八年级10月月考数学试题
- 格式:docx
- 大小:1.40 MB
- 文档页数:16
山东省日照市东港区北京路中学2024-2025学年八年级上学期10月月考数学试题一、单选题1.以下列各组线段为边,能组成三角形的是( )A .2cm 3cm 5cm ,, B .3cm 3cm 6cm ,, C .5cm 8cm 2cm ,, D .2cm 5cm 6cm ,, 2.如图,用三角板作ABC V 的边AB 上的高线,下列三角板的摆放位置正确的是( ) A . B . C . D .3.一个n 边形从一个顶点出发可以画4条对角线,则它的内角和为( ) A .360°B .540°C .720°D .900° 4.如图,在ABC V 中,10AB =,8AC =,AD 为中线,则ABD △与ACD V 的周长之差为( )A .1B .2C .3D .45.如图,在ABC V 中,已知点D E F 、、分别是BC AD CE 、、的中点,且2ABC BEF S S ==V V ,( )A .2B .1C .12D .146.如图,在ABC V 中,90C ∠=︒,按以下步骤作图:①以点A 为圆心、适当长为半径作圆弧,分别交边AC ,AB 于点,M N .②分别以点M 和点N 为圆心、大于12MN 的长为半径作圆弧,在BAC ∠内两弧交于点P .③作射线AP 交边BC 于点D ,若8CD =,15AB =,则ABD △的面积是( )A .15B .60C .45D .307.已知一个等腰三角形一腰上的高与另一腰的夹角为40︒,则这个等腰三角形底角的度数为( )A .50︒B .50︒或130︒C .130︒D .65︒或25︒ 8.在下列条件中:①∠A +∠B =∠C ,②∠A :∠B :∠C =1:2:3,③∠A =2∠B =3∠C ,④12A B C ∠=∠=∠中,能确定△ABC 是直角三角形的条件有( ) A .1个 B .2个 C .3个 D .4个9.如图,在ABC V 中,32B =︒∠,将ABC V 沿直线m 翻折,点B 落在点D 的位置,则12∠-∠的度数是( )A .64︒B .60︒C .45︒D .32︒10.已知△ABC 是等边三角形,点D 、E 分别在AC 、BC 边上,且AD =CE ,AE 与BD 交于点F ,则∠AFD 的度数为( )A .60°B .45°C .75°D .70°11.如图,在OAB △和OCD V中,40OA OB OC OD OA OC AOB COD AC BD ==>∠=∠=︒,,,,,交于点M ,连接OM ,下列结论:①40AMB ∠=︒;②AC BD =;③OM 平分BOC ∠;④MO 平分BMC ∠,其中正确的是( )A .①②④B .①②③C .①②③④D .②③④12.如图,在ABC V 中,BAC ∠和ABC ∠的平分线AE ,BF 相交于点O ,AE 交BC 于E ,BF 交AC 于F ,过点O 作OD BC ⊥于D ,下列三个结论:①90AOB C ∠=︒+∠;②若4AB =,1OD =,则2ABO S =△;③当60C ∠=︒时,AF BE AB +=;④若OD a =,2AB BC CA b ++=,则ABC S ab =V .其中正确的个数是( )A .1B .2C .3D .4二、填空题13.如图,123,,l l l 表示三条相互交叉的公路,现要建一个货物中转站,要求它到三条公路的距离相等,则可供选择的地址有 处.14.小敏利用最近学习的数学知识,给同伴出了这样一道题:假如你从点A 出发,沿直线走10米后向左转θ度,接着沿直线前进10米后,再向左转θ度⋅⋅⋅⋅⋅⋅如此下去,当她第一次回到A 点时,发现自己走了100米,则θ的度数为.15.如图,在ABC V 中,10AB =,6AC =,则BC 边上的中线AD 的取值范围是.16.如图,在矩形ABCD 中,8cm AB =,12cm AD =,点P 从点B 出发,以2cm/s 的速度沿BC 边向点C 运动,到达点C 停止,同时,点Q 从点C 出发,以cm/s v 的速度沿CD 边向点D 运动,到达点D 停止,规定其中一个动点停止运动时,另一个动点也随之停止运动.当v 为时,ABP V 与PCQ △全等.17.