放射性基本知识及其安全防护技术培训班讲义之一
- 格式:doc
- 大小:41.00 KB
- 文档页数:11
广州瑞发放射性基本知识及其安全防护技术培训班讲义之一广州瑞发有限公司编制第一章放射源§1-1 物质、原子和同位素自然界中存在的各种各样的物体,大的如宇宙中的星球,小的如肌体的细胞。
都是由各种不同的物质组成的。
物质又是由无数的小颗粒所组成的。
这种小颗粒叫做“原子”由几个原子还可以组成较复杂的粒子叫分子。
如水,就是由二个氢原子和一个氧原子化合成一个水分子。
无穷多的水分子聚在一起。
就是宏观的水。
原子虽然很小,它仍有着复杂的结构。
原子由原子核和一定数量的电子组成。
原子核在中心,带正电。
电子绕着原子核在特定的轨道上运动,带负电。
整个原子的正负电荷相等,是中性的。
原子核内部的情况又是怎样的呢?简单地讲,原子核是由一定数量的质子和中子组成。
中子数比质子数稍多一些。
两者数目具有一定的比例。
一个原子所包含的质子数目与中子数目之和,称为该原子的质量数。
它也就是原子核的质量数。
简单归纳一下:质子(带正电,数目与电子相等)原子核原子中子(不带电,数目=质量数-原子序数)电子(质量小,带负电,数目与质子相等,称为原子序数)原子的化学性质仅仅取决于核外电子数目,也就是仅仅取决于它的原子序数。
我们把原子序数相同的原子称作元素。
有些原子,尽管它们的原子序数相同,可是中子数目不相同,这些原子的化学性质完全相同。
而原子核有着不同的特性。
例如:11H、21H、31H,它们就是元素氢的三种同位素。
又如:59CO和60CO是元素钴的两种同位素。
235U和238U是元素铀的两种同位素自然界中已发现107种元素,而同位素有4千余种。
原子核里的中子比质子稍多,确切地说,质子数与中子数应有一个合适的比例(如轻核约为1:1,重核约为1:15)。
只有这样的原子核才是稳定的,这种同位素就叫做稳定同位素。
如果质子的数目过多或过少,也即中子数目过少或过多。
原子核往往是不稳定的,它能够自发地发生变化,同时放出射线和能量。
这种原子核就叫做放射性原子核。
放射性基本知识及其安全防护技术培训班讲义之一放射源1-1 物质、原子和同位素自然界中存在的各种各样的物体,大的如宇宙中的星球,小的如肌体的细胞。
都是由各种不同的物质组成的。
物质又是由无数的小颗粒所组成的。
这种小颗粒叫做“原子”由几个原子还可以组成较复杂的粒子叫分子。
如水,就是由二个氢原子和一个氧原子化合成一个水分子。
无穷多的水分子聚在一起。
就是宏观的水。
原子虽然很小,它仍有着复杂的结构。
原子由原子核和一定数量的电子组成。
原子核在中心,带正电。
电子绕着原子核在特定的轨道上运动,带负电。
整个原子的正负电荷相等,是中性的。
原子核内部的情况又是怎样的呢?简单地讲,原子核是由一定数量的质子和中子组成。
中子数比质子数稍多一些。
两者数目具有一定的比例。
一个原子所包含的质子数目与中子数目之和,称为该原子的质量数。
它也就是原子核的质量数。
简单归纳一下:质子(带正电,数目与电子相等)原子核原子中子(不带电,数目=质量数-原子序数)电子(质量小,带负电,数目与质子相等,称为原子序数)原子的化学性质仅仅取决于核外电子数目,也就是仅仅取决于它的原子序数。
我们把原子序数相同的原子称作元素。
有些原子,尽管它们的原子序数相同,可是中子数目不相同,这些原子的化学性质完全相同。
而原子核有着不同的特性。
例如:11H、21H、31H,它们就是元素氢的三种同位素。
又如:59CO和60CO是元素钴的两种同位素。
235U和238U是元素铀的两种同位素自然界中已发现107种元素,而同位素有4千余种。
原子核里的中子比质子稍多,确切地说,质子数与中子数应有一个合适的比例(如轻核约为1:1,重核约为1:15)。
只有这样的原子核才是稳定的,这种同位素就叫做稳定同位素。
如果质子的数目过多或过少,也即中子数目过少或过多。
原子核往往是不稳定的,它能够自发地发生变化,同时放出射线和能量。
这种原子核就叫做放射性原子核。
它组成的原子就叫做放射性同位素,如59CO是稳定同位素,60CO是放射性同位素。
放射性同位素分为天然和人工两种。
天然的就是自然界中容观存在的。
如铀、钍、镭及其子体;以及钾、钙等等。
