勾股定理单元测试试卷(一)附答案
- 格式:doc
- 大小:242.23 KB
- 文档页数:5
⼋年级下册数学第17章《勾股定理》单元测试题(含答案)⼋年级下册数学第17章《勾股定理》单元测试题(含答案)⼀、选择题(共10⼩题)1.下列各组数中,不是勾股数的是()A.3,4,6B.7,24,25C.6,8,10D.9,12,152.在△ABC中,BC=6,AC=8,AB=10,则该三⾓形为()A.锐⾓三⾓形B.直⾓三⾓形C.纯⾓三⾓形D.等腰直⾓三⾓形3.如图,在边长为1个单位长度的⼩正⽅形⽹格中,点A、B都是格点(即⽹格线的交点),则线段AB的长度为()A.3B.5C.6D.44.我国汉代数学家赵爽为了证明勾股定理,创制了⼀副“弦图”,后⼈称其为“赵爽弦图如图,由弦图变化得到,它是由⼋个全等的直⾓三⾓形拼接⽽成.记图中正⽅形ABCD,正⽅形EFGH,正⽅形MNKT的⾯积分别为S1,S2,S3,若S1+S2+S3=21,则S2的值是()A.9.5B.9C.7.5D.75.如图,是“赵爽弦图”,△ABH、△BCG、△CDF和△DAE是四个全等的直⾓三⾓形,四边形ABCD和EFGH都是正⽅形,如果EF=4,AH=12,那么AB等于()A.30B.25C.20D.156.在我国古代数学著作《九章算术》“勾股”章有⼀题:“今有开门去阃(kǔn)⼀尺,不合⼆⼨,问门⼴⼏何.”⼤意是说:如图,推开双门(AD和BC),门边缘D、C两点到门槛AB距离为1尺(1尺=10⼨),双门间的缝隙CD为2⼨,那么门的宽度(两扇门的和)AB 为()A.100⼨B.101⼨C.102⼨D.103⼨7.2019年10⽉1⽇,中华⼈民共和国70年华诞之际,王梓涵和学校国旗护卫队的其他同学们赶到学校举⾏了简朴⽽降重的升旗仪式.倾听着雄壮的国歌声,⽬送着五星红旗级缓升起,不禁⼼潮澎湃,爱国之情油然⽽⽣.爱动脑筋的王梓涵设计了⼀个⽅案来测量学校旗杆的⾼度.将升旗的绳⼦拉直到末端刚好接触地⾯,测得此时绳⼦末端距旗杆底端2⽶,然后将绳⼦末端拉直到距离旗杆5m处,测得此时绳⼦末端距离地⾯⾼度为1m,最后根据刚刚学习的勾股定理就能算出旗杆的⾼度为()A.10mB.11mC.12mD.13m8.如图,笑笑将⼀张A4纸(A4纸的尺⼨为210mm×297mm,AC>AB)剪去了⼀个⾓,量得CF =90mm,BE=137mm,则剪去的直⾓三⾓形的斜边长为()A.50mmB.120mmC.160mmD.200mm9.如图,铁路MN和公路PQ在点O处交汇,∠QON=30°.公路PQ上A处距O点240⽶.如果⽕车⾏驶时,周围200⽶以内会受到噪⾳的影响.那么⽕车在铁路MN上沿ON⽅向以10⽶/秒的速度⾏驶时,A处受噪⾳影响的时间为()A.32秒B.36秒C.40秒D.44秒10.如图,⼩明(视为⼩⿊点)站在⼀个⾼为10⽶的⾼台A上,利⽤旗杆OM顶部的绳索,划过90°到达与⾼台A⽔平距离为17⽶,⾼为3⽶的矮台B.那么⼩明在荡绳索的过程中离地⾯的最低点的⾼度MN是()A.2⽶B.2.2⽶C.2.5⽶D.2.7⽶⼆、填空题(共8⼩题)11.在Rt△ABC中,∠C=90°,AB=15,BC:AC=3:4,则BC=.12.直⾓三⾓形的两边长为3cm,4cm,则第三边边长为.13.如图,以Rt△ABC的三边向外作正⽅形,其⾯积分别为S1,S2,S3,且S1=6,S3=15,则S2=.14.中国古代三国时期的数学家赵爽,创作了⼀幅“勾股弦⽅图”,通过数形结合,给出了勾股定理的详细证明如图,在“勾股弦⽅图”中,以弦为边长得到的正⽅形ABCD是由4个全等的直⾓三⾓形和中间的⼩正⽅形组成,这⼀图形被称作“赵爽弦图”张天同学要⽤细塑料棒制作“赵爽弦图”,若正⽅形ABCD与正⽅形EFCH的⾯积分别为169和49,则所⽤细塑料棒的长度为.15.已知三⾓形三边长分别为5,12,13,则此三⾓形的最⼤边上的⾼等于.16.如图所⽰的⽹格是正⽅形⽹格,则∠PAB+∠PBA=°(点A,B,P是⽹格线交点).17.勘测队按实际需要构建了平⾯直⾓坐标系,并标⽰了A,B,C三地的坐标,数据如图(单位:km).笔直铁路经过A,B两地.(1)A,B间的距离为km;(2)计划修⼀条从C到铁路AB的最短公路l,并在l上建⼀个维修站D,使D到A,C的距离相等,则C,D间的距离为km.18.如图,在离⽔⾯⾼度为8⽶的岸上,有⼈⽤绳⼦拉船靠岸,开始时绳⼦BC的长为17⽶,此⼈以1⽶每秒的速度收绳,7秒后船移动到点D的位置,问船向岸边移动了⽶.(假设绳⼦是直的)三、解答题(共4⼩题)19.如图,在Rt△ABC中,∠BAC=90°,AB=4,AC=3,DE垂直平分AB,分别交AB、BC于点D、E,AP平分∠BAC,与DE的延长线交于点P.(1)求PD的长度;(2)连结PC,求PC的长度.20.如图,将直⾓三⾓形分割成⼀个正⽅形和两对全等的直⾓三⾓形,直⾓三⾓形ABC中,∠ACB=90°,BC=a,AC=b,AB=c,正⽅形IECF中,IE=EC=CF=FI=x(1)⼩明发明了求正⽅形边长的⽅法:由题意可得BD=BE=a﹣x,AD=AF=b﹣x因为AB=BD+AD,所以a﹣x+b﹣x=c,解得x=(2)⼩亮也发现了另⼀种求正⽅形边长的⽅法:=S△AIB+S△AIC+S△BIC可以得到x与a、b、c的关系,请根据⼩亮的思路完成他的求利⽤S△ABC解过程:(3)请结合⼩明和⼩亮得到的结论验证勾股定理.21.为了积极响应国家新农村建设,遂宁市某镇政府采⽤了移动宣讲的形式进⾏宣传动员.如图,笔直公路MN的⼀侧点A处有⼀村庄,村庄A到公路MN的距离为600⽶,假使宣讲车P周围1000⽶以内能听到⼴播宣传,宣讲车P在公路MN上沿PN⽅向⾏驶时:(1)请问村庄能否听到宣传,请说明理由;(2)如果能听到,已知宣讲车的速度是200⽶/分钟,那么村庄总共能听到多长时间的宣传?22.有⼀架秋千,当它静⽌时,踏板离地的垂直⾼度DE=1m,将它往前推送6m(⽔平距离BC=6m)时,秋千的踏板离地的垂直⾼度BF=4m,秋千的绳索始终拉得很直,求绳索AD 的长度.参考答案⼀、选择题(共10⼩题)1.下列各组数中,不是勾股数的是()A.3,4,6B.7,24,25C.6,8,10D.9,12,15【分析】欲判断是否为勾股数,必须根据勾股数是正整数,同时还需满⾜两⼩边的平⽅和等于最长边的平⽅.【解答】解:A、32+42≠62,不是勾股数,此选项正确;B、72+242=252,是勾股数,此选项错误;C、62+82=102,是勾股数,此选项错误;D、92+122=152,是勾股数,此选项错误.故选:A.2.在△ABC中,BC=6,AC=8,AB=10,则该三⾓形为()A.锐⾓三⾓形B.直⾓三⾓形C.纯⾓三⾓形D.等腰直⾓三⾓形【分析】根据勾股定理的逆定理解答即可.【解答】解:∵在△ABC中,BC=6,AC=8,AB=10,∵BC2+AC2=AB2,∴△ABC是直⾓三⾓形,故选:B.3.如图,在边长为1个单位长度的⼩正⽅形⽹格中,点A、B都是格点(即⽹格线的交点),则线段AB的长度为()A.3B.5C.6D.4【分析】由勾股定理即可得出线段AB的长.【解答】解:由勾股定理得:AB==5;故选:B.4.我国汉代数学家赵爽为了证明勾股定理,创制了⼀副“弦图”,后⼈称其为“赵爽弦图如图,由弦图变化得到,它是由⼋个全等的直⾓三⾓形拼接⽽成.记图中正⽅形ABCD,正⽅形EFGH,正⽅形MNKT的⾯积分别为S1,S2,S3,若S1+S2+S3=21,则S2的值是()A.9.5B.9C.7.5D.7【分析】根据正⽅形的⾯积和勾股定理即可求解.【解答】解:设全等的直⾓三⾓形的两条直⾓边为a、b且a>b,由题意可知:S1=(a+b)2,S2=a2+b2,S3=(a﹣b)2,因为S1+S2+S3=21,即(a+b)2+a2+b2+(a﹣b)2=213(a2+b2)=21,所以3S2=21,S2的值是7.故选:D.5.如图,是“赵爽弦图”,△ABH、△BCG、△CDF和△DAE是四个全等的直⾓三⾓形,四边形ABCD和EFGH都是正⽅形,如果EF=4,AH=12,那么AB等于()A.30B.25C.20D.15【分析】在直⾓三⾓形AHB中,利⽤勾股定理进⾏解答即可.【解答】解:∵△ABH≌△BCG,∴BG=AH=12,∵四边形EFGH都是正⽅形,∴HG=EF=4,∴BH=16,∴在直⾓三⾓形AHB中,由勾股定理得到:AB===20.故选:C.6.在我国古代数学著作《九章算术》“勾股”章有⼀题:“今有开门去阃(kǔn)⼀尺,不合⼆⼨,问门⼴⼏何.”⼤意是说:如图,推开双门(AD和BC),门边缘D、C两点到门槛AB距离为1尺(1尺=10⼨),双门间的缝隙CD为2⼨,那么门的宽度(两扇门的和)AB 为()A.100⼨B.101⼨C.102⼨D.103⼨【分析】画出直⾓三⾓形,根据勾股定理即可得到结论.【解答】解:设OA=OB=AD=BC=r,过D作DE⊥AB于E,则DE=10,OE=CD=1,AE=r﹣1.在Rt△ADE中,AE2+DE2=AD2,即(r﹣1)2+102=r2,解得2r=101.故门的宽度(两扇门的和)AB为101⼨.故选:B.7.2019年10⽉1⽇,中华⼈民共和国70年华诞之际,王梓涵和学校国旗护卫队的其他同学们赶到学校举⾏了简朴⽽降重的升旗仪式.倾听着雄壮的国歌声,⽬送着五星红旗级缓升起,不禁⼼潮澎湃,爱国之情油然⽽⽣.爱动脑筋的王梓涵设计了⼀个⽅案来测量学校旗杆的⾼度.将升旗的绳⼦拉直到末端刚好接触地⾯,测得此时绳⼦末端距旗杆底端2⽶,然后将绳⼦末端拉直到距离旗杆5m处,测得此时绳⼦末端距离地⾯⾼度为1m,最后根据刚刚学习的勾股定理就能算出旗杆的⾼度为()A.10mB.11mC.12mD.13m【分析】根据题意画出⽰意图,设旗杆⾼度为x,可得AC=AD=x,AB=(x﹣1)m,BC=5m,在Rt△ABC中利⽤勾股定理可求出x.【解答】解:设旗杆⾼度为x,可得AC=AD=x,AB=(x﹣1)m,BC=5m根据勾股定理得,绳长的平⽅=x2+12,右图,根据勾股定理得,绳长的平⽅=(x﹣1)2+52,∴x2+22=(x﹣1)2+52,解得x=11.故选:B.8.如图,笑笑将⼀张A4纸(A4纸的尺⼨为210mm×297mm,AC>AB)剪去了⼀个⾓,量得CF =90mm,BE=137mm,则剪去的直⾓三⾓形的斜边长为()A.50mmB.120mmC.160mmD.200mm【分析】解答此题只要把原来的图形补全,构造出直⾓三⾓形解答.【解答】解:延长BE、CF相交于D,则EFD构成直⾓三⾓形,运⽤勾股定理得:EF2=(210﹣90)2+(297﹣137)2=1202+1602=40000,所以EF=200.则剪去的直⾓三⾓形的斜边长为200mm.故选:D.9.如图,铁路MN和公路PQ在点O处交汇,∠QON=30°.公路PQ上A处距O点240⽶.如果⽕车⾏驶时,周围200⽶以内会受到噪⾳的影响.那么⽕车在铁路MN上沿ON⽅向以10⽶/秒的速度⾏驶时,A处受噪⾳影响的时间为()A.32秒B.36秒C.40秒D.44秒【分析】过点A作AC⊥ON,利⽤锐⾓三⾓函数的定义求出AC的长与200m相⽐较,发现受到影响,然后过点A作AD=AB=200m,求出BD的长即可得出居民楼受噪⾳影响的时间.【解答】解:如图:过点A作AC⊥ON,AB=AD=200⽶,∵∠QON=30°,OA=240⽶,∴AC=120⽶,当⽕车到B点时对A处产⽣噪⾳影响,此时AB=200⽶,∵AB=200⽶,AC=120⽶,∴由勾股定理得:BC=160⽶,CD=160⽶,即BD=320⽶,∵⽕车在铁路MN上沿ON⽅向以10⽶/秒的速度⾏驶,∴影响时间应是:320÷10=32秒.故选:A.10.如图,⼩明(视为⼩⿊点)站在⼀个⾼为10⽶的⾼台A上,利⽤旗杆OM顶部的绳索,划过90°到达与⾼台A⽔平距离为17⽶,⾼为3⽶的矮台B.那么⼩明在荡绳索的过程中离地⾯的最低点的⾼度MN是()A.2⽶B.2.2⽶C.2.5⽶D.2.7⽶【分析】⾸先得出△AOE≌△OBF(AAS),得出OE=BF,AE=OF,求出OE+OF=AE+BF =CD=17⽶,得出EF=EM﹣FM =AC﹣BD=7⽶,求出BF=OE=5⽶,OF=12⽶,得出CM=CD﹣DM=CD﹣BF=12⽶,OM=OF+FM=15⽶,由勾股定理求出ON=OA=13⽶,进⽽求出MN的长即可.【解答】解:作AE⊥OM于E,BF⊥OM于F,如图所⽰:则∠OEA=∠BFO=90°,∵∠AOE+∠BOF=∠BOF+∠OBF=90°∴∠AOE=∠OBF在△AOE和△OBF中,,∴△AOE≌△OBF(AAS),∴OE=BF,AE=OF,∴OE+OF=AE+BF=CD=17(⽶)∵EF=EM﹣FM=AC﹣BD=10﹣3=7(⽶),∵OE+OF=2EO+EF=17⽶,∴2OE=17﹣7=10(⽶),∴BF=OE=5⽶,OF=12⽶,∴CM=CD﹣DM=CD﹣BF=17﹣5=12(⽶),OM=OF+FM=12+3=15(⽶),由勾股定理得:ON=OA===13(⽶),∴MN=OM﹣OF=15﹣13=2(⽶).故选:A.⼆、填空题(共8⼩题)11.在Rt△ABC中,∠C=90°,AB=15,BC:AC=3:4,则BC=9.【分析】设BC=3x,AC=4x,⼜其斜边AB=15,再根据勾股定理即可得出答案.【解答】解:设BC=3x,AC=4x,⼜其斜边AB=15,∴9x2+16x2=152,解得:x=3或﹣3(舍去),∴BC=3x=9.故答案为:9.12.直⾓三⾓形的两边长为3cm,4cm,则第三边边长为5或.【分析】根据勾股定理分两种情况解答,⼀是把两边长都看作直⾓边,⼆是把4cm长边看作斜边,根据勾股定理计算即可.【解答】解:(1)若把两边都看作是直⾓边,那么据已知和勾股定理,设第三边长为xcm,则:x2=32+42=25,∴x=5;(2)若把4cm长的边看作斜边,设第三边长为xcm,则:x2+32=42,x2=42﹣32=7,∴x=.故答案为:5或.13.如图,以Rt△ABC的三边向外作正⽅形,其⾯积分别为S1,S2,S3,且S1=6,S3=15,则S2=9.【分析】由三⾓形ABC为直⾓三⾓形,利⽤勾股定理列出关系式,结合正⽅形⾯积公式得到S3=S1+S2,即可求出S2的值.【解答】解:∵△ABC为直⾓三⾓形,∴AB2=AC2+BC2,∵以Rt△ABC的三边向外作正⽅形,其⾯积分别为S1,S2,S3,且S1=6,S3=15,∴S3=S1+S2,则S2=S3﹣S1=15﹣6=9,故答案为:914.中国古代三国时期的数学家赵爽,创作了⼀幅“勾股弦⽅图”,通过数形结合,给出了勾股定理的详细证明如图,在“勾股弦⽅图”中,以弦为边长得到的正⽅形ABCD是由4个全等的直⾓三⾓形和中间的⼩正⽅形组成,这⼀图形被称作“赵爽弦图”张天同学要⽤细塑料棒制作“赵爽弦图”,若正⽅形ABCD与正⽅形EFCH的⾯积分别为169和49,则所⽤细塑料棒的长度为100.【分析】根据正⽅形的⾯积可得两个正⽅形的边长分别为13和7,再根据勾股定理可求得直⾓三⾓形的两条直⾓边长,进⽽求解.【解答】解:∵正⽅形ABCD是由4个全等的直⾓三⾓形和中间的⼩正⽅形组成,∴AE=BF,∠AEB=90°,∵正⽅形ABCD与正⽅形EFCH的⾯积分别为169和49,∴AB=13,EF=7,在Rt△ABE中,BE=BF﹣EF=AE﹣7根据勾股定理,得AE2+BE2=AB2,即AE2+(AE﹣7)2=132解得,AE=12,所以BE=12﹣7=5,所以所⽤细塑料棒的长度为:4(AB+AE)=4(13+12)=100.故答案为100.15.已知三⾓形三边长分别为5,12,13,则此三⾓形的最⼤边上的⾼等于.【分析】根据勾股定理的逆定理,△ABC是直⾓三⾓形,利⽤它的⾯积:斜边×⾼÷2=短边×短边÷2,就可以求出最长边的⾼.【解答】解:∵52+122=132,∴根据勾股定理的逆定理,△ABC是直⾓三⾓形,最长边是13,设斜边上的⾼为h,则S△ABC=×5×12=×13h,解得:h=,故答案为.16.如图所⽰的⽹格是正⽅形⽹格,则∠PAB+∠PBA=45°(点A,B,P是⽹格线交点).【分析】延长AP交格点于D,连接BD,根据勾股定理得到PD2=BD2=1+22=5,PB2=12+32=10,求得PD2+DB2=PB2,于是得到∠PDB=90°,根据三⾓形外⾓的性质即可得到结论.【解答】解:延长AP交格点于D,连接BD,则PD2=BD2=1+22=5,PB2=12+32=10,∴PD2+DB2=PB2,∴∠PDB=90°,∴∠DPB=∠PAB+∠PBA=45°,故答案为:45.17.勘测队按实际需要构建了平⾯直⾓坐标系,并标⽰了A,B,C三地的坐标,数据如图(单位:km).笔直铁路经过A,B两地.(1)A,B间的距离为20km;(2)计划修⼀条从C到铁路AB的最短公路l,并在l上建⼀个维修站D,使D到A,C的距离相等,则C,D间的距离为13km.【分析】(1)由垂线段最短以及根据两点的纵坐标相同即可求出AB的长度;(2)根据A、B、C三点的坐标可求出CE与AE的长度,设CD=x,根据勾股定理即可求出x 的值.【解答】解:(1)由A、B两点的纵坐标相同可知:AB∥x轴,∴AB=12﹣(﹣8)=20;(2)过点C作l⊥AB于点E,连接AC,作AC的垂直平分线交直线l于点D,由(1)可知:CE=1﹣(﹣17)=18,AE=12,设CD=x,∴AD=CD=x,由勾股定理可知:x2=(18﹣x)2+122,∴解得:x=13,∴CD=13,故答案为:(1)20;(2)13;18.如图,在离⽔⾯⾼度为8⽶的岸上,有⼈⽤绳⼦拉船靠岸,开始时绳⼦BC的长为17⽶,此⼈以1⽶每秒的速度收绳,7秒后船移动到点D的位置,问船向岸边移动了9⽶.(假设绳⼦是直的)【分析】在Rt△ABC中,利⽤勾股定理计算出AB长,再根据题意可得CD长,然后再次利⽤勾股定理计算出AD长,再利⽤BD =AB﹣AD可得BD长.【解答】解:在Rt△ABC中:∵∠CAB=90°,BC=17⽶,AC=8⽶,∴AB===15(⽶),∵此⼈以1⽶每秒的速度收绳,7秒后船移动到点D的位置,∴CD=17﹣1×7=10(⽶),∴AD===6(⽶),∴BD=AB﹣AD=15﹣6=9(⽶),答:船向岸边移动了9⽶.故答案为:9.三、解答题(共4⼩题)19.如图,在Rt△ABC中,∠BAC=90°,AB=4,AC=3,DE垂直平分AB,分别交AB、BC 于点D、E,AP平分∠BAC,与DE的延长线交于点P.(1)求PD的长度;(2)连结PC,求PC的长度.【分析】(1)根据等腰直⾓三⾓形的性质解答;(2)作PF⊥AC于F,根据⾓平分线的性质定理求出PF,根据勾股定理计算即可.【解答】解:(1)∵DE垂直平分AB,∴AD=AB=2,∵AP平分∠BAC,∴∠PAD=∠BAC=45°,∴DP=AD=2;(2)作PF⊥AC于F,∵AP平分∠BAC,PD⊥AB,PF⊥AC,∴PF=PD=2,∠PAC=45°,∴AF=PF=2,∴FC=AC﹣AF=1,在Rt△PFC中,PC==.20.如图,将直⾓三⾓形分割成⼀个正⽅形和两对全等的直⾓三⾓形,直⾓三⾓形ABC中,∠ACB=90°,BC=a,AC=b,AB=c,正⽅形IECF中,IE=EC=CF=FI=x(1)⼩明发明了求正⽅形边长的⽅法:由题意可得BD=BE=a﹣x,AD=AF=b﹣x因为AB=BD+AD,所以a﹣x+b﹣x=c,解得x=(2)⼩亮也发现了另⼀种求正⽅形边长的⽅法:=S△AIB+S△AIC+S△BIC可以得到x与a、b、c的关系,请根据⼩亮的思路完成他的求利⽤S△ABC解过程:(3)请结合⼩明和⼩亮得到的结论验证勾股定理.【分析】(1)根据全等三⾓形的性质和线段的和差即得结论;(2)根据⼤三⾓形的⾯积等于三个⼩三⾓形的⾯积和即可求解;(3)综合(1)和(2)的结论进⾏推导即可得结论.=S△ABI+S△BIC+S△AIC【解答】解:(2)因为S△ABC=cx+ax+bx所以x=.答:x与a、b、c的关系为x=.(3)根据(1)和(2)得:x==.即2ab=(a+b+c)(a+b﹣c)化简得a2+b2=c2.21.为了积极响应国家新农村建设,遂宁市某镇政府采⽤了移动宣讲的形式进⾏宣传动员.如图,笔直公路MN的⼀侧点A处有⼀村庄,村庄A到公路MN的距离为600⽶,假使宣讲车P周围1000⽶以内能听到⼴播宣传,宣讲车P在公路MN上沿PN⽅向⾏驶时:(1)请问村庄能否听到宣传,请说明理由;(2)如果能听到,已知宣讲车的速度是200⽶/分钟,那么村庄总共能听到多长时间的宣传?【分析】(1)根据村庄A到公路MN的距离为600⽶<1000⽶,于是得到结论;(2)根据勾股定理得到BP=BQ=800⽶,求得PQ=1600⽶,于是得到结论.【解答】解:(1)村庄能否听到宣传,理由:∵村庄A到公路MN的距离为600⽶<1000⽶,∴村庄能听到宣传;(2)如图:假设当宣讲车⾏驶到P点开始影响村庄,⾏驶QD点结束对村庄的影响,则AP=AQ=1000⽶,AB=600⽶,∴BP=BQ=⽶,∴PQ=1600⽶,∴影响村庄的时间为:1600÷200=8分钟,∴村庄总共能听到8分钟的宣传.22.有⼀架秋千,当它静⽌时,踏板离地的垂直⾼度DE=1m,将它往前推送6m(⽔平距离BC=6m)时,秋千的踏板离地的垂直⾼度BF=4m,秋千的绳索始终拉得很直,求绳索AD。
第一章勾股定理数学八年级上册-单元测试卷-北师大版(含答案)一、单选题(共15题,共计45分)1、如图,在边长为1的正方形ABCD中,将射线AC绕点A按顺时针方向旋转度(< ≤)得到射线AE,点M是点D关于射线AE的对称点,则线段CM长度的最小值为()A. B.0.5 C.1 D.2、勾股定理是几何中的一个重要定理,在我国古算书《周髀算经》中就有“若勾三,股四,则弦五”的记载.如图1是由边长相等的小正方形和直角三角形构成的,可以用其面积关系验证勾股定理.图2是由图1放入矩形内得到的,已知∠BAC=90°,AB=6,AC=8,点D、E、F、G、H、I都在矩形KLMJ的边上,则矩形KLMJ的周长为()A.40B.44C.84D.883、“用长分别为5cm、12cm、13cm的三条线段可以围成直角三角形”这一事件是( )A.必然事件B.不可能事件C.随机事件D.以上都不是4、菱形的两条对角线的分别为60cm和80cm,那么边长是()A.100cmB.80cmC.60cmD.50cm5、三角形三边长分别是3,4,5,则它的最短边上的高为()A.3B.2.4C.4D.4.86、一根竹子高9尺,折断后竹子顶端落在离竹子底端3尺处,折断处离地面高度是()A.3尺B.4尺C.5尺D.6尺7、如图,正方形ABCD的对角线交于点O ,以AD为边向外作Rt△ADE ,∠AED=90°,连接OE , DE=6,OE=,则另一直角边AE的长为().A. B.2 C.8 D.108、如图①所示,有一个由传感器A控制的灯,要装在门上方离地高4.5m的墙上,任何东西只要移至该灯5m及5m以内时,灯就会自动发光.请问一个身高1.5m的学生要走到离墙多远的地方灯刚好发光?()A.4米B.3米C.5米D.7米9、如图,由四个全等的直角三角形和一个小正方形拼成一个大正方形.设直角三角形较长直角边长为a,较短直角边长为b,若(a+b)2=21,大正方形的面积为13.则小正方形的面积为()A.3B.4C.5D.610、如图,AB为⊙O的直径,弦CD⊥AB于E,已知CD=12,BE=2,则⊙O的半径为()A.8B.10C.16D.2011、下列命题不成立的是A.三个角的度数之比为1:3:4的三角形是直角三角形B.三个角的度数比为1::2的三角形是直角三角形C.三边长度比为1::的三角形是直角三角形D.三边长度之比为::2的三角形是直角三角形12、三角形的三边为a、b、c,由下列条件不能判断它是直角三角形的是()A.a:b:c =13∶5∶12B.a 2-b 2=c 2C.a 2=(b+c)(b-c) D.a:b:c=8∶16∶1713、如图,已知Rt△ABC中,∠C=90°,BC=3, AC=4,则sinA的值为()..A. B. C. D.14、如图,∠ACB=90°,CD是斜边上的高,AC=3,BC=4,则CD的长为()A.1.6B.2.4C.2D.2.115、下列长度的三条线段能组成直角三角形的是( )A.2,3,4B.4,6,8C.6,8,10D.5,11,12二、填空题(共10题,共计30分)16、将等腰直角△ABC按如图方法放置在数轴上,点A和C分别对应的数是﹣2和1.以点A为圆心,AB长为半径画弧,交数轴的正半轴于点D,则点D对应的实数为________.17、一根高9m的旗杆在离地4m高处折断,折断处仍相连,此时在3.9m远处耍的身高为1m的小明________危险.(填有或无)18、如图,正方形ABCD的顶点C,A分别在x轴,y轴上,BC是菱形BDCE的对角线.若BC=6,BD=5,则点D的坐标是________.19、我国古代数学家刘徽将勾股形(古人称直角三角形为勾股形)分割成一个正方形和两对全等的三角形,如图所示,已知,则的长度是________.20、菱形的面积为24,其中的一条对角线长为6,则此菱形的周长为________.21、已知菱形的周长为,两条对角线的和为6,则菱形的面积为________22、如图所示的一块地,已知AD=4米,CD=3米,∠ADC=90°,AB=13米,BC=12米,这块地的面积为________m223、已知a、b、c是△ABC三边的长,且满足关系式,则△ABC的形状为________24、如图,在高3米,坡面线段AB长为5米的楼梯表面铺地毯,已知楼梯宽1.5米,地毯售价为40元/平方米,若将楼梯表面铺满地毯,则至少需________元.25、如图,已知以点A(0,1)、C(1,0)为顶点的△ABC中,∠BAC=60°,∠ACB=90°,在坐标系内有一动点P(不与A重合),以P、B、C为顶点的三角形和△ABC全等,则P点坐标为________.三、解答题(共5题,共计25分)26、在 Rt△ABC 中,∠C=90°,∠A、∠B、∠C 的对边分别为a、b、c.若a∶c=15∶17,b=24,求a.27、有一块直角三角形的绿地,量得两直角边长分别为6m和8m,现在要将绿地扩充成等腰三角形,且扩充部分是以8m为直角边的直角三角形,求扩充后等腰三角形绿地的周长.28、小锤和豆花要测量校园里的一块四边形场地ABCD(如图所示)的周长,其中边BC上有水池及建筑遮挡,没有办法直接测量其长度。
