(总结)定积分证明题方法总结六篇
- 格式:doc
- 大小:36.50 KB
- 文档页数:14
热点追踪Җ㊀广东㊀李文东㊀㊀不等式的证明是高考的重要内容,证明的方法多㊁难度大,特别是一些数列和型的不等式.这类不等式常见于高中数学竞赛题和高考压轴题中,由于证明难度较大,往往令人望而生畏.其中有些不等式若利用定积分的几何意义证明,则可达到以简驭繁㊁以形助数的解题效果.1㊀利用定积分证明数列和型不等式数列和型不等式的一般模式为ðni =1a i <g (n )(或ðni =1a i >g (n )),g (n )可以为常数.不失一般性,设数列a n =f (n )>0,此类问题可以考虑如下的定积分证明模式.(1)若f (x )单调递减.因为f (i )<ʏii -1f (x )d x ,从而ðni =1a i =ðn i =1f (i )<ðni =1ʏii-1f (x )d x =ʏn0f (x )d x .㊀㊀又因为ʏi i -1f (x )d x <f (i -1),从而ʏn +11f (x )d x =ðn +1i =2ʏi i-1f (x )d x <ðn +1i =2f (i -1)=ðni =1a i.㊀㊀(2)若f (x )单调递增.因为f (i )>ʏi i -1f (x )d x ,从而ðni =1a i=ðni =1f (i )>ðni =1ʏii-1f (x )d x =ʏn0f (x )d x .㊀㊀又因为ʏii -1f (x )d x >f (i -1),从而ʏn +11f (x )d x =ðn +1i =2ʏii-1f (x )d x >ðn +1i =2f (i -1)=ðni =1a i .例1㊀(2013年广东卷理19,节选)证明:1+122+132+ +1n2<74(n ɪN ∗).分析㊀本题证法大多采用裂项放缩来证明,为了得到更一般的结论,我们这里采用定积分来证明.证明㊀因为函数y =1xα(α>0且αʂ1)在(0,+ɕ)上单调递减,故ʏii -11x αd x >1iα(i ȡ3),从而当αʂ1时,ðni =11i α<1+12α+ðni =3ʏii -11x αd x =1+12α+ʏn21x αd x =1+12α-1(α-1)x α-1n 2=1+12α+1(α-1)2α-1-1(α-1)nα-1.㊀㊀利用这个不等式可以得到一些常见的不等式.若α=12,则ðn i =11i<1-32+2n =2n -1+(2-32)<2n -1.㊀㊀当α>1时,ðni =11iα<1+12α+1(α-1)2α-1=1+α+1α-1 12α.特别地,若α=2,则ðni =11i 2<1+2+12-1 122=74;若α=3,则ðni =11i3<1+3+13-1 123=54;若α=32,则ðni =11ii<1+32+132-1 1232=1+524<3;若α=1,则1n<ʏnn -11x d x =l n x nn -1=l n n -l n (n -1),从而可以得到12+13+ +1n +1<ʏn +111xd x =l n (n +1),1n +1+1n +2+ +12n<ʏ2nn1xd x =l n2.㊀㊀另一方面,1n -1>ʏnn -11xd x =l n x n n -1=l n n -l n (n -1),则1+12+13+ +1n -1>ʏn11x d x =l n n .㊀㊀当α=1时,借助定积分的几何意义上述不等式42热点追踪还可以进一步加强.图1是函数y =1x的部分图象,显然S 曲边梯形A B C F <S 梯形A B C F ,于是ʏn +1n1x d x <12(1n +1n +1),得l n (1+1n )<12(1n +1n +1),令n =1,2, ,n ,并采用累加法可得1+12+13+ +1n>l n (n +1)+n2(n+1)(n ȡ1).图1例2㊀证明:l n 42n +1<ðni =1i4i 2-1(n ɪN ∗).分析㊀由于i 4i 2-1=14(12i -1+12i +1),l n 42n +1=14l n (2n +1),故证明l n (2n +1)<ðni =1(12i -1+12i +1).构造函数f (x )=12x +1,显然f (x )单调递减,考虑到ðni =1(12i -1+12i +1)的结构,对函数f (x )采用类似图1中的梯形面积放缩.证明㊀由分析得ʏii -112x +1d x <12(12i -1+12i +1),故12l n (2n +1)=ʏn012x +1d x =ðni =1ʏii -112x +1d x <12ðni =1(12i -1+12i +1),不等式两边除以12即为所证.