一个多边形截去一个角后,新得到的多边形内角和是1620°,则原来多边形的边数是. 18.如图,在ABC V 中,BO CO ,分别平分ABC ACB ∠∠,,CE 为外角ACD ∠的平分线,交BO 的延长线于点E ,记12BAC BEC ∠=∠∠=∠,.给出下列结论:①122∠=∠;②32BOC ∠=∠; ③901BOC ∠=︒+∠;④902BOC ∠=︒+∠.其中正确的是.(填序号)三、解答题19.如图,已知点B ,E ,C ,F 在一条直线上,AB DF =,AC DE =,BE CF =.求证:AC DE ∥.20.如图,CE 是ABC V 的外角ACD ∠的平分线,且CE 交BA 的延长线于点E .若35B ∠=︒,20E ∠=︒,求BAC ∠的度数.21.如图,∠B =∠C =90°,E 是BC 的中点,DE 平分∠AD C .(1)求证:AE 是∠DAB 的平分线;(2)探究:线段AD 、AB 、CD 之间有何数量关系?请证明你的结论.22.材料阅读:如图①所示的图形,像我们常见的学习用品—— 圆规.我们不妨把这样图形叫做 “规形图 ”.解决问题:(1)观察“规形图 ”,试探究BDC ∠与A B C ∠∠∠,,之间的数量关系,并说明理由;(2)请你直接利用以上结论,解决以下两个问题:Ⅰ.如图② ,把一块三角尺 DEF 放置在ABC V 上,使三角尺的两条直角边DE DF ,恰好经过点B C ,,若40A ∠=︒,则ABD ACD +=∠∠ °. Ⅱ.如图③ ,BD 平分ABP CD ∠,平分ACP ∠,若40130A BPC ∠=︒∠=︒,,求BDC ∠的度数.23.已知ABC V 是等边三角形,点,D E 分别为边,AB BC 上的动点(点,D E 与线段AB ,BC 的端点不重合),运动过程中始终保持AD BE =,连接,AE CD 相交于点O .(1)如图①,求证:ABE CAD V V ≌;(2)如图①,当点,D E 分别在,AB BC 边上运动时,DOA ∠的大小是否变化?若变化,请说明理由;若不变,求出它的大小;(3)如图②,当点D ,E 分别在,AB BC 的延长线上运动时,DOA ∠的大小是否变化?若变化,请说明理由;若不变,求出它的大小.24.数学课上,老师让同学们利用三角形纸片进行操作活动,探究有关线段之间的关系 问题情境:如图1,三角形纸片ABC 中,90ACB ∠=︒,AC BC =.将点C 放在直线l 上,点A ,B 位于直线l 的同侧,过点A 作AD l ⊥于点D初步探究:(1)在图1的直线l 上取点E ,使BE BC =,得到图2,猜想线段CE 与AD 的数量关系,并说明理由;(2)小颖又拿了一张三角形纸片MPN 继续进行拼图操作,其中90MPN ∠=︒,MP NP =.小颖在图1的基础上,将三角形纸片MPN 的顶点P 放在直线l 上,点M 与点B 重合,过点N 作NH l ⊥于点H .如图3,探究线段CP ,AD ,NH 之间的数量关系,并说明理由。
河南省周口市川汇区周口市第十九初级中学 2024-2025学年上学期10月月考八年级数学试题一、单选题1.下列各个选项中的两个图形属于全等形的是( )A .B .C .D .2.每组数分别是三根小木棒的长度,用它们能摆成三角形的是( ) A .3cm ,4cm ,8cm B .8cm ,7cm ,15cm C .13cm ,12cm ,20cmD .5cm ,5cm ,11cm3.如图所示,一扇窗户打开后,用窗钩AB 即可固定,这里所用的几何原理是( )A .两点之间线段最短B .垂线段最短C .两点确定一条直线D .三角形具有稳定性4.如图,已知BAD CAD ∠=∠,欲证ABD ACD △≌△,还必须从下列选项中补选一个,则错误的选项是( )A .ADB ADC ∠=∠ B .B C ∠=∠C .BD CD = D .AB AC =5.如图所示的两个三角形全等,则E ∠的度数为( )A .50︒B .60︒C .70︒D .80︒6.如图,在△ABC 中,已知点D ,E ,F 分别为边BC ,AD ,CE 的中点,且24cm ABC S =△,则阴影部分的面积等于( )A .2cm 2B .1cm 2C .3cm 2D .4cm 27.