2015年成人高考专升本高等数学二考试真题及参考答案
- 格式:docx
- 大小:364.30 KB
- 文档页数:5
2014年成人高等学校专升本招生全国统一考试高等数学(二)答案必须答在答题卡上指定的位置,答在试卷上无效.......。
选择题一、选择题:1—10小题,每小题4分,共40分。
在每小题给出的四个选项中,只有一项是符合题目要求的,把所选项的字母填涂在答题卡相应题号的信息点上............。
1.0lim →x 22sin xx= A.0 B.1 C.2 D.∞ 2.设函数)(x f 在x=1处可导,且)1('f =2,则0lim→x xf x f )1()1(--=A.-2B. -21C.21D.23. d(sin2x)=A.2cos2xdxB.cos2xdxC.-2cos2xdxD.-cos2xdx4.设函数)(x f 在区间[a ,b]连续且不恒为零,则下列各式中不恒为常数.....的是 A.)()(a f b f - B.⎰badx x f )( C. 0lim →x )(x f D. ⎰xadt t f )(5.设)(x f 为连续函数,且⎰xdt t f 0)(=)1ln(3++x x ,则)(x f =A.1132++x x B. 113++x x C.3x 2D. 11+x6.设函数)(x f 在区间[a ,b]连续,且I (u )=,)()(dx t f dx x f uaua⎰⎰-a<u<b ,则I (u )A.恒大于零B.恒小于零C.恒等于零 D 可正,可负. 7.设二元函数z=x y,则yz∂∂= A. x yB. x ylny C. x ylnx D.yx y-18.设函数)(x f 在区间[a ,b]连续,则曲线y=)(x f 与直线x=a ,x=b 及x 轴所围成的平面图形的面积为 A.⎰badx x f )( B. -⎰b adx x f )( C. ⎰b adx x f )( D.⎰badx x f )(9.设二元函数z=xcosy ,则yx z∂∂∂2=A.xsinyB.-xsinyC.sinyD.-siny 10.设事件A ,B 相互独立,A,B 发生的概率分别为0.6;0.9,则A ,B 都不发生的概率为 A.0.54 B.0.04 C.0.1 D.0.4非选择题二、填空题:11~20小题,每小题4分,共40分。
河南省2015年普通高等学校 专科毕业生进入本科阶段学习考试高等数学一、选择题(每小题2分,共60分)在每小题的四个备选答案中选出一个正确答案,用铅笔把答题卡上对应题目的答案标号涂黑。
1.已知函数()f x x =,则1f f x ⎡⎤⎛⎫= ⎪⎢⎥⎝⎭⎣⎦( )A .xB .2xC .1xD .21x 【答案】C【解析】因为()f x x =,则11f x x⎛⎫= ⎪⎝⎭,所以111f f f x x x ⎡⎤⎛⎫⎛⎫== ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦.2.已知函数84()f x x x =-,则()f x 是( )A .奇函数B .偶函数C .非奇非偶函数D .无法判断【答案】B【解析】()()8484()()f x x x x x f x -=---=-=,即()f x 为偶函数.3.已知函数12()f x x =,则()f x 的定义域是( )A .(0,)+∞B .[0,)+∞C .(,0)-∞D .(,0]-∞【答案】B【解析】由12()f x x ==()f x 的定义域是[0,)+∞.4.已知极限0sin()lim 2x mx x→=,则可确定m 的值是( )A .1B .2C .12D .0【答案】B【解析】00sin()lim lim 2x x mx mxm xx →→===.5.当0x →时,若212cos ~2a x x -,则可确定a 的值一定是( )A .0B .1C .12 D .12-【答案】C【解析】由()212cos ~02a x x x -→,可知()2001lim 2cos lim 2x x a x x →→-=,即2cos00a -=,故12a =.6.下列极限存在的是( )A .21limx x x →∞+B .01lim21x x →-C .01lim x x→D.x 【答案】A【解析】22111lim lim 01x x x x x x →∞→∞++==,极限存在;01lim 21xx →=∞-,极限不存在;01lim x x→=∞,极限不存在;x x =∞,极限不存在.7.已知函数sin ,0()1,0a xx f x x x ⎧≠⎪=⎨⎪=⎩,在0x =处,下列结论正确的是( )A .1a =时,()f x 必然连续B .0a =时,()f x 必然连续C .1a =时,()f x 不连续D .1a =-时,()f x 必然连续【答案】A【解析】00sin lim ()limx x a xf x a x→→==,又知(0)1f =,故1a =时,()f x 必连续.8.极限30sin lim sin x x xx →-的值是( )A .16B .13C .0D .∞【答案】A【解析】2332200001sin sin 1cos 12lim lim lim lim sin 336x x x x xx x x x x x x x x →→→→---====.9.已知函数()()()f x x a g x =-,其中()g x 在点x a =处可导,则()f a '=( )A .0B .'()g aC .()g aD .()f a【答案】C 【解析】00()()()0()limlim ()x x f a x f a xg a x f a g a x x→→+-+-'===.10.已知曲线2()f x x =与3()g x x =,当它们的切线相互垂直时,自变量x 的值应为( )A .1-B. C .16-D【答案】B【解析】()2f x x '=,2()3g x x '=,两曲线的切线相互垂直,即()()1f x g x ''⋅=-,即2231x x ⋅=-,即x =11.已知函数()f x x =,则该函数()f x 在点0x =处( ) A .连续且可导 B .不连续C .连续但不可导D .左右导数均不存在【答案】C【解析】00lim ()lim 0(0)x x f x x f →→===,故()f x 在0x =处连续; 00()(0)(0)lim lim 1x x f x f x f x x ---→→--'===-,00()(0)(0)lim lim 1x x f x f xf xx +++→→-'===,故()f x 在0x =处不可导.12.