例3㊀证明13+15+17+ +12n +1<12l n (n +1)(n ɪN ∗).分析㊀若考虑函数y =12x +1,则有12i +1<ʏii -112x +1d x ,则ðni =112i +1<ðni =1ʏii -112x +1d x =ʏn012x +1d x =12l n (2x +1)n0=12l n (2n +1),达不到所证的精度,必须改变定积分放缩的精度.证明㊀结合不等式的右边,考虑函数f (x )=1x.如图2所示,在区间[i ,i +1]上,取区间的中点i +12,并以1i +12为高作矩形A E F B ,则S 矩形A E F B <ʏi +1i 1x d x .于是有22i +1=1i +12<ʏi +1i1xd x ,则ðni =122i +1<ðni =1ʏi +1i1xd x =ʏn +111xd x =l n (n +1),即ðn i =112i +1<12ln (n +1).图2例4㊀设n 是正整数,r 为正有理数.(1)求函数f (x )=(1+x )r +1-(r +1)x -1(x >-1)的最小值;(2)证明:n r +1-(n -1)r +1r +1<n r<(n +1)r +1-nr +1r +1;(3)设x ɪR ,记[x ]为不小于x 的最小整数,例如[2]=2,[π]=4,[-32]=-1.令S =381+382+383+ +3125,求[S ]的值.(参考数据:8043ʈ344 7,8143ʈ350 5,12543ʈ625 0,12643ʈ631 7.)分析㊀出题者的本意是利用第(1)问中的伯努利不等式来证明后两问,但这里我们利用积分来证明.证明㊀(1)f m i n (x )=0(求解过程略).(2)因为r 为正有理数,函数y =x r 在(0,+ɕ)上单调递增,故ʏnn -1x r d x <nr,而52热点追踪ʏnn -1x rd x =x r +1r +1n n -1=n r +1-(n -1)r +1r +1,故n r +1-(n -1)r +1r +1<n r.同理可得n r<ʏn +1n x rd x =x r +1r +1n +1n =(n +1)r +1-n r +1r +1,从而n r +1-(n -1)r +1r +1<n r<(n +1)r +1-n r +1r +1.(3)由于i 13<ʏi +1i x 13d x <(i +1)13,故S =ð125i =81i13<ð125i =81ʏi +1ix 13dx =ʏ12681x 13dx =34x 4312681=34(12643-8143),34(12543-8043)=34x 4312580=ʏ12580x 13d x =ð124i =80ʏi +1ix 13d x <ð124i =80(i +1)13=S .34(12543-8043)<S <34(12643-8043).代入数据,可得34(12543-8043)ʈ210.2,34(12643-8143)ʈ210.9.由[S ]的定义,得[S ]=211.2㊀利用积分证明函数不等式我们知道ʏx 2x 1fᶄ(x )d x =f (x 2)-f (x 1),因此,对于与f (x 2)-f (x 1)有关的问题,可以从定积分的角度去思考.若f (x )的导数f ᶄ(x )在区间(a ,b )上单㊀图3调递减且f ᶄ(x )为凹函数,如图3所示.设A C 的中点为B ,过点B 作B G ʅx 轴与f (x )交于点G ,过点G 作f (x )的切线与直线AH 和C D 分别交于点F 和I .设A (x 1,0),C (x 2,0),则f (x 2)-f (x 1)=ʏx 2x 1fᶄ(x )d x =S 曲边梯形A C J H ,S 矩形A C D E =f ᶄ(x 2+x 12)(x 2-x 1).因为S 曲边三角形E G H >S әE F G =S әD I G >S 曲边三角形J D G ,S 曲边梯形A C J H -S 矩形A C D E =S 曲边三角形E G H -S 曲边三角形J D G >0,于是有f (x 2)-f (x 1)x 2-x 1>f ᶄ(x 2+x 12).借助上述几何意义,一般地我们有如下结论.(1)若函数f (x )的导数f ᶄ(x )在区间(a ,b )上为凹函数,则对于任意的a <x 1<x 2<b ,有f (x 2)-f (x 1)x 2-x 1>f ᶄ(x 2+x 12);(2)若函数f (x )的导数f ᶄ(x )在区间(a ,b )上为凸函数,则对于任意的a <x 1<x 2<b ,有f (x 2)-f (x 1)x 2-x 1<f ᶄ(x 2+x12).