第1章勾股定理一.选择题(共8小题,满分32分)1.在△ABC中,∠A=25°,∠B=65°,则下列式子成立的是()A.AC2+AB2=BC2B.AB2+BC2=AC2C.AC2﹣BC2=AB2D.AC2+BC2=AB22.在△ABC中,AB=30,AC=25,高AD=24,则BC的长是()A.25B.18C.25或11D.25或183.如图,字母A所代表的正方形的面积是()A.12B.13C.25D.1944.在下列长度的各组线段中,能构成直角三角形的是()A.3,4,5B.7,8,10C.5,12,14D.1,1,25.如图,在△ABC中,∠C=90°,AB=10,BC=8,点P是边BC上的动点,则AP的长不可能为()A.5B.6C.7D.96.如图为某楼梯,测得楼梯的长为5米,高3米,计划在楼梯表面铺地毯,地毯的长度至少为()A.4米B.8米C.9米D.7米7.勾股定理被誉为“几何明珠”,如图是我国古代著名的“赵爽弦图”,它由4个全等的直角三角形拼成,已知大正方形面积为25,小正方形面积为1,若用a、b表示直角三角形的两直角边(a>b),则下列说法:①a2+b2=25,②a﹣b=1,③ab=12,④a+b=7.正确的是()A.①②B.①②③C.①②④D.①②③④8.如图,一个梯子斜靠在一竖直的墙AO上,测得AO=4m,若梯子的顶端沿墙下滑1m,这时梯子的底端也下滑1m,则梯子AB的长度为()A.5m B.6m C.3m D.7m二.填空题(共9小题,满分36分)9.△ABC中,AC=8,BC=6,在△ABE中,DE为AB边上的高,DE=12,S△ABE=60,则AB=,∠C=°.10.一个直角三角形的两条直角边分别为3cm,4cm,则这个直角三角形斜边上的高为cm.11.某住宅小区有一块草坪如图所示,已知AB=3米,BC=4米,CD=12米,DA=13米,且AB⊥BC,这块草坪的面积是米2.12.已知直角三角形斜边长为10cm,周长为22cm,则此直角三角形的面积为.13.如图,已知△ABC中,AB=6,AC=9,AD⊥BC于D,M为AD上任一点,则MC2﹣MB2=.14.如图是一个三级台阶,它的每一级的长、宽、高分别为20分米,3分米和2分米,A和B是这个台阶的两个端点,A点上有一只蚂蚁想到B点去吃可口的食物,则它所走的最短路线长度为.15.如图,要在河边l上修建一个水泵站,分别向A村和B村送水,已知A村、B村到河边的距离分别为2km和7km,且AB两村庄相距13km,则铺设水管的最短长度是km.16.如图,将一根长为20cm的吸管,置于底面直径为5cm,高为12cm的圆柱形水杯中,设吸管露在杯子外面的长度是为hcm,则h的取值范围是.17.已知在△ABC中,AB=13cm,AC=15cm,高AD=12cm.则△ABC的周长为.三.解答题(共7小题,满分58分)18.如图,有两根长杆隔河相对,一杆高3m,另一杆高2m,两杆相距5m.两根长杆都与地面垂直,现两杆顶部各有一只鱼鹰,它们同时看到两杆之间的河面上E处浮出一条小鱼,于是同时以同样的速度飞下来夺鱼,结果两只鱼鹰同时叼住小鱼.求两杆底部距小鱼的距离各是多少米.(假设小鱼在此过程中保持不动)19.如图是“赵爽弦图”,其中△ABH、△BCG、△CDF和△DAE是四个全等的直角三角形,四边形ABCD 和EFGH都是正方形,根据这个图形的面积关系,可以证明勾股定理.设AD=c,AE=a,DE=b,取c =10,a﹣b=2.(1)正方形EFGH的面积为,四个直角三角形的面积和为;(2)求(a+b)2的值.20.如图,∠C=90°,AC=3,BC=4,AD=12,BD=13.(1)求AB的长;(2)求∠BAD的度数.21.一根直立于水中的芦节(BD)高出水面(AC)2米,一阵风吹来,芦苇的顶端D恰好到达水面的C处,且C到BD的距离AC=6米,求水的深度(AB)为多少米?22.如图,在Rt△ABC中,∠ACB=90°,AC=8cm,BC=6cm,CD⊥AB于D,求:(1)斜边AB的长;(2)△ABC的面积;(3)高CD的长.23.在一条东西走向河的一侧有一村庄C,河边原有两个取水点A,B,其中AB=AC,由于某种原因,由C到A的路现在已经不通,某村为方便村民取水决定在河边新建一个取水点H(A、H、B在一条直线上),并新修一条路CH,测得CB=3千米,CH=2.4千米,HB=1.8千米.(1)问CH是否为从村庄C到河边的最近路?(即问:CH与AB是否垂直?)请通过计算加以说明;(2)求原来的路线AC的长.24.在一款名为超级玛丽的游戏中,玛丽到达一个高为10米的高台A,利用旗杆顶部的绳索,划过90°到达与高台A水平距离为17米,高为3米的矮台B,(1)求高台A比矮台B高多少米?(2)求旗杆的高度OM;(3)玛丽在荡绳索过程中离地面的最低点的高度MN.参考答案一.选择题(共8小题,满分32分)1.解:在△ABC中,∠A=25°,∠B=65°,∴∠C=180°﹣∠A﹣∠B=90°,∴△ABC是直角三角形,∴AC2+BC2=AB2,故选项D正确,选项A、B、C错误,故选:D.2.解:如图1,在Rt△ABD中,BD===18,在Rt△ADC中,CD===7,∴BC=BD+CD=18+7=25,如图2,BC=BD﹣CD=18﹣7=11,综上所述,BC的长为25或11,故选:C.3.解:由勾股定理得:字母A所代表的正方形的面积=169﹣144=25.故选:C.4.解:A、∵32+42=25,52=25,∴32+42=52,∴3,4,5能构成直角三角形,故A符合题意;B、∵72+82=113,102=100,∴72+82≠102,∴7,8,10不能构成直角三角形,故B不符合题意;C、∵52+122=169,142=196,∴52+122≠142,∴5,12,14不能构成直角三角形,故C不符合题意;D、∵1+1=2,∴1,1,2不能构成三角形,故D不符合题意;故选:A.5.解:∵AB=10,BC=8,∴AC==6,则6≤AP≤10,∴AP长不可能是5,故选:A.6.解:由勾股定理得:楼梯的水平宽度==4(米),∵地毯铺满楼梯时其长度的和应该是楼梯的水平宽度与垂直高度的和,地毯的长度至少是3+4=7(米).故选:D.7.解:由图可得,a2+b2=c2=25,故①正确;∵小正方形面积为1,∴小正方形的边长为1,∴a﹣b=1,故②正确;∵大正方形面积为25,小正方形面积为1,∴ab=(25﹣1)÷4,解得ab=12,故③正确;∵a2+b2=25,ab=12,∴(a+b)2=a2+2ab+b2=49,∴a+b=7,故④正确;故选:D.8.解:设BO=xm,由题意得:AC=1m,BD=1m,AO=4m,在Rt△AOB中,根据勾股定理得:AB2=AO2+OB2=42+x2,在Rt△COD中,根据勾股定理得:CD2=CO2+OD2=(4﹣1)2+(x+1)2,∴42+x2=(4﹣1)2+(x+1)2,解得:x=3,∴AB===5(m),即梯子AB的长为5m,故选:A.二.填空题(共9小题,满分36分)9.解:∵S△ABE=60,∴AB•DE=60,即×AB×12=60,解得:AB=10,∵AC2+BC2=82+62=100,AB2=102=100,∴AC2+BC2=AB2,∴∠C=90°,故答案为:10,90.10.解:设斜边上的高为h,∵直角三角形的两条直角边为4cm,3cm,∴斜边的长==5cm,∴3×4=5h,解得h=.故答案为:.11.解:连接AC,如图,∵AB⊥BC,∴∠ABC=90°,∵AB=3米,BC=4米,∴AC=5米,∵CD=12米,DA=13米,∴△ACD为直角三角形,∴草坪的面积等于=S△ABC+S△ACD=3×4÷2+5×12÷2=6+30=36米2.故答案为36.12.解:∵直角三角形斜边长为10cm,周长为22cm,∴设一条直角边为acm,另一条直角边为bcm,∴a+b=22﹣10=12(cm),a2+b2=102=100,∴(a+b)2=a2+b2+2ab=12×12=144,∴2ab=144﹣(a2+b2)=144﹣100=44,∴ab=11.∴此三角形的面积为11cm2.故答案为:11cm2.13.解:在Rt△ABD和Rt△ADC中,BD2=AB2﹣AD2,CD2=AC2﹣AD2,在Rt△BDM和Rt△CDM中,BM2=BD2+MD2=AB2﹣AD2+MD2,MC2=CD2+MD2=AC2﹣AD2+MD2,∴MC2﹣MB2=(AC2﹣AD2+MD2)﹣(AB2﹣AD2+MD2)=AC2﹣AB2=45.故答案为:45.14.解:三级台阶平面展开图为长方形,长为20分米,宽为(2+3)×3分米,则蚂蚁沿台阶面爬行到B点最短路程是此长方形的对角线长.可设蚂蚁沿台阶面爬行到B点最短路程为x分米,由勾股定理得:x2=202+[(2+3)×3]2=252,解得:x=25.答:蚂蚁沿着台阶面爬到B点的最短路程是25分米.故答案为:25分米.15.解:作点A关于河边所在直线l的对称点A′,连接A′B交l于P,则点P为水泵站的位置,此时,(P A+PB)的值最小,即所铺设水管最短;过B点作l的垂线,过A′作l的平行线,设这两线交于点C,过A作AE⊥BC于E,则四边形AA′CE和四边形AMNE是矩形,∴EN=AM=2,EC=AA′=2+2=4,A′C=AE,在Rt△ABE中,依题意得:BE=BN﹣EN=7﹣2=5,AB=13,根据勾股定理可得:AE==12,在Rt△B A′C中,BC=BE+EC=5+4=9,A′C=12,根据勾股定理可得:A′B===15,∵P A=P A′,∴P A+PB=A′B=15(km),故答案为:15.16.解:如图,当吸管、底面直径、杯子的高恰好构成直角三角形时,h最短,此时AB==13,故h最短=20﹣13=7(cm);当吸管竖直插入水杯时,h最大,此时h最大=20﹣12=8(cm).故答案为:7≤h≤8.17.32cm或42cm解:分两种情况说明:(1)当△ABC为锐角三角形时,在Rt△ABD中,BD===5,在Rt△ACD中,CD===9,∴BC=5+9=14,∴△ABC的周长为:15+13+14=42(cm);(2)当△ABC为钝角三角形时,BC=BD﹣CD=9﹣5=4.∴△ABC的周长为:15+13+4=32(cm);故答案为:42cm或32cm.三.解答题(共7小题,满分52分)18.解:由题意可得:AE=DE,则AB2+BE2=EC2+DC2,故22+BE2=(5﹣BE)2+32,解得:BE=3,则EC=5﹣3=2(m),答:两杆杆底到E处的水平距离分别是3m和2m.19.解:(1)∵HE=a﹣b=2,∴S正方形EFGH=HE2=4,∵AD=c=10,∴S正方形ABCD=AD2=100,∴四个直角三角形的面积和=S正方形ABCD﹣S正方形EFGH=100﹣4=96,故答案为:4;96;(2)由(1)可知四个直角三角形的面积和为96,∴4×ab=96,解得2ab=96,∵a2+b2=c2=100,∴(a+b)2=a2+b2+2ab=100+96=196.20.解:(1)∵在△ABC中,∠C=90°,∴AB2=CB2+AC2=42+32=52,∴AB=5;(2)在△ABD中,AB2+AD2=52+122=132,∴AB2+AD2=BD2,∴△ABD为直角三角形,∴∠BAD=90°.21.解:∵先设水深为x,则AB=x,BC=(x+2),∵AC=6米,在△ABC中,AB2+AC2=BC2,即62+x2=(x+2)2,解得x=8(米).答:水深AB为8米.22.解:(1)∵在Rt△ABC中,∠ACB=90°,AC=8cm,BC=6cm,∴AB==10cm;(2)△ABC的面积=AC•BC=×6×8=24cm2;(3)由(2)可知,AC•BC=CD•AB=24,∴CD=4.8(cm).23.解:(1)是,理由是:在△CHB中,∵CH2+BH2=(2.4)2+(1.8)2=9BC2=9∴CH2+BH2=BC2∴CH⊥AB,所以CH是从村庄C到河边的最近路(2)设AC=x在Rt△ACH中,由已知得AC=x,AH=x﹣1.8,CH=2.4由勾股定理得:AC2=AH2+CH2∴x2=(x﹣1.8)2+(2.4)2解这个方程,得x=2.5,答:原来的路线AC的长为2.5千米.24.解:(1)10﹣3=7(米)(2)如图:作AE⊥OM,BF⊥OM,∵∠AOE+∠BOF=∠BOF+∠OBF=90°∴∠AOE=∠OBF在△AOE和△OBF中,,∴△AOE≌△OBF(AAS),∴OE=BF,AE=OF即OE+OF=AE+BF=CD=17(m)∵EF=EM﹣FM=AC﹣BD=10﹣3=7(m),∴2EO+EF=17,则2×EO=10,所以OE=5m,OF=12m,所以OM=OF+FM=15m(3))由勾股定理得OB=OA=ON=13,∴MN=15﹣13=2(m).答:玛丽在荡绳索过程中离地面的最低点的高度MN为2米。
第十七章《勾股定理》单元测试卷(共23题,满分120分,考试用时90分钟)学校班级姓名学号一、选择题(共10小题,每小题3分,共30分)1.如图,一根垂直于地面的旗杆在离地面5 m的B处撕裂折断,旗杆顶部落在离旗杆底部12 m的A处,则旗杆折断部分AB的高度是()A.5 mB.12 mC.13 mD.18 m第1题图第3题图第5题图2.下列各组数据中,不能作为直角三角形的三边长的是()A.3,4,6B.7,24,25C.6,8,10D.9,12,153.如图,在Rt△ABC中,∠ACB=90°.若AB=10,则正方形ADEC和正方形BCFG的面积和为()A.100B.120C.140D.1604.若直角三角形的两条直角边长分别是3和4,则斜边长为()A.2.4B.5C.√7D.75.如图,以数轴的单位长线段为边作一个正方形,数轴的原点为圆心,正方形对角线长为半径画弧,交数轴正半轴于点A,则点A表示的数是()A.1B.1.4C.√2D.√36.在Rt△ABC中,a,b,c为三边长,则下列关系中正确的是()A.a2+b2=c2B.a2+c2=b2C.b2+c2=a2D.以上都有可能7.若一个直角三角形中,斜边的长为13,一条直角边长为5,则这个三角形的面积是()A.60B.30C.20D.328.如图,将风筝放至高30 m,牵引线与水平面夹角约为45°的高空中,则牵引线AB的长约是()A.30 mB.45 mC.20√3 mD.30√2 m第8题图第9题图第10题图9.(跨学科融合)如图,在物理实验课上,小明将长为8 cm的橡皮筋放置在水平面上,固定两端A和B,然后把中点C垂直向上拉升3 cm至点D,则橡皮筋被拉长了()A.3 cmB.2 cmC.6 cmD.4 cm10.如图所示的一块地,已知∠ADC=90°,AD=12 m,CD=9 m,AB=25 m,BC=20 m,则这块地的面积为()A.96 m2B.204 m2C.196 m2D.304 m2二、填空题(共5小题,每小题3分,共15分)11.如图,两个正方形的面积分别是100和36,则字母B所代表的正方形的面积是.第11题图第13题图12.若△ABC的三边长满足a2=b2+c2,则△ABC是直角三角形且∠=90°.13.如图,学校有一块长方形花圃,有极少数人为了避开拐角走“捷径”,在花圃内走出了一条“路”,他们仅仅少走了步路(假设2步为1米),却踩伤了花草.14.如图,∠C=∠ABD=90°,AC=4,BC=3,BD=12,则AD的长等于.第14题图第15题图15.(数学文化)如图是“赵爽弦图”,△ABH,△BCG,△CDF和△DAE是四个全等的直角三角形,四边形ABCD和EFGH都是正方形,如果AH=6,EF=2,那么AB的长等于.三、解答题(一)(共3小题,每小题8分,共24分)16.如图,根据所给条件,求BC的长.17.如果三角形的三边长分别为√2,√6,2,那么这个三角形是直角三角形吗?。
第一章勾股定理单元测试(A卷)(北师大版)参考答案与试题解析一.选择题(共10小题,满分30分,每小题3分)1.(2019春•资阳区校级期中)以下四组数中,不是勾股数的是()A.3n,4n,5n(n为正整数)B.5,12,13C.20,21,29 D.8,5,7【答案】解:A、3n2+4n2=5n2,是勾股数;B、52+122=132,是勾股数;C、202+212=292,是勾股数;D、72+52≠82,不是勾股数;故选:D.【点睛】考查了勾股数,理解勾股数的定义:满足a2+b2=c2的三个正整数称为勾股数,并能够熟练运用.2.(2019春•江岸区校级期中)直角三角形ABC的两条直角边的长分别为1、2,则它的斜边长为()A.B.C.2 D.3【答案】解:由勾股定理得,直角三角形的斜边长==,故选:B.【点睛】本题考查的是勾股定理,如果直角三角形的两条直角边长分别是a,b,斜边长为c,那么a2+b2=c2.3.(2019春•博白县期中)三角形的三边a,b,c满足a2+b2﹣c2=0,则此三角形是()A.锐角三角形B.直角三角形C.钝角三角形D.等边三角形【答案】解:∵a2+b2﹣c2=0,∴a2+b2=c2,∴此三角形是直角三角形.故选:B.【点睛】此题主要考查了勾股定理逆定理,关键是掌握如果三角形的三边a2+b2=c2,那么这个三角形就是直角三角形.4.(2019春•南岗区校级期中)如图,两个正方形的面积分别是100和36,则字母B所代表的正方形的面积是()A.8 B.10 C.64 D.136【答案】解:由勾股定理得,AC2+CD2=AD2,则字母B所代表的正方形的面积=CD2=AC2﹣AD2=100﹣36=64,故选:C.【点睛】本题考查的是勾股定理、正方形的性质,如果直角三角形的两条直角边长分别是a,b,斜边长为c,那么a2+b2=c2.5.(2019春•太原期中)古埃及人曾经用如图所示的方法画直角:把一根长绳打上等距离的13个结,然后以3个结间距、4个结间距、5个结间距的长度为边长,用木桩钉成一个三角形,其中一角便是直角,这样做的道理是()A.直角三角形两个锐角互余B.三角形内角和等于180°C.三角形两边之和大于第三边,两边之差小于第三边D.如果三角形两边的平方和等于第三边的平方,那么这个三角形是直角三角形【答案】解:设相邻两个结点的距离为m,则此三角形三边的长分别为3m、4m、5m,∵(3m)2+(4m)2=(5m)2,∴以3m、4m、5m为边长的三角形是直角三角形.(如果三角形的两条边的平方和等于第三边的平方,那么这个三角形是直角三角形)故选:D.【点睛】此题考查了勾股定理的证明,属于基础题,注意仔细阅读题目所给内容,得到解题需要的信息,比较简单.6.(2019春•江岸区校级期中)下列各组数作为三角形的三边,能组成直角三角形的一组数是()A.2、3、4 B.3、4、5 C.1、、D.、、【答案】解:A、22+32≠42,不能构成直角三角形,故此选项错误;B、32+42=52,能构成直角三角形,故此选项正确;C、12+()2≠()2,不能构成直角三角形,故此选项错误;D、()2+()2≠()2,不能构成直角三角形,故此选项错误.故选:B.【点睛】本题主要考查勾股定理的逆定理的应用.关键是熟练掌握勾股定理的逆定理:如果三角形的三边长a,b,c满足a2+b2=c2,那么这个三角形就是直角三角形.7.(2019春•海阳市期中)如图,在Rt△ABC中,∠ACB=90°,AC=3,BC=4,点D在AB上,AD=AC,AF⊥CD交CD于点E,交CB于点F,则CF的长是()A.1.5 B.1.8 C.2 D.2.5【答案】解:连接DF,如图所示:∵在Rt△ABC中,∠ACB=90°,AC=3,BC=4,∴AB==5,∵AD=AC=3,AF⊥CD,∴CE=DE,BD=AB﹣AD=2,∴CF=DF,在△ADF和△ACF中,,∴△ADF≌△ACF(SSS),∴∠ADF=∠ACF=90°,∴∠BDF=90°,设CF=DF=x,则BF=4﹣x,在Rt△BDF中,由勾股定理得:DF2+BD2=BF2,即x2+22=(4﹣x)2,解得:x=1.5;∴CF=1.5;故选:A.【点睛】本题考查了勾股定理、全等三角形的判定与性质、等腰三角形的性质、线段垂直平分线的性质;熟练掌握勾股定理,证明三角形全等是解决问题的关键.8.(2019春•汉阳区校级期中)如图,一棵大树在离地面6米高的B处断裂,树顶A落在离树底部C的8米处,则大树数断裂之前的高度为()A.16米B.15米C.24米D.21米【答案】解:由题意得BC=6,在直角三角形ABC中,根据勾股定理得:AB==10米.所以大树的高度是10+6=16米.故选:A.【点睛】此题是勾股定理的应用,解本题的关键是把实际问题转化为数学问题来解决.此题也可以直接用算术法求解.9.(2019春•江城区期中)已知等腰三角形的一条腰长是15,底边长是18,则它底边上的高为()A.9 B.12 C.15 D.18【答案】解:过点A作AD⊥BC,∵AB=AC,∴BD=CD=BC=18=9,∴AD==12(cm),∴它底边上的高为12cm;故选:B.【点睛】此题考查了勾股定理,用到的知识点是勾股定理、等腰三角形的性质,关键是作出辅助线,构造直角三角形.10.(2019春•资阳区校级期中)在两条垂直相交的道路上,一辆自行车和一辆摩托车相遇后又分别向北向东驶去,若自行车与摩托车每秒分别行驶2.5米、6米,则10秒后两车相距()米.A.55 B.65 C.75 D.85【答案】解:如图所示:由题意可得,在Rt△ACB中,AC=2.5×10=25米,BC=6×10=60米,则AB===65(米),则10秒后两车相距65米.故选:B.【点睛】此题主要考查了勾股定理的应用,正确画出图形是解题关键.二.填空题(共8小题,满分24分,每小题3分)11.(2019春•海沧区校级期中)Rt△ABC中,∠B=90°,AB=9,BC=12,则斜边上的高为.【答案】解:设AC边上的高为h,∵在Rt△ABC中,∠B=90°,AB=9,BC=12,AC=15,∴AB•BC=AC•h,∴h=.故答案为:【点睛】本题考查的是三角形的面积,熟知三角形的面积公式是解答此题的关键.12.(2019春•越秀区校级期中)如图,已知∠ADC=90°,AD=8m,CD=6m,BC=24m,AB=26m,则图中阴影部分的面积为96m2.【答案】解:在Rt△ADC中,∵CD=6m,AD=8m,∠ADC=90°,BC=24m,AB=26m,∴AC2=AD2+CD2=82+62=100,∴AC=10m,(取正值).在△ABC中,∵AC2+BC2=102+242=676,AB2=262=676.∴AC2+BC2=AB2,∴△ACB为直角三角形,∠ACB=90°.∴S阴影=AC×BC﹣AD×CD=×10×24﹣×8×6=96(m2).