已知函数()cos f x x =在闭区间[]0,2π上满足罗尔定理,那么在开区间(0,2)π内使得等式'()0f ξ=成立的ξ值是( )A .2πB .πC .0D .2π【答案】B【解析】()cos f x x =,()sin f x x '=-,令()sin 0f x x '=-=,02x π<<,可得x π=,即ξπ=.13.已知函数()f x 在邻域(,)δδ-内连续,当(,0)x δ∈-时,'()0f x <,当(0,)x δ∈时,'()0f x >,则在邻域(,)δδ-内( )A .(0)f 是极小值B .(0)f 是极大值C .(0)f 不是极值D .(0)f 是最大值【答案】A【解析】由题可知()f x 在(,0)δ-上单调减少,在(0,)δ上单调增加,又由()f x 在(,)δδ-内连续,可知()f x 在0x =处取得极小值.14.已知函数()f x 在开区间(,)a b 内有:'()0f x <且"()0f x >,则在开区间(,)a b 内,()f x 是( ) A .单调递减且形状为凸 B .单调递增且形状为凸C .单调递减且形状为凹D .单调递增且形状为凹【答案】C【解析】'()0f x <,说明()f x 在(,)a b 内单调递减,"()0f x >,说明()f x 在(,)a b 内为凹函数.15.已知曲线52y x =+,则该曲线的拐点(,)x y =( )A .(0,2)B .(1,3)C .(0,0)D .(1,1)-【答案】A【解析】45y x '=,320y x ''=,令0y ''=,得0x =,且0x <时0y ''<,0x >时0y ''>,故(0,2)为曲线的拐点.16.已知函数()F x 是()f x 的一个原函数,则不定积分(2)f x dx =⎰( )A .1()2F x C +B .1(2)2F x C +C .()F x C +D .(2)F x C +【答案】B【解析】11(2)(2)(2)(2)22f x dx f x d x F x C ==+⎰⎰.17.已知函数0()sin xf x t tdt =⎰,则'()f x =( )A .sin xB .cos x xC .cos x x -D .sin x x【答案】D 【解析】()'()sin sin xf x t tdt x x '==⎰.18.已知函数()f x 在闭区间[,]a a -上连续,则定积分4sin aa x xdx -=⎰( ).A .-1B .0C .1D .不确定【答案】B【解析】由于被积函数4sin x x 为奇函数,故4sin 0aa x xdx -=⎰.19.已知定积分1210I x dx =⎰,1320I x dx =⎰,则有( )A .12I I >B .12I I =C .12I I <D .不确定【答案】A【解析】当01x ≤≤时,23x x >,且等号只在端点处成立,故112300x dx x dx >⎰⎰,即12I I >.20.已知函数()y f x =在闭区间[,]a a -上连续,且()0f x ≥,则由曲线()y f x =与直线x a =,x b =,0y =所围成的平面图形的面积是( )A .()baf x dx ⎰B .()abf x dx ⎰C .()()()f b f a b a --D .不确定【答案】A【解析】由定积分的几何意义可知A 正确.21.已知下列微分方程,则可进行分离变量的是( ) A .'3sin xy y x -= B .2(cos )()0x y x dy y x dx -++=C .'sin cos y x y =D .'420yy y x -==【答案】C 【解析】C 中sin cos dyx y dx=,分离变量,得sin cos dy xdx y =.22.已知微分方程''5'0y y ay -+=的一个解为2x e ,则常数a =( )A .4B .3C .5D .6【答案】D【解析】22()2x x e e '=,22()4x x e e ''=,代入微分方程,得2224520x x x e e ae -⨯+=,6a =.23.下列各组角中,可以作为向量的一组方向角的是( )A .,,446πππB .,,432πππC .,,434πππD .,,433πππ【答案】D【解析】由于方向角α,β,γ必须满足222cos cos cos 1αβγ++=,可以验证只有D 正确.24.已知函数2223z x xy y =+-,则2zx y∂∂∂=( )A .2-B .2C .6D .3【答案】D【解析】43zx y x∂=+∂,23z z x y y x ∂∂∂⎛⎫== ⎪∂∂∂∂⎝⎭.25.某公司要用铁板做成一个容积为327m 的有盖长方体水箱,为使用料最省,则该水箱的最小表面积应为( )A .354mB .327mC .39mD .36m【答案】A【解析】设长方形的长宽分别为a 、b ,则高为27ab,于是,表面积2727545422S ab ab b a b a ⎛⎫=++=++ ⎪⎝⎭,令2254205420S b a a S a bb ∂⎧=-=⎪⎪∂⎨∂⎪=-=⎪∂⎩,得33a b =⎧⎨=⎩,且驻点唯一,由于实际问题最值一定存在,可知最小表面积354S m =.26.已知平面闭区域22:116D x y ≤+≤,则二重积分3Ddxdy =⎰⎰( )A .45πB .45C .48πD .48【答案】A【解析】22333(41)45D Ddxdy S πππ==⋅-⋅=⎰⎰.27.已知100(,)(,)Df x y d dx f x y dy σ=⎰⎰⎰,将积分次序改变,则(,)D f x y d σ=⎰⎰( )A .2110(,)y dy f x y dx ⎰⎰ B .2101(,)y dy f x y dx ⎰⎰C .2110(,)y dy f x y dx ⎰⎰D .2011(,)y dy f x y dx ⎰⎰【答案】A【解析】2110(,)(,)D y f x y d dy f x y dx σ=⎰⎰⎰⎰.28.已知L 为连接(1,0)及(0,1)两点的直线段,则曲线积分()L x y ds +=⎰( )A .2BC .1D .0【答案】B【解析】由于直线段L 的方程为1x y +=,故()Lx y ds +==⎰⎰29.下列级数绝对收敛的是( )A .1(1)nn ∞=-∑B .111(1)3n n n n ∞--=-∑ C .1(1)sinnn nπ∞=-∑D .2112(1)!xn n n ∞+=-∑ 【答案】B【解析】对于B 项,121(1)3n n nu --=-,111113lim lim lim 1333n n n n n nn n u n n u n +→∞→∞→∞-++===<,故1n n u ∞=∑收敛,原级数绝对收敛.30.