例5㊀(1)函数f (x )=l n x ,因为f ᶄ(x )=1x在(0,+ɕ)上为凹函数,则对任意0<x 1<x 2,有l n x 2-l n x 1x 2-x 1>1x 2+x 12,即x 2-x 1l n x 2-l n x 1<x 1+x 22,此为对数均值不等式.(2)函数f (x )=x l n x ,因为f ᶄ(x )=1+l n x 在(0,+ɕ)上为凸函数,则对任意0<x 1<x 2,有x 2l n x 2-x 1l n x 1x 2-x 1<1+l n x 2+x 12.许多考题都是以此为背景命题,比如,如下高三模拟考试的压轴题.例6㊀已知函数f (x )=l n x -a x 22+(a -1)x -32a(a >0),在函数f (x )的图象上是否存在不同两点A (x 1,y 1),B (x 2,y 2),线段A B 中点的横坐标为x 0,直线A B 的斜率为k ,使得k >f ᶄ(x 0).简证㊀由于f ᶄ(x )=1x-a x +a -1(a >0)在(0,+ɕ)上为凹函数,可见结论成立!例7㊀设函数f (x )=xex ,若x 1ʂx 2,且f (x 1)=f (x 2),证明:x 1+x 2>2.分析㊀本题的本质是极值点偏移问题,常见证法是利用对称性构造函数,这里采用定积分来证明.证明㊀不妨设x 1<x 2,由f ᶄ(x )=1-x ex ,可知f (x )在(-ɕ,1]上单调递增,在[1,+ɕ)上单调递减,且f (0)=0.当x >0时,f (x )>0,可知0<x 1<1<x 2.设x 1e x 1=x 2e x 2=t ,则x 1+x 2=t (e x 1+e x 2),x 2-x 1=t (e x 2-e x 1),考虑函数y =e x ,则根据定积分的梯形面积放缩有e x 2-e x 1=ʏx 2x 1e xd x <(e x 1+e x2)(x 2-x 1)2,则x 2-x 1t <12 x 2+x 1t(x 2-x 1),故x 1+x 2>2.(作者单位:广东省中山市中山纪念中学)62。
积分不等式的证明方法及其应用一、积分不等式的证明方法:1.使用定积分定义证明:对于一个函数f(x),如果在[a,b]上f(x)≥0,那么可以使用定积分的定义进行证明。
将[a,b]分成n个小区间,每个小区间长度为Δx=(b-a)/n,那么对于每个小区间,存在一个ξi ∈ [x_{i-1}, x_i],使得f(ξi)Δx_i≤∫_{x_{i-1}}^{x_i} f(x)dx。
对于所有小区间,将不等式相加并取极限即可得到定积分不等式。
2.使用导数的性质证明:对于一个函数f(x),如果能够表示出它的导数f'(x),那么可以使用导数的性质进行证明。
首先计算f'(x),然后判断f'(x)的正负性,再根据函数在[a,b]上的取值情况,可以得到相应的不等式。
例如,如果f'(x)≥0,那么f(x)在[a,b]上是单调递增的,可以得到∫_a^bf(x)dx≥∫_a^b f(a)dx=f(a)(b-a)。
3.使用恒等式和变量替换证明:对于一个复杂的积分不等式,有时可以通过引入合适的恒等式或进行变量替换来简化证明过程。
例如,对于形如∫_a^b f(x)g(x)dx≥0的不等式,可以通过将f(x)g(x)拆分为两个函数的平方和,然后应用恒等式a^2+b^2≥0进行证明。
或者,可以通过进行变量替换将不等式转化为更简单的形式,然后再进行证明。
二、积分不等式的应用:1.极值问题:2.凸函数与切线问题:3.平均值不等式:平均值不等式是积分不等式的一种特殊情况,它可以用于证明平均值与极值之间的关系。
例如,对于一个连续函数f(x),可以通过证明(1/(b-a))∫_a^b f(x)dx≥ƒ(ξ)来得到平均值与极值之间的关系。
4.泛函分析问题:总结起来,积分不等式的证明方法包括定积分定义证明、导数性质证明、恒等式和变量替换证明等等。
而积分不等式的应用包括解决极值问题、研究凸函数的性质、平均值不等式以及泛函分析问题等。
定积分证明题方法总结六篇定积分是历年数学的考查重点,其中定积分的证明是考查难点,同学们经常会感觉无从下手,小编特意为大家总结了定积分的计算方法,希望对同学们有帮助。