人工的就是通过人为的方法制造的。
如利用反应堆或加速器产生的粒子打在原子核上,发生核反应,使原子核内的质子(或中子)数目发生变化。
生成放射性同位素,60CO就是把59CO放在反应堆里照射。
吸收一个中子后变成的,所以60CO 就是人工放射性同位素。
1-2 放射性衰变和三种射线放射性原子核通过自发地变化,放出射线和能量,同时自己变成一个新的原子核。
这个过程叫做放射性衰变。
绝大多数放射性原子核衰变时主要放射三种射线(或称粒子),一种叫做α射线,它就是由2个质子和2个中子组成的氦原子核。
即12He,带有两个单位的正电荷,质量数为4。
另一种叫做β射线,它是高速运动的电子。
带1个单位的负电荷,第三种叫Υ射线,它是一种电磁波,不带电,放出哪种射线就叫做哪种衰变。
某种放射性同位素发射什么射线,能量是多少,可查阅衰变图。
亦可查阅“核素常用数据表”等书。
我国常用的放射性同位素大部分是由原子能研究院生产的,他们编有专门的产品手册。
给出了多种数据。
1-3 半衰期与衰变常数一定数量的放射性原子核,在每一秒钟内都有一部分在发生衰变,变成了新的原子核,也就是说,放射性原子核的数目不断减少,放射性原子核减少到原来数目的一半所经过的时间叫做半衰期,记作T。
单位是时间的单位,如秒、小时、天、年等等。
对每种放射性原子核来说,它是个常数。
例如:60CO的半衰期T=5、3年,其意思是说,如果现在有1000个60CO原子核,由于放射性衰变, 5、3年后只剩下500个了。
另外500个变成了60N1原子核,再过5、3年60CO原子核只剩下250个了。
依此类推,放射原子核60CO的数目越来越少。
放射性原子核数目随时间的减少服从指数规律,这是实验得到的结果。
如果我们已知某一时刻(t=0)的放射性核数为N0个,t时刻的核数为N(t)个,则有 N(t)=N0e-λt (1-1)这里λ叫做衰变常数,单位1/秒或1/小时,1/年等:e 是自然对数的底,e=2、718……。
由此式,我们就可求出任意时刻所剩的放射性原子核数。
1-4 放射性活度放射性活度,以往常称为放射性强度。
为习惯起见,这里仍用放射性强度的提法。
放射性强度的意思是,每秒钟内有多少个原子核发生衰变,即衰变率。
(不是放射性原子核的总数!)理论和实验都证明了,放射性强度A随时间的变化按指数规律减弱。
A(t)=Aoe-λt (1-2)这里A0是初始(t=0)的放射性强度;A(t)是t时刻的放射性强度;λ是衰变常数。
对半衰期较短的放射源,谈及强度时,一定要标明时间,即放射性强度是什么时候的强度,否则没意义。
放射性强度的专用单位叫做居里。
1居里=3、71010衰变/秒(1-3)(国际制单位叫做贝可)1贝可=1秒-11居里= 3、71010贝可即每秒发生3、71010次衰变,或者说,一秒钟内有3、71010个核发生衰变、其放射性强度就叫做1居里。
1毫居里=1/1000居里=3、7107衰变/秒;1微居里=1/108居里=3、7104衰变/秒。
居里、毫居里也简称居、毫居。
1-5 天然放射性和射线放射性同位素有天然和人工的两种。
天然的放射性原子核存在于什么地方?放射什么射线?半衰期有多长?天然放射性同位素,是和宇宙共生的。
它们与地球年龄(约109年)相同或更长。
在地球的土壤和岩石中,含有铀、钍的多种放射性同位素及它们的一系列放射性的子体。
还有46K等等。
它们的半衰期一般都很长,达108--109年。
它们放出a、β、Υ三种射线,这些放射性原子核在海水、地下水中也有微量存在。
在空气中放射性的氡(222Rn,220Rn)气,它们是由钍的子体衰变成的,所以只要地壳中的铀钍衰变不完,空气中就不断有氡气出现。
人体中除了含有少量上述的天然放射性同位素外,还有碳的放射性同位素14C,这是通过食物进入体内的。
从太阳和其它恒星发射的各种射线(俗称宇宙射线)也会射到地球上来。
它们虽然被大气层吸收了一部分,也还有一部分进入人类的生活环境。
以上所说的天然放射性同位素和射线,统称天然本底。
近年来,由于原子能电站及核武器的发展,核爆炸的放射性沉降物及核反应堆排出的废气越来越多,它们当中的放射性物质都有一部分进入人类生活的环境,我们把这些也归到天然本底中。
天然放射性同位素有些是有用的。
如铀,开采加工后可制成核燃料及核弹材料239U。
