当前位置:文档之家› 接地短路故障指示器

接地短路故障指示器

接地短路故障指示器
接地短路故障指示器

接地短路故障指示器

接地短路故障指示器是用来检测短路及接地故障的设备。

在环网配电系统中,特别是大量使用环网负荷开关的系统中,如果下一级配电网络系统中发生了短路故障或接地故障,上一级的供电系统必须在规定的时间内进行分断,以防止发生重大事故。通过使用本产品,可以标出发生故障的部分。维修人员可以根据此指示器的报警信号迅速找到发生故障的区段,分断开故障区段,从而及时恢复无故障区段的供电,可节约大量的工作时间,减少停电时间和停电范围。一般来说,接地短路故障指示器有以下基本参数可作为参考。

复位时间:线路故障指示器应能区分瞬时性故障和永久性故障。对于瞬时性故障,由于一般可以在重合闸后消除,因此要求故障指示器能够在来电后保持到预先设定好的复位时间再复位,这样便于运行人员查找出故障隐患,及时处理;而对于永久性故障,故障指示器可以在来电之后或预设的复位时间到后复位,主要是由于故障已经被消除,继续保持指示状态已经没有必要,甚至会耽误下次故障的指示。

工作条件要求:即线路故障指示器可以在所需要的运行环境中正常的工作。一般故障指示器判断线路是否带电的方法是要利用线路电流来的,从而决定是否要开始判断故障电流,而且有些故障指示器直接利用线路电流提取工作电源,因此存在一个最小的工作电流Is,即当线路大于该电流时,故障指示器才能正常工作,否则其处于休眠状态。该电流越小越好。一般具有后备电池的故障指示器要求的Is会小一些,其适用范围较广。而直接从线路取工作电源的故障指示器要求的Is要大的多,一般为10A左右,这将影响这种故障指示器的使用范围,比如在一些小的分支和负载较小的线路上就不能使用。

工作环境要求:工作环境要求由于故障指示器在户外工作,因此应能够在较宽的温度范围内正常工作。目前多数故障指示器可以保证在-40~85 ℃之间正常工作。同时还应考虑防雨防潮。目前多采用环氧灌封技术,该相指标基本都能满足。还应考虑电磁兼容性,由于户

外电磁干扰复杂,如附近超高压线路的电晕放电、雷电闪络等电磁现象,往往会导致故障指示器误动或拒动,这种因素目前在国内还没有引起高度重视。

目前北京拓山电力科技有限公司线路故障指示器的指示方式多为翻牌指示或LED闪光指示。翻牌指示在白天光照较好的时候可以清楚的观察,但在夜间或光照较暗的时候就很难观察到。而LED闪光的情况正好相反。因此,可以将这两者结合起来,即翻牌和闪光指示同时存在,这样可以实现全天候正常指示。

AK8S-I带电指示及短路故障综合指示仪使用说明书

产品概述 AK8S-I型带电指示及短路故障综合指示仪配套安装在配电网络系统中的环网开关、电缆分支箱、箱变上,将高压电压检测与短路故障检测相结合。使短路故障指示器既有短路故障指示功能,又能进行高压带电指示,同时检测短路故障时结合高压电压信号,使检测更加精确,杜绝短路故障误报警。 线路发生故障,工作人员可借助指示器的报警指示,迅速确定故障区段,并找出故障点。对提高工作效率,缩短停电时间,迅速恢复供电,提高供电可靠性和经济效益,有着十分重要的意义。 功能特点 1. 短路报警指示:短路传感器在工作中检测线路的电流,当线路发生 短路故障时电流达到或超过短路电流的整定值时,短路传感器发出 报警信号,通过导线(光纤)传输给主机,主机接收到此信号后, 产生相应的报警指示信号。 2. 高压带电指示:电压传感器准确检测电缆中电压信号,并传送至面 板显示器,告知用户高压设备是否带电。 3. 自动复位:当主机发出报警信号后,如果无人工进行复位,在自动 复位时间后,主机可自动进行复位。 4. 来电自动复位:当主机发出报警信号后,如果无人工进行复位,在设 备恢复供电后,主机可自动进行复位。 5. 人工复位:当主机产生报警后,可通过按下主机指示面板上的

“Reset / Test ”按钮解除报警。 6. 自动化:主机产生相应的报警指示信号后,可将报警信号输出远传。 主机也可接收远方的复位信号,对主机进行远程复位操作。 7. 带电闭锁及核相验电:主机能够指示带电闭锁工作情况;并配有验电核 相孔,具备三相验电及三相核相功能。 8.测试:面板指示器可进行自检工作。在正常状态下(无报警信号),可 按住前面板的“Reset / Test ”按钮并保持3秒,面板上的短路、接地报警指示灯闪烁,故障远传继电器吸合,说明工作状态正常,再按下此钮可 恢复成常态或者按照设定的自动复位时间自动复位。 9.电池低电量报警指示:当指示器内电池电压从3.6V 降至2.7V 时,产生 报警信号,以提示维修人员更换电池。

线路故障指示器使用说明书

特点 采用高强度和高透视性的航空材料一次成型,并经过纳米技术处理,透视性更好,抗污秽,抗老化,免维护,使用寿命长。

◆高性能锂电池,使用寿命可达8年以上。 ◆专用芯片及单片机等进口元器件组成的电路板。 ◆航空及纳米材料制成的壳体. ◆经镀镍处理、导磁性极强。可带电安装的卡线结构. ◆采用红色荧光漆,视觉强,夜间光照下可明显指示. 且长期在室外紫外线照射下不褪色的显示转体. ■功能与效益 ◆迅速指明故障线路和故障点,减小停电面积; ◆缩短故障排除时间,提高售电量和供电可靠性; ◆准确指示瞬间故障,利于排除供电隐患; ◆为查找隐蔽永久性故障点提供了技术手段; ◆缩短故障点的查找时间,减轻了巡线人员劳动强度; ◆界定故障责任区,明确责任人; ◆避免传统多次拉路合闸巡线给电力设备带来的影响; ■技术指标(来电复位) ◆适用电压等级:U≥6-35KV ◆动作复位时间:6.12.24.48H ◆适用导线电流:I≤1200A ◆使用环境温度:-35≤T≤+70 ◆适用导线线径:16mm2≤d≤240mm2 ◆动作次数:≥5000次 ◆动作响应时间:0.06S≤t≤3S ◆静态功耗:≤10μW ■动作原理 短路检测原理:根据短路现象,在短路瞬间电流正突变,保护动作停电作为动作依据。 用于判断短路的故障指示原理图:

由2#线B相2、5、8指示器和2#线C相3、6、9指示器翻红牌显示而11指示器和12指示器仍为白色,即可判断出D点发生短路故障 用于判断接地的故障指示原理图: 由2#线C相3、6、9指示器白天翻红牌显示,而12指示器仍为白色即可判断出D 点发生接地故障。

单相短路电流计算

1、替代定理 在任意具有唯一解的电路中,某支路的电流为i k ,电压为u k ,那么该支路可以用独立电压源u k ,或者独立电流源i k 来等效替代,如下图所示。替代后的电路和原电路具有相同的解。 图 叠加定理 由全部独立电源在线性电阻电路中产生的任一电压或电流,等于每一个独立电源单独作用所产生的相应电压或电流的代数和。 注意点:(1)只适用于线性电路;(2)一个电源作用,其余电源为零,如电压源为零即电压为零——>短路,电流源为零即电流为零——>开路;(3)各回路电压和电流可以叠加,但功率不能叠加。 3、三相系统及相量图的应用 交流变量 正常的电力系统为三相系统,每相的电压和电流分量均随着时间作正弦变化,三相间相互角偏差为120°,比如以A 相为基准,A 相超前B ,B 相超前C 各120°,就构成正序网络,如下式所示: ) 120sin()360240sin()240sin(); 120sin(); sin( t U t U t U u t U u t U u m m m c m b m a 以A 相为例,因为三角函数sin 是以360°(或2π)为周期变化,所以随着时间t 的流逝,当 t 值每增长360°(或2π)时,电压ua 就经过了一个周期的循环,如下图所示:

图 如上图,t代表时间, 代表t=0时刻的角度(例如上图中ua当t=0时位于原点, ), 表示角速度即每秒变化多少度。例如电网的频率为50Hz,每即代表0 秒变化50个周期,即变化50*360°或者50*2π。此处360°和2π仅是单位制的不同,分别为角度制和弧度制,都是代表一个圆周;值得注意的是用360°来分析问题更加形象,而2π为国际单位制中的标准单位,计算时更通用。 向量的应用 用三角函数分析问题涉及较为繁琐的三角函数计算,图的正弦波形图可表示出不同周期分量的峰值和相差角度,但使用范围有限。为此,利用交流分量随时间做周期变化,且变化和圆周关系密切的特点,引入向量如下,方便交流分量的加减乘除计算:

发电机匝间短路故障诊断

目录 1 引言 (1) 1.1 研究目的与意义 (1) 1.2 发电机故障诊断技术的发展状况 (1) 1.3 发电机转子绕组匝间短路故障检测的研究现状 (2) 1.4 本文的内容和主要工作 (4) 2 汽轮发电机转子绕组匝间短路的理论分析 (6) 2.1 汽轮发电机的转子结构 (6) 2.2 转子绕组发生匝间短路的原因 (6) 2.3 匝间短路的磁场分析 (7) 2.3.1 发电机发生匝间短路的磁场分析 (9) 3 发电机转子绕组匝间短路故障的探测线圈法 (12) 3.1 探测线圈法的测试原理 (12) 3.2 探测线圈的结构及置放 (14) 3.2.1 诊断系统及其功能组成 (15) 3.2.2 基本参数 (16) 3.2.3 传感器安装和定位 (16) 3.3.3 故障判断 (16) 3.3 大亚湾核电站发电机组的探测线圈法实例分析 (17) 参考文献 (20)

1引言 1.1研究目的与意义 随着我国国民经济的快速发展,电力工业正处于大电机和大电网的发展阶段。人们的生活和生产水平迅速提高,使得电能需求量日益增长,进而对电力系统的供电质量、可靠性及经济性等指标的要求也不断提高。发电机是电能生产的重要设备,它为整个电力系统提供电能,是整个电网的心脏,因此如果发电机发生故障,可能会导致局部停电甚至整个系统崩溃。 发电机转子作为发电机的重要组成部分,主要由励磁绕组线圈、线圈引线以及阻尼绕组等部分组成。发电机运行时,由于转子处于高速旋转状态,这些部件将承受很大的机械应力和热负荷,若超过其极限值时将导致部件的损坏。转子绕组是发电机经常出现故障的部位,除本体故障外,主要是转子绕组的短路故障,如匝间短路、一点接地短路、两点接地短路等。发电机正常运行时,转子绕组对地之间会有一定的分布电容和绝缘电阻,绝缘甩阻的阻值通大于1兆欧。但是因某种原因导致对地绝缘损坏或绝缘电阻严重下降时,就会发生转子绕组接地事故。当发电机转子发生一点接地故障时,因为励磁电源的泄漏电阻很大,一般不会造成多大的伤害,限制了接地泄露电流的数值。但是,发电机转子两点接地故障将会产生很大的电流,经故障点处流过的故障电流会烧坏转子本体。而部分转子绕组的短接,励磁绕组中增加的电流可能会导致转子因过热而烧坏,气隙磁通也会失去平衡,从而引起发电机的振动,还可能使转子大轴磁化,甚至会导致灾难性的后果,因此两点接地故障的后果是很严重的。 目前,在国内运行的大型发电机组中,发电机匝间短路故障占故障总数的比重较大,大多数发电机都发生过或已经存在转子绕组匝间短路的故障。由于转子绕组绝缘的损坏,转子绕组匝间短路后会形成短路电流,从而导致局部过热。发电机长期在这种环境下运行,会进一步引起绝缘的损坏,导致更为严重的匝间短路,最终形成恶性循环。据统计资料表明,发电机转子匝间短路故障并不会影响机组的正常运行,所以常常被忽略,但是如果任其发展,转子电流将会显著增加,绕组温升过高,无功输出降低,电压波形畸变,机组振动加剧,并且还会引起其它的机械故障,严重时还会影响发电机的无功出力。如果发生的是不对称的匝间短路故障,发电机组的振动将会加剧,转子绕组的绝缘也有可能进一步的损坏,进而发展成为接地故障,对发电机组的安全稳定运行构成了严重的威胁。因此,对发电机绕组匝间短路故障的诊断与识别是十分必要的。 1.2 发电机故障诊断技术的发展状况 早期的故障诊断主要依靠人工经验,如:看、听、触、摸等方法进行诊断,