篇一:定积分计算方法总结一、不定积分计算方法1. 凑微分法2. 裂项法3. 变量代换法1) 三角代换2) 根幂代换3) 倒代换4. 配方后积分5. 有理化6. 和差化积法7. 分部积分法(反、对、幂、指、三)8. 降幂法二、定积分的计算方法1. 利用函数奇偶性2. 利用函数周期性3. 参考不定积分计算方法三、定积分与极限1. 积和式极限2. 利用积分中值定理或微分中值定理求极限3. 洛必达法则4. 等价无穷小四、定积分的估值及其不等式的应用1. 不计算积分,比较积分值的大小1) 比较定理:若在同一区间[a,b]上,总有f(x)>=g(x),则 >= ()dx2) 利用被积函数所满足的不等式比较之 a)b) 当0 2. 估计具体函数定积分的值积分估值定理:设f(x)在[a,b]上连续,且其最大值为M,最小值为m则M(b-a) 3. 具体函数的定积分不等式证法1) 积分估值定理2) 放缩法3) 柯西积分不等式≤ %4. 抽象函数的定积分不等式的证法1) 拉格朗日中值定理和导数的有界性2) 积分中值定理3) 常数变易法4) 利用泰勒公式展开法五、变限积分的导数方法篇二:定积分知识点总结 1、经验总结(1) 定积分的定义:分割—近似代替—求和—取极限(2)定积分几何意义:①f(x)dx(f(x)0)表示y=f(x)与x轴,x=a,x=b所围成曲边梯形的面积 ab②f(x)dx(f(x)0)表示y=f(x)与x轴,x=a,x=b所围成曲边梯形的面积的相a反数(3)定积分的基本性质:①kf(x)dx=kf(x)dx aabb②[f1(x)f2(x)]dx=f1(x)dxf2(x)dx aaa③f(x)dx=f(x)dx+f(x)dx aac(4)求定积分的方法:baf(x)dx=limf(i)xi ni=1nbbbbbcb①定义法:分割—近似代替—求和—取极限②利用定积分几何意义’③微积分基本公式f(x)F(b)-F(a),其中F(x)=f(x) ba篇三:定积分计算方法总结 1、原函数存在定理●定理如果函数f(x)在区间I上连续,那么在区间I上存在可导函数F(x),使对任一x∈I都有F’(x)=f(x);简单的说连续函数一定有原函数。
定积分积分的定理1. 引言定积分是微积分的重要概念之一,而定积分的定理是对定积分的性质和计算方法进行总结和归纳,使我们能更好地理解和应用定积分。
本文将详细介绍定积分积分的定理的相关概念、性质及其证明,为读者深入理解和掌握该定理提供帮助。
2. 定积分的基本概念在介绍定积分积分的定理之前,我们首先需要了解定积分的基本概念。
2.1 定积分的定义定积分是反映函数在某一区间上的总体变化情况的一种数值。
设函数f(x)在闭区间[a, b]上有定义,将该区间分成n个小区间,每个小区间的长度为△x,选择每个小区间中的一个任意点ξi,构造Riemann和式:当n趋向于无穷大时,Riemann和式的极限存在,记为:其中,表示积分运算,f(x)为被积函数,a和b分别为积分的下限和上限。
2.2 定积分的性质定积分具有以下几个重要的性质:2.2.1 线性性质若函数f(x)和g(x)在区间[a,b]上可积,c为常数,则有:2.2.2 区间可加性若函数f(x)在区间[a,b]上可积,且a<c<b,则有:2.2.3 保号性若函数f(x)在区间[a,b]上可积,且f(x)≥0,则有:3. 定积分积分的定理定积分的定理是对定积分的性质和计算方法进行总结和归纳的数学定理,其中包括积分的反演、积分换元法、换序积分等内容。
3.1 积分的反演定积分的定理中的一个重要内容是积分的反演,即定积分与原函数之间的关系。
根据牛顿-莱布尼茨公式,如果函数F(x)在[a, b]上连续,并且存在它的一个原函数f(x),则有:这个公式表明,如果给定一个函数的导数,我们可以通过对导数积分来求出原函数。
3.2 积分换元法积分换元法是积分计算中常用的一种方法,它是通过变量替换的方式,将一个复杂的积分问题转化为一个更简单的积分问题。
设已知变量替换为:y=g(x),即x与y之间存在一个一一对应的可导函数g(x),则有:通过变换后,我们可以将积分问题简化为对更简单的函数进行积分。
定积分的计算方法及其性质证明定积分是微积分中重要的概念之一,它在数学和物理等领域中都有广泛的应用。
本文将介绍定积分的计算方法,并证明一些与定积分相关的性质。
一、定积分的计算方法1. 首先,我们介绍定积分的定义。
对于函数f(x)在[a, b]上的定积分可以用下面的极限形式表示:∫[a, b] f(x) dx = lim(n→∞) ∑[i=1 to n] f(xi)Δx其中,xi是[a, b]上的一系列划分点,Δx是每个子区间的长度。
2. 一种常用的计算定积分的方法是使用定积分的几何意义。
对于非负函数f(x),它在[a, b]上的定积分表示f(x)与x轴之间的面积。
当f(x)是负函数时,定积分可以表示为x轴与f(x)之间的绝对值的面积。
例如,计算函数y = x^2在[1, 2]上的定积分可以通过计算由y = x^2, x = 1, x = 2和x轴所围成的区域的面积来完成。