故答案是:96m2【点睛】本题考查的是勾股定理的运用和勾股定理的逆定理运用,解题的关键是根据勾股定理求出AC 的长,再根据勾股定理的逆定理判断出△ACB为直角三角形.13.(2019春•鼓楼区校级期中)如图,在△ABC中,∠C=90°,∠B=30°,AD是△ABC的角平分线,DE ⊥AB,垂足为点E,DE=2,则BC=6.【答案】解:∵AD是△ABC的角平分线,∠C=90°,DE⊥AB,∴DC=DE=2,在Rt△BDE中,∠B=30°,∴BD=2DE=4,∴BC=CD+BD=6,故答案为:6.【点睛】本题考查的是勾股定理、角平分线的性质,掌握角的平分线上的点到角的两边的距离相等是解题的关键.14.(2019春•阜阳期中)如图,在一个高为5m,长为13m的楼梯表面铺地毯,则地毯的长度至少是17m.【答案】解:由勾股定理得:楼梯的水平宽度==12,∵地毯铺满楼梯是其长度的和应该是楼梯的水平宽度与垂直高度的和,地毯的长度至少是12+5=17米.故答案为:17m.【点睛】本题考查了勾股定理的知识,与实际生活相联系,加深了学生学习数学的积极性.15.(2019春•花都区期中)如图,从电线杆离地面5m处向地面拉一条长13m的固定缆绳,这条缆绳的固定点距离电线杆底部有12m.【答案】解:∵电线杆、地面及缆绳正好构成直角三角形,AC=5m,BC=13m,∴AB===12m.故答案为:12.【点睛】本题考查的是勾股定理的应用,有利于培养学生理论联系实际的能力.16.(2018秋•景德镇期中)如图,某自动感应门的正上方装着一个感应器,离地2.5米,当物体进入感应器的感应范围内时,感应门就会自动打开.一个身高1.6米的学生正对门,缓慢走到离门1.2米的地方时,感应门才自动打开,则感应器的最大感应距离是 1.5米.【答案】解:如图,过点B作BC⊥AD于点C,依题意知,BE=CD=1.6米,ED=BC=1.2米,AD=2.5米,则AC=AD﹣CD=AD﹣BE=2.5﹣1.6=0.9(米).在Rt△ABC中,由勾股定理得到:AB===1.5(米)故答案是:1.5.【点睛】考查了勾股定理的应用,解题的关键是作出辅助线,构造直角三角形,利用勾股定理求得线段AB的长度.17.(2019春•沂水县期中)如图,一个直径为8cm的杯子,在它的正中间竖直放一根筷子,筷子露出杯子外1cm,当筷子倒向杯壁时(筷子底端不动),筷子顶端刚好触到杯口,则筷子长度为8.5cm.【答案】解:设杯子的高度是xcm,那么筷子的高度是(x+1)cm,由题意:x2+42=(x+1)2,16=2x+1,x=7.5,∴x+1=8.5∴筷长8.5cm,杯高7.5cm.故答案为8.5.【点睛】本题考查勾股定理的应用,解题的关键是理解题意,学会利用参数构建方程解决问题.18.(2019春•武城县期中)如图所示,圆柱的高AB=15cm,底面周长为40cm,现在有一只蚂蚁想要从A 处沿圆柱表面爬到对角C处捕食,则它爬行的最短距离是25cm.【答案】解:把圆柱侧面展开,展开图如右图所示,点A、C的最短距离为线段AC的长.在Rt△ADC中,∠ADC=90°,CD=AB=15,AD为底面半圆弧长,AD=40=20,所以AC===25,故答案为:25cm.【点睛】本题考查了平面展开﹣最短路径问题,解题的关键是会将圆柱的侧面展开,并利用勾股定理解答.三.解答题(共5小题,满分46分)19.(9分)(2019春•路北区期中)在△ABC中,∠C=90°,a、b、c分别为∠A、∠B、∠C的对边.(1)如果a=5,b=12,那么c=13.(2)如果c=61,a=60,那么b=11.(3)若∠A=45°,a=2,则c=2.【答案】解:(1)∵在△ABC中,∠C=90°,a=5,b=12,∴c===13.故答案为13;(2)∵在△ABC中,∠C=90°,c=61,a=60,∴b===11.故答案为11;(3)∵在△ABC中,∠C=90°,∠A=45°,∴∠B=90°﹣∠A=45°,∴∠B=∠A,∴b=a=2,∴c===2.故答案为2.【点睛】本题考查了勾股定理,掌握在任何一个直角三角形中,两条直角边长的平方之和一定等于斜边长的平方是解题的关键.20.(9分)(2019春•高安市期中)已知:如图,四边形ABCD中,AB⊥BC,AB=1,BC=2,CD=3,AD =,求四边形ABCD的面积.【答案】解:连接AC.∵∠ABC=90°,AB=1,BC=2,∴AC===.在△ACD中,AC2+CD2=5+9=14=AD2,∴△ACD是直角三角形,∴S四边形ABCD=AB•BC+AC•CD,=×1×2+××3=1+.故四边形ABCD的面积为1+.【点睛】本题考查的是勾股定理及其逆定理,三角形的面积,能根据勾股定理的逆定理判断出△ACD的形状是解答此题的关键.21.(9分)(2019春•江城区期中)如图,在锐角三角形ABC中,高AD=12,边AC=13,BC=14,求BD 的长.【答案】解:∵AD⊥BC,∴∠ADC=90°,在Rt△ACD中,CD===5,∵BC=14,∴BD=BC﹣CD=9.【点睛】本题考查了勾股定理的运用.关键是利用垂直的条件构造直角三角形,利用勾股定理求解.22.(9分)(2019春•全椒县期中)如图,有两棵树AB和CD,AB=10米,CD=4米,两树之间的距离BD =8米,一只鸟从A处飞到C处,则小鸟至少飞行多少米?【答案】解:连接AC,作CE⊥AB于E,则AE=10﹣4=6(米),CE=BD=8米.所以AC===10(米)即:小鸟至少飞行10米.【点睛】本题考查勾股定理的应用.善于观察题目的信息是解题以及学好数学的关键.23.(10分)(2019春•江城区期中)“远航”号、“海天”号轮船同时离开港口,各自沿一固定方向航行,“远航”号每小时航行16海里,“海天”号每小时航行12海里,它们离开港口一个半小时后相距30海里,如果知道“远航”号沿东北方向航行,你能知道“海天”号沿哪个方向航行吗?【答案】解:根据题意,得PQ=16×1.5=24(海里),PR=12×1.5=18(海里),QR=30(海里).∵242+182=302,即PQ2+PR2=QR2,∴∠QPR=90°.由“远航号”沿东北方向航行可知,∠QPS=45°,则∠SPR=45°,即“海天”号沿西北或东南方向航行.【点睛】此题考查勾股定理的应用,主要是能够根据勾股定理的逆定理发现直角三角形。
D C B A FE D C B A 新版北师大版八年级数学上册第1章《勾股定理》单元测试试卷及答案(1)一、填空题(1. 如图,在长方形ABCD 中,已知BC=10cm ,AB=5cm ,则对角线BD= cm 。
2. 如图,在正方形ABCD 中,对角线为22,则正方形边长为 。
3. 把直角三角形的两条直角边同时扩大到原来的2倍,则其斜边扩大到原来的 。
4. 三角形中两边的平方差恰好等于第三边的平方,则这个三角形是 三角形。
5. 飞机在空中水平飞行,某一时刻刚好飞到小刚头顶正上方4000米处,过了20秒,飞机距离小刚5000米,则飞机每小时飞行 千米。
6. 在Rt △ABC 中,∠C=90°,若a:b=3:4,c=20,则a= ,b= 。
7. 已知一个直角三角形的两边长分别是3和4,则第三边长为 。
8. 如图所示,在矩形ABCD 中,AB=16,BC=8,将矩形沿AC 折叠,点D 落在点E 处,且CE 与AB 交于点F ,那么AF= 。
9. 如图,将一根长24cm 的筷子,置于底面直径为5cm ,高为12cm 的圆柱形茶杯中,设筷子露在杯子外面的长为acm (茶杯装满水),则a 的取值范围是 。
10. 如图,数轴上有两个Rt △ABC 、Rt △ABC ,OA 、OC 是斜边,且OB=1,AB=1,CD=1,OD=2,分别以O 为圆心,OA 、OC 为半径画弧交x 轴于E 、F ,则E 、F 分别对应的数是 。
11. 一艘轮船以16海里/时的速度离开港口向东南方向航行,另一艘轮船在同时同地以12海里/时的速度向西南方向航行,则一个半小时后两船相距 海里。
12. 所谓的勾股数就是指使等式a 2+b 2=c 2成立的任何三个自然数。
我国清代数学家罗士林钻研出一种求勾股数的方法,即对于任意正整数m 、n (m >n ),取a=m 2-n 2,b=2mn ,c=m 2+n 2,则a 、b 、c 就是一组勾股数。
八年级数学下册《勾股定理》单元测试卷(带答案解析)一、单选题1.如图,在△ABC中,∠C=90°,AC=3,点D在BC上,∠ADC=2∠B,AD=√10,则BC的长为()A. 3√3B. √5+1C. √10−1D. √10+12.下列长度的线段中,能组成直角三角形的一组是()A. 1,√3,2B. 2,3,4C. 4,5,6D. 5,6,73.如图,在ΔABC中,三边a,b,c的大小关系是()A. a<b<cB. c<a<bC. c<b<aD. b<a<c4.下列各组数中,能成为直角三角形的三条边长的是()A. 3,5,7B. 5,7,8C. 4,6,7D. 1,√3,2,则AC的长为()5.如图,点A,B都在格点上,点C在线段AB上,每个小格长度为1,若BC=2√133A. √13B. 4√13C. 2√13D. 3√1336.如图,正方形ABCD的对角线AC与BD相交于点O,∠ACB的角平分线分别交AB、BD于M、N两点.若AM=√2,则线段BN的长为()B. √2C. 1D. 2−√2A. √227.在平面直角坐标系中,点A、B的坐标分别是(0,3)、(−4,0),则原点到直线AB的距离是()A. 2B. 2.4C. 2.5D. 38.等腰三角形的一边长为4,另一边长为6,则这个等腰三角形的面积是()A. 3√7B. 8√2C. 6√7D. 3√7或8√29.如图,一只蚂蚁从长宽高分别是3,2,6的长方体纸箱的A点沿纸箱表面爬到B点,那么它所行的最短路线的长是()A. √61B. 11C. 7D. 810.若一个三角形的三边长分别为a,b,c,满足(a−3)2+√b−4+|c−5|=0,则这个三角形的形状是()A. 锐角三角形B. 直角三角形C. 钝角三角形D. 不能确定二、填空题11.如图,直角三角形的两直角边长分别为6 cm和8 cm,分别以三边为直径作半圆,则阴影部分的面积为_______________.12.已知直角三角形的三边长分别为6,7,x,则x2=_______________.13.△ABC中,∠C=90°,AB=8,BC=6,则AC的长是 ______.14.如图,在△ABC 中,点D 是BC 上一点,已知:AB =15,AD =12,AC =13,CD =5,则BC 的长为 ______.15.如图,学校有一块长方形花圈,有极少数人为了避开拐角走“捷径”,在花圃内走出了一条“路”,踩伤了花草,则他们仅仅少走了 ______步路.(假设2步为1米)16.ΔABC 中,∠ACB =90°,∠BAC =30°,BC =3.以BC 为边作等边ΔBCD ,连接AD ,则AD 的长为____.17.如图,P 是∠AOB 的平分线OC 上一点,PD ⊥OB ,PE ⊥OA ,垂足分别为D ,E ,若PD =3,则PE 的长是 ______.18.如图,等腰ΔABC 的底边BC =20,面积为120,点F 在边BC 上,且BF =3FC ,EG 是腰AC 的垂直平分线,若点D 在EG 上运动,则ΔCDF 周长的最小值为______.三 、解答题19.在数轴上表示下列各数,并用“<”连接.−12,0,√3,√−83,(−1)2.20.如果三角形有一边上的中线恰好等于这边的长,那么我们称这个三角形为“奇妙三角形”.(1)如图,在△ABC中,AB=AC=2√5,BC=4,求证:△ABC是“奇妙三角形”;(2)在Rt△ABC中,∠C=90°,AC=2√3,若△ABC是“奇妙三角形”,求BC的长.21.如图,在正方形网格中,每个小正方形的边长都是1,点A、B、C、D都在格点上.(1)线段AB的长是______;(2)在图中画出一条线段EF,使EF的长为√13,并判断AB、CD、EF三条线段的长能否成为一个直角三角形三边的长?说明理由.22.如图,某工人在两墙AB,CD之间施工(两墙与地面垂直),架了一架长为2.5m的梯子DE,此时梯子底端E距离墙角C点O.7m,由于E点没有固定好,向后滑动到墙角B处,使梯子顶端D沿墙下滑了0.4m到F处,求梯子底端E向后滑动的距离BE的长.23.如图,在Rt△ABC中,∠ACB=90°,AB=10,BC=6.BE平分∠ABC交AC于点E.求CE的长.24.如图,矩形ABCD是一个底部直径BC为12cm的杯子的示意图,在它的正中间竖直放一根筷子EG,筷子漏出杯子外2cm,当筷子倒向杯壁时(筷子底端E不动),筷子顶端正好触到杯口,求筷子EG的长度.25.请阅读下列材料:已知:如图(1)在Rt△ABC中,∠BAC=90°,AB=AC,点D、E分别为线段BC上两动点,若∠DAE= 45°.探究线段BD、DE、EC三条线段之间的数量关系.小明的思路是:把△AEC绕点A顺时针旋转90°,得到△ABE′,连接E′D,使问题得到解决.请你参考小明的思路探究并解决下列问题:(1)猜想BD、DE、EC三条线段之间存在的数量关系式,直接写出你的猜想;(2)当动点E在线段BC上,动点D运动在线段CB延长线上时,如图(2),其它条件不变,(1)中探究的结论是否发生改变?请说明你的猜想并给予证明;(3)已知:如图(3),等边三角形ABC中,点D、E在边AB上,且∠DCE=30°,请你找出一个条件,使线段DE、AD、EB能构成一个等腰三角形,并求出此时等腰三角形顶角的度数.参考答案与解析1.【答案】D;【解析】解:在Rt△ACD中,由勾股定理得:CD=√AD2−AC2=√10−9=1,∵∠ADC是△ABD的外角,∴∠ADC=∠B+∠BAD,∵∠ADC=2∠B,∴∠B=∠BAD,∴BD=AD=√10,∴BC=√10+1.故选:D.由勾股定理求出CD=1,再根据∠ADC是△ABD的外角,证出∠B=∠BAD,从而有BD=AD,即可求出BC的长.此题主要考查了勾股定理、三角形外角的性质等知识,利用外角证出∠B=∠BAD是解答该题的关键.2.【答案】A;【解析】解:A、∵12+(√3)2=22,∴能构成直角三角形,故本选项符合题意;B、∵22+32≠42,∴不能构成直角三角形,故本选项不符合题意;C、∵42+52≠62,∴不能构成直角三角形,故本选项不符合题意;D、∵52+62≠72,∴不能构成直角三角形,故本选项不符合题意.故选:A.由勾股定理的逆定理,只要验证两小边的平方和等于最长边的平方即可.此题主要考查的是勾股定理的逆定理,熟知如果三角形的三边长a,b,c满足a2+b2=c2,那么这个三角形就是直角三角形是解答该题的关键.3.【答案】D;【解析】解:根据勾股定理,得a=√1+9=√10;b=√1+4=√5;c=√4+9=√13.∵5<10<13,∴b<a<c.故选:D.先分析出a、b、c三边所在的直角三角形,再根据勾股定理求出三边的长,进行比较即可.此题主要考查了勾股定理及比较无理数的大小,属中学阶段的基础题目.4.【答案】D;【解析】解:A、因为32+52≠72,所以不能构成直角三角形,此选项错误;B、因为52+72≠82,所以不能构成直角三角形,此选项错误;C、因为42+62≠72,所以不能构成直角三角形,此选项错误;D、因为12+(√3)2=22,能构成直角三角形,此选项正确.故选D.分别计算每一组中,较小两数的平方和,看是否等于最大数的平方,若等于就是直角三角形,否则就不是直角三角形.此题主要考查了勾股定理的逆定理,已知三条线段的长,判断是否能构成直角三角形的三边,判断的方法是:判断两个较小的数的平方和是否等于最大数的平方即可判断.5.【答案】B;【解析】解:∵点A,B都在格点上,点C在线段AB上,每个小格长度为1,∴AB=√62+42=2√13,∵BC=2√133,∴AC=AB−BC=2√13−2√133=4√133,即AC的长为4√133,故选:B.由勾股定理求出AB的长,即可得出结论.此题主要考查了勾股定理,由勾股定理求出AB的长是解答该题的关键.6.【答案】C;【解析】解:过M点作MH⊥AC于H点,∵四边形ABCD是正方形,∴∠HAM=45°.∴ΔHAM是等腰直角三角形,∴HM=√22AM=1.∵CM平分∠ACB,MH⊥AC,MB⊥CB,∴BM=HM=1,∠ACM=∠BCN.∵∠BMN=45°+∠ACM,∠BNM=45°+∠BCM,∴∠BMN=∠BNM.∴BN=BM=1.故选:C.过M点作MH⊥AC于H点,在等腰直角ΔHAM中可求HM=√22AM=1,根据角平分线的性质可得BM=MH=1,再证明BN=BM即可.这道题主要考查了正方形的性质、角平分线的性质,解决这类问题一般会利用到正方形对角线平分90°得到等腰直角三角形,涉及角平分线时作角两边的垂线段是常见辅助线.7.【答案】B;【解析】解:∵点A、B的坐标分别是(0,3)、(−4,0),∴OA=3,OB=4,∴AB=5,ΔAOB是直角三角形,∴O到AB的距离为3×45=125;故选:B.由ΔAOB是直角三角形,利用直角三角形面积相等,将O到AB的距离转化为直角三角形OAB斜边上的高求解;该题考查坐标平面内点的特征;将将O到AB的距离转化为直角三角形OAB斜边上的高是解答该题的关键;8.【答案】D;【解析】该题考查了勾股定理,等腰三角形的性质和三角形的三边关系;已知没有明确腰和底边的题目一定要想到两种情况,分类进行讨论,还应验证各种情况是否能构成三角形进行解答,这点非常重要,也是解答该题的关键.因为已知长度为4和6两边,没有明确是底边还是腰,所以有两种情况,需要分类讨论.解:①当4为底时,其它两边都为6,4、6、6可以构成三角形,底边上的高为√62−22=4√2,∴等腰三角形的面积=12×4×4√2=8√2;②当4为腰时,其它两边为4和6,∵4+4>6,∴4、4、6能构成三角形.∴底边上的高为=√42−32=√7,∴等腰三角形的面积=1×√7×6=3√7.2故选D.9.【答案】A;【解析】解:因为平面展开图不唯一,故分情况分别计算,进行大、小比较,再从各个路线中确定最短的路线.(1)展开前面右面由勾股定理得AB2=(3+2)2+62=61;(2)展开前面上面由勾股定理得AB2=(2+6)2+32=73;(3)展开左面上面由勾股定理得AB2=(3+6)2+22=85.所以最短路径的长为AB=√61(cm).故选:A.把此长方体的一面展开,然后在平面内,利用勾股定理求点A和B点间的线段长,即可得到蚂蚁爬行的最短距离.在直角三角形中,一条直角边长等于长方体的高,另一条直角边长等于长方体的长宽之和,利用勾股定理可求得.此题主要考查了平面展开−最短路径问题及勾股定理的拓展应用.“化曲面为平面”是解决“怎样爬行最近”这类问题的关键.10.【答案】B;【解析】解:∵(a−3)2+√b−4+|c−5|=0,∴a−3=0,b−4=0,c−5=0,解得:a=3,b=4,c=5,则a2+b2=c2,故这个三角形的形状是直角三角形;故选:B.利用绝对值以及偶次方的性质和二次根式的性质得出a,b,c的值,进而判断出三角形的形状即可.此题主要考查了勾股定理逆定理,关键是掌握两边的平方和等于第三边的平方,这个三角形是直角三角形.11.【答案】24cm2;【解析】略12.【答案】85或13;【解析】略13.【答案】2√7;【解析】解:在Rt△ABC中,∠C=90°,AB=8,BC=6,则AC=√AB2−BC2=√82−62=2√7,故答案为:2√7.根据勾股定理计算即可.此题主要考查的是勾股定理,如果直角三角形的两条直角边长分别是a,b,斜边长为c,那么a2+b2=c2.14.【答案】14;【解析】解:∵AD=12,AC=13,CD=5,∴AC2=169,AD2+CD2=144+25=169,即AD2+CD2=AC2,∴△ADC为直角三角形,且∠ADC=90°,∴∠ADB=90°,∵AB=15,AD=12,∴BD=√AB2−AD2=√152−122=9,∴BC=BD+CD=9+5=14.故答案为:14.在△ADC中,由三边长,利用勾股定理的逆定理判断出△ADC为直角三角形,可得出AD与BC垂直,在直角三角形ABD中,由勾股定理求出BD,再根据线段的和差关系即可求解.此题主要考查了勾股定理,以及勾股定理的逆定理;熟练掌握勾股定理及逆定理是解本题的关键.15.【答案】4;【解析】解:由勾股定理,得路长=√32+42=5(m),少走(3+4−5)×2=4步,故答案为:4.根据勾股定理,可得答案.此题主要考查了勾股定理,利用勾股定理得出路的长是解题关键.16.【答案】3或3√7;【解析】该题考查了勾股定理、等边三角形的性质、全等三角形的判定与性质、含30°角的直角三角形的性质;熟练掌握等边三角形的性质、全等三角形的判定与性质、含30°角的直角三角形的性质是解答的关键.本题分两种情况,①D在AB边上,由直角三角形的性质解答即可;②D在三角形外面,由等边三角形的性质得出三角形ΔBCE和ΔDCA全等的条件,得出ΔBCE≌ΔDCA,推出BE=AD,由勾股定理得出BE,也就得出AD 了.解:分两种情况:①如图所示:D在AB边上,∵∠ACB=90°,∠BAC=30°,BC=3,∴AD=CD=BC=3;②D在三角形外面,以AC为边做等边ΔACE,连接BE,如图所示:∵ΔBCD和ΔACE是等边三角形,∴BC=DC,CE=CA,∠BCD=∠ACE=60°,∴∠BCE=∠DCA=60°+90°=150°,∴ΔBCE≌ΔDCA,∴BE=AD,∵在RtΔABC中,∠ACB=90°,∠BAC=30°,BC=3,∴AB=2BC=6,AC=√AB2−BC2=3√3,∵ΔACE为等边三角形,∴∠CAE=60°,AE=3√3,∴∠BAE=∠BAC+∠CAE=30°+60°=90°,∴BE=√AB2+AE2=√62+(3√3)2=3√7,∴AD=BE=3√7,综上所述,AD=3或3√7.故答案为3或3√7.17.【答案】3;【解析】解:∵P是∠AOB的平分线OC上一点,PD⊥OB,PE⊥OA,∴PE=PD,∵PD=3,∴PE=3.故答案为:3.根据角平分线的性质定理可得答案.此题主要考查角平分线的性质定理,熟练掌握角平分线的性质是解题关键.18.【答案】18;【解析】解:如图作AH⊥BC于H,连接AD.∵EG垂直平分线段AC,∴DA=DC,∴DF+DC=AD+DF,∴当A、D、F共线时,DF+DC的值最小,最小值就是线段AF的长,∵1⋅BC⋅AH=120,2∴AH=12,∵AB=AC,AH⊥BC,∴BH=CH=10,∵BF=3FC,∴CF=FH=5,∴AF=√AH2+HF2=√122+52=13,∴DF+DC的最小值为13.∴ΔCDF周长的最小值为13+5=18;故答案为18.如图作AH⊥BC于H,连接AD.由EG垂直平分线段AC,推出DA=DC,推出DF+DC=AD+DF,可得当A、D、F共线时,DF+DC的值最小,最小值就是线段AF的长;该题考查轴对称−最短问题、线段的垂直平分线的性质、等腰三角形的性质等知识,解答该题的关键是学会利用轴对称,解决最短问题,属于中考常考题型.19.【答案】解:√3≈1.73,√−83=-2,(-1)2=1,在数轴上表示如下:∴√−83<-12<0<(-1)2<√3.; 【解析】根据实数的符号和绝对值,在数轴上表示即可;依据数轴表示数的特征,右边的数总比左边的大,比较大小.此题主要考查数轴表示数的意义和方法,理解符号和绝对值是确定实数的两个必要条件.20.【答案】(1)证明:过点A 作AD ⊥BC 于D ,∵AB=AC ,AD ⊥BC ,∴BD=12BC=2,由勾股定理得,AD=√AB 2−BD 2=4,∴AD=BC ,即△ABC 是“奇妙三角形”;(2)解:当AC 边上的中线BD 等于AC 时,BC=√BD 2−CD 2=3,当BC 边上的中线AE 等于BC 时,AC 2=AE 2-CE 2,即BC 2-(12BC )2=(2√3)2, 解得BC=4.综上所述,BC 的长是3或4.;【解析】(1)过点A 作AD ⊥BC 于D ,根据等腰三角形的性质求出BD ,根据勾股定理求出AD ,根据“奇妙三角形”的定义证明;(2)分AC 边上的中线BD 等于AC ,BC 边上的中线AE 等于BC 两种情况,根据勾股定理计算.此题主要考查的是勾股定理,如果直角三角形的两条直角边长分别是a ,b ,斜边长为c ,那么a 2+b 2=c 2.21.