接地故障指示器原理

电力事业快速发展,电力线路和电网越来越密集,电力资源形势严峻。现在保证电缆线路的畅通已经是重中之重的事情,电力故障给人们带来了巨大的经济损失。故障指示器的出现有效地解决了这一问题。 由于我国的10KV、35KV线路的运行方式为中性点不接地方式,接地故障的查找一直以来是电力部门非常头疼的问题,加上接地故障在现实中的多样性和复杂性,所以接地故障的查找就更加困难。 目前电力部门查找接地故障基本上采用使用接地检查设备和人工巡线的方式相配合的方法,常用的接地检测设备有接地选线设备、单相接地故障检测系统、接地故障指示器三种方式。但是这些设备使用都有局限性,小电流接地选线设备只能帮助选线,确定接地发生的线路但无法确定接地的位置,由于线路的分支很多线路距离长所以对接地故障的查找帮助非常有限;单相接地故障检测系统采用变电站安装接地信号源和线路安装指示器的方法配合使用组成一个系统,接地故障的查找较接地选线设备有了很大的进步,但是由于投资较大,在使用中受到非常大的限制;无源的接地故障指示器虽然接地故障的查找准确性有限,但是由于其价格低廉、安装方便灵活(无需停电装卸)加之目前的无源故障指示器把短路功能合在一起更加方便了用户查找短路和接地两种故障,在市场上颇受欢迎,使用量很大,有很大的市场空间。 目前市场上就10kv、35KV线路故障判断的接地短路主要采用的技术而言,短路检测技术已经非常成熟,产品的可靠性也很高。接地的检测由于线路运行方式(中性点不接地)非常困难,检测的方式由很多种。 小电流接地选线的设备采用的是零序电流的检测原理,而单相接地检测系统则采用的是安装信号源配合外部指示器在发生接地的时候形成回路来判断接地故障。 这里,我们只着重介绍目前市场使用最为广泛的无源接地短路二合一故障指示器的检测原

直流接地故障判断及处理方法

直流接地故障判断及处理方法 1 直流系统接地故障类型及特点分析 1.1 无源型电阻性接地 1.1.1 电阻单点接地。电阻性单点接地无论是金属性接地还是经过高电阻接地均会引起接地电阻的降低,当低于25 kΩ时直流系统绝缘监察装置即会发出接地报警,并进行选择查找接地点,防止造成由于直流系统接地引起的误动、拒动。 1.1.2 多点经高阻接地。当发生直流系统多点经高阻接地后,直流系统的总接地电阻逐步下降,当低于整定值时,才发生接地告警,从而出现多点接地现象。如第一点80kΩ接地,一般不会有告警,电压偏移也不多,第二点80kΩ接地,并联后为40kΩ,高于绝缘监察设定的25kΩ报警限值,一般也不会报警,但电压偏移会较大,在巡视、运行过程中要引起足够的重视,当第三点高阻接地发生后,如40kΩ,则第三点并联后直流接地电阻为20kΩ,这时必然会引起接地告警。 多点经高阻接地引起的接地告警,由于每条接地支路电阻均较高,直流拉路选择变化不明显,可能漏掉真正的接地支路,此时最好能检测出支路的接地电阻值,而不是接地电流的相对值或百分比,可判断接地状况。 1.1.3 多分支接地。有关设备经过多次改造或施工不小心及图纸设计不合理等,都将导致经多个电源点引来正电源或负电源去某个设备,

当该设备发生接地时,即为多分支接地,比多点更麻烦,通过拉闸几乎不可能找出接地支路,因为断开任何一条支路,接地点还存在,对地电压也不会发生变化或变化较小,此时应在保证安全的基础上断开所有支路再逐条支路送出,来查找接地电阻,但风险较大。 1.2 有源接地 通过交流(如电压互感器或交流220V,其一端是接地的)电源引起的接地引起的接地称为有源接地,交流220V串入直流系统将引起接地故障,由于其电压较高,接地母线对地电压为30 0V左右,非接地母线对地电压高达约500V,而且功率很大,常常会烧损保护和控制设备,并引起保护误动。 交-直流串电接地,只需再有一点接地即可引起保护误动或拒动,这是最严重的故障现象,应引起特别关注,发生此类情况后立即进行查找。 1.3 非线性电阻接地 通过二次回路中半导体材料如二极管等发生的接地故障,其电阻值随施加电压大小、方向而发生变化,其电阻值呈非线性特征,但只要发生了接地告警一般可相当于金属性单点接地较易查找。 1.4 受负荷电流干扰的接地 主要为蓄电池接地,主要由于电池电解液渗漏到地面引起的,要查找直流接地时应注意观察蓄电池的状况,防止发生由于蓄电池接地引起的接地。 2 直流系统接地故障的原因分析

小电流接地系统接地故障分析知识讲解

小电流接地系统 单相接地故障分析与检测 为了提高供电可靠性,配电网中一般采取变压器中性点不接地或经消弧线圈和高阻抗接地方式,这样当某一相发生接地故障时,由于不能构成短路回路,接地故障电流往往比负荷电流小得多,因而这种系统被称为小电流接地系统。 小电流接地系统中单相接地故障是一种常见的临时性故障,当该故障发生时,由于故障点的电流很小,且三相之间的线电压仍保持对称,对负荷设备的供电没有影响,所以允许系统内的设备短时运行,一般情况下可运行1-2个小时而不必跳闸,从而提高了供电的可靠性。但一相发生接地,导致其他两相的对地电压升高为相电压的倍,这样会对设备的绝缘造成威胁,若不及时处理可能会发展为绝缘破坏、两相短路,弧光放电,引起去系统过压。然而当系统发生单相接地故障时,由于构不成回路,接地电流是分布电容电流,数值比负荷电流小得多,故障特征不明显,因此接地故障检测仍是一项世界难题,很多技术有待克服。 单相接地故障分析 当任意两个导体之间隔着绝缘介质时会形成电容,因此在简单电网中,中性 ,在相电压作用下,点不接地系统正常运行时,各相线路对地有相同的对地电容C 每相都有一个超前于相电压900的对地电容电流流入地中,然而由于电容的大小与电容极板面积成正比而与极板距离成反比,所以线路的对地电容,特别是架空线路对地电容很小,容抗很大,对地电容电流很小。 系统正常运行时,如图1,由于三相相电压U A、U B、U C是对称的,三相对地电容电流I co.A、I co.B、I co.C也是平衡的,因此,三相的对地电容电流矢量和为0,没有电流流向大地,每相对地电压就等于相电压。

