4.1稳定性定义与稳定性条件
- 格式:ppt
- 大小:755.00 KB
- 文档页数:28
余成波自动控制原理pdf引言概述:余成波自动控制原理pdf是一本关于自动控制原理的电子书籍,作者余成波是自动控制领域的专家,他的这本书详细介绍了自动控制原理的基本概念、理论和应用。
本文将从五个大点来阐述这本书的内容,包括基本概念、控制系统、传递函数、稳定性分析和控制器设计。
正文内容:1. 基本概念1.1 控制系统的定义:控制系统是指通过对被控对象进行监测和调节,使其输出达到预期目标的一种系统。
1.2 自动控制的分类:自动控制可分为开环控制和闭环控制两种,其中闭环控制是指系统通过对输出信号进行反馈调节,实现对被控对象的精确控制。
1.3 控制系统的基本组成:控制系统由被控对象、传感器、执行器和控制器组成,其中传感器用于监测被控对象的状态,执行器用于对被控对象进行调节,控制器用于根据监测信号和设定值进行控制计算。
2. 控制系统2.1 开环控制系统:开环控制系统是指控制器的输出不受被控对象的状态影响,只根据设定值进行控制。
开环控制系统简单、稳定性好,但对被控对象的变化无法进行实时调节。
2.2 闭环控制系统:闭环控制系统通过对被控对象的输出进行监测,并通过反馈调节控制器的输出,实现对被控对象的精确控制。
闭环控制系统可以根据被控对象的状态变化进行实时调节,但稳定性和抗干扰能力较开环控制系统较差。
2.3 控制系统的性能指标:控制系统的性能指标包括稳定性、精度、快速性和鲁棒性等。
稳定性是指系统在稳定状态下的性能,精度是指系统输出与设定值的偏差,快速性是指系统达到稳定状态所需的时间,鲁棒性是指系统对参数变化和干扰的抵抗能力。
3. 传递函数3.1 传递函数的定义:传递函数是指控制系统输入与输出之间的数学关系,它可以描述系统的动态特性和频率响应。
3.2 传递函数的求解:传递函数可以通过系统的微分方程或拉普拉斯变换进行求解。
微分方程法适用于线性时不变系统,拉普拉斯变换法适用于线性时变系统。
3.3 传递函数的应用:传递函数可以用于分析系统的稳定性、频率响应和时域响应等。
常微分方程的稳定性分析稳定性分析是常微分方程理论中的一个重要内容,它研究的是在一定条件下,常微分方程解的性质及其随时间变化的行为。
稳定性分析不仅在数学中具有深远意义,而且在物理、工程等应用领域也具有重要的价值。
1. 引言常微分方程是研究函数和它的导数之间关系的数学方程。
它在各个学科中都有广泛的应用,如物理学中的运动学、生物学中的生态系统模型、经济学中的经济增长模型等。
稳定性分析是对常微分方程解的行为进行评估和预测的方法,具有重要的理论和应用意义。
2. 稳定性的定义在稳定性分析中,我们关注的是方程解在微小扰动下的行为。
一个常微分方程解是稳定的,如果它对于任意微小的初始扰动都能保持接近原解。
换句话说,一个稳定的解在扰动下不会发生剧烈的变化。
相反,如果方程解对于微小扰动非常敏感,那么这个解就是不稳定的。
3. 稳定性的分类根据方程解的性质,我们可以将稳定性进一步分为以下几种:3.1 渐近稳定性如果一个方程解在长时间的演化过程中会趋向于某个特定的值,我们就称这个解是渐近稳定的。
换句话说,当时间趋向于无穷大时,解会趋于一个固定的稳定点或者稳定状态。
3.2 李亚普诺夫稳定性李亚普诺夫稳定性是一种更加严格的稳定性概念。
一个解是李亚普诺夫稳定的,当且仅当对于任意微小的初始扰动,解都能保持在一条逐渐靠近稳定状态的曲线上。
3.3 指数稳定性指数稳定性是对解的衰减速度的描述。
一个解是指数稳定的,如果其衰减速度超过了任何指数函数。
4. 稳定性分析的方法稳定性分析的方法有很多,其中一些常用的方法包括线性稳定性分析、李亚普诺夫函数的构造以及隐函数定理的应用等。
4.1 线性稳定性分析线性稳定性分析是一种简单而常用的方法。
它基于线性化的概念,即将非线性方程在稳定点附近进行线性逼近。
通过线性化方程,我们可以得到关于稳定性的有用信息。
4.2 李亚普诺夫函数的构造李亚普诺夫函数是一种在稳定性分析中常用的工具。
通过构造适当的李亚普诺夫函数,我们可以判断解的稳定性,并对解的演化过程进行描述。
Course 自动控制原理东南大学自动控制系Southeast University Dept. of Automatic Control Chap 4 控制系统的稳定性分析稳定性分析的意义稳定性是控制系统能够正常工作的首要条件。