如图,小敏做了一个角平分仪ABCD ,其中AB AD =,BC DC =,将仪器上的点A 与PRQ ∠的顶点R 重合,调整AB 和AD ,使它们分别落在角的两边上,过点A 、C 画一条射线AE ,AE 就是PRQ ∠的平分线.此角平分仪的画图原理是( )A .SSSB .SASC .ASAD .AAS8.如图,一束太阳光线平行照射在放置于地面的正六边形上,若145∠=︒,则2∠的度数为( )A .45︒B .30︒C .20︒D .15︒9.如图,A B C D E F ∠+∠+∠+∠+∠+∠等于( )A .240︒B .180︒C .360︒D .540︒10.如图,点A 在点O 正北方向,点B 在点O 正东方向,且点A 、B 到点O 的距离相等,甲从点A 出发,以每小时50千米的速度朝正东方向行驶,乙从点B 出发,以每小时30千米的速度朝正北方向行驶,1小时后,位于点O 处的观察员发现甲、乙两人之间的夹角为45︒,此时甲、乙两人相距( )A .60千米B .70千米C .80千米D .90千米二、填空题11.一个多边形的内角和等于外角和的3倍,那么这个多边形为边形.12.若x ,y 满足23(6)0x y -+-=,则以x ,y 的值为两边长的等腰三角形的周长为.13.已知ABC V 的三边长为x ,3,6,DEF V 的三边长为5,6,y .若ABC V 与DEF V 全等,则x y +的值为.14.如图,在Rt ABC △中,90ABC ∠=︒,62A ∠=︒,点P 为AC 边上一点,沿BP 折叠使得点A 的对应点D 落在BC 边上,则CPD ∠的度数为.15.如图,OP 平分∠AOB ,PM ⊥OA 于M ,点D 在OB 上,DH ⊥OP 于H .若OD =4,OP =7,PM =3,则DH 的长为.三、解答题16.已知a ,b ,c 是ABC V 的三边长. (1)若 8a =,2b =,c 为偶数,求c 的长; (2)化简∶a b c a b c --++-.17.如图,ABC V 的顶点都在方格纸的格点上,按要求在方格纸中画图.(1)在图①中画出ABC V 中BC 边上的高线AD ;(2)在图②中,作直线CN ,将ABC V 分成面积相等的两个三角形; (3)在图③中画出一个与ABC V 全等的ACE △.18.如图,D 为ABC V 内一点,CD 平分,,ACB BD CD A ABD ∠⊥∠=∠,若76DBC ∠=︒,求A ∠的度数.19.如图,已知点B F E C ,,,在同一条直线上,AB CD ∥且AB CD =,A D ∠=∠.求证:CE BF =.20.在三角形ABC 中,D 为BC 的中点,DE AB ⊥,DF AC ⊥,垂足分别是E ,F ,BE CF =.求证:点D 在A ∠的平分线上.21.某小组利用延时课进行三角形外角知识的相关研究,制定项目式学习表如下,请你解答任务中的问题:如图,点D 在AB 上,点E 在BC 上,AE 、CD 相交于点P .22.综合与实践.[积累经验]我们在第十二章《全等三角形》中学习了全等三角形的性质和判定,在一些探究题中经常用以上知识转化角和边,进而解决问题.例如:我们在解决:“如图1,在ABC V 中,90ACB ∠=︒,AC BC =,线段DE 经过点C ,且AD DE ⊥于点D ,BE DE ⊥于点E .求证:=AD CE ,CD BE =”这个问题时,只要证明ADC CEB △≌△,即可得到解决.(1)请写出证明过程;[类比应用](2)如图2,在平面直角坐标系中,ABC V 中,90ACB ∠=︒,AC BC =,点A 的坐标为()02,,点C 的坐标为()10,,求点B 的坐标并写出求解过程; [拓展提升](3)如图3,在平面直角坐标系中,90ACB ∠=︒,AC BC =,点A 的坐标为()21,,点C 的坐标为()42,,直接写出B 点坐标 ___________. 23.在△ABC 中,AD 是角平分线,∠B <∠C ,(1)如图(1),AE 是高,∠B =50°,∠C =70°,求∠DAE 的度数;(2)如图(2),点E 在AD 上.EF ⊥BC 于F ,试探究∠DEF 与∠B 、∠C 的大小关系,并证明你的结论;(3)如图(3),点E 在AD 的延长线上.EF ⊥BC 于F ,试探究∠DEF 与∠B 、∠C 的大小关系是(直接写出结论,不需证明).。