图1中性点不接地电力系统电路图与矢量图 当系统中某一相出现接地故障后,假设C相接地,如图2所示,相当于在C 相的对地电容中并联了一个大电阻,由于故障电流I C没有返回电源的通路,只能通过另外两项非故障A、B相线路的对地电容返回电源。此时C相线路的对地电压为U C’ = U CD = 0,而A相对地线电压即U A’ = U AD = U AC = -U CA = -U C∠-300 = U B∠-900,而B相对地线电压即U B’ = U BC = U B∠-300,则U A’和U B’相差600。非故障相中流向故障点的电容电流I AC= U A’jwC0,I BC= U B’jwC0,且I AC、I BC超前U A’和U B’ 900,I AC、I BC大小相等为I co.A之间相差600。 图2中性点不接地电力系统发生C相接地故障电路图与矢量图由此可见,C相接地时,不接地的A、B两相对地电压U A’和U B’由原来的相电压升高到线电压,即值升高到原来的倍,相位由原来的相差1200变为相差600。此时,从接地点流回的电流I C应为A、B两相的对地电容电流之和,即I C = I AC + I BC。

某系统单相、两相接地短路电流的计算

1 课程设计的题目及目的 1.1 课程设计选题 如图1所示发电机G ,变压器T1、T2以及线路L 电抗参数都以统一基准的标幺值给出,系统C 的电抗值是未知的,但已知其正序电抗等于负序电抗。在K 点发生a 相直接接地短路故障,测得K 点短路后三相电压分别为Ua=1∠-120,Uc=1∠120. (1)求系统C 的正序电抗; (2)求K 点发生bc 两相接地短路时故障点电流; (3)求K 点发生bc 两相接地短路时发电机G 和系统C 分别提供的故障电流(假设故障前线路中没有电流)。 系统C 发电机G 15.01=T X 15 .00=T X 2T 25.02==''X X d 图1 电路原理图 1.2 课程设计的目的 1. 巩固电力系统的基础知识; 2. 练习查阅手册、资料的能力; 3.熟悉电力系统短路电流的计算方法和有关电力系统的常用软件;

2设计原理 2.1 基本概念的介绍 1.在电力系统中,可能发生的短路有:三相短路、两相短路、两相短路接地和单相短路。三相短路也称为对称短路,系统各相与正常运行时一样仍处于对称状态。其他类型的短路都属于不对称短路。 2.正序网络:通过计算对称电路时所用的等值网络。除中性点接地阻抗、空载线路(不计导纳)以及空载变压器(不计励磁电流)外,电力系统各元件均应包括在正序网络中,并且用相应的正序参数和等值电路表示。 3.负序网络:与正序电流的相同,但所有电源的负序电势为零。因此,把正序网络中各元件的参数都用负序参数代替,并令电源电势等于零,而在短路点引入代替故障条件的不对称电势源中的负序分量,便得到负序网络。 4.零序网络:在短路点施加代表故障边界条件的零序电势时,由于三项零序电流大小及相位相同,他们必须经过大地(或架空地线、电缆包庇等)才能构成回路,而且电流的流通与变压器中性点接地情况及变压器的解法有密切关系。2.2电力系统各序网络的制定 应用对称分量法分析计算不对称故障时,首先必须作出电力系统的各序网络。为此,应根据电力系统的接线图,中型点接地情况等原始资料,在故障点分别施加各序电势,从故障点开始,逐步查明各序电流流通的情况。凡是某一序电流能流通的元件,都必须包括在该序网络中,并用相应的序参数和等值电路表示。除中性点接地阻抗,空载线路以及空载变压器外,电力系统各元件均应包括在正序网络中,并且用相应的正序参数和等值电路表示,如图2所示;负序电流能流通的元件与正序电流的相同,但所有电源的负序电势为零。因次,把正序网络中各元件的参数都用负序参数代替,并令电源电势等于零,便得到负序网络如图3所示;在短路点电流施加代表故障边界条件的零序电势时,由于三相零序电流大小及相位相同,他们必须经过大地才能构成通路,而且电流的流通与变压器中性点接地情况及变压器的接法有密切的关系。如图4所示。利用各序的网络图可以计算出相应的序阻抗。 图2 系统的正序网络

如何设置短路接地故障检测参数(精)

一、短路故障检测参数整定原则 1、速断 z速断电流:出厂默认 500A。尽量躲过线路最大负荷电流,但要求低于变电站出口速断定值,而且设定值不要超过 600A。对于特殊定制的 60A 档数字故障指示器,设定值不要超过 60A;对于特殊定制的 2000A 档数字故障指示器,设定值不要超过 2000A;对于特殊定制的 4000A 档数字故障指示器,设定值不要超过 4000A。 z速断延时:出厂默认 40ms ,一般不要改。 2、过流 z过流电流:出厂默认 400A。尽量躲过线路最大负荷电流,但要求低于变电站出口过流定值,而且设定值不要超过 600A。对于特殊定制的 60A 档数字故障指示器,设定值不要超过 60A;对于特殊定制的 2000A 档数字故障指示器,设定值不要超过 2000A;对于特殊定制的 4000A 档数字故障指示器,设定值不要超过 4000A。 z过流延时:出厂默认 200ms ,一般不要改。 3、其它说明 z速断电流定值一定要大于或等于过流电流定值。速断延时一定要小于或等于过流延时。 z短路故障检测原理带线路“充电” 条件, 可有效抑制重合闸期间非故障线路误报警。短路故障检测原理带线路“停电” 条件, 可有效抑制合闸涌流、过负荷等误报警,不会因为线路负荷电流偶尔超过设定值就会报警。 z最大负荷电流可以从主站软件历史曲线上查询到,也可以在现场用 LPK2无线调试盒接收到,也可以通过线路分支所带配电变压器的总容量来估算。

z如果将速断、过流都设置成 700A/40ms,则自动启动自适应负荷电流的过流突变判据。参数不用再根据线路负荷大小和变电站出口定值进行整定。 二、接地故障检测参数整定原则(首半波原理 1、接地电流增量 z出厂默认 30A。尽量躲过线路最大负荷波动电流和瞬时接地尖峰突变电流。这个电流值可以从主站软件历史曲线上查询到,也可以在现场用 LPK2无线调试盒接收到,也可以通过线路的杂散电容总容值来估算。推荐整定范围为 20~ 40A。一般不改。 2、对地电场下降比例 z出厂默认 30%。表示接地相电压下降的比例程度。推荐整定范围为 20~40%。一般不改。 3、对地电场下降延时 z出厂默认 40S。表示接地相电压下降以后的持续时间,一定要小于变电站接地选线到调度拉闸的时间。推荐整定范围为 40~60S。一般不改。 4、其它说明 z故障指示器靠近变电站和主干线路安装时, 其“接地电流增量” 、“对地电场下降比例” 、“对地电场下降延时” 参数设置偏大一些, 以减少故障检测灵敏度和减少误报警。