已知级数1n n μ∞=∑,则下列结论正确的是( )A .若lim 0n x μ→∞=,则1n n μ∞=∑收敛 B .若1n n μ∞=∑的部分和数列{}n S 有界,则1n n μ∞=∑收敛C .若1n n μ∞=∑收敛,则1n n μ∞=∑绝对收敛D .若1n n μ∞=∑发散,则1n n μ∞=∑也发散【答案】C【解析】A 项中若1n nμ=,结论不成立;B 项中若(1)n n μ=-,结论不成立;D 项中若1(1)nn nμ=-,结论不成立;由绝对收敛的定义知,C 正确.二、填空题(每小题2分,共20分)31.已知函数()1f x x =-,则()f x 的反函数y =________. 【答案】1y x =+【解析】由1y x =-,得1x y =+,交换x ,y 的位置,得反函数为1y x =+,x R ∈.32.极限21lim 31n n n →∞+=+________. 【答案】0【解析】222111lim lim 01313n n n n n n n →∞→∞++=++33.已知函数1,1()1,1x x f x x +≠⎧=⎨=⎩,则点1x =是()f x 的________间断点. 【答案】可去【解析】()11lim ()lim 12x x f x x →→=+=,而(1)1f =,故1x =是()f x 的可去间断点.34.已知函数()ln f x x =为可导函数,则()f x 在点 1.01x =处的近似值为________. 【答案】0.01【解析】由000()()()f x x f x f x x '+∆≈+∆,故(10.01)(1)(1)0.010.01f f f '+≈+⋅=.35.不定积分cos(32)x dx +=⎰________. 【答案】1sin(32)3x C ++【解析】11cos(32)cos(32)(32)sin(32)33x dx x d x x C +=++=++⎰⎰.36.定积分0sin 2xdx π=⎰________.【答案】2 【解析】000sin 2sin 2cos22222x x x x dx d πππ==-=⎰⎰.37.已知函数22ln()z x y =+,则全微分(1,1)dz =________.【答案】dx dy +【解析】222z x x x y ∂=∂+,222z y y x y ∂=∂+,则(1,1)(1,1)(1,1)222222xy dz dx dy dx dy x y x y =+=+++.38.与向量{}3,4,1-平行的单位向量是________.【答案】± 【解析】=±=±e .39.微分方程'x y y e -=的通解是________. 【答案】ln()x y e C =+【解析】xy dy e dx e=,分离变量,得y x e dy e dx =,两边积分,得y x e e C =+,即通解为ln()x y e C =+.40.幂级数1(21)nn n x ∞=+∑的收敛半径R =________.【答案】1 【解析】121lim lim 123n n n na n R a n +→∞→∞+===+.三、计算题(每小题5分,共50分) 41.求极限1lim(1sin )xx x →∞+.【答案】e【解析】原式111sin lim sin sin lim(1sin )x x x x xxx x ee →∞⋅⋅⋅→∞=+==.42.已知函数()f x 为可导函数,且()0f x ≠,求函数y =【解析】[]121()()2y f x f x -''=⋅.43.计算不定积分21xdxx +⎰. 【答案】21ln(1)2x C ++【解析】原式()222111ln(1)212d x x C x +==+++⎰.44.计算定积分⎰【答案】1【解析】11111t t tt te dt tde te e dt ===-=⎰⎰⎰⎰.45.求过点(1,2,1)A ,且与直线240:320x y z l x y z -+=⎧⎨--=⎩平行的直线方程. 【答案】1219710x y z ---== 【解析】所求直线的方向向量为()2419,7,10312=-=--i j ks ,又直线过点(1,2,1)A ,故所求直线方程为1219710x y z ---==. 46.已知函数(,)z f x y =由方程22240x y z z ++-=所确定,求全微分dz . 【答案】2xdx ydy z+- 【解析】方程两边微分,得22240xdx ydy zdz dz ++-=,整理得2xdx ydy dz z +=-.47.计算二重积分22x y D e dxdy +⎰⎰,其中D 是环形域2214x y ≤+≤.【答案】()4e e π- 【解析】()222222224011122x y r r D edxdy d e rdr e dr e e πθππ+=⋅=⋅=-⎰⎰⎰⎰⎰.48.求微分方程'xy e y x x+=的通解. 【答案】()1x y e C x=+ 【解析】()()11ln ln 11x xdx dx x x x x x x e e y e e dx C e e dx C e dx C e C x x x x --⎛⎫⎛⎫⎰⎰=+=+=+=+ ⎪ ⎪⎝⎭⎝⎭⎰⎰⎰.49.求幂级数11(1)(1)n n n x n∞-=--∑的收敛区间. 【答案】(0,2) 【解析】11(1)lim lim 11(1)n n n n n nu x n x u n x ++→∞→∞-=⋅=-+-,令11x -<,得111x -<-<,即02x <<,故收敛区间为(0,2).50.求级数11n n nx∞-=∑的和函数.【答案】()()211S x x =-,()1,1x ∈-【解析】易求得此级数的收敛域为()1,1-,设()11n n S x nx ∞-==∑,()1,1x ∈-,则11000111()1xxx n n n n n n x S t dt nt dt nt dt x x ∞∞∞--===⎛⎫==== ⎪-⎝⎭∑∑∑⎰⎰⎰,()1,1x ∈-,两边求导,得()()2111x S x x x '⎛⎫== ⎪-⎝⎭-,故原级数的和函数为()()211S x x =-,()1,1x ∈-.四、应用题(每小题7分,共14分)51.计算由曲线0x =,x y e =,y e =所围成的平面图形的面积.【答案】1【解析】所求平面图形的面积()101x S e e dx =-=⎰.52.