《复杂网络理论及其应用》读书笔记
- 格式:docx
- 大小:128.70 KB
- 文档页数:20
《复杂网络理论及其应用》读书笔记
1引言
二十世纪,科学研究的特点是分析的方法,还原论的方法:物理学(牛顿力学、量子力学、电子论、半导体),化学(量子分子论),生物(双螺旋结构);建筑工程(应力应变分析),……。
二十一世纪(二十世纪末),系统成为主要的研究对象,整合成为主要方法。普列高津的耗散结构理论,哈肯的协同学,混沌和复杂系统理论,系统生物学……。
当分析为主要的研究方法时,人类关注如何将系统“分析”、“分解”,揭开系统的细部,了解是什么元素或部件组成了系统,却忽视或破坏了这些元素是如何组合成系统的。而整合的方法在于了解细部以后,研究“如何组合”的问题。这种方法导致复杂网络结构的研究。美国《Science》周刊:“如果对当前流行的、时髦的关键词进行一番分析,那么人们会发现,“系统”高居在排行榜上。”
2复杂网络的统计特征
如前所述,复杂网络具有很多与规则网络和随机网络不同的统计特征,其中最重要的是小世界效应(small -world effect)和无标度特性(scale -free property)。
在网络中,两点间的距离被定义为连接两点的最短路所包含的边的数目,把所有节点对的距离求平均,就得到了网络的平均距离(average distance )。另外一个叫做簇系数(clustering coefficient)的参数,专门用来衡量网络节点聚类的情况。比如在朋友关系网中,
你朋友的朋友很可能也是你的朋友;你的两个朋友很可能彼此也是朋友。簇系数就是用来度量网络的这种性质的。用数学化的语言来说,对于某个节点,它的簇系数被定义为它所有相邻节点之间连的数目占可能的最大连边数目的比例,网络的簇系数C则是所有节点簇系数的平均值。研究表明,规则网络具有大的簇系数和大的平均距离,随机网络具有小的簇系数和小的平均距离。1998 年,Watts 和Strogatz 通过以某个很小的概率p 切断规则网络中原始的边,并随机选择新的端点重新连接,构造出了一种介于规则网络和随机网络之间的网络(WS 网络),它同时具有大的簇系数和小的平均距离,因此既不能当作规则网络处理,也不能被看作是随机网络。随后,Newman 和Watts 给出了一种新的网络的构造方法,在他们的网络(NW 网络)中,原有的连边并不会被破坏,平均距离的缩短源于以一个很小的概率在原来的规则网络上添加新的连边。后来物理学家把大的簇系数和小的平均距离两个统计特征合在一起称为小世界效应,具有这种效应的网络就是小世界网络(small-world networks)。
图 1 :小世界网络拓扑结构示意图左边的网络是规则的,右边的网络是随机的,中间的网络是在规则网络上加上一点随机的因素而形成的小世界网络,它同时具有大的簇系数和小的平均距离。
大量的实证研究表明,真实网络几乎都具有小世界效应,同时科学家还发现大量真实网络的节点度服从幂率分布,这里某节点的度是指该节点拥有相邻节点的数目,或者说与该节点关联的边的数目。节点度服从幂律分布就是说具有某个特定度的节点数目与这个特定的度之间的关系可以用一个幂函数近似地表示。幂函数曲线是一条下降相对缓慢的曲线,这使得度很大的节点可以在网络中存在。对于随机网络和规则网络,度分布区间非常狭窄,几乎找不到偏离节点度均值较大的点,故其平均度可以被看作其节点度的一个特征标度。在这个意义上,我们把节点度服从幂律分布的网络叫做无标度网络(scale -free networks ),并称这种节点度的幂律分布为网络的无标度特性。1999 年,Barabási和Albert 给出了构造无标度网络的演化模型,他们所用的方法与Price 的方法是类似的。Barabási和Albert 把真实系统通过自组织生成无标度的网络归功于两个主要因素:生长和优先连接,而他们的网络模型(BA 网络)正是模拟这两个关键机制设计的。
除了小世界效应和无标度特性外,真实网络还有很多统计上的特征,例如混合模式,度相关特性,超小世界性质等等。
3复杂系统与复杂网络
3.1复杂系统与复杂网络的概念
系统定义:集合(具体元素)+ 结构+功能。例:不同角度分析系统,人。
系统的结构是:一切系统的基础结构都是网络;一切系统的核心结构都是逻辑网络;复杂系统的结构就是复杂网络。
复杂网络是构成复杂系统的基本结构,每个复杂系统都可以看作是单元或个体之间的相互作用网络;复杂网络在刻画复杂性方面的重要性是由于结构决定功能的。复杂网络是研究复杂系统的一种角度和方法,它关注系统中因子相互关联作用的拓扑结构,是理解复杂系统性质和功能的基础。
3.2复杂系统与复杂网络的主要特性:
a开放性。即与环境和其它系统进行相互作用,交换物质、能量、信息,保持和发展系统内部的有序性与结构稳定性。在这种交换中,系统经历着从低级向高级、从简单到复杂、从无序向有序的不断优化的动态发展过程。虽然开放性是所有真实系统的基本属性,但这里的开放非指一般意义上的相互作用与交流,而开放的度量、性质、强度对复杂系统的性态、演化具有决定性的意义。例子,人,城市网络簇。
b涌现性。即内部元素通过非线性相互作用,在宏观层次上产生出新的、元素不具有的整体属性,表现为整体斑图、模式等。虽然涌现同样是所有系统都具有的,但这里涌现意味着新的整体属性的产生。例子,“整体大于部分之和”,大脑的神经网络系统。
c演化性(不可逆性)。即通过与所在环境中的其它系统的相互作用和内部的自组织,使系统发展到新的阶段,表现出阶段性、临界性,完成系统演化的生命周期。例:社会网络中的人,生物群体的自组织系统(鸟群)。
d复杂性。包括系统的结构、行为、功能等多个方面同时具有的复杂性。结构复杂性表现为多元性,非对称性,非均匀性,非线性(分
岔(Bifurcation) , 混沌(Chaos), 分形Fractal);行为复杂性表现为学习,自适应性,混沌同步,混沌边沿,随机性等等;认识复杂性又称为主观复杂性,它表现为不确定性,描述复杂性与计算复杂性等等。例:神经网络中的突触有强有弱,可抑制也可兴奋。
e网络结构。即系统内部和系统之间的相互作用可以看成由节点、边(连接)构成的体系,出现网络复杂性、小世界特征与无标度特征等。
3.3网络系统的复杂性
a结构复杂性
网络连接结构错综复杂、极其混乱,同时又蕴含着丰富的结构:社区、基序、聚集性、生成规律性等等,而且网络连接结构可能是随时间变化的,例如,WWW上每天都不停地有页面和链接的产生和删除。静态结构的复杂性和结构动态演化的复杂性。例:神经系统由神经元互连形成,连接以“突触连接结构”实现,突触有强弱、兴奋与抑制、不同的神经递质;连接不断改变,形成连接结构变化。(重边,加权等)。
b节点复杂性
1】节点的独立或固有特性
网络中的节点可能是具有分岔和混沌等复杂非线性行为的动力系统。例如,基因网络中每个节点都具有复杂的时间演化行为。而且,一个网络中可能存在多种不同类型的节点。例如,控制哺乳动物中细胞分裂的生化网络就包含各种各样的基质和酶。