小电流接地故障现象及原因分析

小电流接地故障现象及原因分析 摘要:随着全国农村电网改造工程的全面展开,农村供电网络健康水平明显提高,小接地电流电网中三相对地电压不平衡现象是电网异常和故障的反映,电气运行人员若能正确判断并限制故障发展,迅速排除故障,则可保证电网安全运行。反之,往往导致配电变压器电磁式电压互感器烧损、高压熔断器熔断、避雷器爆炸、导线烧断、线路短路、保护误动、大面积停电等事故发生。 关键词:小电流接地故障原因分析 1 引言 随着全国农村电网改造工程的全面展开,农村供电网络健康水平明显提高,小接地电流电网中三相对地电压不平衡现象是电网异常和故障的反映,电气运行人员若能正确判断并限制故障发展,迅速排除故障,则可保证电网安全运行。反之,往往导致配电变压器电磁式电压互感器烧损、高压熔断器熔断、避雷器爆炸、导线烧断、线路短路、保护误动、大面积停电等事故发生。 2 故障现象判断与分析 2.1 绝缘监视装置自身故障的判断 2.1.1 TV熔断器一相熔断的现象与判断 (1)单相TV接线Y0/Y0/Δ接线时,由于磁路系统为单路回路,如果TV一次侧A相熔断器熔断,则二次侧A相无感应电压,但因TV负载另两侧相电压与A相形成一串联回路,故A相对地有很小的电压,A相二次熔断器熔断时,也同样因TV有负载,A相有很小的电压,电压表可能有一点指示。 (2)三相五柱式TV接成Y0/Y0/Δ接线时,它们的磁路是互通的,高压侧A相熔断器熔断,二次侧A相仍能感应出一定的电压,但此时的A相电压比单相TV接线时要高一些,二次侧断开一相时,情况与单相TV接线时相同。 2.1.2 TV熔断器两相熔断的现象与判断 (1)高压熔断器两相熔断时,熔断的两相相电压很小或接近于零,未熔断一相的相电压接近于正常相电压。熔断器熔断的两相相间电压为零(即线电压为零),其它线电压降低,但不为零。 (2)低压熔断器熔断两相时,熔断的两相相电压降低很多,但不为零,未断的一相电压正常,熔断器熔断的两相间电压为零,其它线电压降低,但不为零。 2.1.3 TV一次侧中性线断线的现象与判断

EKL4型短路故障指示器安装使用说明书(简版)--北京恒源利通电力技术有限公司

EKL4短路和接地故障指示器说明书EKL4 Short circuit and Earth Fault Indicator Installation Instruction Manual 一.接线说明Detail Connection Rules 二. 安装说明Installation 1.主机的安装Installation of the main body (Reading Instrument) 指示器的主机可以安装在配电柜的前面板上(参见图1)。 拆卸主机需按下主机壳上的金属弹片(参见图2)。 主机尺寸为:96×48×80mm 开空尺寸为:92(公差:+0.7,-0)×44(公差:±0.5) The main body cable fixed on the front panel of distribution Cubicle.(See Fig.1). Press the metal spring piece while removing the main Body(see Fig.2.) Dimension of main body: 96×48×80mm Dimension of hole-cut : 92(Tolerance:+0.7,-0)×44(Tolerance:±0.5)mm 2.短路电流传感器的安装Installation of short circuit current sensors 此传感器必须安装在环网供电线路的分支上,必须紧固的套接在被检测的电缆线路防止传感器滑动而造成光纤接口的松动或断裂(参见图3)。拆卸(参见图4)。短路电流传感器的尺寸为:40×43×26mm Each sensor must be installed on each phase of distribution cable line after branching. In order to avoid optical fiber terminals loosening or disconnecting due to sensor slipping, the sensor must be fixed tightly onto cable line.(see Fig.3)Removing (See Fig.4) Dimension: 40×43×26mm. 图2 Fig.2 图1 Fig.1 图3 Fig.3

IC短路故障的一个检修方法

IC短路故障的一个检修方法 一台变频器,开关电源出现间歇振荡现象,操作显示面板也时亮时熄。此为开关电源负载过重或存在短路状态的典型故障,负载异常引发了开关电源电流检测电路的保护动作,使开关电源处于间歇振荡状态。 用逐路脱开负载电路的方法,排查短路故障是出在哪路负载电路,或停电后,测各路供电电源的输出端,是否有阻值变小或短路现象。测量+5V电源两端,呈现7.8Ω的小电阻值,而正常的电路阻值约为数百Ω。判断+5V负载电路有短路现象,将+5V 负载电路脱开后,开关电源有了稳定输出,说明故障就在+5V负载电路。 +5V供电电源由排线端子去了CPU主板,供CPU芯片及外围电路,电路范围比较广,CPU主板上+5V供电的集成电路比较多,达二十几片,用常规排除法检查短路故障的,须将各片IC电路的+5V供电脚挑开,配合电源输出端电阻值的检测,当挑开某片IC供电脚,电源输出端7.8Ω的小阻值变为正常的电阻值后,说明该片IC即存在短路故障,当然测量挑开IC的供电脚,检测其供电引脚的电阻值也是一样。 无法预测需要挑开多少片IC后,才能找到故障IC。CPU主板元件焊接的“精致程度”已艰接近于手机的线路板,IC电路全为贴片元件,将IC引脚的铜箔条说成比头发丝还细,甚至于都不算是夸张。手底一不小心,挑掉铜箔条的话,想接起来都比较困难,挨片挑,这个法子也太笨了。 由于变频器的开关电源本身负载能力有限,接于故障电路时会引发过流保护,使开关电源停止输出。故采用外接容量较大的+5V电源,串接5Ω5W限流电阻接到CPU 主板上,通电几分钟后,用手触摸CPU主板上的IC芯片,哪片烫手,有异常温升,即是哪片IC已经坏掉了。 这个法还真灵,挑开两片有异常温升的IC供电引脚,测其引脚电阻,均在十几Ω左右。此时再测+5V电源输出端,已经是数百Ω的正常阻值了。 这是个好法子,算是将错就错或将计就计或顺势而为,利用外接+5V供电,既对好的IC没什么危害,又使坏IC持续升温,暴露在我手指的“测温仪”下。特别适宜于检测CPU主板上出现的IC短路故障。 嘿!是好法子,就拿出来,与大家共享!