3. 常用的定积分计算方法之一是基于牛顿-莱布尼兹公式,也称为微积分的基本定理。
该定理表明,如果函数F(x)是f(x)的一个原函数,则有:∫[a, b] f(x) d x = F(b) - F(a)这意味着我们可以通过求解函数f(x)的原函数,并使用原函数在区间的端点处的值来计算定积分。
4. 对于一些特定的函数,我们可以使用一些基本的公式和性质来计算定积分。
例如,对于多项式函数和三角函数,我们可以利用它们的导数和基本积分表来计算定积分。
5. 对于一些复杂的函数,我们可以将其进行分解成更简单的函数,然后分别计算它们的定积分,最后将结果进行合并。
这种方法常用于计算不可积函数的定积分。
二、定积分的性质证明1. 定积分的线性性质对于函数f(x)和g(x),以及常数a和b,有以下等式成立:∫[a, b] (af(x) + bg(x)) dx = a∫[a, b] f(x) dx + b∫[a, b] g(x) dx这个性质可以通过定积分的定义和极限运算的性质进行证明。
关于定积分、曲线积分与二重积分的简单总结***(吉首大学数学与计算机科学学院,湖南 吉首 416000)摘要:微积分的内容主要包括极限、微分学、积分学及其应用.在此主要讨论和简单总结一些有关定积分、曲线积分与二重积分的问题.关键词:定积分 曲线积分 二重积分英文部分引言:微积分是一套关于变化率的理论.积分学包括求积分运算,为定义和计算面积、体积提供了一套通用的方法.通常积分计算问题都涉及到天文、力学、几何学等.这里主要通过有关定积分、曲线积分与二重积分的一些实例来对这些知识作一个回顾性总结.1、 定积分1、1利用定积分求极限:);321(1lim3334n n n ++++∞→ 解:)321(1lim3334n n n ++++∞→ =⎥⎦⎤⎢⎣⎡++∞→333)()2()1(1lim n n n n n n =n ni n i n 1)(lim 31∑=∞→ 设3)(x x f =,则f(x)在[0,1]上连续且可积.取ni n x i i ==∆ε,1为区间[]⎥⎦⎤⎢⎣⎡-=-n i n i x x i i ,1,1的右端点,i=1,2…,n.所以上式为函数3)(x x f =在区间[0,1]上的一个积分的极限,从而有4141)21(1lim 104103334===+++⎰∞→x dx x n n n .回顾分析:由定积分的定义知,若f(x)在[a,b]上可积,则可对[a,b]用某种特定的方法,并可取特殊的点,此时所得积分的极限就是f(x)在[a,b]上的定积分,因此本题可将和式化为某个可积函数的积分和,然后用定积分求此极限.定积分在物理中的某些应用1、2 有一等腰梯形闸门,它的上、下两条边各长为10米和6米,高为20米,计算当水面与上底边相齐时闸门一侧所受的静压力.解:考虑建立直角坐标系,这里B(0,5),C(20,3).则BC 的方程为:x+20y-50=0.即y=5-101x. 由于在相同深度处水的静压力相同gx ρ,故当x ∆很小时,闸门上从深度x 到x+x ∆ 这一狭条A 上受的静压力为.)1015(22dx g x x x g x dx x y dp p ⋅⋅⋅⋅⋅-⨯=⋅⋅⋅⋅⋅⋅=≈∆ρρ dx x x gdx x x x dp p )5110()1015(232002200200-=⋅⋅⋅⋅-⨯==⎰⎰⎰ρ =14373.33(kN).1、3 设有半径为r 的半圆形导线,均匀带点电荷密度为δ,在圆心处有一单位E 电荷,试求它们之间作用力的大小.解:同样考虑坐标,取θ∆所对应的一段导线,电荷电量为.θδθd r d ⋅⋅= ,它圆心处电荷E 在垂直方向上的引力为θθθθsin sin 2r ks r sr k F ∆=∆⋅=∆ 则导线与电荷作用力为rk d r k δθθδπ2sin 0=⎰回顾分析:据以上例题可知,在解决积分实际问题中,确定积分区域是解决问题的关键,另外对于定积分我们还应注意以下几点:⑴周期函数的定积分,其积分上下限可任意改变,只要积分区间的长度始终等于周期,则定积分的值不变。
定积分不等式的证明1. 引入定积分的定义: 首先回顾定积分的定义,对于函数f(x)在区间[a,b]上的定积分记为∫[a,b]f(x)dx。
在区间[a,b]上划分任意n个子区间,每个子区间的长度为Δx,选取任意的代表点ξ_i,那么定积分可以近似表示为∑[i=1->n]f(ξ_i)Δx。
2. 引入上和下和: 上和S_n表示将子区间的长度无限逼近为0时,以ξ_i为代表点的定积分的极限值。
即S_n = lim[n->∞](∑[i=1->n]f(ξ_i)Δx)。