稳定压倒一切。
只有稳定的情况下,性能分析和改进才有意义。
负反馈只是使系统稳定的一种手段,并不一定能够保证闭环系统的稳定。
例子:秋千东南大学自动控制系Southeast University Dept. of Automatic Control Chap 4 控制系统的稳定性分析4.1 稳定性stability的概念和定义d f b c a b c 平衡点单/多平衡点系统干扰,偏差稳定的物理意义东南大学自动控制系Southeast University Dept. of Automatic Control 稳定范围/区域a 4.1 稳定性的概念和定义若控制系统在任何足够小的初始偏差作用下,随着时间的推移,偏差会逐渐衰减并趋于零,具有恢复原平衡状态的性能,则称该系统是稳定stable的;否则,称该系统是不稳定unstable的。
可通过研究描述系统的微分或差分方程的解得到系统稳定性。
东南大学自动控制系Southeast University Dept. of Automatic Control 4.1 稳定性的概念和定义基于稳定性研究的问题是扰动作用去除后系统的运动情况与输入量和初始偏差无关。
稳定性是系统本身的“固有特性”,一个控制系统的稳定性取决于系统本身的结构和参数值。
线性系统稳定性分析只需考虑齐次系统情况即可。
东南大学自动控制系Southeast University Dept. of Automatic Control 4.1 稳定性的概念和定义李亚普诺夫Lyapunov 1892稳定性x t F x t t xc t F xc t t 0 x0 x t0 Lyapunov stability 0 0 if x0 xc then x t xc n Lyapunov asymptotic stability x xc xi xic 2 i 1 If in addition lim x t xc 0 t东南大学自动控制系Southeast University Dept. of Automatic Control 4.1 稳定性的概念和定义x2 x2 xc xc x1 x1东南大学自动控制系Southeast University Dept. of Automatic Control 4.1 稳定性的概念和定义x2 xc x1东南大学自动控制系Southeast University Dept. of Automatic Control 4.1 稳定性的概念和定义x x x t x 0e t x t 0 x 0 e t x 0 0 xx x t x 0et x1 x2 x2 x1 1 x1 0 x东南大学自动控制系Southeast University Dept. of Automatic Control Chap 4 控制系统的稳定性分析4.2 线性定常系统稳定的充分必要条件4.2.1 状态空间模型若讨论稳定性是基于状态空间模型的,则只关心是齐次状态方程的响应是否收敛到xe0-渐进稳定性连续线性定常系统渐近稳定的充分必要条件是:它的系数矩阵A的特征值全都具有负实部。
高中物理稳定性教案教学目标:1. 了解物体的稳定性概念和相关因素。
2. 掌握计算物体的稳定性的方法。
3. 能够在实际情境中应用稳定性概念。
教学重点:1. 稳定性的定义与影响因素。
2. 如何计算物体的稳定性。
3. 稳定性的应用实例。
教学难点:1. 稳定性概念的理解和应用。
2. 计算稳定性时的复杂情况处理。
教学方法:1. 教师讲解结合示例分析。
2. 学生合作讨论和问题解答。
3. 实验和实践操作。
教学过程:一、引入(5分钟)教师引入本节课的内容,提出问题:什么是稳定性?什么因素会影响物体的稳定性?请同学们思考并回答。
二、概念讲解(10分钟)1. 稳定性的定义:当物体受到外力时,如果能够保持原来的静定状态或者回到静定状态,那么我们称该物体是稳定的。
2. 影响稳定性的因素:物体的重心位置、支撑点的位置、物体的形状和质量等。
三、计算稳定性(15分钟)1. 计算物体的稳定性常用的方法是计算物体的倾覆矩。
2. 倾覆矩的计算公式:M = mghsinθ,其中m为物体的质量,g为重力加速度,h为物体重心到支撑点的距离,θ为倾斜角度。