接地短路故障指示器

接地短路故障指示器 接地短路故障指示器是用来检测短路及接地故障的设备。 在环网配电系统中,特别是大量使用环网负荷开关的系统中,如果下一级配电网络系统中发生了短路故障或接地故障,上一级的供电系统必须在规定的时间内进行分断,以防止发生重大事故。通过使用本产品,可以标出发生故障的部分。维修人员可以根据此指示器的报警信号迅速找到发生故障的区段,分断开故障区段,从而及时恢复无故障区段的供电,可节约大量的工作时间,减少停电时间和停电范围。一般来说,接地短路故障指示器有以下基本参数可作为参考。 复位时间:线路故障指示器应能区分瞬时性故障和永久性故障。对于瞬时性故障,由于一般可以在重合闸后消除,因此要求故障指示器能够在来电后保持到预先设定好的复位时间再复位,这样便于运行人员查找出故障隐患,及时处理;而对于永久性故障,故障指示器可以在来电之后或预设的复位时间到后复位,主要是由于故障已经被消除,继续保持指示状态已经没有必要,甚至会耽误下次故障的指示。 工作条件要求:即线路故障指示器可以在所需要的运行环境中正常的工作。一般故障指示器判断线路是否带电的方法是要利用线路电流来的,从而决定是否要开始判断故障电流,而且有些故障指示器直接利用线路电流提取工作电源,因此存在一个最小的工作电流Is,即当线路大于该电流时,故障指示器才能正常工作,否则其处于休眠状态。该电流越小越好。一般具有后备电池的故障指示器要求的Is会小一些,其适用范围较广。而直接从线路取工作电源的故障指示器要求的Is要大的多,一般为10A左右,这将影响这种故障指示器的使用范围,比如在一些小的分支和负载较小的线路上就不能使用。 工作环境要求:工作环境要求由于故障指示器在户外工作,因此应能够在较宽的温度范围内正常工作。目前多数故障指示器可以保证在-40~85 ℃之间正常工作。同时还应考虑防雨防潮。目前多采用环氧灌封技术,该相指标基本都能满足。还应考虑电磁兼容性,由于户

小电流接地故障现象及原因分析(通用版)

( 安全技术 ) 单位:_________________________ 姓名:_________________________ 日期:_________________________ 精品文档 / Word文档 / 文字可改 小电流接地故障现象及原因分 析(通用版) Technical safety means that the pursuit of technology should also include ensuring that people make mistakes

小电流接地故障现象及原因分析(通用版) 1引言 随着全国农村电网改造工程的全面展开,农村供电网络健康水平明显提高,小接地电流电网中三相对地电压不平衡现象是电网异常和故障的反映,电气运行人员若能正确判断并限制故障发展,迅速排除故障,则可保证电网安全运行。反之,往往导致配电变压器电磁式电压互感器烧损、高压熔断器熔断、避雷器爆炸、导线烧断、线路短路、保护误动、大面积停电等事故发生。 1引言 随着全国农村电网改造工程的全面展开,农村供电网络健康水平明显提高,小接地电流电网中三相对地电压不平衡现象是电网异常和故障的反映,电气运行人员若能正确判断并限制故障发展,迅速排除故障,则可保证电网安全运行。反之,往往导致配电变压器

电磁式电压互感器烧损、高压熔断器熔断、避雷器爆炸、导线烧断、线路短路、保护误动、大面积停电等事故发生。 2故障现象判断与分析 2.1绝缘监视装置自身故障的判断 2.1.1TV熔断器一相熔断的现象与判断 (1)单相TV接线Y0/Y0/Δ接线时,由于磁路系统为单路回路,如果TV一次侧A相熔断器熔断,则二次侧A相无感应电压,但因TV 负载另两侧相电压与A相形成一串联回路,故A相对地有很小的电压,A相二次熔断器熔断时,也同样因TV有负载,A相有很小的电压,电压表可能有一点指示。 (2)三相五柱式TV接成Y0/Y0/Δ接线时,它们的磁路是互通的,高压侧A相熔断器熔断,二次侧A相仍能感应出一定的电压,但此时的A相电压比单相TV接线时要高一些,二次侧断开一相时,情况与单相TV接线时相同。 2.1.2TV熔断器两相熔断的现象与判断 (1)高压熔断器两相熔断时,熔断的两相相电压很小或接近于

短路电流计算方法

第七章短路电流计算 Short Circuit Current Calculation §7-1 概述General Description 一、短路的原因、类型及后果 The cause, type and sequence of short circuit 1、短路:是指一切不正常的相与相之间或相与地<对于中性点接地 的系统)发生通路的情况。 2、短路的原因: ⑴元件损坏 如绝缘材料的自然老化,设计、安装及维护不良等所造成的设备缺陷发展成短路. ⑵气象条件恶化 如雷击造成的闪络放电或避雷器动作;大风造成架空线断线或导线覆冰引起电杆倒塌等. ⑶违规操作 如运行人员带负荷拉刀闸;线路或设备检修后未拆除接地线就加电压. ⑷其他原因 如挖沟损伤电缆,鸟兽跨接在裸露的载流部分等. 3、三相系统中短路的类型: ⑴基本形式: )3(k—三相短路;)2(k—两相短路; )1( k—单相接地短路;)1,1(k—两相接地短路; ⑵对称短路:短路后,各相电流、电压仍对称,如三相短路; 不对称短路:短路后,各相电流、电压不对称。 如两相短路、单相短路和两相接地短路. 注:单相短路占绝大多数;三相短路的机会较少,但后果较严重。4、短路的危害后果 随着短路类型、发生地点和持续时间的不同,短路的后果可能只破坏局部地区的正常供电,也可能威胁整个系统的安全运行。短路的危险后果一般有以下几个方面。 (1)电动力效应 短路点附近支路中出现比正常值大许多倍的电流,在导 体间产生很大的机械应力,可能使导体和它们的支架遭 到破坏。 (2)发热 短路电流使设备发热增加,短路持续时间较长时,设备 可能过热以致损坏。 (3)故障点往往有电弧产生,可能烧坏故障元件,也可能殃

故障指示器定位方案(温江)