某公司主营业务是生产自行车,而且产销平衡,公司的成本函数3()400002000.002C x x x =+-,收入函数3()3500.004R x x x =-,则生产多少辆自行车时,公司的利润最大?【答案】37500【解析】公司的利润22()()()3500.004400002000.002L x R x C x x x x x =-=---+21500.00240000x x =--,1500.004L x '=-,令0L '=,得唯一驻点37500x =,且0L ''<,由实际问题知最大值一定存在,故37500x =时,L 取得最大值,即生产37500辆自行车时,公司利润最大.五、证明题(6分)53.已知方程11730x x x x --+=有一正根1x =,证明方程1062117310x x x --+=必有一个小于1的正根.【证明】令1173()f x x x x x =--+,则根据题意可知(1)0f =,因为()f x 在[]0,1上连续,在()0,1内可导,且(0)(1)0f f ==,故由罗尔定理可知:()0,1ξ∃∈,使得()0f ξ'=,即1062117310ξξξ--+=,故方程1062117310x x x --+=必有一个小于1的正根.。
绝密★启用前江苏省2015年普通高校专转本选拔考试高等数学 试题卷注意事项:1.本试卷分为试题卷和答题卡两部分.试题卷共3页,全卷满分150分,考试时间120分钟. 2.必须在答题卡上作答,作答在试题卷上无效,作答前务必将自己的姓名和准考证号准确清晰地填写在试题卷和答题卡上的指定位置. 3.考试结束时,须将试题卷和答题卷一并交回.一、选择题(本大题共6小题,每小题4分,共24分,在下列每小题中,选出一个正确答案,请在答题卡上将所选的字母标号与黑) 1.当0=x 时,函数sin ()1e=−xf x 是函数()=g x x 的( C ).A .高阶无穷小B .低阶无穷小C .同阶无穷小D .等价无穷小解 sin 000()1e sin limlim lim 1()x x x x f x xg x x x→→→−−===−,答案:C . 2.函数(1)=−x y x (1<x )的微分d y 为( B ).A .(1)[ln(1)]d 1−−+−x xx x x xB .(1)[ln(1)1−−−−x xx x x xC .1(1)d −−x x x xD .1(1)d −−−x x x x解 ln ln(1)y x x =−,1ln(1)1x y x yx ′=−−−,(1)[ln(1)]1x x y x x x ′=−−−−,d d (1)[ln(1)]d 1x xy y x x x x x′==−−−−,答案:B . 3.0=x 是函数11e 10()e 110x xx f x x ⎧+⎪≠⎪=⎨−⎪⎪=⎩的( B ).A .无穷间断点B .跳跃间断点C .可去间断点D .连续点解 11e 1lim ()lim 1e 1xx x xf x −−→→+==−−,11110e 11e lim ()lim lim 1e 11exx x x x xxf x +−−−→→→−++===−−,答案:B .4.设()F x 是函数()f x 的一个原函数,则(32)d −=⎰f x x ( A ).A .1(32)2−−+F x cB .1(32)2−+F x cC .2(32)−−+F x cD .2(32)−+F x c解11(32)d (32)d(32)(32)22f x x f x x F x c −=−−−=−−+⎰⎰,答案:A . 5.下列级数条件收敛的是( D ).A .()211n n nn∞=−−∑B .11(1)21n n n n ∞=+−−∑C .1!(1)∞=−∑nn n n n D .211(1)∞=+−∑n n n n解 答案:D . 6.二次积分()e11ln d ,d =⎰⎰yy f x y x ( D ).A .e11ln d (,)d ⎰⎰x x f x y yB .1e0e d (,)d ⎰⎰x x f x y yC .1e 00d (,)d ⎰⎰xx f x y yD .1e 01d (,)d ⎰⎰x x f x y y解()e11e 1ln 01d ,d d (,)d xyy f x y x x f x y y =⎰⎰⎰⎰,答案:D .二、填空题(本大题共6小题,每小题4分,共24分)7.设()lim(1)n n x f x n →∞=−,则(ln 2)=f ▲ .12解 ()lim(1lim{[1()]}e n n x x x n n x x f x n n−−−→∞→∞=−=+−=,ln 21(ln 2)e 2f −==.8.设曲线33211⎧=−+⎪⎨=+⎪⎩x t t y t 在点(02),处的切线方程为 ▲ .32y x =+ 解 由2y =得1t =,22d d 3d d d 32d yy t t x x t t==−,1d 3d t y x ==,切线方程为23y x −=,即32y x =+. 9.设向量 b 与向量(121)=−− ,,a 平行,且12⋅=a b ,则= b ▲ .(242)−−,,解 由于||a b ,所以(2)b a λλλλ==−− ,,,则4612a b λλλλ⋅=++== ,解得2λ=, 因而(242)b =−−,,.10.设1()21=+f x x ,则()()=n f x ▲ .()1(1)2!()(21)n n n n n f x x +−⋅=+解 111()12122f x x x ==⋅++,()111(1)!(1)2!()12(21)()2n n n n n n n n f x x x ++−−⋅==++. 11.微分方程2′−=xy y x 满足初始条件12==x y 的特解为 ▲ .2y x x =+ 解 由2′−=xy y x 得y y x x ′−=,于是有1()p x x=−,()q x x =,则有 11d d ()d ()de (()e d )e (e d )()xx p x xp x x x x y q x x c x x c x x c −−⎰⎰⎰⎰=+=+=+⎰⎰,又12==x y 得1c =,所以2y x x =+ 12.幂级数1)∞=−nn n x 的收敛域为 ▲ .13[,22解2n n ==,则有1|1|2x −<,解得1322x <<,当12x =时,级数n n ∞=收敛,当32x =时,级数n ∞=发散,因而收敛域为13[,22 . 三、计算题(本大题共8小题,每小题8分,共64分)13. 求极限020arcsin d lim2e 22→−−−⎰xxx t t tx x .