【答案】null;【解析】解:(1)线段AB的长是:√12+22=√5;故答案为:√5;(2)如图所示:EF即为所求,AB、CD、EF三条线段的长能成为一个直角三角形三边的长理由:∵AB2=(√5)2=5,DC2=8,EF2=13,∴AB2+DC2=EF2,∴AB、CD、EF三条线段的长能成为一个直角三角形三边的长.(1)直接利用勾股定理得出AB的长;(2)直接利用勾股定理以及勾股定理逆定理分析得出答案.此题主要考查了勾股定理以及勾股定理逆定理,正确结合网格分析是解题关键.22.【答案】解:由题意得:∠DCE=90°,BF=DE=2.5m,CE=0.7m,DF=0.4m,在Rt△DCE中,由勾股定理得:DC=√DE2−CE2=√2.52−0.72=2.4(m),∴CF=DC-DF=2.4-0.4=2(m)在Rt△BCF中,由勾股定理得:CF=√BF2−CF2=√2.52−22=1.5(m),∴BE=BC-CE=1.5-0.7=0.8(m),答:梯子底端E向后滑动的距离BE的长为0.8m.;【解析】由勾股定理得DC=2.4m,再由勾股定理得BC=1.5m,即可得出结论.此题主要考查了勾股定理的应用,解答本题的关键是两次运用勾股定理.23.【答案】解:如图,过E作ED⊥AB于D,∵∠ACB=90°,AB=10,BC=6,∴EC⊥BC,AC=√AB2−BC2=√102−62=8,∵BE平分∠ABC,ED⊥AB,∴CE=DE,在Rt△BDE和Rt△BCE中,{DE=CEBE=BE,∴Rt△BDE≌Rt△BCE(HL),∴BD=BC=6,∴AD=AB-BD=10-6=4,设CE=DE=x,则AE=AC-CE=8-x,在Rt△ADE中,由勾股定理得:42+x2=(8-x)2,解得:x=3,即CE的长为3.;【解析】过E作ED⊥AB于D,由勾股定理得AC=8,再证Rt△BDE≌Rt△BCE(HL),得BD=BC=6,则AD= AB−BD=10−6=4,设CE=DE=x,则AE=AC−CE=8−x,然后在Rt△ADE中,由勾股定理得出方程,解方程即可.此题主要考查了勾股定理、全等三角形的判定与性质以及角平分线的性质等知识,熟练掌握全等三角形的判定与性质,由勾股定理得出方程是解答该题的关键.24.【答案】解:设杯子的高度是x cm,则筷子的高度为(x+2)cm,∵杯子的直径为12cm,∴DF=6cm,在Rt△DEF中,由勾股定理得:x2+62=(x+2)2,解得x=8,∴筷子EG=8+2=10cm.;【解析】设杯子的高度是xcm,则筷子的高度为(x+2)cm,在RtΔDEF中,利用勾股定理列出方程:x2+62=(x+ 2)2,解方程即可.此题主要考查了勾股定理的应用,运用方程思想是解答该题的关键,属于常考题.25.【答案】解:(1)DE2=BD2+EC2;(2)关系式DE2=BD2+EC2仍然成立.证明:将△ADB沿直线AD对折,得△AFD,连FE∴△AFD≌△ABD,∴AF=AB,FD=DB,∠FAD=∠BAD,∠AFD=∠ABD,又∵AB=AC,∴AF=AC,∵∠FAE=∠FAD+∠DAE=∠FAD+45°,∠EAC=∠BAC-∠BAE=90°-(∠DAE-∠DAB)=45°+∠DAB,∴∠FAE=∠EAC,又∵AE=AE,∴△AFE≌△ACE,∴FE=EC,∠AFE=∠ACE=45°,∠AFD=∠ABD=180°-∠ABC=135°∴∠DFE=∠AFD-∠AFE=135°-45°=90°,∴在Rt△DFE中,DF2+FE2=DE2,即DE2=BD2+EC2;解法二:将△EAC绕点A顺时针旋转90°得到△TAB.连接DT.∴∠ABT=∠C=45°,AT=AE,∠TAE=90°,∵∠ABC=45°,∴∠TBC=∠TBD=90°,∵∠DAE=45°,∴∠DAT=∠DAE,∵AD=AD,∴△DAT≌△DAE(SAS),∴DT=DE,∵DT2=DB2+EC2,∴DE2=BD2+EC2;(3)当AD=BE时,线段DE、AD、EB能构成一个等腰三角形.如图,与(2)类似,以CE为一边,作∠ECF=∠ECB,在CF上截取CF=CB,可得△CFE≌△CBE,△DCF≌△DCA.∴AD=DF,EF=BE.∴∠DFE=∠1+∠2=∠A+∠B=120°.若使△DFE为等腰三角形,只需DF=EF,即AD=BE,∴当AD=BE时,线段DE、AD、EB能构成一个等腰三角形,且顶角∠DFE为120°.;【解析】(1)DE2=BD2+EC2,将△ADB沿直线AD对折,得△AFD,连FE,容易证明△AFD≌△ABD,然后可以得到AF=AB,FD=DB,∠FAD=∠BAD,∠AFD=∠ABD,再利用已知条件可以证明△AFE≌△ACE,从而可以得到∠DFE=∠AFD−∠AFE=135°−45°=90°,根据勾股定理即可证明猜想的结论;(2)根据(1)的思路一样可以解决问题;(3)当AD=BE时,线段DE、AD、EB能构成一个等腰三角形.如图,与(1)类似,以CE为一边,作∠ECF=∠ECB,在CF上截取CF=CB,可得△CFE≌△CBE,△DCF≌△DCA,然后可以得到AD=DF,EF=BE.由此可以得到∠DFE=∠1+∠2=∠A+∠B=120°,这样就可以解决问题.此题比较复杂,考查了全等三角形的性质与判定、等腰三角形的性质、勾股定理的应用等知识点,此题关键是正确找出辅助线,通过辅助线构造全等三角形解决问题,要掌握辅助线的作图根据.。
1. 分别以下列五组数为一个三角形的边长:①6,8,10;②13,5,12 ③1,2,3;④9,40,41;⑤321,421,521.其中能构成直角三角形的有( )组 A.2 B.3 C.4 D.52. 已知△ABC 中,∠A =12∠B =13∠C ,则它的三条边之比为( ) A.1∶12 C.1∶4∶13. 已知直角三角形一个锐角60°,斜边长为1,那么此直角三角形的周长是( ) A.52 B.34. 如图,分别以直角△ABC 的三边AB ,BC ,CA 为直径向外作半圆.设直线AB 左边阴影部分的面积为S 1,右边阴影部分的面积和为S 2,则( )A.S 1=S 2B.S 1<S 2C.S 1>S 2D.无法确定5. 在△ABC 中,∠C =90°,周长为60,斜边与一直角边比是13∶5,则这个三角形三边长分别是( )A.5,4,3B.13,12,5C.10,8,6D.26,24,10 6. 如图,矩形ABCD 的对角线AC=10,BC=8,则图中五个小矩形的周长之和为( )A 、14B 、16C 、20D 、287. 如图所示,圆柱的底面周长为6cm ,AC 是底面圆的直径,高BC = 6cm ,点P 是母线BC上一点且PC =23BC .一只蚂蚁从A 点出发沿着圆柱体的表面爬行到点P 的最短距离是( )A .(64π+)cm B .5cm C ..7cm8. 如图,矩形纸片ABCD 中,已知AD =8,折叠纸片使AB 边与对角线AC 重合,点B 落在点F 处,折痕为AE ,且EF=3,则AB 的长为( )A.3B.4C.5D.6A BCB C 第4题图第7题图 第6题图二、填空题9、根据下图中的数据,确定A =_____,B =______,x =_______.10、甲、乙两只轮船同时从港口出发,甲以16海里/时的速度向北偏东75°的方向航行,乙以12海里/时的速度向南偏东15°的方向航行,若他们出发1.5小时后,•两船相距 海里.11、如图,由四个边长为1的小正方形构成一个大正方形,连接小正方形的三个顶点,可得到△ABC,则△ABC 中BC 边上的高是 。
2022-2023学年北师大版八年级数学上册《第1章勾股定理》单元同步练习题(附答案)一.选择题1.如图,一木杆在离地面4m的A处折断,木杆顶端落在离木杆底端3m的B处,则木杆折断之前的长度为()A.6m B.7m C.8m D.9m2.如图,“赵爽弦图”是由四个全等的直角三角形与中间的一个小正方形拼成的大正方形.若图中的直角三角形的两条直角边的长分别为1和3,则中间小正方形的周长是()A.4B.8C.12D.163.如图,△ABC中,AB=AC=5,BC=6,AD⊥BC,AC边上中线BE交AD于点O,则△BCE的面积为()A.8B.7C.6D.54.下列各组数中为勾股数的是()A.1,2,3B.2,3,4C.,,D.3,4,55.下列条件中,不能判定△ABC是直角三角形的是()A.∠A=∠B+∠C B.a:b:c=3:4:5C.a2=(b+c)(b﹣c)D.∠A:∠B:∠C=1:1:4二.填空题6.如图,四边形ABCD中,AB⊥BC,AB=4,BC=3,AD=12,CD=13,则四边形ABCD 的面积是.7.如图是“勾股树”的部分图,其中最大的正方形的边长为7cm,则正方形A,B,C,D 的面积之和为cm2.8.如图,Rt△ABC中,∠ACB=90°,以AC、BC为直径作半圆S1和S2,且S1+S2=2π,则AB的长为.9.如图,《九章算术》中有这样一道古题:今有一竖直着的木柱,在木柱的上端系有绳索,绳索从木柱的上端顺木柱下垂后堆在地面的部分有三尺(绳索比木柱长3尺),牵着绳索退行,在距木柱底部8尺(BC=8)处时而绳索用尽,则木柱长为尺.10.如图,在Rt△ABC中,∠A=90°,BD平分∠ABC交AC于点D,且AB=4,BD=5,则点D到BC的距离为.11.如图,BD是△ABC的角平分线,AB=15,BC=9,AC=12,则BD2的值为.12.如图,圆柱形容器高为22cm,底面周长为30cm,在杯内壁离杯底4cm的点B处有一滴蜂蜜,此时一只蚂蚁正好在杯外壁,离杯上沿2cm且与蜂蜜相对的点A处,为了吃蜂蜜,蚂蚁从外壁A处沿着最短路径爬到内壁B处,它爬行的最短距离是cm.13.相垂直的四边形叫做“垂美”四边形,如图,“垂美”四边形ABCD,对角线AC、BD 交于点O.若AD=3,BC=5,AB2+CD2=.14.如图所示,在△ABC中,∠C=90°,AD平分∠BAC,DE⊥AB于E,DE=4,BC=9,则BD的长为.三.解答题15.疫情期间,老师出了一道题让学生交流,请你帮他们完成解答过程.如图,在△EFG中,EF=15,FG=14,EG=13,求△EFG的面积.16.在△ABC中,∠ACB=90°,AB=10,BC=6,点P从点A出发,以每秒2个单位长度的速度沿折线A﹣B﹣C运动.设点P的运动时间为t秒(t>0).(1)求斜边AB上的高;(2)①当点P在BC上时,PC=;(用含t的代数式表示)②若点P在∠BAC的角平分线上,求t的值.17.如图,△ABC中,∠ACB=90°,AB=10cm,BC=6cm,若点P从点A出发,以每秒2cm的速度沿折线A→C→B→A运动,设运动时间为t秒(t>0).(1)若点P在AC上,且满足P A=PB时,求出此时t的值;(2)若点P恰好在∠BAC的角平分线上,求t的值.18.如图,AD=4,CD=3,AB=13,BC=12,求△ABC的面积.19.有一块田地的形状和尺寸如图所示,求出它的面积是多少.20.如图,铁路上A、B两点相距25km,C、D为两村庄,DA⊥AB于A,CB⊥AB于B,已知DA=15km,CB=10km,现在要在铁路AB上建一个土特产品收购站E,使得C、D 两村到E站的距离相等,则:(1)E站应建在距A站多少千米处?(2)DE和EC垂直吗?说明理由.参考答案一.选择题1.解:∵一棵垂直于地面的大树在离地面4m处折断,树的顶端落在离树杆底部3m处,∴折断的部分长为:=5,∴折断前高度为5+4=9(米).故选:D.2.解:由题意可得,小正方形的边长为3﹣1=2,∴小正方形的周长为2×4=8,故选:B.3.解:∵AB=AC=5,∴△ABC是等腰三角形,∵BC=6,AD⊥BC,∴CD=BC=3,∴AD=4,∴S△ABC==12,∵AC边上中线BE交AD于点O,∴S△BCE=S△ABC=6.故选:C.4.解:A、∵12+22≠32,∴不是勾股数,不符合题意;B、∵22+32≠42,∴不是勾股数,不符合题意;C、∵不是正整数,∴不是勾股数,不符合题意;D、∵32+42=52,∴是勾股数,符合题意.故选:D.5.解:A.∵∠A=∠B+∠C,∠A+∠B+∠C=180°,∴∠A=90°,∴△ABC是直角三角形,故本选项不符合题意;B.∵a:b:c=3:4:5,32+42=52,∴a2+b2=c2,∴△ABC是直角三角形,故本选项不符合题意;C.∵a2=(b+c)(b﹣c),∴a2+c2=b2,∴△ABC是直角三角形,故本选项不符合题意;D.∵∠A:∠B:∠C=1:1:4,∠A+∠B+∠C=180°∴最大角∠C=×180°=120°,∴△ABC不是直角三角形,故本选项符合题意;故选:D.二.填空题6.解:如图,连接AC,在△ABC中,AB⊥BC,AB=4,BC=3,∴AC=5.在△ADC中,AD=12,CD=13,AC=5.∵122+52=132,即AD2+AC2=CD2,∴△ADC是直角三角形,且∠DAC=90°,∴S四边形ABCD=S△ABC+S△ADC=AB•BC+AC•AD=×4×3+×5×12=6+30=36.故答案为:36.7.解:如图,∵所有的三角形都是直角三角形,所有的四边形都是正方形,∴正方形A的面积=a2,正方形B的面积=b2,正方形C的面积=c2,正方形D的面积=d2,又∵a2+b2=x2,c2+d2=y2,∴正方形A、B、C、D的面积和=(a2+b2)+(c2+d2)=x2+y2=72=49cm2.故答案为:49.8.解:由勾股定理得,AC2+BC2=AB2,∴=π(AC2+BC2)=2π,∴AC2+BC2=16,∴AB=4,故答案为:4.9.解:设木柱长为x尺,根据题意得:AB2+BC2=AC2,则x2+82=(x+3)2,解得:x=.答:木柱长为尺.故答案为:.10.解:过点D作DE⊥BC于E,在Rt△ABD中,AB=4,BD=5,则AD=3,∵BD平分∠ABC,∠A=90°,DE⊥BC,∴DE=AD=3,即点D到BC的距离为3,故答案为:3.11.解:∵AB=15,BC=9,AC=12,∴BC2+AC2=92+122=152=AB2,∴∠C =90°,过D 作DE ⊥AB 于E ,∵BD 是△ABC 的角平分线,∴DE =CD ,设DE =CD =x ,∵S △ABC =S △ABD +S △BCD ,∴AC •BC =AB •DE +BC •CD ,∴×12×9=×15x +×9x ,∴x =,∴CD =,∴BD 2=4405, 故答案为:4405.12.解:如图:将杯子侧面展开,作A 关于EF 的对称点A ′,则AF +BF 为蚂蚁从外壁A 处到内壁B 处的最短距离,即A ′B 的长度, ∵A ′B =25(cm ),∴蚂蚁从外壁A 处到内壁B 处的最短距离为25cm ,故答案为:25.13.解:∵BD⊥AC,∴∠COB=∠AOB=∠AOD=∠COD=90°,在Rt△COB和Rt△AOB中,根据勾股定理得,BO2+CO2=CB2,OD2+OA2=AD2,∴BO2+CO2+OD2+OA2=9+25,∵AB2=BO2+AO2,CD2=OC2+OD2,∴AB2+CD2=34.故答案为:34.14.解:∵AD平分∠BAC,DE⊥AB,DC⊥AC,∴DC=DE=4,∴BD=BC﹣CD=9﹣4=5.故答案为:5.三.解答题15.解:如图,过点E作EH⊥FG于点H,在Rt△EFH和Rt△EGH中,由勾股定理可得:EH2=EF2﹣FH2,EH2=EG2﹣GH2,∴EG2﹣GH2=EF2﹣FH2,设FH=x,则GH=14﹣x,∵EF=15,FG=14,EG=13,∴132﹣(14﹣x)2=152﹣x2,解得:x=9,∴EH=12,∴S△EFG=×FG•EH=×14×12=84,∴△EFG的面积为84.16.解:(1)在△ABC中,∠ACB=90°,AB=10,BC=6,∴AC=8,设边AB上的高为h,则,∴,∴.答:斜边AB上的高为.(2)①当点P在BC上时,点P的运动长度为AB+BP=2t,∴PC=AB+BC﹣(AB+BP)=10+6﹣2t=16﹣2t.故答案为:16﹣2t.②若点P在∠BAC的角平分线上时,过点P作PD⊥AB,如图:∵AP平分∠BAC,PC⊥AC,PD⊥AB,∴PD=PC.由①知:PC=16﹣2t,BP=2t﹣10,∴PD=16﹣2t,在Rt△ACP和Rt△ADP中,,∴Rt△ACP≌Rt△ADP(HL).∴AD=AC=8,又∵AB=10,∴BD=2.在Rt△BDP中,由勾股定理得:22+(16﹣2t)2=(2t﹣10)2,解得:.17.解:(1)连接PB,∵∠ACB=90°,AB=10cm,BC=6cm,∴AC=8(cm),∵CP2+BC2=PB2,∵P A=PB=2tcm,∴(8﹣2t)2+62=(2t)2,∴t=;(2)当点P在∠BAC的平分线上时,如图,过点P作PE⊥AB于点E,此时BP=(14﹣2t)cm,PE=PC=(2t﹣8)cm,BE=10﹣8=2(cm),在Rt△BEP中,PE2+BE2=BP2,即:(2t﹣8)2+22=(14﹣2t)2,解得:t=,当t=12时,点P与A重合,也符合条件,∴当t=或12时,点P恰好在∠BAC的平分线上.18.解:∵AD=4,CD=3,∠ADC=90°,∴AC=5,在△ABC中,AC=5,AB=13,BC=12,∵52+122=132,∴AC2+BC2=AB2,即△ABC为直角三角形,且∠ACB=90°,∴△ABC的面积=5×12÷2=30.19.解:连接AC,在Rt△ACD中,AC为斜边,已知AD=4,CD=3,则AC=5,∵AC2+BC2=AB2,∴△ABC为直角三角形,∴S四边形ABCD=S△ABC﹣S△ACD=AC•CB﹣AD•DC=24,答:该四边形面积为24.20.解:(1)∵使得C,D两村到E站的距离相等.∴DE=CE,∵DA⊥AB于A,CB⊥AB于B,∴∠A=∠B=90°,∴AE2+AD2=DE2,BE2+BC2=EC2,∴AE2+AD2=BE2+BC2,设AE=x,则BE=AB﹣AE=(25﹣x),∵DA=15km,CB=10km,∴x2+152=(25﹣x)2+102,解得:x=10,∴AE=10km.∴BE=15km.(2)DE和EC垂直,理由如下:在△DAE与△EBC中,,∴△DAE≌△EBC(SAS),∴∠DEA=∠ECB,∠ADE=∠CEB,∠DEA+∠D=90°,∴∠DEA+∠CEB=90°,∴∠DEC=90°,即DE⊥EC.。
勾股定理单元测试题一、选择题1、下列各组数中,能构成直角三角形的是( )A :4,5,6B :1,12:6,8,11 D :5,12,23 2、在Rt △ABC 中,∠C =90°,a =12,b =16,则c 的长为( ) A :26 B :18 C :20D :213、在平面直角坐标系中,已知点P 的坐标是(3,4),则OP 的长为( ) A :3 B :4 C :5 D :74、在Rt △ABC 中,∠C =90°,∠B =45°,c =10,则a 的长为( ) A :5 B :10 C :25 D :55、等边三角形的边长为2,则该三角形的面积为( )A 、33、23、36、若等腰三角形的腰长为10,底边长为12,则底边上的高为( )A 、6B 、7C 、8D 、9 7、已知,如图长方形ABCD 中,AB=3cm , AD=9cm ,将此长方形折叠,使点B 与点D 重合, 折痕为EF ,则△ABE 的面积为( ) A 、3cm 2B 、4cm 2C 、6cm 2D 、12cm 28、若△ABC 中,13,15AB cm AC cm ==,高AD=12,则BC 的长为( ) A 、14 B 、4 C 、14或4 D 、以上都不对 二、填空题1、若一个三角形的三边满足222c a b -=,则这个三角形是 。
2、木工师傅要做一个长方形桌面,做好后量得长为80cm ,宽为60cm ,对角线为100cm ,则这个桌面 。
(填“合格”或“不合格” )ABEFD第7题D CBA3、直角三角形两直角边长分别为3和4,则它斜边上的高为__________。
4、如右图所示的图形中,所有的四边形都是正方形,所有的三角形都是直角三角形,其中最大的正 方形的边长为5,则正方形A ,B ,C ,D 的 面积的和为 。
5、如右图将矩形ABCD 沿直线AE 折叠,顶点D 恰好落 在BC 边上F 处,已知CE=3,AB=8,则BF=___________。
第3题图HC第4题图第5题图17章《勾股定理》单元测试(时限:100分钟满分100分)一、选择题(本大题共12小题,每小题2分,共24分)1.下列说法正确的是()A.若a、b、c是△ABC的三边,则a2+b2=c2B.若a、b、c是Rt△ABC的三边,则a2+b2=c2C.若a、b、c是Rt△ABC的三边,∠A=90°,则a2+b2=c2D.若a、b、c是Rt△ABC的三边,∠C=90°,则a2+b2=c22.下列各命题的逆命题不成立的是()A.两直线平行,同旁内角互补B.若两个数的绝对值相等,则这两个数也相等C.等边三角形每个内角都等于60°D.如果a=b那么a2=b23.如图,在单位正方形组成的网格图中标有四条线段,其中能构成一个直角三角形三边的线段是()A. CD,EF,GHB. AB,EF,GHC. AB,CD,GHD. AB,CD,EF4.在一个由16个小正方形组成的正方形网格中,阴影部分面积与正方形ABCD面积的比是()A. 3︰4B. 5︰8C. 9︰16D. 1︰25.如图是一株美丽的勾股树,其中所有的四边形都是正方形,所有的三角形都是直角三角形.若正方形A、B、C、D的边长分别为3、5、2、3,则最大正方形E的面积是()A. 13B. 26C. 47D. 946.分别以下列四组数为一个三角形的边长:①3,4,5;②5,12,13;③8,15,17;④4,5,6. 其中能够构成直角三角形的有()A.4组B. 3组C. 2组D. 1组7.三角形的三边长分别为a2+b2、2ab、a2-b2(a、b都是正整数),则这个三角形是()A. 直角三角形B. 钝角三角形C. 锐角三角形D. 不能确定8.等腰直角三角形三边长度之比为()A. 1︰1︰2B.1︰1︰C. 1︰2︰D. 不能确定第10题图DCBA 第12题图A64100第18题图E D C BA 第19题图 9.三角形的三边长a 、b 、c 满足(a +b )2=c 2+2ab ,则这个三角形是( ) A. 等边三角形 B. 钝角三角形 C. 锐角三角形 D. 直角三角形10.一块木板如图所示,已知AB =4,BC =3,DC =12,AD =13,∠B =90°,木板的面积为( )A. 60B. 30C. 24D. 12 11.已知三角形的三边长为a 、b 、c , 如果a -9)2++(c -15)2=0,则△ABC 是( ) A. 以a 为斜边的直角三角形 B. 以b 为斜边的直角三角形B. 以c 为斜边的直角三角形 D. 不是直角三角形12.三个正方形的面积如图立,正方形A 的边长为( ) A. 8 B. 36 C. 64 D. 6二、填空题(本大题分8小题,每小题3分,共24分)13.在直角三角形中,若两直角边的长分别为1cm ,2cm ,则斜 边长为 . 14.已知直角三角形的两边长为3、5,则另一边长是 . 15.若一个三角形的三边之比为5︰12︰13,则它为 三角形.16.在△ABC 中,若a 2+b 2=25,a 2-b 2=7,c =5,则△ABC 为 三角形.17.一个长方形土地面积为48m 2,对角线长为10m ,则此长方形的周长为 . 18.如图所示,某河堤的横断面是梯形ABCD ,BC ∥AD ,迎水坡AB 长13米,且BE ︰AE=12︰5,则河堤的高BE 为 米.19.如图,Rt △ABC 的面积为20cm 2,在AB 的同侧,分别以AB ,BC ,AC 为直径作三个半圆,则阴影部分的面积为 .20.直角三角形的一条边直角边为11,另两边均为自然数,则周长是 . 三、解答题(本大题共52分)21.(本题分2个小题,每小题3分共6分)(1)若△ABC 的三边a 、b 、c ,满足a ︰b ︰c =1︰1︰,试判断△ABC 的形状.(2)若△ABC 的三边a 、b 、c ,满足(a -b )(a 2+b 2-c 2)=0,试判断△ABC 的形状第22题图D CB 第23题图O NMPBA第24题图c b aCA 第25题图D C BA 22.(10分)如图,已知四边形ABCD 中,∠B =90°,AB =3,BC =4,CD =12,AD =13, 求四边形ABCD 的面积.23.(10分)如图,∠AOB =60°,P 为∠AOB 内一点,P 到OA 、OB 的距离PM 、PN分别为2和11,求OP 的长.24.(10分)在△ABC 中,∠C =135°,a =,b =2,求c 的长.25.(10分)如图,四边形ABCD 中,AB =AD =8,∠A =60°,∠D =150°, 四边形的周长为32,求BC 和CD 的长.图图②①cc c b ac b a E 图④c cccb bbbaaaa图③cc bb aa DCBA 四、阅读与证明(6分)26. 如图①是用硬纸片做成的两个全等的直角三角形,两直角边分别为a 和b ,斜边为c ,图②是以c 为直角边的等腰直角三角形,将它们拼成一个能证明勾股定理的图形.⑴ 将图①、图②拼成一个直角梯形,如图③.⑵ 假设图①中直角三角形有若干个,可拼成边长为(a +b )的正方形.如图④证明⑴.由图③可得===++=++∴=++ ∴ a 2+b 2=c 2 由图④你能验证勾股定理吗?试一试:参考答案:一、1.D;2.D;3.B;4.B;5.C;6.B;7.A;8.B;9.D;10.C;11.C;12.D;二、13.;14. 4或;15.直角;16.直角;17. 28cm;18. 12;19.20cm2;20. 132. 解:设所求直角三角形的斜边为x,另一直角边为y,则:X2-y2=112,∴(x+y)(x-y)=121∵x>y,∴x+y>x-y,且x+y、x-y都为自然数,∴解之∴直角三角形三边长为11、60、61.∴直角三角形的周长为132.三、21.略;22.连接AC,其他略;23.延长NP交OB于C,其他略;24.作BD⊥AC交AC的延长线于点D,其他略;25.连接BD,其他略;26.略.。