故障定位系统技术方案 北京合锐赛尔电力科技股份公司 2015-2-9

1、概要 配电线路传输距离远,支线多、大部分是架空线和电缆线,环境和气候条件恶劣,外破、设备故障和雷电等自然灾害常常造成故障率较高。一旦出现故障停电,首先给人民群众生活带来不便,干扰了企业的正常生产经营;其次给供电公司造成较大损失;再者一条线路距离较长,分支又多,呈网状结构,查找故障,非常困难,浪费了大量的人力,物力。 我国10KV 配电网系统主要以中性点非接地系统(俗称小电流系统,Y/Δ结构)为主,近年以来随着电网建设速度的加快,配电网线路结构越来越庞大,越来越复杂,但由于在线路运行状态监测方面尤其单相接地故障监测方面一直无法满足广大电力用户的需求,严重影响了供电质量。虽然各供电公司配电线路大量采用故障指示器来解决故障寻址的问题,客观上在一定程度上提高了查找故障的效率,但目前国内外所有故障指示器均存在致命缺陷:无法可靠、准确地检测单相接地故障线路。所以,故障指示器仅仅是解决了部分问题,没有解决广大供电公司迫切需要的单相接地故障检测功能。而利用配网自动化系统能够实现故障监测及自动定位(寻址),但成本太大,难以推广。 北京合锐赛尔电力科技股份有限公司多年来在电力系统输配电网自动化系统、故障检测技术方面积累了大量的技术能力和丰富的现场运行经验,为客户提供从主站系统到配电终端设备、一次设备、通信网络设备等全方位的解决方案及装置,尤其是我公司根本性地解决了单相接地故障接地选线以及故障定位问题,在国内第一次成功解决了单相接地故障的检测技术难点。 故障定位系统分为有源故障定位系统和无源故障定位系统,我公司系统的型号分别为:FIS2000故障定位系统和FIS3000故障定位系统。系统故障监测采用成熟的故障指示器,包括架空线路和电缆等多种类型。在系统中,故障指示器分布挂装在电力传输网络上需要监测的位置(如:各分支处,各事故多发事段等)。故障信息通过移动运营商提供的成熟的GPRS 网络传送到监控中心,只要有GPRS/GSM信号的地方,就能实现可靠通信。系统集故障监测、负荷电流监测、温湿度监测等于一体,在线路出现短路故障、接地故障、断电、送电等情况下,将采集的特征数据传送到监测中心,监测中心发信息给维护值班人员手机,使管理员不在办公室也能监控到线路的运行情况,完全做到线路情况实时监控,不受管理员上下班影响,同时在计算机上显示故障位置,具有操作界面简单、友好等特点。

架空型故障指示器

本企业已通过ISO9001:2008质量管理体系认证 FYJ-IV型智能接地短路四合一故障指示器 (四合一) 使 用 说 明 书 长夏电气有限公司

FYJ-IV型智能发光接地短路四合一故障指示器 技术使用说明书 1. 概述 FYJ-IV型翻牌发光接地短路四合一故障 指示器安装在6-35KV输配电线路上,用于指 示故障电流流通的装置。这种新型的四合一 故障指示器,不仅能检测线路上出现的短路 故障和接地故障,还能通过自己的判断来选 择翻牌的方式报警。故障如果发生在白天, 它就选择翻牌报警,夜晚翻牌及闪光显示, 确保全天候线路检测。线路发生故障,巡线 人员可借助指示器的红色报警显示迅速确定 故障区段并找出故障点,极大地提高了工作 效率、缩短停电时间,有效地提高了供电的可靠性。故障检测装置检测方法新颖,不仅动作可靠、性能稳定,而且安装和卸落都极其简单方便。 2. 动作原理 接地检测原理:采样接地瞬间的电容电流首半波与接地瞬间的电压首半波,比较其相位,当采样接地瞬间的电容电流突变且大于一定数值,并且与接地瞬间的电压首半波同相,同时导线对地电压降低,则判断线路发生接地,否则线路未发生接地。 短路检测原理:根据短路现象;在短路瞬间电流正突变、保护动作停电作为动作依据。 3. 性能特点

故障指示:正常运行时,窗口为白色显示;发生短路、接地故障时,窗口为红色。 在线运行:直接安装在架空线路上,免维护。 适应性好: 自动判断,白天翻牌报警,夜晚翻牌及闪光,提高效率。 抗干扰强:信号不受线路、励磁涌流、高次谐波、电流波动,尤其是电缆分布电容旁路的影响。 自动复位:指示器动作翻牌后,送电时通过电流冲击自动复归,无须设定时间。 带电装卸:带电装卸极其简单,不影响线路运行。 4. 技术指标 ▲适用电压等级; 35KV≥U≥6KV ▲适用导线电流; I≤1200A ▲适用导线线径; 16mm2≤d≤400mm2 ▲动作响应时间: 0.06S≤T≤3S ▲静态功耗:≤10μw ▲动作复位时间; 6、12、24、36小时可选 ▲使用环境温度;-40℃≤T≤+75℃ ▲动作次数:≥5000次重量; 520g 5. 应用范围 安装在长线路的中段和分支入口处:可指示线路故障区段及故障分支。 安装在变电站出口:可判明是站内或站外故障。 安装在用户配变高压进线处:可判明故障是否由用户原因造成。 安装在电缆与架空线连接处:可区分故障是否在电缆段。 6.用于判断接地的故障指示原理图

短路电流计算

短路电流计算 第一节概述 一、电力系统或电气设备的短路故障原因 (1)自然方面的原因。如雷击、雾闪、暴风雪、动物活动、大气污染、其他外力破坏等等,造成单相接地短路和相间短路。 (2)人为原因。如误操作、运行方式不当、运行维护不良或安装调试错误,导致电气地设备过负荷、过电压、设备损坏等等造成单相接地短路和相间短路。 (3)设备本身原因。如设备制造质量、设备本身缺陷、绝缘老化等等造成单相接地短路和相间短路。 二、短路种类 1.单相接地短路 电力系统及电气设备最常见的短路是单相接地,约占全部短路的75%以上。对大电流接地系统,继电保护应尽快切断单相接地短路。对中性点经小电阻或中阻接地系统,继电保护应瞬时或延时切断单相接地短路。对中性点不接地系统,当单相接地电流超过允许值时,继电保护亦应有选择性地切断单相接地短路。对中性点经消弧线圈接地或不接地系统,单相接地电流不超过允许值时,允许短时间单相接地运行,但要求尽快消除单相接地短路点。 2.两相接地短路 两相接地短路一般不超过全部短路的10%。大电流接地系统中,两相接地短路大部分发生于同一地点,少数在不同地点发生两相接地短路。中性点非直接接地的系统中,常见是发生一点接地,而后其他两相对地电压升高,在绝缘薄弱处将绝缘击穿造成第二点接地,此两点多数不在同一点,但也有时在同一点,继电保护应尽快切断两相接地短路。 3.两相及三相短路 两相及三相短路不超过全部短路的10%。这种短路更为严重,继电保护应迅速切断两相及三相短路。