解 20200000arcsin d arcsin 2lim lim lim lim lim 12e 222e 222e 222e 2xxx x x x x x x x t t tx x x x xx x x x x→→→→→=====−−−−−−−−⎰.14. 设2sin 0()0−⎧≠⎪=⎨⎪=⎩x x x f x x x ,求()′f x .解 当0x ≠时,243(1cos )(sin )22sin cos ()x x x x x x x x xf x x x −−−−−′==;当0x =时,232200001()(0)sin 1cos 12(0)lim lim lim lim 336x x x x xf x f x x x f x x x x →→→→−−−′=====. 所以32sin cos 0()106x x x xx x f x x −−⎧≠⎪⎪=⎨⎪=⎪⎩.15. 求通过直线112215x y z +−+==与平面32100++−=x y z 的交点.且与直线230240−++=⎧⎨+−−=⎩x y z x y z 平行的直线方程. 解 令112215x y z t +−+===,则有21x t =−,1y t =+,52z t =−,于是有 3(21)2(1)(52)100t t t −+++−−=,解得1t =,所以所求直线经过点(123),,,依题意所求直线的方向向量11253211i j ks i j k =−=−++−,因而所求直线方程为123153x y z −−−==−.16.求不定积分3x .解3x3sin x t=令3227sin 3cos d 27(1cos )sin d 3cos t t t t t t t =−⎰⎰2227(sin d cos sin d )27(cos cos d cos )t t t t t t t t =−=−+⎰⎰⎰ 39cos 27cos t t c=−+3sin xt =3122221(9)9(9)3x x c −−−+218)x c =++. 17. 计算定积分222()sin d ππ−+⎰x x x x .解2222022222()sin d sin d sin d 2sin d x x x x x x x x x x x x x πππππππ−−−+=+=⎰⎰⎰⎰222202d cos 2(cos cos d )2sin 2x x x x x x xππππ=−=−−==⎰⎰.18. 设(())ϕ=,xz f x y ,其中函数f 具有二阶连续偏导数,函数ϕ具有连续导数,求2∂∂∂z x y . 解 设x u y=,()v x ϕ=,则(,)z f u v =,121()z f x f x y ϕ∂′′′=+∂,2111212321()z x x x f f f x y y y y ϕ′∂′′′′′=−−−∂∂. 19. 计算二重积分d d ⎰⎰Dxy x y ,其中D为曲线=y =y x 及直线2=y 所围成的平面闭区域.解221d d d d 2yDxy x y y y x y x y ==⋅⎰⎰22421(2)d (14y y y y y =⋅−=−=.20. 已知2312e e e =++x x x y C C x 是二阶常系数非齐次线性微分方程()′′′++=y py qy f x 的通解,试求该微分方程.解 依题意对应齐次线性方程的特征方程为(1)(2)0r r −−=,即2320r r −+=,则对应齐次线性方程为320y y y ′′′−+=;设*3e x y x =,则*333e e 3(31)e x x x y x x ′=+⋅=+,*333e (31)e 3x x y x ′′=++⋅33(32)e x x =+,于是***3()32(23)e x f x y y y x ′′′=−+=+,则该微分方程为332(23)e x y y y x ′′′−+=+四、综合题(本大题共2小题,每小题10分,共20分)21.设D 是由曲线2=y x 与直线y ax =(0)>a 所围成的平面图形,已知D 分别绕两坐标轴旋转一周所形成的旋转体的体积相等,试求: (1)常数a 的值; (2)平面图形D 的面积.解 554012d 315a x a V a x x πππ=−=⎰,24401d 36a y a V y y a πππ=−=⎰. (1)依题意有x y V V =,解得54a =;(2)平面图形D 的面积223300111()d ()236aaS ax x x ax x a =−=−=⎰,当54a =时,315125(64384S ==. 22.设2()(1)+=+ax bf x x 在点1=x 处取得极值14−,试求: (1)常数,a b 的值;;(2)曲线()=y f x 的凹凸区间与拐点; (3)曲线()=y f x 的渐近线.解 243(1)()2(1)2()(1)(1)a x ax b x ax a bf x x x +−+⋅+−+−′==++.(1)依题意有11()44104a b b ⎧+=−⎪⎪⎨⎪−=⎪⎩ ,解得10a b =−⎧⎨=⎩;(2)31()(1)x f x x −′=+,3264(1)(1)3(1)42()(1)(1)x x x xf x x x +−−⋅+−′′==++,令()0f x ′′=,解得2x =.由表可知:曲线在(,2)−∞是凹的,在(2,)+∞是凸的,拐点为2(2,)9−;(3)由于2lim ()lim0(1)x x x f x x →∞→∞−==+,211lim ()lim (1)x x xf x x →−→−−==∞+,所以曲线有一条水平渐近线0y =,一条垂直渐近线1x =−.五、证明题(本大题共2小题,每小题9分,共18分) 23. 证明:当01<<x 时,(2)ln(1)2−−>x x x . 证明 设()(2)ln(1)2f x x x x =−−−,2()ln(1)2ln(1)11x xf x x x x x−′=−−−=−+−−, 2211()01(1)(1)xf x x x x −′′=+=>−−−,因而当0x >时,()(0)0f x f ′′>=,从而有()(0)0f x f >=,即(2)ln(1)20x x x −−−>,即有(2)ln(1)2−−>x x x .24. 设()=,z z x y 是由方程22()+=−y z xf y z 所确定的函数,其中f 为可导函数,证明∂∂+=∂∂z zxz y x y. 证明 依题意有2z z f xzf x x ∂∂′=−∂∂,1(22)z z x y z f y y∂∂′+=−∂∂ ,解得12z f x xzf ∂=′∂+,2112z xyf y xzf ′∂−=′∂+,于是有(21)2212121212z z xf z xyf xf xyzf z xf xyzf xf y xz y x y xzf xzf xzf xzf ′′′∂∂−+−+−++=+===′′′′∂∂++++.。