一、选择题1.如图,动点P 从点A 出发,沿着圆柱的侧面移动到BC 的中点S ,若8BC =,点P 移动的最短距离为5,则圆柱的底面周长为( )A .6B .4πC .8D .102.如图,在Rt ABC △中,90ACB ∠=︒,CD AB ⊥于点D ,已知3AC =,4BC =,则BD =( )A .125B .95C .23D .1653.如图,已知正方体纸盒的高为1,已知一只蚂蚁从其中一个顶点A ,沿着纸盒的外部表面爬行至另一个顶点B ,则蚂蚁爬行的最短距离是( )A 3B .2C 5D 21 4.如图,用64个边长为1cm 的小正方形拼成的网格中,点A ,B ,C ,D ,E ,都在格点(小正方形顶点)上,对于线段AB ,AC ,AD ,AE ,长度为无理数的有( ).A .4条B .3条C .2条D .1条 5.下列数组是勾股数的是( ) A .2,3,4B .0.3,0.4,0.5C .5,12,13D .8,12,15 6.若ABC 的三边长a 、b 、c 满足222681050a b c a b c ++=++-,那么ABC 是( )A .等腰三角形B .直角三角形C .锐角三角形D .钝角三角形7.如图,在Rt △ABC 中,∠ACB =90°,AB =10,AC =8,AB 的垂直平分线DE 交BC 的延长线于点E ,则DE 的长为( )A .103B .256C .203D .1548.如图所示,有一块直角三角形纸片,90C ∠=︒,12AC cm =,9BC cm =,将斜边AB 翻折使点B 落在直角边AC 的延长线上的点E 处,折痕为AD ,则CD 的长为( )A .4cmB .5cmC 17cmD .94cm 9.如图,分别以直角三角形ABC 的三边为斜边向外作直角三角形,且AD CD =,CE BE =,AF BF =,这三个直角三角形的面积分别为1S ,2S ,3S ,且19S =,216S =,则S 3S =( )A .25B .32C .7D .1810.如图,在ABC 中,点D 是BC 上一点,连结AD ,将ACD △沿AD 翻折,得到AED ,AE 交BD 于点F .若2BD DC =,AB AD =,2AF EF =,2CD =,DFE △的面积为1,则点D 到AE 的距离为( )A .1B .65C .5D .211.小明学了在数轴上表示无理数的方法后,进行了练习:首先画数轴,原点为O ,在数轴上找到表示数2的点A ,然后过点A 作AB ⊥OA ,使AB =1;再以O 为圆心,OB 的长为半径作弧,交数轴正半轴于点P ,那么点P 表示的数是( )A .2.2B 5C .1+2D 612.2002年8月在北京召开的国际数学家大会会标如图所示,它是由四个相同的直角三角形与中间的小正方形拼成的一个大正方形.若大正方形的面积是13,小正方形的面积是1,直角三角形的较长直角边为a ,较短直角边为b ,则2()a b +的值为( )A .25B .19C .13D .169二、填空题13.如图所示的正方形网格中,A ,B ,C ,D ,P 是网格线交点.若∠APB =α,则∠BPC 的度数为 ____(用含α的式子表示).14.如图,在ABC 中,90C =∠,AB 的中垂线DE 交AB 于E ,交BC 于D ,若5AB =,3AC =,则ACD △的周长为__________.15.如图,在4×4方格中,小正方形格的边长为1,则图中阴影正方形的边长是____.16.在Rt △ABC 中,∠C =90°,如果AB =15,AC =12,那么Rt △ABC 的面积是_____. 17.我国古代数学善作《九章算术》中有这样一个问题:“分有池方一文,葭生其中央,出水一尺.引葭赴岸,适与岸齐,闻水深、度长各几何.”译文:“有一个水池,水面是一个边长为10尺的正方形,在水池正中央有一根芦苇,它高出水面1尺,如果把这根芦苇拉向水池一边的中点,它的顶端恰好到达池边的水面.水的深度和这根芦苇的长分别是多少?”这根芦苇的长度为__________尺.18.如图,90AOB ∠=︒,9OA m =,3OB m =,一机器人在点B 处看见一个小球从点A 出发沿着AO 方向匀速滚向点O ,机器人立即从点B 出发,沿直线匀速前进拦截小球,恰好在点C 处截住了小球,如果小球滚动的速度与机器人行走的速度相等,则机器人行走的路程BC 为__________.19.若一个直角三角形的两条直角边长分别是4和6,则斜边长为__________. 20.如图,它是四个全等的直角三角形与中间的一个小正方形拼成的一个大正方形,如果大正方形的面积为13,小正方形的面积为1,直角三角形的较短的直角边长为a ,较长的直角边为b ,那么+a b 的值为__________.三、解答题21.某学校要对如图所示的一块地进行绿化,已知4m AD =,3m CD =,AD DC ⊥,13m AB =,12m BC =,求这块地的面积.22.如图,ABC 中,∠C=90°,BC=5厘米,AB=55厘米,点P 从点A 出发沿AC 边以2厘米/秒的速度向终点C 匀速移动,同时,点Q 从点C 出发沿CB 边以1厘米/秒的速度向终点B 匀速移动,P 、Q 两点运动几秒时,P 、Q 两点间的距离是210厘米?23.一种盛饮料的圆柱形杯,测得内部底面半径为2.5㎝,高为12㎝,吸管放进杯里,杯口外面至少要露出4.6㎝,问吸管要做多长?24.如图,在△ABC 中,AD ⊥BC 于点D ,且AC +AD =32,BD =5,CD =16,试确定AB 的长.25.如图,小区有一块三角形空地ABC ,为响应沙区创文创卫,美化小区的号召,小区计划将这块三角形空地进行新的规划,过点D 作垂直于AB 的小路DE .经测量,15AB =米,13AC =米,12AD =米,5DC =米.(1)求BD 的长;(2)求小路DE 的长.26.如图,小巷左右两侧是竖直的墙,一架梯子斜靠在左墙时,梯子底端到左墙脚的距离为0.7米,顶端距离地面2.4米.如果保持梯子底端位置不动,将梯子斜靠在右墙时,顶端距离地面2米,求小巷的宽度.【参考答案】***试卷处理标记,请不要删除一、选择题1.A解析:A【分析】根据圆柱的侧面展开图,利用勾股定理求出AB 即可求解.【详解】解:圆柱的侧面展开图如图,点P 移动的最短距离为AS=5,根据题意,BS=12BC=4,∠ABS=90°, ∴22AS BS -2254-,∴圆柱的底面周长为2AB=6,故选:A .【点睛】本题考查圆柱的侧面展开图、最短路径问题、勾股定理,熟练掌握圆柱的侧面展开图,得出点P 移动的最短距离是AS 是解答的关键.2.D解析:D【分析】勾股定理求出AB =5,设BD=x ,AD=5-x ,根据勾股定理列方程即可.【详解】解:∵90ACB ∠=︒,3AC =,4BC =, ∴2222AB AC BC 345=+=+=,设BD=x ,AD=5-x ,∵CD AB ⊥∴∠CDA=∠CDB=90°,2222AC AD BC BD -=-,22223(5)4x x --=-,解得,x=165, 故选:D .【点睛】 本题考查了勾股定理求线段长,解题关键是设未知数,根据勾股定理列方程. 3.C解析:C【分析】从正方体外部可分三类走法直接走AB 对角线,先走折线AD-DB ,或走三条棱,求出其长度,比较大小即可【详解】方法一:走两个正方形两接的面展开成日字形的对角线在三角形ABC 中,由勾股定理AB=2222AC +BC =2+1=5;方法二:走一面折线AD-BD,由勾股定理;方法三折线AE-ED-DB即AE+ED+DB=3;在正方体外部表面走有这三类走法,∵5<9,∴3,∵2>1,∴>,1∴>,2∴>,2+3∴)25>,∴>故选择:C.【点睛】本题考查蚂蚁爬行最短路径问题是考查勾股定理的应用,掌握勾股定理的应用方法,会利用图形分析行走路径是解题关键.4.C解析:C【分析】先根据勾股定理求出AB,AC,AD,AE这4条线段的长度,即可得出结果.【详解】根据勾股定理计算得:=,5==,10长度为无理数的有2条,故选:C.【点睛】本题主要考查了勾股定理及无理数.勾股定理:如果直角三角形的两条直角边长分别是a,b,斜边长为c,那么a2+b2=c2.5.C解析:C【分析】勾股数就是可以构成一个直角三角形三边的一组正整数,再利用勾股定理的逆定理逐一判断各选项即可得到答案.【详解】解:22223134,+=≠ 故A 不符合题意;0.3,0.4,0.5首先不是正整数,故B 不符合题意;22251216913,+== 故C 符合题意;2228126414420815,+=+=≠ 故D 不符合题意;故选:.C【点睛】本题考查的是勾股数的含义,勾股定理的逆定理的应用,掌握以上知识是解题的关键. 6.B解析:B【分析】先用完全平方公式进行因式分解求出a 、b 、c 的值,再确定三角形的形状即可.【详解】解:222681050a b c a b c ++=++-,移项得,2226810500a b c a b c ++---+=,2226981610250a a b b c c +++++--=-,222(3)4)(0(5)a b c -+-+-=,30,40,50a b c -=-=-=,3,4,5a b c ===,2229,16,25a b c ===,222+=a b c , ABC 是直角三角形,故选:B .【点睛】本题考查了运用完全平方公式因式分解,勾股定理逆定理,非负数的性质,解题关键是通过等式的变形,恰当的拆数配成完全平方,再根据非负数的性质求边长.7.C解析:C【分析】利用勾股定理求BC 的长度,连接AE ,然后设BE=AE=x ,结合勾股定理列方程求解.【详解】解:如图,∵Rt △ABC 中,∠ACB=90°, ∴6BC ===,∵DE 是AB 的垂直平分线,∴BD=12AB=5,∠EDB=90°,AE=BE 连接AE ,设AE=BE=x ,则CE=x-6在Rt △ACE 中,222(6)8x x -+=,解得:253x =∴BE=AE=253 在Rt △BDE 中,ED=22222520()533BE BD -=-=. 故选:C .【点睛】本题考查了勾股定理解直角三角形和线段垂直平分线的性质,掌握相关性质定理正确推理计算是解题关键.8.A解析:A【分析】根据勾股定理可将斜边AB 的长求出,根据折叠的性质知,AE=AB ,已知AC 的长,可将CE 的长求出,再根据勾股定理列方程求解,即可得到CD 的长.【详解】解:在Rt △ABC 中,12AC cm =,9BC cm =,22AC BC +,根据折叠的性质可知:AE=AB=15cm ,∵AC=12cm ,∴CE=AE-AC=3cm ,设CD=xcm ,则BD=9-x=DE ,在Rt △CDE 中,根据勾股定理得CD 2+CE 2=DE 2,即x 2+32=(9-x )2,解得x=4,即CD 长为4cm .故选:A .【点睛】本题考查图形的翻折变换,解题过程中应注意折叠前后的对应相等关系.解题时,我们常常设要求的线段长为x ,然后根据折叠和轴对称的性质用含x 的代数式表示其他线段的长度,选择适当的直角三角形,运用勾股定理列出方程求出答案.9.A解析:A【分析】根据△ADC 为直角三角形且AD=CD ,可得到22211111=2224S AD AC AC =⨯=,同理可得到221=4S BC 及231=4S AB ,在△ACB 中,由勾股定理得出:222AB AC BC =+,继而可得312S S S =+,代入计算即可.【详解】解:∵△ADC 为直角三角形,且AD=CD ,∴在△ADC 中,有222AC AD CD =+,∴222AC AD =,即AC =, ∴22211111=2224S AD AC AC =⨯=, 同理可得:221=4S BC ,231=4S AB , ∵∠ACB=90︒,∴222AB AC BC =+,即312111444S S S =+, ∴312S S S =+,∵19S =,216S =,∴3129+16=25S S S =+=,故答案为:A .【点睛】本题考查勾股定理,由勾股定理得出三角形的面积关系是解题的关键.10.B解析:B【分析】过A 作AG BC ⊥于点G ,根据2AF EF =可得3ADE ACD S S ∆∆==,再由勾股定理求得5AE AC ==,最后由三角形面积公式可求出点D 到AE 的距离.【详解】解:过A 作AG BC ⊥于点G∵1DFE S ∆=,2AF EF =∴2ADF S ∆=∴3ADE ACD S S ∆∆== ∵12ADC S CD AG ∆=⋅⋅ ∴3AG =∵AB AD =,AG BC ⊥∴2BD GB =由2BD CD =得,2GD CD ==∴224GC GD DC =+=+=在Rt AGC ∆中,225AC AG GC =+=∴5AE AC == ∴236255ADE S h AE ∆⨯=⋅== 故选:B .【点睛】 本题考查了折叠问题,勾股定理定理,等腰三角形的性质以及三角形面积公式的应用,熟练运用这些性质进行推理是本题的关键.11.B解析:B【分析】根据题意可知AOB 为直角三角形,再利用勾股定理即可求出OB 的长度,从而得出OP 长度,即可选择.【详解】∵AB OA ⊥∴AOB 为直角三角形.∴在Rt AOB 中,22OB OA AB +根据题意可知2=1OA AB =,, ∴2221=5OB +又∵OB OP =,∴P故选:B .【点睛】本题考查数轴和勾股定理,利用勾股定理求出OB 的长是解答本题的关键.12.A解析:A【分析】根据正方形的面积及直角边的关系,列出方程组,然后求解.【详解】 解:由条件可得:22131131240a b ab a b ⎧+=⎪-⎪=⎨⎪>>⎪⎩, 解之得:32a b =⎧⎨=⎩. 所以2()25a b +=,故选A【点睛】本题考查了正方形、直角三角形的性质及分析问题的推理能力和运算能力. 二、填空题13.【分析】由图可知AC 的长根据勾股定理可以求得PAPC 的长再利用勾股定理的逆定理可以判断△PAC 的形状从而可以得到∠CPA 的度数然后即可得到∠BPC=∠CPA−∠APB 的度数【详解】设网格的长度为1则解析:90-α︒【分析】由图可知AC 的长,根据勾股定理可以求得PA 、PC 的长,再利用勾股定理的逆定理可以判断△PAC 的形状,从而可以得到∠CPA 的度数,然后即可得到∠BPC=∠CPA−∠APB 的度数.【详解】设网格的长度为1,则== ,AC=6222AP PC AC +=∴ △PAC 为等腰直角三角形∴∠CPA=90︒∴∠BPC=∠CPA−∠APB=90-α︒︒故答案为:90-α【点睛】本题考查勾股定理的逆定理、勾股定理,解答本题的关键是明确题意,利用数形结合的思想解答.14.7【分析】先根据勾股定理求出BC的长再由线段垂直平分线的性质得出AD=BD即AD+CD=BC再由AC=6即可求出答案【详解】解:∵△ABC中∠C=90°AB=5AC=3∴BC==4∵DE是线段AB的解析:7【分析】先根据勾股定理求出BC的长,再由线段垂直平分线的性质得出AD=BD,即AD+CD=BC,再由AC=6即可求出答案.【详解】解:∵△ABC中,∠C=90°,AB=5,AC=3,∴=4,∵DE是线段AB的垂直平分线,∴AD=BD,∴AD+CD=BD+CD,即AD+CD=BC,∴△ACD的周长=AC+CD+AD=AC+BC=3+4=7.故答案为:7.【点睛】本题考查了勾股定理及线段垂直平分线的性质,能根据线段垂直平分线的性质求出AD+CD=BC是解题的关键.15.【分析】根据勾股定理即可得出结果【详解】解:正方形的边长=故答案为:【点睛】本题主要考查的是勾股定理掌握勾股定理的计算方法是解题的关键【分析】根据勾股定理即可得出结果.【详解】解:正方形的边长.【点睛】本题主要考查的是勾股定理,掌握勾股定理的计算方法是解题的关键.16.54【分析】在Rt△ABC中利用勾股定理可求出BC的长度即可解决问题【详解】解:∵在Rt△ABC中∠C=90°AB=15AC=12∴BC===9∴S△ABC=×9×12=54故答案为:54【点睛】本解析:54【分析】在Rt △ABC 中,利用勾股定理可求出BC 的长度,即可解决问题.【详解】解:∵在Rt △ABC 中,∠C =90°,AB =15,AC =12,∴BC =22AB AC - =221512-=9.∴S △ABC =12×9×12=54 故答案为:54.【点睛】本题考查勾股定理的知识,属于基础题,解题关键是掌握勾股定理的形式.17.13【分析】可以将其转化为数学几何图形如图所示根据题意可知EB 的长为10尺则BC =5尺设出芦苇长度AB =AB =x 尺表示出水深AC 根据勾股定理建立方程即可【详解】依题意画出图形设芦苇长AB =AB′=x解析:13【分析】可以将其转化为数学几何图形,如图所示,根据题意,可知EB'的长为10尺,则B'C =5尺,设出芦苇长度AB =AB'=x 尺,表示出水深AC ,根据勾股定理建立方程即可.【详解】依题意画出图形,设芦苇长AB =AB′=x 尺,则水深AC =(x ﹣1)尺,因为B'E =10尺,所以B'C =5尺, 在Rt △AB'C 中,∵CB′2+AC 2=AB′2,∴52+(x ﹣1)2=x 2,解得:x=13,故答案为:13.【点睛】此题主要考查了勾股定理的应用,在应用勾股定理解决实际问题时勾股定理与方程的结合是解决实际问题常用的方法,关键是从题中抽象出勾股定理这一数学模型,画出准确的示意图,领会数形结合的思想的应用.18.5m 【分析】由题意根据小球滚动的速度与机器人行走的速度相等得到BC=AC 设BC=AC=xm 根据勾股定理求出x 的值即可【详解】解:∵小球滚动的速度与机器人行走的速度相等∴BC=AC设BC=AC=xm则解析:5m【分析】由题意根据小球滚动的速度与机器人行走的速度相等,得到BC=AC,设BC=AC=xm,根据勾股定理求出x的值即可.【详解】解:∵小球滚动的速度与机器人行走的速度相等,∴BC=AC,设BC=AC=xm,则OC=(9-x)m,在Rt△BOC中,∵OB2+OC2=BC2,∴32+(9-x)2=x2,解得x=5.故答案为:5m.【点睛】本题考查的是勾股定理的应用,熟知在应用勾股定理解决实际问题时勾股定理与方程的结合是解决实际问题常用的方法,关键是从题中抽象出勾股定理这一数学模型,画出准确的示意图.19.【分析】直接根据勾股定理求解可得【详解】解:∵直角三角形的两条直角边长分别是4和6∴斜边长为故答案为:【点睛】本题考查勾股定理在任何一个直角三角形中两条直角边长的平方之和一定等于斜边长的平方即如果直解析:【分析】直接根据勾股定理求解可得.【详解】解:∵直角三角形的两条直角边长分别是4和6,∴故答案为:【点睛】本题考查勾股定理,在任何一个直角三角形中,两条直角边长的平方之和一定等于斜边长的平方.即如果直角三角形的两条直角边长分别是a,b,斜边长为c,那么a2+b2=c2.20.5【分析】根据题意结合图形求出ab与a2+b2的值原式利用完全平方公式化简后代入计算即可求出值【详解】解:根据题意得:c2=a2+b2=134×ab=13-1=12即2ab=12则(a+b)2=a2解析:5【分析】根据题意,结合图形求出ab 与a 2+b 2的值,原式利用完全平方公式化简后代入计算即可求出值.【详解】解:根据题意得:c 2=a 2+b 2=13,4×12ab=13-1=12,即2ab=12, 则(a+b )2=a 2+2ab+b 2=13+12=25,则a+b=5故答案为:5.【点睛】本题考查了勾股定理的证明,利用了数形结合的思想,熟练掌握勾股定理是解题的关键.三、解答题21.224cm .【分析】连接AC ,勾股定理计算AC=222234AD CD +=+,应用勾股定理的逆定理判定三角形ABC 是直角三角形,计算两个直角三角形的面积差即可.【详解】解:连接AC∵AD DC ⊥∴∠ADC=90°,在Rt △ADC 中,根据勾股定理,得AC=222234AD CD +=+ =5,在△ABC 中,∴22222251213AC BC AB +=+==,△ABC 是直角三角形,∴=-ABC ACD ABCD S SS 四边形 =51234-22⨯⨯ =242m ().【点睛】本题考查了勾股定理、勾股定理的逆定理的应用,得到△ABC 是直角三角形是解题的关键.同时考查了直角三角形的面积公式.【分析】设P、Q两点运动x秒时,P、Q两点间的距离是210厘米,先利用勾股定理求出AC的长度,得到AP=2x厘米,CQ=x厘米,CP=(10﹣2x)厘米,再利用勾股定理得到(10﹣2x)2+x2=(210)2求出x的值.【详解】解:设P、Q两点运动x秒时,P、Q两点间的距离是210厘米.在△ABC中,∠C=90°,BC=5厘米,AB=55厘米,∴AC=2222-=-=10(厘米),(55)5AB BC∴AP=2x厘米,CQ=x厘米,CP=(10﹣2x)厘米,在Rt△CPQ内有PC2+CQ2=PQ2,∴(10﹣2x)2+x2=(210)2,整理得:x2﹣8x+12=0,解得:x=2或x=6,当x=6时,CP=10﹣2x=﹣2<0,∴x=6不合题意舍去.∴P、Q两点运动2秒时,P、Q两点间的距离是210厘米.【点睛】此题考查勾股定理,动点问题与几何图形,熟练掌握勾股定理的计算公式并运用解决问题是关键.23.6【分析】在吸管(杯内部分)、杯底直径、杯高构成的直角三角形中,由勾股定理可求出杯内吸管部分的长度,再加上外露部分的长度即可求出吸管的总长.【详解】解:如图;杯内的吸管部分长为AC,杯高AB=12cm,杯底直径BC=5cm;Rt△ABC中,AB=12cm,BC=5cm;由勾股定理得:AC=13cm故吸管的长度最少要:13+4.6=17.6cm.24.13【分析】设AD=x,则AC=32﹣x,根据勾股定理可求出x的值,在直角三角形ABD中,再利用勾股定理即可求出AB的长.解:设AD =x ,则AC =32﹣x ,∵AD ⊥BC 于点D ,∴△ADC 和△ADB 是直角三角形,∵CD =16,∴x 2+162=(32﹣x )2,解得:x =12,∴AD =12,在直角三角形ABD 中,AB =13.【点睛】本题考查了勾股定理解直角三角形,解题的关键是设出未知数,利用勾股定理列出方程求解.25.(1)9米;(2)365米. 【分析】(1)先由13125AC AD CD ===,,,证明90,ADC ∠=︒ 可得90,ADB ∠=︒ 再由勾股定理可求BD 的长;(2)由,,DE AB AD BC ⊥⊥ 可得,AB DE AD BD =代入数据从而可得答案.【详解】解:(1)13125AC AD CD ===,,, 22222212516913,AD CD AC ∴+=+===90ADC ∴∠=︒,90ADB ∴∠=︒,15AB =,9.BD ∴====BD ∴为9米.(2),,DE AB AD BC ⊥⊥11,22ABD S AB DE AD BD ∴== ,AB DE AD BD ∴= 15129DE ∴=⨯, 36.5DE ∴=DE ∴为365米. 【点睛】本题考查的是勾股定理与勾股定理的逆定理的应用,利用等面积法求解直角三角形斜边上的高,掌握以上知识是解题的关键.26.2米【分析】先根据勾股定理求出AB 的长,同理可得出BD 的长,进而可得出结论.【详解】解:在Rt ACB ∆中,90ACB ∠=︒,0.7BC =米, 2.4AC =米,2220.7 2.4 6.25AB ∴=+=.在Rt △A BD '中,90A DB ∠'=︒,2A D '=米,222BD A D A B +'=',222 6.25BD ∴+=,2 2.25BD ∴=,0BD >,1.5BD ∴=米,0.7 1.5 2.2CD BC BD ∴=+=+=米,答:小巷的宽度为2.2米.【点睛】本题考查的是勾股定理的应用,在应用勾股定理解决实际问题时勾股定理与方程的结合是解决实际问题常用的方法,关键是从题中抽象出勾股定理这一数学模型,画出准确的示意图.领会数形结合的思想的应用.。