3. 通过几个实例讲解如何计算物体的稳定性。
四、实践操作(20分钟)1. 学生分组进行实验,测量不同物体的稳定性。
2. 学生利用所学知识计算物体的倾覆矩。
3. 学生讨论并总结实验结果,验证理论计算结果。
五、应用实例(10分钟)1. 教师提供稳定性应用实例,让学生分析和解决问题。
2. 学生通过小组讨论和展示呈现自己的思考和解决方案。
六、总结与拓展(5分钟)1. 教师对本节课的内容进行总结,强调稳定性的重要性。
2. 提出拓展思考题,让学生继续深入思考和学习。
教学资源:1. 实验器材:各种形状和质量的物体、支撑板等。
2. 实验记录表。
教学反思:通过本节课的教学,学生能够理解物体的稳定性概念和计算方法,能够运用所学知识解决实际问题。
应重视实践操作和应用实例的训练,引导学生主动参与和思考,提高学生的学习兴趣和实践能力。
4 稳定性分析4.1李氏稳定性分析 (1) 平衡状态设系统 [],x f x t = x —n 维状态向量。
f —n 维函数向量。
若存在状态向量ex ,对所有的t ,使得 []0ef x t ≡成立,则称ex 为系统的平衡状态。
例如 系统1132122x x x x x x =-⎧⎨=+-⎩解:有3个平衡点 100e x⎡⎤=⎢⎥⎣⎦,201e x⎡⎤=⎢⎥-⎣⎦,301e x⎡⎤=⎢⎥⎣⎦(2) 稳定性分析1) 李亚普诺夫意义下的稳定 对于任选0ε>,都对应存在0(,)0t δε>的实数,当00(,)e x x t δε-≤时其解满足 00(,,)x t t εΦ≤ 0t t ≤<∞则称平衡状态ex 为李亚普诺夫意义下的稳定,如果δ与t 无关,则称ex 是一致稳定2) 渐近稳定由非0初始状态引起的自由运动是衰减的,当t →∞时, 0(,,)0et x t x Φ-=则ex 平衡点是渐近稳定的。
3) 大范围稳定如果ex 稳定,而且对于所有的0x ,00(,,)0et x t x Φ-→,则称平衡状态是大范围渐近稳定的。
4) 不稳定由初始状态引起的运动无论0ex x δ-≤,δ多么小,至少有一个状态超出任意指定的空间范围,则称平衡点ex 是不稳定的。
4.2李氏第一方法(1) 线性定常系统的稳定判据:x Ax Bu =+ y Cx =系统稳定的充要条件是0SI A -=的特征根全位于S 左半面,输出稳定的充要条件是B A SI C S W 1)()(--=的极点全位于S 左半面,当存在零、极点对消情况时两者是不一致的。
101-=A ,11B ⎡⎤=⎢⎥⎣⎦, []10C = 0)1()1(=+∙-=-S S A SI 11S =-,21S =状态不全稳定,属于状态不稳系统, 而输出为[]1)1)(1(111100101)()(1+=-+-=⎥⎦⎤⎢⎣⎡⎥⎦⎤⎢⎣⎡-+=-=-S S S S S S B A SI C S W 是输出稳定系统。
序:稳定性在IVD研究中是直接反应试剂随时间的延长是否可以保持一致性的特性。
其不与精密性,斜率或其他常见特性相同,产品的稳定性由客户来验证是极其困难的。
比如,产品在实验室设计和数据分析结果都很精确,之后投入生产,在生产中要确保其稳定性。
IVD试剂在本篇中表示产品使用完后对患者样本的临床检测,举例来说就是IVD试剂盒的各个组分和与它们相关的测量,对照,样本稀释液和通用试剂。
本文中所使用的标准是:European standard EN 13640:2002-IVD试剂的稳定性检测,参考EN13640。
其余两篇重要的参考来源于(ICH)Q1A(R2)2和ICH QIE3,虽然这些着重于讲药品类的发展和药品中的一些物质,但也有一部分是和IVD试剂相关的。
关键词:加速稳定性,校准区间,失效期,可用时间,货架期,稳定性监控,稳定性设计,模拟运输。
IVD试剂稳定性评估:确认指标1. 范围:这篇文章概括了IVD试剂可使用的时间和放置时间稳定性,它涵盖了其背景信息和产品在什么时候需要设计检测其稳定性,研究时的逻辑关系,推荐使用的数据分析和稳定性声明文件。
其他题目包括了产品稳定性运输环境声明,稳定性监控(确认),和加速稳定性的检测。
使用这篇文章的一般属于低阶段IVD试剂生产厂家和调试中介,临床研究所或许可以用它来解释商业产品的稳定性,和建立实验室检测稳定性属性的方法。
这篇文章中没有明确表示使用的任何仪器,应用软件,和患者样本,所有未加工的物质,试剂盒组分或消费品都不是很清晰。