成人高考成考高等数学(二)(专升本)自测试卷(答案在后面)一、单选题(本大题有12小题,每小题7分,共84分)1、设函数(f(x)=x3−3x+2),则(f(x))在区间[-2, 2] 上的最大值为:A、2B、4C、6D、82、已知函数(f(x)=e x lnx),则该函数的定义域是:A.((0,+∞))B.((−∞,0))C.((0,1))D.((1,+∞))3、设函数f(x)=x3−3x2+2在区间[−1,3]上的最大值为M,最小值为m。
则M−m 的值是:A. 4B. 6C. 8D. 10),则该函数的间断点是:4、设函数(f(x)=11+x2A.(x=0)B.(x=1)C.(x=−1)D.(x)无间断点5、设函数(f(x)=x3−3x+1),则该函数在区间 [-2, 2] 上的最大值为:A、4B、3C、2D、16、设函数f(x)=x3−6x2+9x+1,则该函数的极值点为:A.x=1B.x=2C.x=3D.x=47、若函数(f(x)=ln(x2+1)),则(f(x))在(x=1)处的导数(f′(1))是:)A、(12B、1C、2)D、(238、设函数(f(x)=x3−6x2+9x+1),则函数的极值点个数是:A. 0B. 1C. 2D. 39、设函数(f(x)=3x2−4x+5),则该函数的对称轴为:A.(x=1))B.(x=−13)C.(x=23D.(x=2)10、在下列函数中,连续函数为:())(x∈R)A.(f(x)=1x3)(x∈R)B.(f(x)=√xC.$( f(x) =)$D.(f(x)=|x|)(x∈R)),则(f′(0))的值为:11、已知函数(f(x)=1x2+1A. 0B. 1C. -1D. 不存在),求(f′(x))。
12、设函数(f(x)=2x+3x−1)A.(2(x−1)2B.(2x2−1)C.(2(x+1)(x−1))D.(1x−1)二、填空题(本大题有3小题,每小题7分,共21分)1、设函数(f(x)=e ax+b),其中(a,b)为常数,若(f(x))的单调递减区间为((−∞,1a)),则(a)的取值范围为______ 。
成人高考成考高等数学(二)(专升本)复习试卷(答案在后面)一、单选题(本大题有12小题,每小题7分,共84分)1、设函数(f(x)=2x−3x),则函数的零点个数是:A. 1B. 2C. 3D. 02、设函数(f(x)=e x sinx),则该函数的导数(f′(x))为:A.(e x(sinx+cosx))B.(e x(sinx−cosx))C.(e x cosx)D.(e x sinx)3、设函数f(x)=x3-6x2+9x,若函数在x=1处取得极值,则该极值是:A. 4B. 0C. -4D. 84、下列函数中,定义域为实数集的有()A、f(x) = √(x^2 - 1)B、g(x) = 1/xC、h(x) = |x| + 1D、k(x) = √(-x)5、设函数(f(x)=x3−3x+2),则(f(x))的极值点为:A.(x=−1)和(x=1)B.(x=−1)和(x=2)C.(x=0)和(x=1)D.(x=0)和(x=2)6、设函数(f(x)=3x2−4x+1),则该函数的图像开口方向是:A. 向上B. 向下C. 水平D. 垂直),其定义域为((−∞,0)∪(0,+∞)),则函数(f(x))在(x=0)处7、设函数(f(x)=1x的极限值为:A. -∞B. +∞C. 0D. 不存在8、若函数(f(x)=x3−3x2+4x+1)在点(x=1)处可导,且其导数的反函数为(g(x)),则(g′(1))等于:B. -1C. 0D. 29、若函数(f(x)=11+x2)的定义域为(D f),则(D f)为:A.((−∞,+∞))B.((−∞,−1)∪(−1,+∞))C.((−∞,−1]∪[−1,+∞))D.((−1,1]∪[1,+∞))10、设函数f(x)=1xlnx,则f(x)的导数f′(x)为:A.−1x2lnx+1x2B.1x2lnx−1x2C.1x lnx−1x2D.−1x lnx+1x211、设函数(f(x)=11+x2),则(f′(0))的值为:A.(−1)B.(0)C.(12)D.(11+02)12、设函数f(x)=x 3−3xx2−1,则f′(1)的值为:A. 1C. 0D. 无定义二、填空题(本大题有3小题,每小题7分,共21分)1、设函数f(x) = x² - 3x + 2,若f(x)在x=1处的导数为0,则f(x)的极值点为______ 。
绝密★启用前江苏省2015年普通高校专转本统一考试试卷高等数学 试卷注意事项:1、本试卷分为试题卷和答题卡两部分,试题卷共3页。
全卷满分150分,考试时间120分钟。
2、必须在答题卡上作答,作答到试题卷上无效。
作答前务必将自己的姓名和准考证号准确清晰的填写在试题卷和答题卡上的指定位置。
3、考试结束时,需将试题卷和答题卡一并交回。
一、单项选择题(本大题共6小题,每小题4分,共24分,在下列每小题中选一个正确答案,请在答题卡上将所选的字母涂黑)1、0x →时,函数sin ()1x f x e =-是函数()g x x =的()B A 高阶无穷小低阶无穷小C 同阶无穷小D 等价无穷小2、函数(1),1xy x x =-<的微分dy 为() 11 (1)[ln(1-x)+]dx B (1-x)[ln(1-x)-]dx 11C x(1)dx D -x(1)dx x x x x x x A x x xx x ------- 3、0x =是函数111,0()11,0x x e x f x e x ⎧+⎪≠⎪=⎨-⎪⎪=⎩的() A 、无穷间断点 B 、跳跃间断点 C 、可去间断点 D 、连续点4、()F x 是()f x 的一个原函数,则(32)f x dx -=⎰( )11 (32) (32) 22C 2(32)D 2(32)A F x C B F x C F x C F x C--+-+--+-+、、、、5、下列级数条件收敛的是()221111(1)1!