八年级上册第一章《勾股定理》测试题(附答案八年级上册数学第一章检测题一、选择题(每小题3分,共30分)1.一直角三角形的斜边长比一直角边长大2,另一直角边长为6,则斜边长为()A。
4 B。
8 C。
10 D。
122.XXX的妈妈买了一部29英寸(74cm)的电视机,下列对29英寸的说法中正确的是()A。
XXX认为指的是屏幕的长度 B。
XXX的妈妈认为指的是屏幕的宽度C。
XXX的爸爸认为指的是屏幕的周长 D。
售货员认为指的是屏幕对角线的长度3.如图1,中字母A所代表的正方形的面积为()A。
4 B。
8 C。
16 D。
644.将直角三角形的三条边长同时扩大同一倍数,得到的三角形是()A。
钝角三角形 B。
锐角三角形 C。
直角三角形 D。
等腰三角形5.一直角三角形的一条直角边长是7cm,另一条直角边与斜边长的和是49cm,则斜边的长为()A。
18cm B。
20cm C。
24cm D。
25cm6.适合下列条件的△ABC中,直角三角形的个数为()①a=225,b=3,c=289;②a=6,∠A=45;③∠A=32,∠B=58;④a=7,b=24,c=25;⑤a=2,b=2,c=4.A。
2个 B。
3个 C。
4个 D。
5个7.在△ABC中,若a=n^2-1,b=2n,c=n^2+1,则△ABC 是()A。
锐角三角形 B。
钝角三角形 C。
等腰三角形 D。
直角三角形8.直角三角形斜边的平方等于两条直角边乘积的2倍,这个三角形有一个锐角是()A。
15° B。
30° C。
45° D。
60°9.已知,如图2,长方形ABCD中,AB=3cm,AD=9cm。
将此长方形折叠,使点B与点D重合,折痕为EF。
则△ABE的面积为()A.6cm^2 B.8cm^2 C.10cm^2 D.12cm^210.已知,如图3,一艘船以16海里/时的速度从港口A出发向东北方向航行,另一艘船以12海里/时的速度同时从港口A出发向东南方向航行,离开港口2小时后,则两船相距()A.25海里 B.30海里 C.35海里 D.40海里二、填空题(每小题3分,共24分)11.利用图1或图2中的面积等量关系可以证明一个著名的数学定理,即勾股定理,其数学表达式为a²+b²=c²。
第一章 勾股定理单元试卷(时间100分钟 满分100分)一、选择题:(每小题4分,共计20分)1.如图1,在山坡上种树,沿山坡走了10米,高度上升了6米,如果要求树的株距(相邻两棵树之间的水平距离)是4米,那么,斜坡上相邻两棵树之间的坡面距离应是( ) A.10米 B.6米 C.5米 D.4米 .图12.如果梯子的底端离建筑物5米,13米长的梯子可以达到建筑物的高度是( )A.12米B.13 米C.14米D.15米.3.如图2,是一块长、宽、高分别是4cm ,2cm 和1cm 的长方体木块.一只蚂蚁要从长方体木块的一个顶点A 处,沿着长方体的表面到长方体上和A 相对的顶点B 处吃食物,那么它需要爬行的最短路径的长是( )A. 5cm B . 5.4cm C. 6.1cm D. 7cm .4.一个木工师傅测量了一个等腰三角形木版的腰、底边和高的长,但他把这三个数据与其它的数据弄混了,请你帮助他找出来,是第( )组A. 13,12,12B. 12,12,8C. 13,10,12D. 5,8,4. 5.如图3, 一个高1.5米,宽3.6米的大门,需要在相对的顶点间用一条木板加固,则这条木板的长度是( ) A. 3.8米 B. 3.9米 C. 4米 D. 4.4米二、填空题(每小题4分,共计32分)6.小明要把一根长为70cm 的长的木棒放到一个长、宽、高分别为50cm 、40cm 、30cm 的木箱中,他能放进去吗?_______.7.李明从家出发向正北方向走了1200米,接着向正东方向走到离家2000米远的地方,这时,李明向正东方向走了图2图3______米.8.如图5,小明将一张长为20cm ,宽为15cm 的长方形纸剪去了一角,量得AB=3cm,CD=4cm,则剪去的直角三角形的斜边长为_______.图5 图6 图79.王师傅在操场上安装一副单杠,要求单杠与地面平行,杠与两撑脚垂直,如图6所示,撑脚长AB 、DC 为3m ,两撑脚间的距离BC 为4m ,则AC=____m 就符合要求. 10.如图7,一架云梯长10米,斜靠在一面墙上,梯子顶端离地面6米,要使梯子顶端离地面8米,则梯子的底部在水平面方向要向左滑动_____米.11.如图8,是一长方形公园,如果某人从景点A 走到景点C ,则至少要走_____米.图8 图9 图10 12.在一棵树上的10米高处有两只猴子,一只猴子爬下树走到离树20米处的池塘A 处,另一只猴子爬到树顶D 后直接跃到A 处,距离以直线计算,如果两只猴子所经过的距离相等,则这棵树______米.13.如图10是一个三级台阶,它的每一级长、宽、高分别是2米、0.3米、0.2米,A 、B 是这个台阶上两个相对的端点,A 点有一只蚂蚁,想到B 点去吃可口的食物,则蚂蚁沿台阶面爬行到B 点最短路程是______米. 三、解答题(本题共计48分)14.(本题满分5分)如图,某人欲垂直横渡一条河,由于水流的影响,他实际上岸地点C 偏离了想要达到的B 点140米,(即BC=140米),其结果是他在水中实际游了500米(即AC=500米),求该河AB 处的宽度.D B A15.(本题满分5分)我们古代数学中有这样一道数学题:有一棵枯树直立在地上,树高2丈,粗3尺,有一根藤条从树根处缠绕而上,缠绕7周到达树顶,(如图)请问这根藤条有多长?(注:枯树可以看成圆柱;树粗3尺,指的是:圆柱底面周长为3尺,1丈=10 .尺)16.(本题满分6分)如图,将穿好彩旗的旗杆垂直插在操场上,旗杆从旗顶到地面的高度为320cm,在无风的天气里,彩旗自然下垂,如图. 求彩旗下垂时最低处离地面的最小高度h.彩旗完全展平时的尺寸如左图的长方形(单位:cm).17.(本题满分6分)如图,一个牧童在小河的南4km 的A 处牧马,而他正位于他的小屋B 的西8km 北7km 处,他想把他的马牵到小河边去饮水,然后回家.他要完成这件事情所走的最短路程是多少?18.(本题满分7分)如图,在波平如镜的湖面上,有一朵盛开的美丽的红莲,它高出水面3尺.突然一阵大风吹过,红莲被吹至一边,花朵刚好齐及水面,如果知道红莲移动的水平距离为6尺,请问水深多少?19. (本题满分6分)如图所示,某住宅社区在相邻两楼之间修建一个上方是一个半圆,下方是长方形的仿古通道,现有一辆卡车装满家具后,高4米,宽2.8米,请问这辆送家具的卡车能否通过这个通道.小河20.(本题满分6分)图1、图2中的每个小正方形的边长都是1,在图1中画出一个面积是3的直角三角形;在图2中画出一个面积是5的四边形.21. (本题满分7分)如图所示,某人到岛上去探宝,从A 处登陆后先往东走4km ,又往北走1.5km ,遇到障碍后又往西走2km ,再转向北走到4.5km 处往东一拐,仅走0.5km 就找到宝藏.问登陆点A 与宝藏埋藏点B 之间的距离是多少?图1图2答案:一、选择题:(每小题4分,共计20分)1.解析:坡面距离就是斜坡的长.沿山坡走了10米,高度上升了6米,则其水平距离为8(米);设斜坡上相邻两棵树之间的坡面距离是x米,则由题意知1084x=,所以x=5.答案:C.2.解析:13米长的梯子可以达到建筑物的高度可设为x米,因梯子的底端离建筑物5米,由勾股定理得:x2=132-52,x=12米.答案:A.3.解析:因为平面展开图不唯一,故分情况分别计算,进行大、小比较,再从各个路线中确定最短的路线.(1)展开前面右面由勾股定理得AB2=22(24)137++=;(2) 展开前面上面由勾股定理得AB2=22(14)229++=;(3)展开左面上面由勾股定理得AB2=22(21)425++=;所以最短路径的长为5cm.答案:A.4.解析:等腰三角形的高把等腰三角形分成两个直角三角形, 腰为斜边,高和底边长一半为直角边,因此由三角形三边关系及勾股定理可知 A. 132≠122+62, B. 122≠82+62,C.132=122+52,D.52≠42+42.答案:C.5.解析:如图,此题可运用勾股定理解决,设这条木板的长度为x米,由勾股定理得:x2=1.52+3.62,解得x=3.9.答案: B .二、填空题(每小题4分,共计32分)6.解析:在长方体的盒子中,一角的顶点与斜对的不共面的顶点的距离最大.因此可设放入长方体盒子中的最大长度是x ㎝, 根据题意,得x 2=502+40 2+302=5000.702=4900, 因为4900<5000,所以能放进去. 答案:能.7.解析:如图4,把实际问题转化为数学模型,由题意可知AB=1200,AC=2000, 由勾股定理得:BC 2=AC2-AB2= 20002-12002=16002, 所以BC=1600.李明向正东方向走了1600米. 答案:1600.8.解析:延长AB 、DC 构成直角三角形,运用勾股定理得BC 2=(15-3)2+(20-4)2=122+162=400,所以BC=20. 答案:20cm .图5 图6 图7 9.解析:由题意可知AB 、DC 为3m ,BC 为4m ,由勾股定理得:AC 2=AB 2+BC 2=32+42=25=52,所以AC=5. 答案:5.10.解析:由题意可知梯子的长是不变的,由云梯长10米 ,梯子顶端离地面6米,可由勾股定理求得梯子的底部距墙8米.当梯子顶端离地面8米时, 梯子的底部距墙为6米,则梯子的底部在水平面方向要向左滑动8-6=2(米). 答案:2.11.解析:依据两点之间线段最短,确定最短路线为长方形公园的对角线长,可设长方形公园的对角线长为x 米,由勾股定理得:x 2=1202+3502,解得x=370. 答案:370.图8 图9 图1012.解析:如图9,把实际问题转化为数学模型,构造直角三角形,然后利用勾股定理解决.设树的高度为x 米, 因两只猴子所经过的距离相等都为30米.由勾股定理得:x 2+202=[30-(x-10)]2,解得x=15. 答案:15.13.解析:三级台阶平面展开图为长方形,长为2,宽为(0.2+0.3)×3则蚂蚁沿台阶面爬行到B 点最短路程是此长方形的对角线长.可设蚂蚁沿台阶面爬行到B 点最短路程为x ,由勾股定理得:x 2=22+[(0.2+0.3)×3]2=2.52,x =2.5. 答案:2.5.三、解答题(本题共计48分)14.解析:如图,把实际问题转化为数学模型,构造直角三角形,然后利用勾股定理解决. 答案:在Rt △ABC 中,AB 2+BC 2=AC 2,所以AB 2+1402=5002,解得AB=480. 答:该河AB 处的宽度为480米.15.解析:本题是一道古代数学题,由于树可以近似看作圆柱,藤条绕树缠绕,我们可以按图的方法,转化为平面图形来解决.如图13,线段AB 的长就是古藤的长. 答案:如图13,在Rt △ABC 中,由勾股定理得 AB 2=BC 2+AC 2.因为BC=20,AC=3×7=21, 所以AB 2=202+212=841. 所以AB=29.所以这根藤条有29尺. 答:这根藤条有29尺.16.解析:如图14,彩旗下垂时最低处离地面的最小高度h 也就是旗杆的高度减去彩旗的对角线的长,彩旗的对角D B A线长为150,所以h=320-150=170cm.答案:彩旗下垂时最低处离地面的最小高度h 为170cm.. 17.解析:找最短路程,只需要找到A 点关于河岸的对称点和点B 的距离就可以,借助勾股定理可以求出来.答案:如图,作出A 点关于MN 的对称点A′,连接A′B 交MN 于点P ,则A′B 就是最短路线. 在Rt △A′DB 中,由勾股定理求得A′B=17km.18.解析:本题关键是能将红莲移动后的图画出,红莲被吹至一边,花朵刚好齐及水面即AC 为红莲的长.答案:设水深为h 尺.如图,Rt △ABC 中,AB=h ,AC=h+3,BC=6,由勾股定理得:AC 2=AB 2+BC 2,即(h+3)2=h 2+62.∴h 2+6h+9=h 2+36,解得:h=4.5. 答:水深4.5尺.19. 解析:如图,卡车能否通过,关键是车高4米与AC 的比较,BC 为2.6米,只需求AB ,在直角三角形OAB 中,半径OA 为2米,车宽的一半为DC = OB =1.4米,运用勾股定理求出AB 即可.答案:过直径的中点O ,作直径的垂线交下底边于点D , 如图所示,在Rt △ABO 中,由题意知OA=2,DC = OB =1.4, 所以2222 1.4 2.04AB =-=.因为4-2.6=1.4,21.4 1.96=,2.04>1.96,所以卡车可以通过. 答:卡车可以通过,但要小心.A ′20. 解析:①只须画直角边为2和3的直角三角形即可.这时直角三角形的面积为:1232⨯⨯=3;②画面积为5的四边形,我们可画边长的平方为5的正方形即可.答案:如图1和图2.21. 解析:本题需要把实际问题转化为数学模型,构造直角三角形,利用勾股定理完成.答案:如图,过点B 作BC ⊥AD 于C ,则AC=2.5,BC=6, 由勾股定理求得AB=6.5(km) .所以登陆点A 与宝藏埋藏点B 之间的距离是6.5km.图2图1。
2021-2022学年北师大新版八年级上册数学《第1章勾股定理》单元测试卷一.选择题1.在△ABC中,∠A、∠B、∠C所对的边分别为a、b、c,若a=,b=,c=,则()A.∠A=90°B.∠B=90°C.∠C=90°D.∠A=∠B2.阅读理解:如果一个正整数m能表示为两个正整数a,b的平方和,即m=a2+b2,那么称m为广义勾股数,则下面的四个结论:①7不是广义勾股数;②13是广义勾股数;③两个广义勾股数的和是广义勾股数;④两个广义勾股数的积是广义勾股数.依次正确的是()A.②④B.①②④C.①②D.①④3.如图所示,圆柱的高AB=3,底面直径BC=6,现在有一只蚂蚁想要从A处沿圆柱表面爬到对角C处捕食,则它爬行的最短距离是()A.3B.6C.3D.6 4.勾股定理是人类早期发现并证明的重要数学定理之一,这是历史上第一个把数与形联系起来的定理,其证明是论证几何的发端.下面四幅图中,不能证明勾股定理的是()A.B.C.D.5.如图,一个梯子斜靠在一竖直的墙AO上,测得AO=4m,若梯子的顶端沿墙下滑1m,这时梯子的底端也下滑1m,则梯子AB的长度为()A.5m B.6m C.3m D.7m6.如图,OA=OB=OC=OD,∠BOC+∠AOD=180°.若BC=4,AD=6,则OA的长为()A.B.2C.D.4二.填空题7.如图,某港口P位于东西方向的海岸线上,甲、乙轮船同时离开港口,各自沿一固定方向航行,甲、乙轮船每小时分别航行12海里和16海里,1小时后两船分别位于点A,B 处,且相距20海里,如果知道甲船沿北偏西40°方向航行,则乙船沿方向航行.8.一个三角形的三边长分别为3,4,5,则这个三角形中最短边上的高为.9.如图所示,有一个正方体盒子,其棱长为2dm,一只虫子在顶点A处,一只蜘蛛在顶点B处,蜘蛛沿着盒子表面准备偷袭虫子,那么蜘蛛要想最快地捉住虫子,它所走的最短路程是dm.(结果保留根号)10.我们学习了勾股定理后,都知道“勾三、股四、弦五”.观察:3、4、5;5、12、13;7、24、25;9、40、41;…,发现这些勾股数的勾都是奇数,且从3起就没有间断过.(1)请你根据上述的规律写出下一组勾股数:;(2)若第一个数用字母n(n为奇数,且n≥3)表示,那么后两个数用含n的代数式分别表示为和.11.如图,小正方形边长为2,连接小正方形的三个顶点可得△ABC,则AC边上的高为.12.我国古代著作《周髀算经》中记载了“赵爽弦图”.如图,若勾AE=6,弦AD=10,则小正方形EFGH的面积是.三.解答题13.如图,在△ABC中,∠C=90°,点D在边BC上,AD=BD,DE平分∠ADB交AB于点E.若AC=12,BC=16,求AE的长.14.如图所示,是一个三级台阶,它的每一级的长、宽、高分别为55cm,10cm,6cm,点A 和点B是这个台阶的两个相对的端点,A点处有一只蚂蚁,那么这只蚂蚁从点A爬到点B的最短路程是多少?15.在学习勾股定理时,我们学会运用图(Ⅰ)验证它的正确性.图中大正方形的面积可表示为(a+b)2,也可表示为c2+4×ab,即(a+b)2=c2+4×ab.由此推出勾股定理a2+b2=c2这种方法可以极简单地直观推论或验证出数学规律和公式.(1)请你用图(Ⅱ)的面积表达式验证勾股定理(其中四个全等的直角三角形围成一个大正方形ABCD,中间的部分是一个小正方形EFGH,AE=a,BE=b,AB=c);(2)请你用图(Ⅲ)提供的图形进行组合,用组合图形的面积表达式验证:(x+y)2=x2+2xy+y2.16.如图,四边形ABCD的三条边AB,BC,CD和BD都为5cm,动点P从点A出发沿A →B→D以2cm/s的速度运动到点D,动点Q从点D出发沿D→C→B→A以2.8cm/s的速度运动到点A.若两点同时开始运动运动5s时,P,Q相距3cm.试确定两点运动5s时,问△APQ的形状.17.已知:整式A=n(n+6)+2(n+8)(n>0),整式B>0.尝试:化简整式A;发现:A=B2,求整式B;应用:利用A=B2,填写下列表格:n(n+6)2(n+8)B\40\18.某工程队准备从A到B修建一条隧道,测量员在直线AB的同一侧选定C,D两个观测点,如图.测得AC长为km,CD长为(+)km,BD长为km,∠ACD=60°,∠CDB=135°(A、B、C、D在同一水平面内).(1)求A、D两点之间的距离;(2)求隧道AB的长度.参考答案与试题解析一.选择题1.解:∵a=,b=,c=,∴b2+c2=()2+()2=5=a2,∴△ABC是直角三角形,∠A=90°,故选:A.2.解:①∵7不能表示为两个正整数的平方和,∴7不是广义勾股数,故①结论正确;②∵13=22+32,∴13是广义勾股数,故②结论正确;③两个广义勾股数的和不一定是广义勾股数,如5和10是广义勾股数,但是它们的和不是广义勾股数,故③结论错误;④设,,则=a2c2+a2d2+b2c2+b2d2=(a2c2+b2d2+2abcd)+(a2d2+b2c2﹣2abcd)=(ac+bd)2+(ad﹣bc)2,当ad=bc时,m1•m2不是广义勾股数,∴两个广义勾股数的积不一定是广义勾股数,故④结论错误,∴依次正确的是①②.故选:C.3.解:蚂蚁也可以沿A﹣B﹣C的路线爬行,AB+BC=9,把圆柱侧面展开,展开图如右图所示,点A、C的最短距离为线段AC的长.在Rt△ADC中,∠ADC=90°,CD=AB=3,AD为底面半圆弧长,AD=3π,所以AC===3<9,故选:A.4.解:A、∵ab+c2+ab=(a+b)(a+b),∴整理得:a2+b2=c2,即能证明勾股定理,故本选项不符合题意;B、∵4×ab+c2=(a+b)2,∴整理得:a2+b2=c2,即能证明勾股定理,故本选项不符合题意;C、∵4×ab+(b﹣a)2=c2,∴整理得:a2+b2=c2,即能证明勾股定理,故本选项不符合题意;D、根据图形不能证明勾股定理,故本选项符合题意;故选:D.5.解:设BO=xm,由题意得:AC=1m,BD=1m,AO=4m,在Rt△AOB中,根据勾股定理得:AB2=AO2+OB2=42+x2,在Rt△COD中,根据勾股定理得:CD2=CO2+OD2=(4﹣1)2+(x+1)2,∴42+x2=(4﹣1)2+(x+1)2,解得:x=3,∴AB===5(m),即梯子AB的长为5m,故选:A.6.解:过O作OF⊥BC于F,OE⊥AD于E,∴∠AEO=∠OFB=90°,∴∠A+∠AOE=90°,∵OA=OB=OC=OD,∴BF=CF=BC=×4=2,AE=DE=AD=×6=3,∠AOE=∠DOE,∠BOF=∠COF,∵∠BOC+∠AOD=180°,∴∠AOE+∠BOF=90°,∴∠A=∠BOF=90°﹣∠AOE,在△AOE和△OBF中,,∴△AOE≌△OBF(AAS),∴OE=BF=2,在Rt△AOE中,∠AEO=90°,OE=2,AE=3,∴OA===,故选:C.二.填空题7.解:由题意可知:AP=12,BP=16,AB=20,∵122+162=202,∴△APB是直角三角形,∴∠APB=90°,由题意知∠APN=40°,∴∠BPN=90°﹣∠APN=90°﹣40°=50°,即乙船沿北偏东50°方向航行,故答案为:北偏东50°.8.解:∵32+42=52,∴三边长分别为3,4,5的三角形是直角三角形,∴这个三角形中最短边上的高为4,故答案为:4.9.解:如图:因为BC=2dm,AC=2×2=4(dm),所以AB==2(dm).故答案为:2.10.解:(1)11,60,61;故答案为:11,60,61.(2)后两个数表示为和,∵n2+()2=n2+=,()2=,∴n2+()2=()2.又∵n≥3,且n为奇数,∴由n,,三个数组成的数是勾股数.故答案为:,.11.解:四边形DEFA是正方形,面积是16;△ABF,△ACD的面积相等,且都是×4×2=4.△BCE的面积是:×2×2=2.则△ABC的面积是:16﹣4﹣4﹣2=6.在直角△ADC中根据勾股定理得到:AC==2.设AC边上的高线长是x.则AC•x=x=6,解得:x=.故答案为:.12.解:如图,∵勾AE=6,弦AD=弦AB=10,∴股BE==8,∴小正方形的边长=8﹣6=2,∴小正方形的面积=22=4.故答案是:4.三.解答题13.解:如图,在△ABC中,∠C=90°,AC=12,BC=16,由勾股定理知:AB===20.∵AD=BD,DE平分∠ADB交AB于点E.∴AE=BE=AB=10.14.解:如图所示,将这个台阶展开成一个平面图形,则蚂蚁爬行的最短路程就是线段AB 的长.在Rt△ABC中,BC=55cm,AC=10+6+10+6+10+6=48(cm).由勾股定理,得AB2=AC2+BC2=5329.所以AB=73(cm).因此,蚂蚁从点A爬到点B的最短路程是73cm.15.解:(1)大正方形的面积为:c2,中间小正方形面积为:(b﹣a)2;四个直角三角形面积和为:4×ab;由图形关系可知:大正方形面积=小正方形面积+四直角三角形面积,即有:c2=(b﹣a)2+4×ab=b2﹣2ab+a2+2ab=a2+b2;(2)如图示:大正方形边长为(x+y)所以面积为:(x+y)2,它的面积也等于两个边长分别为x,y 和两个长为x宽为y的矩形面积之和,即x2+2xy+y2所以有:(x+y)2=x2+2xy+y2成立;16.解:5s时,动点P运动的路程为2×5=10(cm),即点P运动到D点(点P与点D 重合),动点Q运动的路程为2.8×5=14(cm),因为DC=BC=BA=5cm,所以点Q在BA上,且BQ=14﹣10=4(cm).在△BPQ中,因为BP=5cm,BQ=4cm,PQ=3cm,所以BQ2+PQ2=42+32=25=BP2,所以△BPQ是直角三角形,且∠BQP=90°,所以∠AQP=180°﹣90°=90°,所以两点运动5s时,△APQ是直角三角形.17.解:A=n(n+6)+2(n﹣8)=n2+8n+16.∵A=B2,B>0,∴B2=n2+8n+16=(n+4)2.∴B=n+4,当2(n+8)=时,解得:n=,∴n+4=,当n(n+6)=40时,解得:n1=4,n2=﹣10(舍去),∴n+4=8,故答案为:;8.18.解:(1)过A作AE⊥CD于E,如图所示:则∠AEC=∠AED=90°,∵∠ACD=60°,∴∠CAE=90°﹣60°=30°,∴CE=AC=(km),AE=CE=(km),∴DE=CD﹣CE=(+)﹣=(km),∴AE=DE,∴△ADE是等腰直角三角形,∴AD=AE=×=(km);(2)由(1)得:△ADE是等腰直角三角形,∴AD=AE=(km),∠ADE=45°,∵∠CDB=135°,∴∠ADB=135°﹣45°=90°,∴AB===3(km),即隧道AB的长度为3km.。
