对地面滑动,A 对B 所施加的摩擦力至少为:f AB =f Bm =,A 、B 间的最大静摩擦力为:f ABm =2μmg ,因此,根据牛顿第二定律可知当满足:=,且≤f AB <2μmg ,即≤F <3μmg 时,A 、B 将一起向右加速滑动,故选项A 错误;当F≥3μmg 时,A 、B 将以不同的加速度向右滑动,根据牛顿第二定律有:F -2μmg =2ma A ,2μmg -=ma B ,解得:a A =-μg ,a B =,故选项C 、D 正确;当F =时,a A =a B ==,故选项B 正确。
5.解:对m 有:1ma mg =-μ对M 有:2Ma mg =μ设经过时间t 两者达相同速度,则有: t a t a v v 210=+=木块恰好不滑离木板,有:222102121t a t a t v L -+= 解得:L=2.5m6.解:对m 有:11ma mg =-μ对M 有:221)(Ma g M m mg =+-μμ 设经过时间t 两者达相同速度,则有: t a t a v v 210=+= 滑块的位移:210121t a t v s +==0.16m 达到共速后一起匀减速:32))(a M m g M m +=+-(μ m a v s 08.02322=-=故m s s s 24.021=+=7. 解析(1)当F=50N 时,假设m 1与m 2共同的加速度:a=m + m 21F =10+ 4050m/s 2=1m/s 2m 1与m 2间有最大静摩擦力F m ax 时,m 1最大加速度 a m =m g um 12= 4010*10*0.6 m/s 2=1.5 m/s 2因为a< a m ,所以m 1与m 2相对静止,二者一起以a=1 m/s 2运动。
(2)当F=100N 时,假设m 1与m 2共同加速度:a=m + m 21F =10+ 40100=2m/s 2m 2与m 1间有最大静摩擦力F m ax 时,m 1最大加速度 a m =m g um 12= 4010*10*0.6 m/s 2=1.5m/s 2因为a> a m ,所以m 2与m 1相对滑动。
此时m 2的加速度:a 2=m g um -F 22=4 m/s 28. (1)以向右为正,对整体的整个过程,由动量定理得 F 1t 1-F 2t 2=0代入数据得t 1=1s(2)在t 1时间内,对m ,由F 合=ma 得 F 1-μmg=ma mm 在t 1时间内的位移大小S 1=a m t 12同理在t 2时间内,对M 有 F 2-μmg=Ma MM 在t 2时间内的位移大小S 2=a M t22整个过程中,系统的机械能未增加,由功能关系得 F 1S 1+F 2S 2-μmgs=0 代入数据得μ=0.09(3) 在t 2=2s 内,m 先加速后减速,撤去F 1后,m 的加速度大小为=0.09m/s 2所以m 在t 2=2s 时的速度=a m t 1-(t 2-t 1) 代入数据得=1.2m/s9. 解:(1)设滑块A 滑到圆弧未端时的速度大小为v 1,由机械能守恒定律有2121v m gh m A A =……① 代入数据解得15m /s v ==……②(2)设A 、B 碰后瞬间的共同速度为v 2,滑块A 与B 碰撞瞬间与车C 无关,滑块A 与B 组成的系统动量守恒21)(v m m v m B A A +=……③代入数据解得2 2.5m /s v =……④(3)设车C 的最短长度为L ,滑块A 与B 最终没有从车C 上滑出,三者最终速度相同设为v 3根据动量守恒定律有32)()(v m m m v m m C B A B A ++=+……⑤根据能量守恒定律有2322)(21)(21)(v m m m v m m gL m m C B A B A B A ++-+=+μ……⑥联立⑤⑥式代入数据解得.3750=L m ……⑦10. 解:(1)因为小车与墙第一次相碰以后向左运动的过程中动量守恒, 取向右的方向为正,得:m v -M v =(M+m) v 1因为 m v >M v ,所以v 1>0,即系统的共同速度仍向右,因此还会与墙发生碰撞,这样反复碰撞直至能量消耗殆尽.车与墙碰后,车跟物块发生相对滑动,以车为研究对象,由牛顿第二定律有:2/10s m M mg M f a ===μ.设车与墙第n 次碰撞后的速度为v n ,碰后的共同速度为v n+1,那么v n+1也就是第n+1次碰撞后的速度,对系统应用动量守恒定律有:1)(++=-n n n v m M Mv mv ,所以n n n v v m M M m v 311=+-=+. 设车第n 次与墙相碰后离墙的最大位移为s,则av s n n 22=.而n n n n s a v a v s 912)31(22211===++. 则m av s 8.12211==,由此可知,车每次碰后与墙的最大位移成等比数列,公比为1/9,所以小车与墙第一次相碰后所走的总路程为:)(221 ++++=n s s s s⎥⎦⎤⎢⎣⎡+++++=- 111211)91()91(912s s s s nms 05.491121=-=(2)对物块和平板车组成的系统,在整个过程中由能的转化和守恒定律得:Q E k =∆,即20)(21v m M mgL +=μ.则平板车的最小长度为:m mgv m M L 4.52)(20=+=μ。