江苏省扬州市梅岭中学教育集团2024-2025学年八年级上学期10月月考数学试题一、单选题1.“致中和,天地位焉,万物育焉,”对称美是我国古人和谐平衡思想的体现,常被用于建筑、器物、绘画、标识等作品的设计上,使对称美惊艳了千年的时光.以下四幅剪纸作品中,其图案是轴对称图形的是( )A .B .C .D .2.如图,在四边形ABCD 中,AD AB =,90B D ∠=∠=︒,35ACB ∠=︒,则DAB ∠=( )A .90︒B .110︒C .130︒D .150︒3.如果三角形二条边的中垂线的交点在第三条边上,那么,这个三角形是( ) A .直角三角形B .锐角三角形C .钝角三角形D .等边三角形4.请仔细观察用直尺和圆规作一个角等于已知角的示意图,请你根据所学的三角形全等有关的知识,说明画出A O B AOB '''∠=∠的依据是( )A .SASB .ASAC .AASD .SSS5.已知等腰三角形的一个内角等于50︒,则该三角形的一个底角是( )A .60︒B .50︒或60︒C .50︒D .50︒或65︒ 6.打碎的一块三角形玻璃如图所示,现在要去玻璃店配一块完全一样的玻璃,最省事的方法是( )A .带①②去B .带②③去C .带③④去D .带②④去7.如图,在ABC V 中,边AB 的垂直平分线OM 与边AC 的垂直平分线ON 交于点O ,这两条垂直平分线分别交BC 于点D 、E ,已知ADE V 的周长为15cm ,分别连接OA 、OB 、OC ,若OBC △的周长为28cm ,则OA 的长为( )cm .A .6.5B .7.5C .13D .438.将两个斜边长相等的三角形纸片如图①放置,其中ACB CED 90∠∠==o ,A 45∠=o ,D 30∠=o .把DCE V 绕点C 顺时针旋转15o 得到11D CE V ,如图②,连接1D B ,则11E D B ∠的度数为( )A .10°B .20°C .7.5°D .15°二、填空题9.如图,王师傅用4根木条钉成一个四边形木架,要使这个木架不变形,他至少要再钉上木条的根数是.10.如图,把长方形ABCD 沿EF 对折,若∠1=50°,则∠AEF 的度数等于.11.如图,在ABC V 中,4AB =, 5.5AC =,ABC ∠和ACB ∠的平分线交于点E ,过点E 作MN BC ∥分别交AB 、AC 于点M 、N ,则AMN V 的周长为.12.如图,12AB =米,CA AB ⊥于A ,DB AB ⊥于B ,且4AC =米,P 点从点B 向点A 运动,每分钟走1米,Q 点从B 向D 运动,每分钟走2米,若P 、Q 两点同时开始出发,运动分钟后CAP PBQ ≌△△.13.如图,在等腰△ABC 中,AB =AC =BD ,∠BAD =70°,∠DAC = °.14.如图,在ABC V 中,已知点D ,E ,F 分别为边BC ,AD ,CE 的中点,且24cm ABC S =△,则S =阴影2cm .15.如图,在ABC V 中,4AB AC BC ==,,面积是14,AC 的垂直平分线EF 分别交AC AB ,边于E 、F 点.若点D 为BC 边的中点,点M 为线段EF 上一动点,则CM DM +的最小值为16.如图,在射线OA ,OB 上分别截取11OA OB =,连接11A B ,在11B A 、1B B 上分别截取1212B A B B =,连接22A B ,L 按此规律作下去,若11A B O α∠=,则20242024A B O ∠=.(用含α的代数式表示)17.如图,在ABC V 中,90BAC ∠=︒,AB AC =,D 是BC 的中点,点E 、F 分别在边AB 、AC 上,且90EDF ∠=︒,下列结论:①BED AFD V V ≌;②AC BE FC =+;③1S ,2S 分别表示ABC V 和EDF V 的面积,则1211142S S S ≤≤;④EF AD =;所有正确的结论是.18.如图,70AOB ∠=︒,点C 是边OB 上的一个定点,点P 在角的另一边OA 上运动,当COP V 是等腰三角形,OCP ∠=°.三、解答题19.如图,在108⨯的方格图中,每个小方格都是边长为1个单位的正方形,每个小正方形的顶点叫做格点.