又如通过测定铀钍的放射性强度可确定地质年龄。
利用14C 可确定化石及古生物的年代等等。
第三章Υ射线的防护Υ射线仪表是一种投资小见效快效益高的工业监控仪表。
然而,正如任何事物都有二重性一样,这种仪表要用放射源,要处理好射线的安全防护问题。
由于核科学知识不普及,很多人一听到放射源,就想到原子弹,想到电视剧“血疑”,产生恐惧感。
这是一种及大的误解。
放射性和电一样,只要遵照有关的规则和标准,采取一定的安全措施,就可造福于人类,对健康没有影响。
为了使大家对放射性安全问题有一个正确的认识,本章将介绍射线防护知识及放射源的使用注意事项等。
3-1 射线对人体的影响一、描写Υ射线剂量大小的物理量和单位当Υ射线照射物质时,一部分被物质吸收,另外一部分穿透物质。
Υ射线照射人体时,同样也要被人体组织吸收掉一部分。
这部分被人体吸收的Υ射线,有可能对人体造成一定的影响。
为了建立一个统一的尺度来衡量Υ射线对人体危害的大小,沿用了医学上表示药量多少的“剂量”一词。
也就是说,根据人体受到的Υ射线剂量的大小,来描写人体可能受到的危害程度。
为了后面讨论方便,首先介绍描写与Υ射线剂量大小有关的三种物理量和单位。
(一)Υ射线照射量XΥ射线照射量描写的是空间某一点处的空气吸收的Υ射线的多少。
照射量X仅对空气而言。
不管放射源附近空间某一点处有无人体或其它物质存在。
该点处的照射量是一确定的值。
照射量的专用单位为伦琴(R)。
定义为:在一个大气压0℃的标准状态下,空间某一点处的1公斤空气中,由于Υ射线照射总共产生了电荷量各为2、5810-4库仑的正负离子,则该点处的Υ射线照射量为1伦琴。
1伦琴=103毫伦=106微伦同样受到1伦琴的照射,有的是1年中受到的,有的是一天或1秒钟受到的对体的影响是不同的。
因此引入照射量率X,它的单位是伦琴/小时,毫伦/小时,微伦/秒等。
上面的伦琴叫做专用单位,是历史上沿用下来的,我们国家正在推广国际制单位。
1990年以前要完成向国际制单位的过渡。
照射量的国际制单位为库仑/千克(CKg-1)。
没有专门的名称和符号,两种单位的关系为:1伦琴(R)=2、5810-4库仑/千克 (Ckg)1ckg-1=3、877103伦琴(R)(二)Υ射线的吸收剂量D同样的照射量下,不同的物质吸收的Υ射线能量是不一样的。
例如:肌肉和骨胳都受了1伦琴的照射,骨胳吸收的能量要多些。
因此,又引入了吸收剂量的概念,它表示的是某种物质吸收Υ射线能量的多少。
吸收剂量的专用单位叫做拉德(rad)。
1克物质从Υ射线中吸收了100尔格的能量。
则吸收剂量为1拉德。
即:1拉德=100尔格/克吸收剂量率的单位是拉德/小时,毫拉德/小时等等。
吸收剂量的国际制单位叫戈瑞,符号是GY,其大小为1戈瑞=1焦耳/公斤(JKg-1)。
两种单位的关系为:1拉德(rad)=10-2戈瑞(GY)1戈瑞(GY)=102(rad)吸收剂量与照射量呈正比关系,即:D=CXC值随Υ射线能量及被照射物质的不同而不同,在我们所使用的60CO及137CS放射源情况,对人体组织器官来说,当D以拉德为单位,X以伦琴为单位时,C≈1。
(三)剂量当量H射线对人体的影响,除与吸收的能量即吸收剂量大小有关外,还与射线的种类有关,也就是说,不同种类的射线对人体的影响不同。
例如:同样是1拉德的吸收剂量,a射线对体的危害要比Υ射线大得多。
为了描述射线对生物肌体危害的大小,又引入了“剂量当量”的概念。
剂量当量等于吸收剂量乘上品质因数。
其专用单位叫做雷姆(rem)。
即:H=DQN对Υ射线,品质因数Q=1,N 是其它修正因子,目前指定为1。
所以当生物组织受到Υ射线照射时,吸收剂量为1拉德。
则剂量当量就是1雷姆。
如前所述,剂量当量率的单位为雷姆/时,毫雷姆/时,微雷姆/秒等等。
剂量当量的国际制单位为希沃特(SV)1希沃特(SV)=1焦耳/公斤(Jkg)两种单位之间的关系为:1雷沃(rem)=10-2希沃特(SV)1希沃特(SV)=102雷沃(rem)上面讲了三种与Υ剂量大小有关的物理量和单位,比较难记,但有一个简单而重要的结论,应该记住,对Υ射线照渐人体组织而言,当照射量为1伦琴时,吸收剂量近似为1拉德。
剂量当量近似为1雷姆。
也就是说,三个量的单位不同,但数值大致相等。