勾股定理单元测试(北师版)一、单选题(共7道,每道10分)1.暑假中,小明到某海岛探宝,如图,他到达海岛登陆点后先往东走8km,又往北走2km,遇到障碍后又往西走3km,再折向北走6km处往东一拐,仅1km就找到宝藏,则登陆点到埋宝藏点的直线距离是( )km.A. B.C.10D.答案:C解题思路:试题难度:三颗星知识点:勾股定理2.如图,以第①个等腰直角三角形的斜边长作为第②个等腰直角三角形的腰,以第②个等腰直角三角形的斜边长作为第③个等腰直角三角形的腰,依此类推,若第⑨个等腰直角三角形的斜边长为厘米,则第①个等腰直角三角形的斜边长为( )厘米.A.1B.C. D.答案:B解题思路:试题难度:三颗星知识点:勾股定理3.将一个含60°角的三角板的直角顶点C放在一张宽为5cm的纸带边沿上,另一个顶点B在纸带的另一边沿上(∠ABC=60°),测得∠DBC=45°,则三角板的最大边长为( )A.5cmB.10cmC. D.答案:C解题思路:试题难度:三颗星知识点:等腰直角三角形的性质和判定4.如图,在Rt△ABC中,AC⊥BC,AD平分∠BAC交BC于点D,DE⊥AD交AB于点E,M为AE的中点,连接MD,若BD=2,CD=1.则MD的长为( )A.1B.C. D.答案:B解题思路:试题难度:三颗星知识点:含30°角的直角三角形5.两个三角形按如图所示放置,其中,∠ACB=∠ACB=90°,∠ABC=60°,∠ABD=45°,点E是AB的中点,连接CE,DE,CD.若AB=4,则的值为( )A. B.1C. D.2答案:B解题思路:试题难度:三颗星知识点:含30°角的直角三角形6.如图,在△ABC中,∠BAC=45°,AD⊥BC,CE⊥AB,垂足分别为D,E,AD,CE交于点H,且EH=EB.小马虎在研究时得到四个结论:①∠ABC=45°;②AH=BC;③AE-BE=CH;④△AEC 是等腰直角三角形.你认为其中正确的是( )A.①②③④B.②③④C.①②③D.②③答案:B解题思路:试题难度:三颗星知识点:等腰直角三角形的性质和判定7.如图,在Rt△ABC中,AB=AC,∠BAC=90°,D,E为BC上两点,∠DAE=45°,F为△ABC 外一点,且FB⊥BC,FA⊥AE,则下列结论:①CE=BF;②;③,其中正确的是( )A.①②③B.①②C.②③D.①③答案:A解题思路:试题难度:三颗星知识点:勾股弦图二、填空题(共3道,每道10分)8.如图,分别以Rt△XYZ的直角边和斜边为边向外作正方形AXZF,正方形BCYX,正方形DEZY,若直角边YZ=1,XZ=2,则六边形ABCDEF的面积为____.答案:14 解题思路:试题难度:知识点:赵爽弦图9.如图,∠OAB=∠OBC=∠OCD=90°,AB=BC=CD=1,OA=2,则____.答案:7解题思路:试题难度:知识点:勾股定理10.如图,在四边形ABCD中,AB=3,BC=4,CD=12,AD=13,且∠B=90°.则四边形ABCD的面积为____.答案:36解题思路:试题难度:知识点:勾股定理的应用。
第一章勾股定理数学八年级上册-单元测试卷-北师大版(含答案)一、单选题(共15题,共计45分)1、如图,在中,于点D,且是的中点,若则的长等于()A.5B.6C.7D.82、如图,⊙M与x轴相交于点A(2,0)、B(8,0),与y轴相切于点C,则圆心M的坐标是()A.(3,5)B.(5,3)C.(4,5)D.(5,4)3、如图,由4个相同的直角三角形与中间的小正方形拼成一个大正方形,若大正方形面积是17,小正方形面积是5,直角三角形较长直角边为b,则ab的值是()A.4B.6C.8D.104、如图,在4×3的长方形网格中,已知A,B两点为格点(网格线的交点称为格点),若C也为该网格中的格点,且△ABC为等腰直角三角形,则格点C的个数为()A.5B.6C.3D.45、如图,圆锥侧面展开得到扇形,此扇形半径,圆心角,则此圆锥高的长度是()A.2B.C.D.6、下列说法中正确的个数为()①如果三角形的三边长a,b,c满足,那么这个三角形是直角三角形;②对角线相等的平行四边形是菱形;③如果一个一元二次方程有实数根,那么;④三个角相等的四边形是矩形.A.1个B.2个C.3个D.4个7、一根高9m的旗杆在离地4m高处折断,折断处仍相连,此时在3.9m远处耍的身高为1m 的小明()A.没有危险B.有危险C.可能有危险D.无法判断8、四个全等的直角三角形围成一个大正方形,中间空出的部分是一个小正方形,这样就组成了一个“赵爽弦图”(如图).如果小正方形面积为49,大正方形面积为169,直角三角形中较小的锐角为θ,那么sinθ的值()A. B. C. D.9、如图,网格中每个小正方形的边长均为1,点,,都在格点上,以为圆心,为半径画弧,交最上方的网格线于点,则的长为()A. B.0.8 C. D.10、如图,在△ABC中,∠ACB=90º,AC=BC=1,E、F为线段AB上两动点,且∠ECF=45°,过点E、F分别作BC、AC的垂线相交于点M,垂足分别为H、G.现有以下结论:①AB= ;②AF+BE=EF;③当点E与点B重合时,MH= ;其中正确结论的个数是( )A.0B.1C.2D.311、如图,在平面直角坐标系中,⊙M与x轴相切于点A(8,0),与y轴分别交于点B (0,4)和点C(0,16),则圆心M到坐标原点O的距离是()A.10 B.8C.4D.212、如图所示,在正方形中,边长为2的等边三角形的顶点,分别在和上.下列结论:①;②;③;④.其中结论正确的序号是()A.①②③B.①②④C.①③④D.②③④13、已知:如图,菱形ABCD的两条对角线相交于O,若AC=8,BD=6,则菱形ABCD的周长是()A.20B.16C.12D.1014、如图,在矩形ABCD中,AB=6,AD=8,以BC为斜边在矩形所在平面作直角三角形BEC,F为CD的中点,则EF的最小值为()A. B. C. D.15、如图,A,B是直线l同侧的两点,作点A关于直线l的对称点A′,连结A′B.若点A,B到直线l的距离分别为2和3,则线段AB与A′B之间的数量关系是()A.A′B 2﹣AB 2=13B.A′B 2﹣AB 2=24C.A′B 2+AB2=25 D.A′B 2+AB 2=26二、填空题(共10题,共计30分)16、如图,点G是正方形ABCD的AB边的中点,点E、F在对角线AC上,并且AE=EF=FC,如果AB=2,则BF+GE=________.</p>17、如图,四边形ABCD中,AB=BC=2,CD=1,DA=3,AC为一条对角线,若∠ABC=90°,则四边形ABCD的面积为________.18、读诗求解:“出水三尺一红莲,风吹花朵齐水面,水平移动有六尺,水深几何请你算?”请你写出水的深度为________尺.19、如图,矩形ABCD中,AB=8,点E是AD上的一点,有AE=4,BE的垂直平分线交BC的延长线于点F,连结EF交CD于点G.若G是CD的中点,则BC的长是________.20、已知|x﹣12|+(y﹣13)2与z2﹣10z+25互为相反数,则以x,y,z为边的三角形是________ 三角形.21、如图,已知四边形ABCD是平行四边形,BC=3AB,A、B两点的坐标分别是(1,0),(0,2),C、D两点在反比例函数y=(k>0,x>0)的图象上,则k的值等于________.22、如图,在矩形ABCD中,对角线AC, BD交于点O,已知∠AOD=120°, AB=1,则BC的长为________23、如图,在边长为的正方形中,点Q是边的中点,点P是边上的一点,连接,,且,则线段的长为________ .24、如图,将矩形ABCD沿对角线AC折叠,E是点D的对称点,CE交AB于点F.若AB=16,BC=8,则BF的长为________.25、如图,正方形ABCD的边长为8,M是AB的中点,P是BC边上的动点,连结PM,以点P为圆心,PM长为半径作⊙P.当⊙P与正方形ABCD的边相切时,BP的长为________.三、解答题(共5题,共计25分)26、在 Rt△ABC 中,∠C=90°,∠A、∠B、∠C 的对边分别为a、b、c.若a∶c=15∶17,b=24,求a.27、如图,在笔直的铁路上A、B两点相距25km,C、D为两村庄,DA=10km,CB=15km,DA ⊥AB于A,CB⊥AB于B,现要在AB上建一个中转站E,使得C、D两村到E站的距离相等.求E应建在距A多远处?28、在由6个大小相同的小正方形组成的方格中;如图,A、B、C是三个格点(即小正方形的顶点).判断AB与BC的关系,并说明理由.29、如图,是等腰直角三角形,,D是斜边的中点,分别是边上的点,且,若,,求线段的长.30、如图,△ABC中,,且AD=AC.若∠ABC=45°,D是BC边上一点,BD-DC=1.求DC的长.参考答案一、单选题(共15题,共计45分)1、D2、D3、B5、C6、A7、B8、D9、A10、C11、D12、B13、A14、B15、B二、填空题(共10题,共计30分)16、17、18、19、20、22、23、24、25、三、解答题(共5题,共计25分)28、。
勾股定理专题训练试题精选(一)一. 选择题(共30小题)1.(2014•十堰)如图, 在四边形ABCD中, AD∥BC, DE⊥BC, 垂足为点E, 连接AC交DE于点F, 点G为AF的中点, ∠ACD=2∠ACB.若DG=3, EC=1, 则DE的长为()A.2B.C.2D.2. (2014•吉林)如图, △ABC中, ∠C=45°, 点D在AB上, 点E在BC上. 若AD=DB=DE, AE=1, 则AC的长为()A.B.2C.D.3. (2014•湘西州)如图, 在Rt△ABC中, ∠ACB=90°, CA=CB, AB=2, 过点C作CD⊥AB, 垂足为D, 则CD的长为()A.B.C.1D.24. (2013•和平区二模)如图, 线段AB的长为2, C为AB上一个动点, 分别以AC.BC为斜边在AB的同侧作两个等腰直角三角形△ACD和△BCE, 那么DE长的最小值是()A.B.1C.D.5. (2012•威海)如图, a∥b, 点A在直线a上, 点C在直线b上, ∠BAC=90°, AB=AC, 若∠1=20°, 则∠2的度数为()A.25°B.65°C.70°D.75°6. (2011•衢州)一个圆形人工湖如图所示, 弦AB是湖上的一座桥, 已知桥AB长100m, 测得圆周角∠ACB=45°, 则这个人工湖的直径AD为()A.B.C.D.7. (2011•惠山区模拟)梯形ABCD中AB∥CD, ∠ADC+∠BCD=90°, 以AD.AB.BC为斜边向外作等腰直角三角形, 其面积分别是S1.S2.S3, 且S1+S3=4S2, 则CD=()A.2.5AB B.3AB C.3.5AB D.4AB8. (2011•白下区二模)如图, △A1A2B是等腰直角三角形, ∠A1A2B=90°, A2A3⊥A1B, 垂足为A3, A3A4⊥A2B, 垂足为A4, A4A5⊥A3B, 垂足为A5, …, An+1An+2⊥AnB, 垂足为An+2(n为正整数), 若A1A2=A2B=a, 则线段An+1An+2的长为()A.B.C.D.9. (2010•西宁)矩形ABCD中, E, F, M为AB, BC, CD边上的点, 且AB=6, BC=7, AE=3, DM=2, EF⊥FM, 则EM 的长为()A.5B.C.6D.10.A.B.C.D.2(2010•鞍山)正方形ABCD中, E、F两点分别是BC.CD上的点.若△AEF是边长为三角形,则正方形ABCD的边长为()11. (2010•鼓楼区二模)小明将一张正方形包装纸, 剪成图1所示形状, 用它包在一个棱长为10的正方体的表面(不考虑接缝), 如图2所示. 小明所用正方形包装纸的边长至少为()A.40 B.30+2C.20D.10+1012.A.132 B.121 C.120 D.以上答案都不对(2009•鄞州区模拟)直角三角形有一条直角边的长是11, 另外两边的长都是自然数, 那么它的周长是()A.有一个内角等于60°的等腰三角形是等边三角形13.(2009•宝安区一模)下列命题中,是假命题的是()B.在直角三角形中, 斜边上的高等于斜边的一半C.在直角三角形中, 最大边的平方等于其他两边的平方和D.三角形两个内角平分线的交点到三边的距离相等14. (2008•江西模拟)已知△ABC是腰长为1的等腰直角三角形, 以Rt△ABC的斜边AC为直角边, 画第二个等腰Rt△ACD, 再以Rt△ACD的斜边AD为直角边, 画第三个等腰Rt△ADE, …, 依此类推, 第n个等腰直角三角形A.2n﹣2B.2n﹣1C.2n D.2n+115. (2007•台湾)以下是甲、乙两人证明+ ≠的过程:(甲)因为>=3, >=2, 所以+ >3+2=5且=<=5所以+>5>故+≠(乙)作一个直角三角形, 两股长分别为、利用商高(勾股)定理()2+()2=15+8得斜边长为因为、、为此三角形的三边长所以+>故+≠A.两人都正确B.两人都错误C.甲正确, 乙错误D.甲错误, 乙正确对于两人的证法,下列哪一个判断是正确的()16. (2007•宁波二模)如图, A.B是4×5网格中的格点, 网格中的每个小正方形的边长都是1, 图中使以A.B.C为顶点的三角形是等腰三角形的格点C有()A.2个B.3个C.4个D.5个17.A.1B .C .D.(2006•郴州)在△ABC中, ∠C=90°,AC, BC的长分别是方程x2﹣7x+12=0根, △ABC内一点P到三边的距离都相等. 则PC为()18. (2002•南宁)如图, 直角三角形三边上的半圆面积从小到大依次记为S1.S2.S3, 则S1.S2.S3之间的关系是()A.S l+S2>S3B.S l+S2<S3C.S1+S2=S3D.S12+S22=S3219. (2001•广州)已知点A和点B(如图), 以点A和点B为其中两个顶点作位置不同的等腰直角三角形, 一共可作出()A.2个B.4个C.6个D.8个20. 设直角三角形的A.2B.3C.4D.5三边长分别为a、b、c, 若c﹣b=b﹣a>0,则=()21. (1999•A.4B.6C.8D.温州)已知△ABC中,AB=AC=10,BD是AC边上的高线,DC=2, 那么BD等于()22. 如图, 在四边形ABCD中, ∠B=135°, ∠C=120°, AB= , BC= , CD= , 则AD边的长为()A.B.C.D.A.16 B.18 C.12D.1223. 在△ABC中,∠A=15°,AB=12,则△ABC的面积等于()24. 如图, 在Rt△ABC中, ∠C=90°, DE⊥AB, AC=BE=15, BC=20. 则四边形ACED的面积为()A.54 B.75 C.90 D.9625. 如图, 在△ABC中, 分别以AB.BC为直径的⊙O1.⊙O2交于AC上一点D, 且⊙O1经过点O2, AB.DO2的延长线交于点E, 且BE=BD. 则下列结论不正确的是()A.A B=AC B.∠BO2E=2∠E C.A B=BE D.E O2=BE26. 如图, 在正方形网格中, cosα的值为()A.1B.C.D.27. 直角A.10 B.2C.4或10 D.10或2三角形一边长为8,另一条边是方程x2﹣2x﹣24=0的一解, 则此直角三角形的第三条边长是()28. 如图是2002年在北京召开的国际数学家大会的会徽, 它由4个相同的直角三角形拼成, 已知直角三角形的两条直角边长分别为3和4, 则大正方形ABCD和小正方形EFGH的面积比是()A.1:5 B.1: 25 C.5:1 D.25: 129. 如图, 已知△ABC中, AB=AC, ∠BAC=90°, 直角∠EPF的顶点P是BC中点, 两边PE、PF分别交AB.AC于点E、F, 给出以下四个结论:①AE=CF;②△EPF是等腰直角三角形;③S四边形AEPF=S△ABC;④当∠EPF在△ABC内绕顶点P旋转时(点E不与A.B重合)BE+CF=EF.上述结论中始终正确的有()A.1个B.2个C.3个D.4个30. 如图, △ABC中, AC=BC, ∠ACB=90°, AE平分∠BAC交BC于E, BD⊥AE于D, DM⊥AC于M, 连CD. 下列结论: ①AC+CE=AB;②;③∠CDA=45°;④=定值.其中正确的有()A.1个B.2个C.3个D.4个勾股定理专题训练试题精选(一)参考答案与试题解析一. 选择题(共30小题)1.(2014•十堰)如图, 在四边形ABCD中, AD∥BC, DE⊥BC, 垂足为点E, 连接AC交DE于点F, 点G为AF的中点, ∠ACD=2∠ACB.若DG=3, EC=1, 则DE的长为()A.2B.C.2D.考点:勾股定理;等腰三角形的判定与性质;直角三角形斜边上的中线. 菁优网版权所有专题:几何图形问题.分析:根据直角三角形斜边上的中线的性质可得DG=AG, 根据等腰三角形的性质可得∠GAD=∠GDA, 根据三角形外角的性质可得∠CGD=2∠GAD, 再根据平行线的性质和等量关系可得∠ACD=∠CGD, 根据等腰三角形的性质可得CD=DG, 再根据勾股定理即可求解.解答:解: ∵AD∥BC, DE⊥BC,∴DE⊥AD, ∠CAD=∠ACB, ∠ADE=∠BED=90°,又∵点G为AF的中点,∴DG=AG,∴∠GAD=∠GDA,∴∠CGD=2∠CAD,∵∠ACD=2∠ACB=2∠CAD,∴∠ACD=∠CGD,∴CD=DG=3,在Rt△CED中, DE= =2 .故选:C.故选: C.故选:C.点评:综合考查了勾股定理, 等腰三角形的判定与性质和直角三角形斜边上的中线, 解题的关键是证明CD=DG=3.2. (2014•吉林)如图, △ABC中, ∠C=45°, 点D在AB上, 点E在BC上. 若AD=DB=DE, AE=1, 则AC的长为()A.B.2C.D.考点:等腰直角三角形;等腰三角形的判定与性质. 菁优网版权所有专题:几何图形问题.分析:利用AD=DB=DE, 求出∠AEC=90°, 在直角等腰三角形中求出AC的长.解答:解: ∵AD=DE,∴∠DAE=∠DEA,∵DB=DE,∴∠B=∠DEB,∴∠AEB=∠DEA+∠DEB= ×180°=90°,∴∠AEC=90°,∵∠C=45°, AE=1,∴AC= .故选:D.故选: D.故选:D.点评:本题主要考查等腰直角三角形的判定与性质, 解题的关键是利用角的关系求出∠AEC是直角.3. (2014•湘西州)如图, 在Rt△ABC中, ∠ACB=90°, CA=CB, AB=2, 过点C作CD⊥AB, 垂足为D, 则CD的长为()A.B.C.1D.2考点:等腰直角三角形. 菁优网版权所有分析:由已知可得Rt△ABC是等腰直角三角形, 得出AD=BD= AB=1, 再由Rt△BCD是等腰直角三角形得出CD=BD=1.解答:解: ∵∠ACB=90°, CA=CB,∴∠A=∠B=45°,∵CD⊥AB,∴AD=BD= AB=1, ∠CDB=90°,∴CD=BD=1.故选:C.故选: C.故选:C.点评:本题主要考查了等腰直角三角形, 解题的关键是灵活运用等腰直角三角形的性质求角及边的关系.4. (2013•和平区二模)如图, 线段AB的长为2, C为AB上一个动点, 分别以AC.BC为斜边在AB的同侧作两个等腰直角三角形△ACD和△BCE, 那么DE长的最小值是()A.B.1C.D.考点:等腰直角三角形;垂线段最短;平行线之间的距离. 菁优网版权所有分析:利用等腰直角三角形的特点知道AD=CD, CE=BE, ∠ACD=∠A=45°, ∠ECB=∠B=45°, ∠DCE=90°.利用勾股定理得出DE的表达式, 利用函数的知识求出DE的最小值.解答:解: 在等腰RT△ACD和等腰RT△CBE中AD=CD, CE=BE, ∠ACD=∠A=45°, ∠ECB=∠B=45°∴∠DCE=90°∴AD2+CD2=AC2, CE2+BE2=CB2∴CD2= AC2, CE2= CB ,∵DE2=DC2+EC2,∴DE===∴当CB=1时, DE的值最小, 即DE=1.故选:B.故选: B.故选:B.点评:此题考察了等腰直角三角形的特点及二次函数求最值的方法.5. (2012•威海)如图, a∥b, 点A在直线a上, 点C在直线b上, ∠BAC=90°, AB=AC, 若∠1=20°, 则∠2的度数为()A.25°B.65°C.70°D.75°考点:等腰直角三角形;平行线的性质. 菁优网版权所有专题:计算题.分析:根据等腰直角三角形性质求出∠ACB, 求出∠ACE的度数, 根据平行线的性质得出∠2=∠ACE, 代入求出即可.解答:解: ∵∠BAC=90°, AB=AC,∴∠B=∠ACB=45°,∵∠1=20°,∴∠ACE=20°+45°=65°,∴∠2=∠ACE=65°,故选B.点评:本题考查了三角形的内角和定理、等腰直角三角形、平行线的性质, 关键是求出∠ACE的度数.6. (2011•衢州)一个圆形人工湖如图所示, 弦AB是湖上的一座桥, 已知桥AB长100m, 测得圆周角∠ACB=45°, 则这个人工湖的直径AD为()A.B.C.D.考点:等腰直角三角形;圆周角定理. 菁优网版权所有专题:证明题.分析:连接OB.根据圆周角定理求得∠AOB=90°;然后在等腰Rt△AOB中根据勾股定理求得⊙O的半径AO=OB=50 m, 从而求得⊙O的直径AD=100 m.解答:解: 连接OB.∵∠ACB=45°, ∠ACB= ∠AOB(同弧所对的圆周角是所对的圆心角的一半),∴∠AOB=90°;在Rt△AOB中, OA=OB(⊙O的半径), AB=100m,∴由勾股定理得, AO=OB=50 m,∴AD=2OA=100m;故选B.点评:本题主要考查了等腰直角三角形、圆周角定理.利用圆周角定理求直径的长时, 常常将直径置于直角三角形中, 利用勾股定理解答.7. (2011•惠山区模拟)梯形ABCD中AB∥CD, ∠ADC+∠BCD=90°, 以AD.AB.BC为斜边向外作等腰直角三角形, 其面积分别是S1.S2.S3, 且S1+S3=4S2, 则CD=()A.2.5AB B.3AB C.3.5AB D.4AB考点:勾股定理;等腰直角三角形;相似三角形的判定与性质. 菁优网版权所有专题:计算题;证明题;压轴题.分析:过点B作BM∥AD, 根据AB∥CD, 求证四边形ADMB是平行四边形, 再利用∠ADC+∠BCD=90°, 求证△MBC为Rt△, 再利用勾股定理得出MC2=MB2+BC2, 在利用相似三角形面积的比等于相似比的平方求出MC即可.解答:解: 过点B作BM∥AD,∵AB∥CD, ∴四边形ADMB是平行四边形,∴AB=DM, AD=BM,又∵∠ADC+∠BCD=90°,∴∠BMC+∠BCM=90°, 即△MBC为Rt△,∴MC2=MB2+BC2,∵以AD.AB.BC为斜边向外作等腰直角三角形,∴△AED∽△ANB, △ANB∽△BFC,= , = ,即AD2= , BC2= ,∴MC2=MB2+BC2=AD2+BC2= += = ,∵S1+S3=4S2,∴MC2=4AB2, MC=2AB,CD=DM+MC=AB+2AB=3AB.故选B.点评:此题涉及到相似三角形的判定与性质, 勾股定理, 等腰直角三角形等知识点, 解答此题的关键是过点B作BM∥AD, 此题的突破点是利用相似三角形的性质求得MC=2AB, 此题有一定的拔高难度, 属于难题.8. (2011•白下区二模)如图, △A1A2B是等腰直角三角形, ∠A1A2B=90°, A2A3⊥A1B, 垂足为A3, A3A4⊥A2B, 垂足为A4, A4A5⊥A3B, 垂足为A5, …, An+1An+2⊥AnB, 垂足为An+2(n为正整数), 若A1A2=A2B=a, 则线段An+1An+2的长为()A.B.C.D.考点:等腰直角三角形;勾股定理. 菁优网版权所有专题:计算题;规律型.分析:先根据勾股定理及等腰三角形的性质求出A2A3及A3A4的长, 找出规律即可解答.