已知ABC V 的三个顶点在格点上.(1)画出A B C '''V ,使它与ABC V 关于直线m 对称;(2)在直线m 上找一点D ,使得BCD △的周长最小;(保留作图痕迹)(3)延长BC 交直线m 于E ,若BEF △是以BE 为底边的等腰三角形,那么图中这样的格点F 共有________个.20.如图,ABC V 中,90ACB ∠=︒.(1)用无刻度直尺和圆规完成下列作图(不写作法,保留画图痕迹);①作高CD ;②作ABC ∠的平分线交AC 于点E ,交CD 于点F ;(2)结合(1)中作图,求证:CEF CFE ∠=∠.21.如图,在四边形ABCD 中,90AD BC A BE AD CE BD ∠=︒=⊥∥,,,,垂足为E .(1)求证:ABD ECB ≌△△;(2)若50DBC ∠=︒,则DCE ∠=___________.22.如图,已知点D ,E 分别是V ABC 的边BA 和BC 延长线上的点,作∠DAC 的平分线AF ,若AF ∥BC .(1)求证:V ABC 是等腰三角形(2)作∠ACE 的平分线交AF 于点G ,若40B ∠=o ,求∠AGC 的度数.23.如图,△ABC 中, AD ⊥BC ,EF 垂直平分AC ,交AC 于点F ,交BC 于点E ,且AE=AB .(1)若∠BAE =40°,求∠C 的度数;(2)若△ABC 周长26cm ,AC =10cm ,求DC 长.24.如图,在ABC V 中,BD 是高,点D 是AC 边的中点,点E 在BC 边的延长线上,ED 的延长线交AB 于点F ,且EF AB ⊥,若30E ∠=︒.(1)求证:ABC V 是等边三角形;(2)请判断线段AD 与CE 的大小关系,并说明理由.25.在ABC V 中,AB BC =,BE 平分ABC ∠,CD AB ⊥于D ,CD BD =,点H 是BC 边的中点,连接DH ,交BE 于点G ,连接CG .(1)求证:12CE BF =; (2)求FGD ∠的度数.26.如图①,在Rt ABC △中,90C ∠=︒,9cm BC =,12cm AC =,15cm AB =,现有一动点P ,从点A 出发,沿着三角形的边AC CB BA →→运动,回到点A 停止,速度为3cm /s ,设运动时间为s t .(1)如图①,当t =________时,APC △的面积等于ABC V 面积的一半;(2)如图②,DEF V 中,90E ∠=︒,4cm DE =,5cm DF =,D A ∠=∠.在ABC V 的边上,若另外有一个动点Q ,与点P 同时从点A 出发,沿着边AB BC CA →→运动,回到点A 停止.在两点运动过程中的某一时刻,恰好APQ △与DEF V 全等,求点Q 的运动速度.27.我们把两个面积相等但不全等的三角形叫做偏等积三角形.【初步尝试】(1)如图1,ABD △与ACD V 是偏等积三角形,2AB =,6AC =,且线段AD 的长度为正整数,则AD 的长度为________;【理解探究】(2)如图2,已知ABC V 为直角三角形,90ACB ∠=︒,以AB ,AC 为边向外作正方形ABDE ,正方形ACFG ,连接EG .求证:ABC V 与AEG △为偏等积三角形;(3)如图3,将ABC V 分别以AB ,BC ,AC 为边向外作正方形ABDE ,正方形BCFG ,正方形ACMN ,连接DG ,FM ,NE ,则图中有________组偏等积三角形;【综合运用】(4)如图4,四边形ABED 是一片绿色花园,ACB △、DCE △是等腰直角三角形,()90090ACB DCE BCE ∠=∠=︒<∠<︒,已知60m BE =,ACD V 的面积为22100m .计划修建一条经过点C 的笔直的小路CF ,点F 在BE 边上,FC 的延长线经过AD 的中点G .若小路每米造价600元,请计算修建小路的总造价.28.在ABC V 中,5AB =,3AC =.若点D 在BAC ∠的平分线所在的直线上.(1)如图1,当点D 在ABC V 的外部时,过点D 作DE AB ⊥于E ,作DF AC ⊥交AC 的延长线于F ,且BE CF =.①求证:点D 在BC 的垂直平分线上;②BE =________;(2)如图2,当点D 在线段BC 上时,若90C ∠=︒,BE 平分ABC ∠,交AC 于点E ,交AD 与点F ,过点F 作FG BE ⊥,交BC 于点G .①DFG ∠=________;②若4BC =,43EC =,求GC 的长度; (3)如图3,过点A 的直线l BC ∥,若90C ∠=︒,4BC =,点D 到ABC V 三边所在直线的距离相等,则点D 到直线l 的距离是________.。