4.断相或断相接地 线路断相一般伴随相接地。而发电厂的断相,大都是断路器合闸或分闸时有一相拒动造成两相运行,或电机绕组一相开焊的断相,或三相熔断器熔断一相的两相运行,两相运行一般不允许长期存在,应由继电保护自动或运行人员手动断开健全相。 5.绕组匝间短路 这种短路多发生在发电机、变压器、电动机、调相机等电机电器的绕组中,虽然占全部短路的概率很少,但对某一电机来说却不一定。例如,变压器绕组匝间短路占变压器全部短路的比例相当大,这种短路能严重损坏设备,要求继电保护迅速切除这种短路。 6.转换性故障和重叠性故障 发生以上五种故障之一,有时由于故障的演变和扩大,可能由一种故障转换为另一种故障,或发生两种及两种以上的故障(称之复故障),这种故障不超过全部故障的5%。 第二节 对称短路电流计算 一、阻抗归算 为方便和简化科计算,通常将发电机、变压器、电抗器、线路等元件的阻抗归算至同一基准容量bs S (一般取100MVA 或1000MVA 基准容量)和基准电压bs U (一般取电网的平均额定电压bv U )时的基准标么阻抗(以下不作单独说明,简称标么阻抗);归算至额定容量的标么阻抗称相对阻抗。 (一)标么阻抗的归算 1.发电机等旋转电机阻抗的归算 发电机等旋转电机一般给出的是额定条件下阻抗对值,其标么可按下式计算 bs G G GN S X X S * = (1-1) 式中 G X * ——发电机在基准条件下电抗的标么值; G X ——发电机额定条件电抗的标对值; G X ——基准容量(MVA );

永磁同步电机匝间短路故障在线检测方法

第37卷第3期2018年3月 电工电能新技术 AdvancedTechnologyofElectricalEngineeringandEnergy Vol.37,No.3Mar.2018 收稿日期:2017?03?29 作者简介:彭一伟(1991?),男,重庆籍,硕士研究生,研究方向为电动汽车用交流电机的控制; 赵一峰(1979?),男,陕西籍,研究员,研究方向为电动汽车用交流电机的控制三 永磁同步电机匝间短路故障在线检测方法 彭一伟1,2,赵一峰1,3,4,王永兴1,3,4,关天一1,2 (1.中国科学院电工研究所,北京100190;2.中国科学院大学,北京100049; 3.中国科学院电力电子与电气驱动重点实验室,北京100190; 4.电驱动系统大功率电力电子器件封装技术北京市工程实验室,北京100190) 摘要:本文提出了简单的永磁同步电机(PMSM)匝间短路故障在线检测方法三首先对不同状态PMSM定子电流谐波成分展开分析,提出一个融合了-fe及?3fe谐波成分的故障特征量Ft三针对采用快速傅立叶变换方法计算特征量实时性差的问题,在连续细化傅立叶变换方法基础上引入布莱克曼窗,从而改善了连续细化傅立叶变换方法的幅值辨识精度,实现了故障特征量快速且准确的求取三仿真及实验结果表明,特征量Ft能够正确反映PMSM匝间短路故障是否发生,本文提出的在线检测方法在不增加任何硬件设备的基础上实现了PMSM匝间短路故障的检测三关键词:永磁同步电机;匝间短路故障;故障特征量;在线检测;连续细化傅立叶变换 DOI:10 12067/ATEEE1703103一一一文章编号:1003?3076(2018)03?0041?08一一一中图分类号:TM351 1一引言 永磁同步电机(PMSM)具有高转矩/惯量比二高功率密度二高效率二响应快等优点三近年来,随着永磁性能不断提高,PMSM在电动汽车中的应用越来越广泛[1]三永磁同步电机在长期运行的过程中不可避免会出现各种故障,严重影响其在电动汽车应用中的可靠性和安全性三永磁同步电机驱动系统中,由匝间短路引起的定子绕组故障是最为常见的故障之一[2]三在早期的匝间短路故障阶段,电机仍然可以正常运行,然而由于大的短路电流的存在,短路回路会产生大量热量,从而引起更多的绝缘失效三因此,早期匝间短路故障的检测对于避免驱动系统失效二避免危害人身安全具有十分重要的作用三目前,已有许多学者展开了永磁同步电机定子 故障检测方面的工作[3?11]三这些研究主要包括基于磁通密度传感器的方法[3]二基于测得的定子电压和电流构建状态观测器的方法[4]二基于频域及时频分析工具的定子电流特征分析的方法[5?10]二智能控制(如人工神经网络)方法[11]等故障检测方案三其中,定子电流特征分析方法因其低成本而受到国内 外学者最广泛的关注三文献[5]提出将负序电流幅值作为反映匝间短路故障严重程度的特征量,并采用负序dq轴结合低通滤波器的方案成功提取出负序电流幅值三文献[6]利用傅立叶变换的方法对定子电流信号进行分析,通过对比正常电机和故障电机定子电流频谱,指出故障电机定子电流3次谐波含量增加,故以此作为故障的判定依据三文献[7]在文献[6]的基础上提出以q轴2次谐波幅值为特征量代替定子电流3次谐波电流的提取,简化了故障检测算法三傅立叶变换将原有电流信号从时域变换到频域进行分析,难以应对系统非线性工况下的特征量提取三针对这一问题,文献[8,9]分别采用离散小波变换(DWT)和小波包变换对动态情况下匝间短路故障的定子电流进行分析三仿真和实验结果表明,该方法在电机变速二中速二低速二高速情况下,根据3次谐波所在频段能量进行分析均可判定短路故障是否发生三文献[10]采用经验模态分解(EMD)方法对定子电流进行分析,得到一个本征模态函数IMF的集合,然后用时频分析方法对包含故障谐波的模态进行分析得到故障对应的瞬时频率,仿真和实验表明了该诊断方法的有效性三时频分析

相关主题
文本预览
相关文档 最新文档