解答:解: ∵△A1A2B是直角三角形, 且A1A2=A2B=a, A2A3⊥A1B,∴A1B= = a,∵△A1A2B是等腰直角三角形,∴A2A3⊥A1B,∴A2A3=A1A3= A1B= = ,同理, A4A5= ×= ,∴线段An+1An+2的长为.故选B.故选B.点评:此题属规律性题目, 涉及到等腰三角形及直角三角形的性质, 解答此题的关键是求出A2A3及A3A4的长找出规律.灵活运用等腰直角三角形的性质, 得到等腰直角三角形的斜边是直角边的倍, 从而准确得出结论.9. (2010•西宁)矩形ABCD中, E, F, M为AB, BC, CD边上的点, 且AB=6, BC=7, AE=3, DM=2, EF⊥FM, 则EM 的长为()A.5B.C.6D.考点:勾股定理;矩形的性质. 菁优网版权所有专题:压轴题.分析:过E作EG⊥CD于G, 利用矩形的判定可得, 四边形AEGD是矩形, 则AE=DG, EG=AD, 于是可求MG=DG ﹣DM=1, 在Rt△EMG中, 利用勾股定理可求EM.解答:解: 过E作EG⊥CD于G,∵四边形ABCD是矩形,∴∠A=∠D=90°,又∵EG⊥CD,∴∠EGD=90°,∴四边形AEGD是矩形,∴AE=DG, EG=AD,∴EG=AD=BC=7, MG=DG﹣DM=3﹣2=1,∵EF⊥FM,∴△EFM为直角三角形,∴在Rt△EGM中, EM= = = =5 .故选B.点评:本题考查了矩形的判定、勾股定理等知识, 是基础知识要熟练掌握.10.A.B.C.D.2(2010•鞍山)正方形ABCD中, E、F两点分别是BC.CD上的点.若△AEF是边长为的等边三角形,则正方形ABCD的边长为()考点:勾股定理;全等三角形的判定与性质;等边三角形的性质;正方形的性质. 菁优网版权所有分析:根据正方形的各边相等和等边三角形的三边相等, 可以证明△ABE≌△ADF, 从而得到等腰直角三角形CEF, 求得CF=CE=1.设正方形的边长是x, 在直角三角形ADF中, 根据勾股定理列方程求解.解答:解: ∵AB=AD, AE=AF,∴Rt △ABE≌Rt△ADF.∴BE=DF.∴CE=CF=1.设正方形的边长是x.在直角三角形ADF中, 根据勾股定理, 得x2+(x﹣1)2=2,解, 得x= (负值舍去).即正方形的边长是.故选A.点评:此题综合运用了正方形的性质、等边三角形的性质、全等三角形的判定和性质以及勾股定理.11. (2010•鼓楼区二模)小明将一张正方形包装纸, 剪成图1所示形状, 用它包在一个棱长为10的正方体的表面(不考虑接缝), 如图2所示. 小明所用正方形包装纸的边长至少为()A.40 B.30+2C.20D.10+10考点:等腰直角三角形. 菁优网版权所有分析:所求正方形的边长即为AB的长, 在等腰Rt△ACF、△CDE中, 已知了CE、DE、CF的长均为10, 根据等腰直角三角形的性质, 即可求得AC、CD的长, 由AB=AC+CD+BD即可得解.解答:解: 如图;连接AB, 则AB必过C.D;Rt△ACF中, AC=AF, CF=10;则AC=AF=5;同理可得BD=5;Rt△CDE中, DE=CE=10, 则CD=10 ;所以AB=AC+CD+BD=20 ;故选C.点评:理清题意, 熟练掌握直角三角形的性质是解答此题的关键.A.132 B.121 C.120 D.以上答案都不对12.(2009•鄞州区模拟)直角三角形有一条直角边的长是11, 另外两边的长都是自然数, 那么它的周长是()考点:勾股定理. 菁优网版权所有分析:假设另外两边后, 根据勾股定理适当变形, 即可解答.解答:解: 设另外两边是a、b(a>b)则根据勾股定理, 得:a2﹣b2=121∵另外两边的长都是自然数∴(a+b)(a﹣b)=121=121×1即另外两边的和是121,故三角形的周长是132.故选A.故选A.点评:注意熟练进行因式分解和因数分解, 根据另外两边的长都是自然数分析结论.A.有一个内角等于60°的等腰三角形是等边三角形13.(2009•宝安区一模)下列命题中,是假命题的是()B.在直角三角形中, 斜边上的高等于斜边的一半C.在直角三角形中, 最大边的平方等于其他两边的平方和D.三角形两个内角平分线的交点到三边的距离相等考点:勾股定理;角平分线的性质;等边三角形的判定;直角三角形斜边上的中线. 菁优网版权所有专题:计算题;证明题.分析:A.根据等腰三角形的性质求解;B.根据直角三角形的面积计算方法求斜边的高;C、根据勾股定理求解;D、求证角平分线和过角平分线交点作垂线所分的3对小三角形全等即可.C.根据勾股定理求解;D、求证角平分线和过角平分线交点作垂线所分的3对小三角形全等即可.C、根据勾股定理求解;D.求证角平分线和过角平分线交点作垂线所分的3对小三角形全等即可.C、根据勾股定理求解;D、求证角平分线和过角平分线交点作垂线所分的3对小三角形全等即可.解答:解: A.等腰三角形底角相等, 若底角为60°, 则顶角为180°﹣60°﹣60°=60°, 若顶角为60°, 则底角为=60°, 所以有一个角为60°的等腰三角形即为等边三角形, 故A选项正确;B.直角三角形中斜边的中线等于斜边的一半, 只有在等腰直角三角形中斜边的高与斜边的中线才会重合,故B选项错误;C.在直角三角形中, 最大的边为斜边, 根据勾股定理可知斜边长的平方的等于两直角边长平方的和, 故C选项正确;D.过三角形角平分线的交点作各边的垂线, 则三角形分成3对小三角形, 其中各顶点所在的两个直角三角形全等, 即过角平分线作的高线相等, 故D选项正确;即B选项中命题为假命题,故选B.故选B.点评:本题考查了全等三角形的证明, 考查了直角三角形中勾股定理的运用, 考查了等腰三角形的性质, 考查了直角三角形中斜边上的中线等于斜边长一半的性质.14. (2008•江西模拟)已知△ABC是腰长为1的等腰直角三角形, 以Rt△ABC的斜边AC为直角边, 画第二个等腰Rt△ACD, 再以Rt△ACD的斜边AD为直角边, 画第三个等腰Rt△ADE, …, 依此类推, 第n个等腰直角三角形的面积是()A.2n﹣2B.2n﹣1C.2n D.2n+1考点:等腰直角三角形. 菁优网版权所有专题:规律型.分析:根据△ABC是边长为1的等腰直角三角形分别求出Rt△ABC、Rt△ACD、Rt△ADE的面积, 找出规律即可.解答:解: ∵△ABC是边长为1的等腰直角三角形,∴S△ABC=×1×1==21﹣2;AC= = , AD= =2…,∴S△ACD=××=1=22﹣2;S△ADE=×2×2=1=23﹣2…∴第n个等腰直角三角形的面积是2n ﹣2.故选A.故选A.点评:此题属规律性题目, 解答此题的关键是分别计算出图中所给的直角三角形的面积, 找出规律即可.15. (2007•台湾)以下是甲、乙两人证明+ ≠的过程:(甲)因为>=3, >=2, 所以+ >3+2=5且=<=5所以+>5>故+≠(乙)作一个直角三角形, 两股长分别为、利用商高(勾股)定理()2+()2=15+8得斜边长为因为、、为此三角形的三边长所以+>故+≠对于两人A.两人都正确B.两人都错误C.甲正确, 乙错误D.甲错误, 乙正确的证法,下列哪一个判断是正确的()考点:勾股定理;实数大小比较;三角形三边关系. 菁优网版权所有专题:压轴题;阅读型.分析:分别对甲乙两个证明过程进行分析即可得出结论.解答:解: 甲的证明中说明+ 的值大于5, 并且证明小于5, 一个大于5的值与一个小于5的值一定是不能相等的.乙的证明中利用了勾股定理, 根据三角形的两边之和大于第三边.故选A.故选A.点评:本题解决的关键是正确理解题目中的证明过程, 阅读理解题是中考中经常出现的问题.16. (2007•宁波二模)如图, A.B是4×5网格中的格点, 网格中的每个小正方形的边长都是1, 图中使以A.B.C为顶点的三角形是等腰三角形的格点C有()A.2个B.3个C.4个D.5个考点:勾股定理;等腰三角形的判定. 菁优网版权所有专题:探究型.分析:先根据勾股定理求出AB的长, 再根据等腰三角形的性质分别找出以AB为腰和以AB为底边的等腰三角形即可.解答:解: ∵A.B是4×5网格中的格点,∴AB= = ,同理可得, AC=BD=AC= ,∴所求三角形有:△ABD, △ABC, △ABE.故选B.点评:本题考查的是勾股定理及等腰三角形的性质, 先根据勾股定理求出AB的长是解答此题的关键.17.A.1B.C.D.(2006•郴州)在△ABC中, ∠C=90°,AC, BC的长分别是方程x2﹣7x+12=0的两个根, △ABC内一点P到三边的距离都相等. 则PC为()考点:勾股定理;解一元二次方程-因式分解法;三角形的内切圆与内心. 菁优网版权所有专题:压轴题.分析:根据AC、BC的长分别是方程x2﹣7x+12=0的两个根, 根据根与系数的关系求出.解答:解: 根据“AC, BC的长分别是方程x2﹣7x+12=0的两个根”可以得出:AC+BC=7, AC•BC=12,AB2=AC2+BC2=25,AB=5,△ABC内一点P到三边的距离都相等, 即P为△ABC内切圆的圆心,设圆心的半径为r, 根据三角形面积表达式:三角形周长×内切圆的半径÷2=三角形的面积,可得出, AC•BC÷2=(AC+BC+AB)×r÷2,12÷2=(7+5)×r÷2,r=1,根据勾股定理PC= = ,故选B.故选B.点评:本题中考查了勾股定理和一元二次方程根与系数的关系. 本题中三角形内心与三角形周长和面积的关系式是本题中的一个重点.18. (2002•南宁)如图, 直角三角形三边上的半圆面积从小到大依次记为S1.S2.S3, 则S1.S2.S3之间的关系是()A.S l+S2>S3B.S l+S2<S3C.S1+S2=S3D.S12+S22=S32考点:勾股定理. 菁优网版权所有专题:压轴题.分析:依据半圆的面积公式, 以及勾股定理即可解决.解答:解: 设直角三角形三边分别为a, b, c, 则三个半圆的半径分别为, ,由勾股定理得a2+b2=c2, 即()2+()2=()2两边同时乘以π得π()2+π()2=π()2即S1.S2.S3之间的关系是S1+S2=S3故选C.故选C.点评:根据勾股定理, 然后变形, 得出三个半圆之间的关系.19. (2001•广州)已知点A和点B(如图), 以点A和点B为其中两个顶点作位置不同的等腰直角三角形, 一共可作出()A.2个B.4个C.6个D.8个考点:等腰直角三角形. 菁优网版权所有专题:压轴题.分析:利用等腰直角三角形的性质来作图, 要注意分不同的直角顶点来讨论.解答:解: 此题应分三种情况:①以AB为腰, 点A为直角顶点;可作△ABC1.△ABC2, 两个等腰直角三角形;②以AB为腰, 点B为直角顶点;可作△BAC3.△BAC4, 两个等腰直角三角形;③以AB为底, 点C为直角顶点;可作△ABC5.△ABC6, 两个等腰直角三角形;综上可知, 可作6个等腰直角三角形, 故选C.点评:等腰直角三角形两腰相等, 顶角为直角, 据此可以构造出等腰直角三角形.关键是以AB为腰和以AB为底来讨论.A.2B.3C.4D.520. 设直角三角形的三边长分别为a、b、c,若c﹣b=b﹣a>0, 则=()考点:勾股定理. 菁优网版权所有分析:根据已知条件判断c是斜边, 并且得到c+a=2b, 然后根据勾股定理得到c2﹣a2=b2, 然后因式分解可以求出c﹣a, 代入要求的式子可以求出结果了.解答:解: ∵c﹣b=b﹣a>0∴c>b>a, c+a=2b根据勾股定理得, c2﹣a2=b2, (c+a)(c﹣a )=b2,∴c﹣a= b∴=4故选C.故选C.点评:此题主要利用了勾股定理和因式分解解题, 题目式子的值不能直接求出, 把它的分子分母分别用b表示才能求出.A.4B.6C .8D.21. (1999•温州)已知△ABC中,AB=AC=10,BD是AC边上的高线,DC=2, 那么BD等于()考点:勾股定理. 菁优网版权所有分析:由CD的长, 可求得AD的值, 进而可在Rt△ABD中, 由勾股定理求得BD的长.解答:解: 如图;△ABC中, AB=AC=10, DC=2;∴AD=AC﹣DC=8;Rt△ABD中, AB=10, AD=8;由勾股定理, 得:BD= =6;故选B.点评:此题主要考查了等腰三角形的性质及勾股定理的应用.22. 如图, 在四边形ABCD中, ∠B=135°, ∠C=120°, AB= , BC= , CD= , 则AD边的长为()A.B.C.D.考点:勾股定理. 菁优网版权所有专题:计算题.分析:作AE⊥BC, DF⊥BC, 构建直角△AEB和直角△DFC, 根据勾股定理计算BE, CF, DF, 计算EF的值, 并根据EF求AD.解答:解: 如图, 过点A, D分别作AE, DF垂直于直线BC, 垂足分别为E, F.由已知可得BE=AE= , CF= , DF=2 ,于是EF=4+ .过点A作AG⊥DF, 垂足为G.在Rt△ADG中, 根据勾股定理得AD= = = = = .故选D.点评:本题考查了勾股定理的正确运用, 本题中构建直角△ABE和直角△CDF是解题的关键.A.16 B.18 C.12D.1223. 在△ABC中,∠C=90°,∠A=15°,AB=12,则△ABC的面积等于()考点:勾股定理;三角形的面积. 菁优网版权所有专题:计算题.分析:作∠ABD=∠A=15°, 则∠BDC=30°;设BC=x, 则BD=2x, CD= x, 计算AC=AD+CD=(2+ )x, BC=x, AB=12, 根据勾股定理计算AC, BC的长度, △ABC的面积为根据•BC•AC计算可得.解答:解: 如图, 作∠ABD=∠A=15°BD交AC于D, 则∠DBC=75°﹣15°=60°在Rt△BCD中, 因为∠BDC=90°﹣∠DBC=30°所以BD=2BC, CD= BC设BC=x,所以BD=2x, CD= x因为∠A=∠ABD, 所以AD=BD=2x所以AC=AD+DC=(2+)x在Rt △ABC中AC2+BC2=AB2∴∴,故选B.点评:本题考查了勾股定理在直角三角形中的运用, 考查了直角三角形面积的计算, 本题中设BC=x, 根据直角△ABC求x的值, 是解题的关键.24. 如图, 在Rt△ABC中, ∠C=90°, DE⊥AB, AC=BE=15, BC=20. 则四边形ACED的面积为()A.54 B.75 C.90 D.96考点:勾股定理;相似三角形的判定与性质. 菁优网版权所有分析:先利用勾股定理求出AB的长, 再根据相似三角形对应边成比例求出DE、BD的长, 然后代入面积公式即可求解.解答:解: ∵∠BDE=∠C=90°, ∠B=∠B∴△BDE∽△BCA∴BE: BA=BD: BC∵AC=BE=15, BC=20∴AB==25∴15: 25=BD: 20∴BD=12∴DE=9∴S△BDE=×12×9=54;S△ABC=×15×20=150∴四边形ACED的面积=S△ABC﹣S△BDE=150﹣54=96故选D.故选D.点评:此题主要考查了学生对相似三角形的性质及勾股定理的运用.25. 如图, 在△ABC中, 分别以AB.BC为直径的⊙O1.⊙O2交于AC上一点D, 且⊙O1经过点O2, AB.DO2的延长线交于点E, 且BE=BD. 则下列结论不正确的是()A.A B=AC B.∠BO2E=2∠E C.A B=BE D.E O2=BE考点:勾股定理;对顶角、邻补角;三角形内角和定理;等腰三角形的性质;圆周角定理. 菁优网版权所有专题:证明题;压轴题.分析:根据等腰三角形的性质证出∠BO2E=2∠BDE, 即可得出答案B错误, 假设A成立证出C也正确, 即可判断A、C都错误, 即可选出选项.解答:解: A.∵∠ABC+∠EDA=180°, ∠ADB=90°,∴∠EDB+∠ABC=90°.∵∠BDE+∠EDC=90°, 且∠EDC=∠BCA.∴∠ABC=∠BCA.∴AB=AC. 正确, 故本选项错误;B.∵O2B=O2D,∴∠DBO2=∠EDB,∴∠BO2E=2∠BDE,∵BE=BD,∴∠BDE=∠E,∴∠BO2E=2∠E, 正确, 故本选项错误;C.∵AC=AB,∴∠C=∠ABC,∵∠BO2E=2∠BDE, ∠ABC=∠BO2E+∠E,∴∠ABC=3∠E,∵BC为⊙O2的直径,∴∠CDB=90°,∴4∠E=90°,∠E=22.5°∴∠C=∠ABC=67.5°,∴∠A=180°﹣2×67.5°=45°,在Rt△ABD中由勾股定理得:AB= BD= BE, 正确, 故本选项错误;D.故本选项正确;故选D.故选D.点评:本题主要考查了勾股定理, 三角形的内角和定理, 等腰三角形的性质, 圆周角定理, 对顶角, 邻补角等知识点, 综合运用性质进行证明是解此题的关键.26. 如图, 在正方形网格中, cosα的值为()A .1B .C .D.考点:勾股定理;锐角三角函数的定义. 菁优网版权所有专题:网格型.分析:cosα的值可以转化为直角三角形的边的比的问题, 先根据勾股定理求出AB的长, 再在Rt△ABC中根据三角函数的定义求解.解答:解: 在Rt△ABC中, BC=3, AC=4,则AB= =5,则cosα= = .故选D.点评:本题考查勾股定理和锐角三角函数的概念:在直角三角形中, 正弦等于对边比斜边;余弦等于邻边比斜边;正切等于对边比邻边.27. 直角A.10 B.2C.4或10 D.10或2三角形一边长为8,另一条边是方程x2﹣2x﹣24=0的一解, 则此直角三角形的第三条边长是()考点:勾股定理;解一元二次方程-因式分解法. 菁优网版权所有专题:分类讨论.分析:先解方程x2﹣2x﹣24=0, 得x1=6, x2=﹣4, 所以另一条边是6, 再分两种情况考虑:①若8为斜边, 则用勾股定理得第三条边长是2 ;②若8和6是两条直角边, 再用勾股定理求斜边得10.解答:解: 根据题意得解方程x2﹣2x﹣24=0, 得x1=6, x2=﹣4,所以另一条边是6,①若8为斜边, 则用勾股定理得第三条边长是=2 ;②若8和6是两条直角边, 则此直角三角形的第三条边长是=10.故选:D.故选: D.故选:D.点评:本题考查了勾股定理、解方程. 解题的关键是要注意分情况讨论.28. 如图是2002年在北京召开的国际数学家大会的会徽, 它由4个相同的直角三角形拼成, 已知直角三角形的两条直角边长分别为3和4, 则大正方形ABCD和小正方形EFGH的面积比是()A.1:5 B.1: 25 C.5:1 D.25: 1考点:勾股定理的证明. 菁优网版权所有分析:根据勾股定理可得大正方形ABCD的边长, 再根据和差关系得到小正方形EFGH的边长, 根据正方形的面积公式可得大正方形ABCD和小正方形EFGH的面积, 进一步即可求解.解答:解: 如图, 设大正方形的边长为xcm,由勾股定理得32+42=x2,解得:x=5,则大正方形ABCD的面积为: 52=25;∵小正方形的边长为: 4﹣3=1,∴小正方形EFGH的面积为: 12=1.则大正方形ABCD和小正方形EFGH的面积比是25:1.故选:D.故选: D.故选:D.点评:本题考查勾股定理及正方形的面积公式, 比较容易解答, 关键是求出大小正方形的边长.29. 如图, 已知△ABC中, AB=AC, ∠BAC=90°, 直角∠EPF的顶点P是BC中点, 两边PE、PF分别交AB.AC于点E、F, 给出以下四个结论:①AE=CF;②△EPF是等腰直角三角形;。
第18章勾股定理自主学习达标检测
A卷
(时间90分钟满分100分)
班级 __________ 学号 __________ 姓名得分______
一、填空题(共14小题,每题2分,共28分)
1.△ABC,∠C=90°,a=9,b=12,则c=__________.
2.△ABC,AC=6,BC=8,当AB=__________时,∠C=90°.
3.等边三角形的边长为6 cm,则它的高为__________.
4.△ABC中,∠C=90°,∠A=30°,则BC∶AC∶AB=__________.
5.直角三角形两直角边长分别为5 和12,则斜边上的高为__________.
6.等腰三角形的顶角为120°,底边上的高为3,则它的周长为__________.
7.若直角三角形两直角边之比为3∶4,斜边长为20,则它的面积为__________.
8.等腰三角形的两边长为2和4,则底边上的高为__________.
9.若等腰直角三角形斜边长为2,则它的直角边长为_______.
10.测得一个三角形花坛的三边长分别为5cm,12cm,•13cm,•则这个花坛的面积是_____.11.已知△ABC的三边a、b、c满足(a-5)2+(b-12)2+c2-26c+169=0,则△ABC是三角三角形.
12.如图在4个均由16个小正方形组成的网格正方形中,各有一个格点三角形,那么这4个正方形中,与众不同的是_________,不同之处:_____ .
A B C D
13.如图,在高2米,坡角为30°的楼梯表面铺地毯,地毯的长至少需________米.
14.若一个三角形的三边长分别为3,4,x,则使此三角形是直角三角形的x的值是___ _.
第19
题②第19
题①
二、选择题(共4小题,每题3分,共12分)
15.下列各组数中,不能构成直角三角形的一组是 ( )
A .1,2,5
B .1,2,3
C .3,4,5
D .6,8,12
16.如图,△ABC 中AD ⊥BC 于D ,AB =3,BD =2,DC =1, 则AC 等于 ( )
A .6
B .6
C .
5
D .4
17.已知三角形的三边长之比为1∶1∶2,则此三角形一定是 ( )
A .锐角三角形
B .钝角三角形
C .等边三角形
D .等腰直角三角形
18.直角三角形的斜边比一直角边长2 cm ,另一直角边长为6 cm ,则它的斜边长( )
A .4 cm
B .8 cm
C .10 cm
D .12 cm
三、解答题(共60分) 19.(5分)如图,每个小正方形的边长是1.
①在图中画出一个面积是2的直角三角形;②在图中画出一个面积是2的正方形. 20.(5分)如图,一次“台风”过后,一根旗杆被台风从离地面8.2米处吹断,倒下的旗杆的
顶端落在离旗杆底部6.9米处,那么这根旗杆被吹断裂前至少有多高?
2.8米
9.6米
第13题 第16题
21.(5分)在某山区需要修建一条高速公路,在施工过程中要沿直线AB 打通一条隧道,动
工前,应先测隧道BC 的长,现测得∠ABD =150°,∠D =60°,BD =32 k m ,请根据上述数据,求出隧道BC 的长(精确到0.1 k m).
22.(6分)如图,△ABC 中,AB =15 cm , AC =24 cm ,∠A =60°.求BC 的长.
23.(6分)如图,△ABC 中,AB=13,BC=14,AC=15,求BC 边上的高AD .
C
A
D
24.(6分)“中华人民共和国道路交通管理条例”规定:小汽车在城街路上行驶速度不得超过70千米/小时,如图,一辆小汽车在一条城市街路上直道行驶,某一时刻刚好行驶到路面对车速检测仪A正前方30米B处,过了2秒后,测得小汽车C与车速检测仪A间距离为50米,这辆小汽车超速了吗?
25.(6分)如图,△ABC中,CD⊥AB于D.
(1)图中有__________个直角三角形;
A.0B.1C.2D.3 (2)若AD=12,AC=13则CD=__________.
(3)若CD2=AD·DB,求证:△ABC是直角三角形.
27.(7分)去年某省将地处A、B两地的两所大学合成了一所综合性大学,为了方便A、B 两地师生的交往,学校准备在相距2千米的A、B两地之间修建一条笔直公路(即图中的线段),经测量在A地的北偏东60°方向,B地的西偏北方向处有一个半径为0.7千米的公园,问计划修建的这条公路会不会穿过公园?为什么?
2
参考答案
一、填空题
1.15 2.10 3.33cm 4.1∶3∶2 5.
13
60
6.12+63 7. 96 8.15 9
10.30cm 2 11.直角 12.A A 不是直角三角形,B 、C 、D 是直角三角形 13.2+23 14. 5或7
二、选择题
15.D 16.B 17.D 18.C 三、解答题
19.略解 20.10米 21.7 k m 22.21 cm 23.5 24.超速了 25.(1)C ;(2)5;(3)略 26.AB =AC =50 cm ,BC =60 cm 27.不会穿过公园 28.(1)最后一格填“>”;(2)最后一格填“<”; (3)当三角形为锐角三角形时,三边满足 a ²+b ²>c ²;
当三角形为钝角三角形时,三边满足 a ²+b ²<c ²
(1) (2)。