广西壮族自治区南宁市第三中学2024-2025学年八年级上学期10月月考数学试题一、单选题1.下列选项中,比-2C o 低的温度是( )A .3C -oB .1C -o C .0C oD .1C o2.小篆,是在秦始皇统一六国后创制的汉字书写形式.下列四个小篆字中为轴对称图形的是( )A .B .C .D .3.2024年两会这份数据,振奋人心!中国2023年GDP 超126万亿元,同比GDP 增量相当于一个中等国家经济总量,连续多年保持世界第二大商品消费市场,世界第一制造业大国,世界第一货物贸易大国地位.把数据126万亿元用科学记数法表示为( ) A .131.2610⨯元 B .140.12610⨯元 C .1312610⨯元 D .141.2610⨯元 4.下列调查适合抽样调查的是( )A .对搭乘高铁的乘客进行安全检查B .审核书稿中的错别字C .调查一批LED 节能灯管的使用寿命 D .对七(1)班同学的视力情况进行调查 5.如图,在△ABC 中,以点C 为圆心,以AC 长为半径画弧交边BC 于点D ,连接AD .若∠B =36°,∠C =40°,则∠BAD 的度数是( )A .70°B .44°C .34°D .24°6.等腰三角形的两边长为4cm 和3cm ,那么它的周长为( )A .10cmB .11cmC .10cm 或11cmD .12cm7.如图,小敏做了一个角平分仪ABCD ,其中AB AD =,BC DC =,将仪器上的点A 与PRQ∠的顶点R 重合,调整AB 和AD ,使它们分别落在角的两边上,过点A 、C 画一条射线AE ,AE 就是PRQ ∠的平分线.此角平分仪的画图原理是( )A .SSSB .SASC .ASAD .AAS8.一个多边形的每个外角都是30°,则这个多边形的边数是( ).A .6B .8C .10D .129.如图,将一个长方形纸条折成如图所示的形状,若1110∠=︒,则2∠的度数为( )A .20︒B .35︒C .55︒D .60︒10.《九章算术》是人类科学史上应用数学的“算经之首”,书中有这样一个问题:若2人坐一辆车,则9人需要步行,若“……”.问:人与车各多少?小明同学设有x 辆车,人数为y ,根据题意可列方程组为()2932y x y x =+⎧⎨=-⎩,根据已有信息,题中用“……”表示的缺失条件应补为( )A .三人坐一辆车,有一车少坐2人B .三人坐一辆车,则2人需要步行C .三人坐一辆车,则有两辆空车D .三人坐一辆车,则还缺两辆车11.若关于x 的不等式(-1) 1m x m <-的解集为1x >,则m 的取值范围是( )A .1m >B .1m <C .1m ≠D .1m =12.如图,在Rt ABC △中,90ABC ∠=︒,以AC 为边,作ACD V ,满足AD AC =,E 为BC 上一点,连接AE ,2CAD BAE ∠=∠,连接DE ,下列结论中:①ADE ACB ∠=∠;②AC DE ⊥;③AEB AED ∠=∠;④2DE CE BE =+.其中正确的有( )个A .1B .2C .3D .4二、填空题13.若80A ∠=︒,则A ∠的补角是.14.点()23P -,关于y 轴对称点的坐标在第象限. 15.六边形一共有条对角线.16.如图,在Rt ABC △中,90BAC ∠=o ,AB AC =,点D 为BC 上一点,连接AD .过点B 作BE AD ⊥于点E ,过点C 作CF AD ⊥交AD 的延长线于点F .若4BE =,1CF =,则EF 的长度为.17.某种商品进价为400元,标价为500元出售,商场规定可以打折销售,但其利润率不能少于6.25%,这种商品最多可以按折销售.18.