所以在这个文件所描述的原理或许只可以在生产中作为借鉴。
2. 标准警戒线:因为对于样本是怎样感染是无法预知的,所有患者样本和实验室样本都作为感染参照标准警戒线进行操作。
标准警戒线作为指导方针是由“通用警戒线和身体分泌物隔离”组合而成的。
标准警戒线覆盖了所有感染缘的传播,所以比通用警戒线更广泛,通用警戒线只适用与血液病原体的传播。
标准和通用警戒线指导方针可在US center for disease control and prevention 中查到。
Chapter4动态系统的稳定性分析稳定性描述当系统遭受外界扰动偏离原来的平衡状态,在扰动消失后系统自身能否恢复到原来平衡状态的一种性能。
例如在倒立摆装置中,当摆杆受扰动而偏离垂直位置后,系统仍能使摆杆回到垂直位置,并能始终保持在垂直位置附近,这是系统稳定的基本含义。
一个不稳定系统是不能正常工作的,如何判别系统的稳定性以及如何改善系统的稳定性是系统分析与设计的首要问题。
系统的稳定性 是系统本身所固有的特性,与外部控制)(t u 无关。
所以讨论稳定性时一般只考虑0)(=t u 的自由系统。
4.1 平衡点与Lyapunov 稳定性考虑n 阶自由系统: )),(()(t t x f t x= 状态向量:T n t x t x t x ))(...)(()(1=,向量:T n t t x f t t x f t t x f ))),((...)),((()),((1=对)),(()(t t x f t x= ,若存在某一状态点e x ,使得对所有的t ,)(t x 都不随时间变化,定义e x 为系统的平衡状态(平衡点) 0),(≡=t x f xe (4-1) 一个系统不一定存在平衡点,但有时又可以有多个平衡点。
平衡点大多数在状态空间的原点0=e x 。
若平衡点不在原点,而是状态空间的孤立点,则可以通过坐标变换将平衡点移到原点。
经典控制理论:用传递函数描述线性定常系统,主要用特征函数0)(=s D 的极点分布、Routh (劳斯)判据、Hurwitz (胡尔维茨)判据、Nyquist (奈奎斯特)判据等来判别系统的稳定性。
现代控制理论:用状态空间描述MIMO 线性时变系统或非线性时变系统。
1) 根据系数矩阵A 的特征值即0)()()()()det(==-s f s f s f s f A sI O C O C O C CO 系统极点的分布来判别系统的稳定性。
0)(=s f CO 求出的是“既能控又能观”的极点,它也可以由传递函数求出;0)(=s f O C 求出的是“能控不能观”、0)(=s f O C 求出的是“不能控能观”、0)(=s f O C 求出的是“既不能控又不能观”部分的极点,他们由于“零极点相消”不能反映在传递函数中,因而也不能由传递函数求出;对线性定常系统,根据平衡点定义0)()(==t Ax t x,当0det ≠A ,则只有0=e x 一个平衡点。
定理4.1证明原点稳定的方法
要证明原点的稳定性,我们可以使用Lyapunov稳定性定理。
根据定理4.1,如果存在一个连续可微的函数V: R^n -> R满足以下条件:
1. V(0) = 0。
2. V(x) > 0, 对所有的x ≠ 0成立。
3. 对于所有的x,V的导数V'满足V'(x) < 0。
那么原点x=0是系统的稳定点。
下面我们来证明这个定理。
首先,我们选择一个候选的Lyapunov函数V(x)。
通常我们会选择V(x) = x^T P x,其中P是一个对称正定矩阵。
这样的选择通常能够简化证明过程。
接下来,我们计算V(x)的导数V'(x)。
根据我们选择的V(x),V'(x) = x^T P x的导数。
然后我们计算V'(x)在原点附近的取值。
如果V'(x)在原点附近是负定的,即V'(0) < 0成立,那么根据
Lyapunov稳定性定理,原点x=0是稳定的。
要注意的是,Lyapunov函数的选择和对V'(x)的分析可能会因
系统的具体形式而有所不同。
在具体的应用中,我们需要根据系统
的特点来选择合适的Lyapunov函数,并对V'(x)进行分析。
总的来说,证明原点稳定性的方法是选择合适的Lyapunov函数,并分析其导数在原点附近的取值。
通过这样的分析,我们可以得出
原点的稳定性结论。