同理,我们可以引入下和I_n = lim[n->∞](∑[i=1->n]f(η_i)Δx),其中η_i为每个子区间内的最小值。
3.证明下和的单调性:为了证明定积分的不等式,我们首先证明了下和的单调性。
假设f(x)在区间[a,b]上是单调增加的函数,那么我们可以得到下面的不等式:a<x_1<η_1<f(x_1)(1)x_2<η_2<f(x_2)(2).....x_n<η_n<f(x_n)(n)根据定义我们知道,η_i是每个子区间内的最小值,那么对于上面的不等式,我们可以将其累加得到:a<x_1<η_1<f(x_1)a+x_1<x_1+η_1<η_1+f(x_1)a+x_1+x_2<x_1+x_2+η_2<η_1+η_2+f(x_2).....a+x_1+x_2+...+x_n<x_1+x_2+...+x_n+η_n<η_1+η_2+...+η_n+f( x_n)上面的不等式可以简化为:a+b_n<S_n<I_n+b_n其中b_n=f(x_1)+f(x_2)+...+f(x_n)。
根据定积分的性质,极限的运算可以通过分别求逐项求极限来进行。
那么我们可以得到:lim[n->∞](a + b_n) < lim[n->∞]S_n < lim[n->∞](I_n + b_n)。
定积分的计算与题型总结本文内容是高等数学中积分相关内容的一个大总结,包括凌乱知识点的总结和一些附带的例子,以及一些常用的和容易出错的细节和结论。
内容主要涉及定积分的计算技巧、结论的运用、定积分的几何和物理应用;多重积分的计算技巧(包括排列和旋转等。
)及其在定积分中的应用;曲线和曲面积分的计算公式和定理总结,各种积分之间的关系,物理和几何的应用。
您现在浏览的内容是此系列的第一篇:定积分的计算与题型总结。
1.定积分的计算(1)直接先计算不定积分,然后使用牛顿-莱布尼茨公式。
这个非常简单,也是最基本的一种方法,不多赘述。
(注意:只适用于所有能简单积分出原函数的题,所以想做好定积分,不定积分首先要过关。
)牛顿-莱布尼茨公式:如果函数 f(x) 在区间 [a, b] 上连续,并且存在原函数 F(x) ,则 \int_{a}^{b} f(x) dx=F(b)-F(a)=F(x)\bigg|_{a} ^{b}(2)利用定义计算。
若函数 f(x) 在区间 [a, b] 上可积,将区间分为 n 等分:\int_{a}^{b} f(x) \mathrm{d} x =\lim _{n\rightarrow\infty} \sum_{i=1}^{n}f\left[a+\frac{i}{n}(b-a)\right] \frac{b-a}{n}特别注意,根据上述表达式有,当 [a, b] 区间恰好为 [0,1] 区间时,则 [0,1] 区间积分表达式为:\int_{0}^{1} f(x) \mathrm{d} x=\lim _{n\rightarrow\infty} \frac{1}{n} \sum_{i=1}^{n}f\left(\frac{i}{n}\right)例1:用定义计算 \int_{0}^{1}x^2\mathrm{d}x解: \int_{0}^{1} x^2 \mathrm{d} x=\lim _{n\rightarrow\infty} \frac{1}{n} \sum_{i=1}^{n}\left(\frac{i}{n}\right)^2=\lim _{n \rightarrow\infty} \frac{1}{n^3} \sum_{i=1}^{n} i^2=\lim _{n\rightarrow\infty}\frac{n(n+1)(2n+1)}{6n^3}=\frac{1}{3}(3)利用奇偶性计算根据定积分的几何意义(图像和横轴围成的有向面积),奇函数在正负对称区间的积分为0。
定积分证明题方法总结1. 引言在微积分学中,定积分是一种重要的概念,它用于计算曲线下的面积或曲线的定积分值。
在解决定积分证明题时,有一些常用的方法可以帮助我们简化问题和推导定积分的计算过程。
本文将总结一些常见的定积分证明题方法。
2. 几何解释法定积分可以被解释为曲线下面积的概念,这一特性可以用几何解释法来进行证明。
在这种方法中,我们可以将定积分问题转化为求曲线下某个区域的面积,然后通过几何图形的性质进行计算。
例如,我们要证明函数f(x)在区间[a,b]上的定积分值为I,可以进行如下步骤:1.将函数f(x)和x轴围成的曲线下面积表示为S。
2.将区间[a,b]平均分为n段,即将[a,b]划分为n个小区间。
3.将每个小区间的长度设定为Δx,将小区间的起点和终点分别表示为xi和xi+1。