如图,已知平面直角坐标系中点A 坐标是()2,5,点B 在x 轴上, A 是OB 的垂直平分线上一点,P 是y 轴上一点,若OPB OAB ∠=∠时,则PO PB +=.三、解答题19.计算:()()2024322351-⨯-+÷-.20.解不等式组21341x x +≥⎧⎨->-⎩;并把不等式组的解集在数轴上表示出来.21.已知:如图,在ABC V 中,AB AC =,2B A ∠=∠.(1)求作ABC ∠的平分线,交AC 于点P .(要求:尺规作图,不写作法,保留作图痕迹);(2)在(1)的条件下,求ABP ∠的角度?22.国家航天局消息:北京时间2021年10月14日,神舟十三号成功发射,某中学科技兴趣小组为了解本校学生对航天科技的关注程度,在该校内进行了随机调查统计,将调查结果分为不关注、关注、比较关注、非常关注四类,回收、整理好全部调查问卷后,得到下列不完整的统计图:(1)此次调查中接受调查的人数为______人;(2)补全条形统计图,在扇形统计图中,“关注”对应扇形的圆心角为______;(3)该校共有1200人,根据调查结果估计该校“关注”,“比较关注”及“非常关注”航天科技的人数共多少人?23.如图,在△ABC 中,∠B =40°,∠C =80°.(1)求∠BAC 的度数;(2)AE 平分∠BAC 交BC 于E ,AD ⊥BC 于D ,求∠EAD 的度数.24.如图,AB AC =,CE AB ∥,D 是AC 上的一点,且=AD CE .(1)求证:ABD CAE △△≌(2)若25ABD ∠=︒,40CBD ∠=︒,求BAE ∠的度数.25.综合与实践小许是个爱动脑筋的学生,她在学习了二元一次方程组后遇到了这样一道题目:如图1,长方形ABCD 中放置8个形状和大小都相同的小长方形(尺寸如图1),求图中阴影部分的面积.(1)小许设小长方形的长为cm x ,宽为cm y ,观察图形得出关于x ,y 的二元一次方程组,解出x ,y 的值,再用大长方形的面积减去8个小长方形的面积得到阴影部分的面积. 解决问题:请按照小许的思路完成上述问题:(2)动手实践:解决完上面的问题后,小许在家里找了8张形状大小都相同的卡片,恰好拼成了一个大的长方形如图2所示,打乱后又拼成如图3那样的大正方形,中间还留了一个洞,恰好是边长为1cm的小正方形,求每个小长方形的面积.请给出解答过程.26.【问题初探】ABCV和DBEV是两个都含有45︒角的大小不同的直角三角板(1)当两个三角板如图(1)所示的位置摆放时,D、B,C在同一直线上,连接AD CE、,请证明:=AD CE【类比探究】(2)当三角板ABC保持不动时,将三角板DBE绕点B顺时针旋转到如图(2)所示的位置,判断AD与CE的数量关系和位置关系,并说明理由.【拓展延伸】如图(3),在四边形ABCD中,390,,4 BAD AB AD BC CD∠=︒==,连接AC,BD,45ACD∠=︒,A到直线CD的距离为7,请求出BCD△的面积.。
江苏省南通市通州区金郊初级中学2024-2025学年上学期10月月考八年级数学试卷一、单选题1.在一些美术字中,有的汉字是轴对称图形.下面4个汉字中,可以看作是轴对称图形的是( )A .B .C .D . 2.如图,三个村庄A 、B 、C 构成ABC V ,供奶站须到三个村庄的距离都相等,则供奶站应建在( )A .三条边的垂直平分线的交点B .三个角的角平分线的交点C .三角形三条高的交点D .三角形三条中线的交点3.如图,已知AB AD =,那么添加下列一个条件后,不能判定ABC ADC △≌△的是( )A .CB CD =B .BAC DAC ∠=∠ C .BCA DCA ∠=∠D .90B D ∠=∠=︒4.已知等腰三角形的一个外角等于100°,则它的顶角是( )A .80°B .20°C .80°或20°D .不能确定 5.如图,在等边三角形ABC 中,AD BC ⊥,垂足为D ,点E 在线段AD 上,45EBC ∠=︒,则ACE ∠等于( )A .18°B .20°C .30°D .15°6.如图,是尺规作图中“画一个角等于已知角”的示意图,该作法运用了“全等三角形的对应角相等”这一性质,则判定图中两三角形全等的条件是( )A .SSSB .ASAC .AASD .SAS7.