+1 (1) (1)21+1n n n n n n n n n n n n A B C D n n n n ∞∞∞∞====--+---∑∑∑∑、、、、6、11ln (,)()ey dy f x y dx =⎰⎰1111ln 0e 110001(,) (,) C (,) (,)x x x e x e e A dx f x y dy B dx f x y dy dx f x y dy D dx f x y dy ⎰⎰⎰⎰⎰⎰⎰⎰、、、、、二、填空题(本大题共6小题,每小题4分,共24分)7、设()lim(1)n n x f x n→∞=-则(ln 2)___________f =8、33211x t t y t ⎧=-+⎪⎨=+⎪⎩在点(0,2)处的切线方程为_____________9、设b 与(1,2,1)a =--平行,且12a b =则___________b =10、设1()21f x x =+,则()()_________________n f x =11、微分方程2'xy y x -=满足|12x y ==的特解为______________________12、幂级数11)n n n x ∞=-的收敛域为_________________三、计算题(每小题8分,共64分)13、求极限020arcsin lim 222x x x t tdt e x x →---⎰14、设2sin ,0()0,0x x x f x x x -⎧≠⎪=⎨⎪=⎩,求'()f x15、求过直线112215x y z +-+==与平面32100x y z ++-=的交点且与直线 230240x y z xy z -++=⎧⎨+--=⎩平行的直线方程16、求不定积分317、求定积分222()sin x x xdx ππ-+⎰18、设(,())x z f x yϕ=,求2z x y ∂∂∂19求二重积分D xydxdy ⎰⎰,D 由与y x =及2y =所围成20、已知2312x x x y C e C e xe =++是微分方程"'()y py qy f x ++=的通解,求该微分方程四、综合题(本大题共2小题,每小题10分,共20分)21、设D 是由曲线2y x =与直线(0)y ax a =>所围成的平面图形,已知D 分别绕两坐标轴旋转一周所形成的旋转体的体积相等,试求(1)常数a 的值(2)平面图形D 的面积22、设函数2()(1)ax b f x x +=+在点1x =处取得极值14-,试求 (1)常数,a b 的值(2)曲线()y f x =的凹凸区间与拐点(3)曲线()y f x =的渐近线五、证明题(本大题共2小题,每小题9分,共18分)23、证明01x <<时,(2)ln(1)2x x x -->24、设(,)z z x y =是由方程22()y z xf y z +=-所确定的函数,其中f 为可导函数 证明z z xz y x y ∂∂+=∂∂。
2015年山东专升本(数学)真题试卷(题后含答案及解析)题型有:1. 选择题 2. 填空题 3. 解答题 4. 综合题 5. 证明题一、选择题在每小题给出的四个选项中,只有一项是符合要求的。
1.=A.eB.C.e2D.正确答案:C解析:=e2 2.=A.B.0C.1D.2正确答案:A解析:由等价无穷小代换,.故应选A.3.函数y=ln?sin x?的定义域是_________.其中k为整数.A.x≠B.x∈(一∞,∞),x≠kπC.x=kπD.x∈(一∞,∞)正确答案:B解析:y=ln?sin x?,所以,0<?sin x?≤1,x∈(一∞,+∞),x≠kπ,k为整数,故应选B.4.函数y=是A.奇函数B.偶函数C.非奇非偶函数D.无法确定正确答案:A解析:f(x)==f(x),f(x)为奇函数,故应选A.5.若∫f(x)dx=xe-2x+c,则f(x)等于________.其中c为常数.A.一2xe-2xB.一2x2e-2xC.(1—2x)e-2xD.(1—2x2)e-2x正确答案:C解析:f(x)=(∫f(x)dx)'=e-2x+xe-2x(一2)=e-2x(1—2x),故应选C.6.下列级数中为条件收敛的级数是A.B.C.D.正确答案:D解析:选项A和B的级数通项极限均不存在,故发散;选项C中级数每一项加绝对值变成收敛,所以,该级数绝对收敛,故应选D.7.设∫0xf(t)dt=a3x,则f(x)等于A.3a3xB.a3xlnaC.3a3x-1D.3a3xlna正确答案:D解析:∫0xf(f)dt=a3x,方程两端同时求导得:f(x)=3a3xlna,故应选D.8.曲线y=的水平渐近线为A.y=1B.y=2C.x=一1D.x=50正确答案:B解析:=2,故已知曲线的水平渐近线为直线y=2,故应选B.9.积分区域D为x2+y2≤2,则xdσ=A.2πB.πC.1D.0正确答案:D解析:积分区域关于y轴对称,被积函数f(x,y)=x关于x为奇函数,所以积为0,故应选D.10.广义积分∫0+∞e-2xdx=A.不存在B.C.D.2正确答案:C解析:∫0+∞e-2xdx=,故应选C.二、填空题11.设函数f(x)=函数f(x)的间断点是________,间断点的类型是________.正确答案:x=0第二类间断点解析:因为sin在x=0处没有定义,且不存在,所以x=0为第二类间断点.12.函数f(x)在点x0处可微,f'(x0)=0是点x0为极值点的________条件.正确答案:必要解析:若函数f(x)在点x0处可微,且f'(x0)=0,则x0必为函数极值点,但函数的极值点处不一定导数为零,所以仅是必要条件.13.函数f(x)在点x0处的左、右导数存在且________是函数在点x0可与的________条件.正确答案:相等,充要解析:函数f(x)在点x0处的左右导数存在且相等是函数在点x0可导的充要条件.14.设≠0,则与向量同方向的单位向量=________.正确答案:解析:与非零向量口同方向的单位向量为15.广义积分dx(p>0)当________时收敛,当________时发散.正确答案:0<p<1,p≥1解析:广义积分收敛,即积分存在,且值为一个常数.∫01dx=100∫01x-pdx=(1一01-p)只有当p<1时,积存在,所以0<p<1时广义积分收敛;p≥1时,广义积分发散.16.已知y=xsinx,则dy=________.正确答案:xsinx(cosxlnx+)dx解析:利用对数求导法,先求导数再求微分.方程两边同时取对数,ln y=sinxlnx,方程两边同时关于x求导,y'=cosxlnx+sinx.,得y'=y·(cosxlnx+sinx)因此dy=y'dx=xsinx·(coslnx+sin x)dx.17.对函数f(x)=在区间[1,2]上应用拉格朗日中值定理得f(2)一f(1)=f'(ζ),则ζ=________,其中(1<ζ<2).正确答案:ζ=√2解析:因为f(x)在[1,2]上连续可导,所以由拉格朗日中值定理得:存在ζ∈(1,2),使得f(2)一f(1)=f'(ζ)(2—1),即一=f'(ζ),所以一,解得ζ=√2.18.