4.在每个小区间上,选择一个插值点ci,计算f(ci)。
5.根据插值点计算出小区间的面积ΔSi,即ΔSi = f(ci)* Δx。
6.将所有小区间的面积加起来,得到近似的曲线下面积Sn = Σ(ΔSi)。
7.当n趋向于无穷大的时候,Sn的极限值即为S。
8.由于S表示曲线下面积,所以证明Sn趋于S,即证明了定积分的值为I。
这种方法通过将定积分转化为几何问题,使得证明过程更加直观明了。
3. 确定积分值的边界法定积分值的边界法是另一种常见的方法,通过确定积分的上下界来简化问题。
这种方法通常适用于具有特殊性质的函数。
例如,我们要证明函数f(x)在区间[a,b]上的定积分值为I,可以进行如下步骤:1.设定积分的下界和上界分别为g(x)和h(x),即g(x)≤ f(x) ≤ h(x)。
2.对区间[a,b]上的g(x)和h(x)进行定积分,分别得到下界和上界的定积分值:Ig = ∫[a,b] g(x) dx,Ih = ∫[a,b] h(x) dx。
3.如果可以证明Ig ≤ I ≤ Ih,即下界小于等于积分值小于等于上界,那么定积分值为I。
定积分的求解方法及其应用摘要:在数学分析这门课程里,定积分是最普遍而又重要的内容之一,同时也是数学研究中的重要工具,随着数学在生活中的广泛应用,定积分的相关解法和应用所蕴藏的巨大潜力越来越引起人们的关注.本论文从定积分的基本理论出发,系统阐述了牛顿莱布尼茨公式、换元法、分部积分法、凑微分法等几种常见的求解方法,并列举了相关的例子,更直观的了解求解定积分的方法的精髓.另外本文又介绍了定积分在数学、物理学和经济学当中的应用,实现了定积分在实际生活中的应用.通过这一系列的总结,可以进一步提升对定积分的认识,为以后的学习奠定了基础.关键词:定积分;求解方法;应用一、定积分的求解方法1.1 定积分概念定义1 不妨设在闭区间[m ,n ]中,不包含两个端点,共有1-k 个点,按照大小分别为m =0x <1x <2x <…<1-k x <k x =n ,这些点将闭区间[m ,n ]分割为大小不一的子区间,共有k 个,用i ∆表示这些子区间,即i ∆=[1-i x ,i x ],i =1,2, …,k 。
可以将k x x x ......,10点或[]n i xi x i i ......12,,1==∆-子区间视为分割了闭区间[m ,n ],令集合=A {0x ,1x ,…,k x }或{1∆,2∆,…,k ∆}.定义2 假设函数g 的定义域为 [m ,n ]。
将区间[m ,n ]分割为k 个,得分割区间的集合=A {1∆,2∆,…,k ∆},在区间i ∆上随意取点i ψ,即i ψ∈i ∆,i =1,2, …,k ,将该点函数值与自变量之差做乘积,累次相加得()iki ix g ∆∑=1ψ,该式是函数g 在定义域[m ,n ]上的积分和.定义3 假设函数g 的定义域为 [m ,n ],S 是给定的实数。
假如总能找到某个的正数θ,以及任何正数σ,在定义域 [m ,n ]进行任意大小的分割A ,并且在分割出来的区间中随意选择一个点组成集合{i φ},当A <θ时,存在σφ<-∆∑=S xg ni ii1)(,则函数g在定义域[m ,n ]上可积,即⎰=nmdx x g S )(。
定积分求极限的方法总结定积分是微积分中的一个重要概念,它在解决实际问题中起到了至关重要的作用。
定积分求极限是其中的一个常见问题,本文将总结定积分求极限的几种常用方法,以帮助读者更好地理解和运用这一数学工具。
一、利用定义直接计算法定积分的定义为函数在区间上的分割求和的极限,因此我们可以直接利用定义进行计算。
通过将函数分割成若干小区间,然后取极限,得到定积分的值。
这种方法在一些简单函数上较为有效,但在复杂函数上计算较为繁琐。
二、利用换元法简化问题换元法是定积分求极限中常用的一种方法。
通过引入新的变量,将原定积分中的变量替换为新变量,从而简化问题。
这样一来,原来复杂的函数可能被替换成一个更容易处理的形式,使得求极限的过程更加直观和简便。
三、利用洛必达法则洛必达法则是解决不定型(0/0或∞/∞)极限问题的一种有效手段。
在定积分中,如果我们在求解极限的过程中遇到不定型,可以尝试将其化为分数的形式,然后利用洛必达法则进行简化。
这种方法在处理特定类型的问题时非常有用,能够迅速求得极限的值。
四、利用夹逼准则夹逼准则是定积分求极限中的一种常见方法,尤其适用于需要确定极限存在性的情况。
通过构造两个较为简单的函数,一个上界函数和一个下界函数,使得它们夹住原函数,然后证明这两个函数的极限相等,从而得出原函数的极限。
这种方法对于一些特殊的函数极限问题非常有效。
五、利用积分中值定理积分中值定理是定积分求极限中的一种常用手段。
该定理指出,如果一个函数在某个区间上连续,那么在该区间上一定存在一个点,使得函数值等于该点处的平均值。
通过应用积分中值定理,我们可以将定积分与极限联系起来,从而更方便地求解问题。
在实际问题中,以上方法可以根据具体情况进行灵活运用。
总体来说,定积分求极限是微积分中的一项重要任务,通过掌握不同的方法,我们能够更加深入地理解函数的性质,解决实际问题中的复杂计算,为数学和科学研究提供强大的工具。
希望本文的总结对读者在学习和应用定积分时有所帮助。
探讨定积分不等式的证明方法定积分不等式是数学中的一种重要的不等式,它在数学分析、微积分和概率论等领域中具有广泛的应用。
证明定积分不等式的方法也非常多样,下面将介绍几种常用的证明方法。
对于给定的定积分不等式,我们可以通过研究被积函数的性质来进行证明。
常用的方法有以下几种。
1.利用导数和极值的性质对于被积函数f(x),我们可以通过研究f'(x)的符号和f(x)的极值来判断f(x)在给定区间上的大小关系。
通过推导f'(x)的性质和计算f(x)的极值点,可以得到定积分不等式的证明。
2.利用函数的凸性或凹性凸函数具有性质:对于给定的区间上任意两个点,函数在这两个点之间的值不大于这两个点处的函数值的线性插值。
而凹函数则相反,函数在这两个点之间的值不小于这两个点处的函数值的线性插值。
通过研究函数的凸性或凹性,我们可以得到定积分不等式的证明。
3.利用函数的连续性和单调性如果被积函数f(x)在给定区间上是连续的,且在该区间上单调递增或单调递减,则可以利用这些性质来进行证明。
通过推导f(x)的导数或利用中值定理,可以得到定积分不等式的证明。
定积分不等式的证明通常需要对积分区间进行适当的分割,以便研究被积函数的性质。
常用的方法有以下几种。
1.利用分段函数的性质进行分割被积函数f(x)在给定区间上可能是分段定义的,在不同的区间段上具有不同的性质。
通过将给定区间分成几个子区间,并对每个子区间上的被积函数进行分析,可以得到定积分不等式的证明。
2.利用辅助函数进行分割如果被积函数f(x)难以分割或分析,我们可以引入辅助函数g(x)来研究定积分不等式。
通过将f(x)与g(x)进行比较,可以将定积分不等式转化为对辅助函数g(x)的定积分的不等式来进行证明。
积分中值定理是微积分中的基本定理之一,它为定积分不等式的证明提供了有力的工具。
常用的方法有以下几种。
1.利用平均值定理平均值定理是积分中值定理的一种特殊形式,它将定积分转化为函数的平均值与函数在给定区间上的其中一点处的函数值的乘积。
定积分证明题方法总结定积分证明题是数学分析中的重要知识点,也是应用数学和工程学科中常见的问题。
在解决实际问题时,定积分证明题经常被用来计算曲线下面积、求函数的平均值以及计算物理量等。
本文旨在总结定积分证明题的方法,帮助读者更好地理解和掌握这一知识点。
定积分证明题的背景和重要性是引出本文的基础。
首先,通过定积分的定义,我们可以准确计算出曲线下面的面积,这对于许多实际问题的解决非常有益。
例如,在物理学中,我们可以通过定积分来求解物体的体积、求解材料的质量等。
其次,定积分证明题也是数学分析和工程学科中的基础知识,对于深入理解相关领域的理论和应用有着重要的作用。
本文将介绍定积分证明题的方法总结。
我们将重点讨论常见的证明方法,例如几何法、代数法和变量代换法等。
这些方法在实际问题中具有广泛的应用,并且在解决定积分证明题时非常有效。
我们还将提供一些例题和解答,以帮助读者更好地理解和掌握这些方法。
总之,本文旨在为读者提供一个定积分证明题方法的总结,帮助他们更好地应用这一知识点解决实际问题。
通过研究和掌握这些方法,读者将能够提高自己的数学分析能力并应用于相关领域的问题求解。
基本概念总之,本文旨在为读者提供一个定积分证明题方法的总结,帮助他们更好地应用这一知识点解决实际问题。
通过研究和掌握这些方法,读者将能够提高自己的数学分析能力并应用于相关领域的问题求解。
基本概念定积分是微积分中的一种重要数学工具,用于计算曲线下的面积或者曲线围成的区域的面积。
它是微积分的重要概念之一。
定积分是微积分中的一种重要数学工具,用于计算曲线下的面积或者曲线围成的区域的面积。
它是微积分的重要概念之一。
定积分的定义是通过极限的概念来进行表述的。
对于一个给定的函数f(x),定义在闭区间[a。
b]上,我们可以将[a。
b]分成若干很小的区间,然后在每个区间上选择一个点,通过计算这些点处的函数值与该区间的长度的乘积,再将所有乘积相加,就可以得到一个近似的面积。