如果闭区域D由x轴、y轴及x+y=1围成,则(x+y)2dσ________(x+y)3d σ.正确答案:≥解析:在闭区域内,0≤x+y≤1,因此(x+y)2≥(x+y)3,由二重积分保序性知(x+y)3dσ.19.曲线y=e-x2有_________拐点.正确答案:两个解析:y'=e-x3.(一3x2)=一3x2e-x3,y"=(一3x2e-x3)'=一3xe-x3(2—3x3),令y"=0,则x=0,x=.当x<0时,y">0;当0<x<时,y"<0;当x>时,y">0,所以函数有两个拐点.20.直线的方向向量=_________,与平面2x+5y一3z一4=0是_________的.正确答案:s={2,5,一3),垂直解析:该直线的方向向量为s={2,5,一3),平面的法向量为n={2,5,一3),s//n,因此直线垂直于平面.三、解答题解答时应写出推理、演算步骤。
2015年成人高考专升本高等数学二考试真题及参考答案1.A.0B.1/2C.1D.2【答案】A【应试指导】2.【】A.低阶无穷小量B.等价无穷小量C.同阶但不等价无穷小量D.高阶无穷小量【答案】C【应试指导】是2x的同阶但不等价无穷小量.3.【】A.有定义且有极限B.有定义但无极限C.无定义但有极限D.无定义且无极限【答案】B【应试指导】4.【】【答案】C【应试指导】5.下列区间为函数f(x)=x4-4x的单调增区间的是【】A.(一∞,+∞)B.(一∞,O)C.(一1,1)D.(1,+∞)【答案】D6.【】【答案】B7.【】【答案】D-x-1-cosx+C(C为任意常数).8.【】A.-lB.0C.1D.2【答案】C9.【】【答案】A10.【】【答案】D二、填空题(11~20小题,每小题4分,共40分)11._________.【答案】0【应试指导】当x→0时,x是无穷小量,12.13.__________.14._________.15._________.16.________.17._________.18.________.19._________.20.________.三、解答题(21~28题,共70分.解答应写出推理、演算步骤)21.(本题满分8分)【答案】22.(本题满分8分)【答案】23.(本题满分8分)【答案】24.(本题满分8分)【答案】25.(本题满分8分)【答案】等式两边对x求导,得26.(本题满分l0分)【答案】27.(本题满分l0分)【答案】28.(本题满分l0分)从装有2个白球,3个黑球的袋中任取3个球,记取出白球的个数为X.(1)求X的概率分布;(2)求X的数学期望E(X).【答案】。
浙江省2015年选拔优秀高职高专毕业生进入本科学习统一考试高等数学参考答案选择题部分一、选择题:本大题共5小题,每小题4分,共20分。
题号12345答案BBBCD1.B 解析:根据题意,0)()(lim0=→x g x f x x ,0)(lim 0=→x f x x ,0)(lim 0=→x g x x ,所以)()()(lim0x g x g x f x x -→11)()(lim 0-=-=→x g x f x x ,故当0x x →时,)()(x g x f -是)(x g 的同阶无穷小,所以选项B 正确。
2.B 解析:根据题意,)(a f '存在,+-+=--+→→x a f x a f x x a f x a f x x )()(lim )()(lim00)(2)()(lim 0a f xx a f a f x '=--→,所以选项B 正确。
3.B 解析:由)()(x f x F ='可知,)(x F 是)(x f 的一个原函数,即:C x F dx x f +=⎰)()(,可见选项B 正确。
4.C 解析:直线1L 方程的方向向量为:)2,1,1(1-=→s ,直线2L 方程的方向向量为:→→→⨯=211n n s →→→→→→→→→+-=+---=-=k j i k j i kj i 2100120112110210101,所以1L 与2L 的夹角可由公式得到:21cos 2121=⋅⋅=→→→→s s s s θ,所以3πθ=,可见选项C 正确。
5.D 解析:A 选项:根据莱布尼茨判别法,可知级数是收敛的,但是通项加绝对值后得到正项级数∑∞=+1)1ln(1n n ,由于)1ln(11+<n n ,根据小散证大散,推得∑∞=+1)1ln(1n n 是发散的,因此级数)1ln(1)1(11+-∑∞=-n n n 为条件收敛。
B 选项:根据比值判别法,131331lim1<=+-∞→n n n n n ,可知级数是收敛的。
2015年成人高考专升本高等数学二考试真题及参考答案1.
A.0
B.1/2
C.1
D.2
【答案】A
【应试指导】
2.
【】
A.低阶无穷小量
B.等价无穷小量
C.同阶但不等价无穷小量
D.高阶无穷小量
【答案】C
【应试指导】是2x的同阶但不等价无穷小量.
3.
【】
A.有定义且有极限
B.有定义但无极限
C.无定义但有极限
D.无定义且无极限
【答案】B
【应试指导】
4.
【】
【答案】C
【应试指导】
5.
下列区间为函数f(x)=x4-4x的单调增区间的是【】
A.(一∞,+∞)
B.(一∞,O)
C.(一1,1)
D.(1,+∞)
【答案】D
6.
【】
【答案】B
7.
【】
【答案】D
-x-1-cosx+C(C为任意常数).8.
【】
A.-l
B.0
C.1
D.2
【答案】C
9.
【】
【答案】A
10.
【】
【答案】D
二、填空题(11~20小题,每小题4分,共40分)
11.
_________.
【答案】0
【应试指导】当x→0时,x是无穷小量,
12.
13.
__________.
14.
_________.
15.
_________.
16.
________.
17.
_________.
18.
________.
19.
_________.
20.
________.
三、解答题(21~28题,共70分.解答应写出推理、演算步骤)
21.
(本题满分8分)
【答案】
22.
(本题满分8分)
【答案】
23.
(本题满分8分)
【答案】
24.
(本题满分8分)
【答案】
25.
(本题满分8分)
【答案】等式两边对x求导,得
26.
(本题满分l0分)
【答案】
27.
(本题满分l0分)
【答案】
28.
(本题满分l0分)
从装有2个白球,3个黑球的袋中任取3个球,记取出白球的个数为X.
(1)求X的概率分布;
(2)求X的数学期望E(X).
【答案】。