在ABC V 中,50,35B C ∠=︒∠=︒,分别以点A 和点C 为圆心,大于12AC 的长为半径画弧,两弧相交于点M ,N ,作直线MN ,交BC 于点D ,连接AD ,则BAD ∠的度数为( )A .60︒B .70︒C .75︒D .85︒8.如图,ABC V 中,90BAC ∠=︒,534BC AC AB ===,,,点D 是ABC ACB ∠∠,的角平分线的交点,则点D 到BC 的距离为( )A .1B .2C .3D .3.59.如图,M ,N 为44⨯方格纸中格点上的两点,若以MN 为边,在方格中取一点P (在格点上),使得MNP △为等腰三角形,则点P 的个数为( )A .3个B .4个C .5个D .6个10.如图,在直角坐标系中,点A 、B 的坐标分别为(1,4)和(3,0),点C 是y 轴上的一个动点,且A 、B 、C 三点不在同一条直线上,当△ABC 的周长最小时,点C 的坐标是( )A .(0,0)B .(0,1)C .(0,2)D .(0,3)二、填空题11.正方形的对称轴的条数为.12.如图,四边形ABCD 中,ABD DBC AB BC ∠=∠=,,若8DC =,则AD 的长为.13.点()5,3P -关于x 轴对称点Q 的坐标为.14.如图,在ABC V 中,ABC ∠、ACB ∠的平分线交于O 点,过O 点作//EF BC 交AB 、AC 于点E ,F .当5EF =,2BE =时,CF 的长为.15.如图,在△ABC 中,∠B =66°,∠C =54°,AD 是∠BAC 的平分线,DE 平分∠ADC 交AC 于E ,则∠BDE =.16.如图,ABC V 中,4AB AC ==,P 是BC 上任意一点,过P 作PD AC ⊥于D ,PE AB ⊥于E ,若6ABC S =V ,则PD PE +=.17.如图,D 为ABC V 内一点,CD 平分ACB ∠,BE CD ⊥,垂足为D ,交AC 与点E ,A ABE ∠=∠.若7AC =,4BC =,则BD 的长为 .18.如图,等边ABC V 中,点P 是CA 延长线上一点,点D 是BC 上一点,且=PB PD .若10CP CD +=,3BD =,则AB 的长为.三、解答题19.已知:如图,点B ,F ,C ,E 在一条直线上,AB DE =,AC DF =,BF EC =.求证:ABC DEF ≌△△.20.如图,在ABC V 中,90ACB ∠=︒,CD 是高,30A ∠=︒,4AB =.则BD 的长为.21.已知:如图,,,AB AC BE AC CD AB =⊥⊥,垂足分别为E 、D .(1)求证:AD AE =;(2)连接AO BC 、,判断直线AO 与BC 的关系.22.如图,ABC V 三个顶点的坐标分别为()1,1A ,()4,2B ,()3,4C .(1)请写出ABC V 关于x 轴对称的111A B C △的各顶点坐标;(2)请画出ABC V 关于y 轴对称的222A B C △;(3)并直接写出ABC V 的面积.23.如图,ABC V 中,AB AC AD BC =⊥,于点D .(1)求证:ACD ABD △△≌;(2)过点C 作CE AB ⊥于点E ,CE 交AD 于点F ,若CE AE =.求证:2AF CD =. 24.如图,一条船上午8时从海岛A 出发,以20海里/时的速度向正北方向航行,上午10时到达海岛B 处,分别从A ,B 处望灯塔C ,测得∠NAC =30°,∠NBC =60°.(1)求海岛B 到灯塔C 的距离;(2)若这条船继续向正北航行,问什么时间小船与灯塔C 的距离最短?25.已知在ABC V 中,AB AC =,点D 是边AB 上一点,BCD A ∠=∠.(1)如图1,试说明CD CB =的理由;(2)如图2,过点B 作BE AC ⊥,垂足为点E ,BE 与CD 相交于点F .①试说明2BCD CBE ∠=∠的理由;②如果BDF V 是等腰三角形,求A ∠的度数.26.在平面直角坐标系中,已知点A 在y 轴的正半轴上,点B 在x 轴的正半轴上,且OA OB =.(1)若4OA =,过点A 作AC AB ⊥,且AC AB =,请直接写出点C 的坐标是;(2)如图1,若点D 在BA 的延长线上,连接OD ,点E 在第一象限,且满足OD OE BD BE ⊥⊥,,连接DE ,求证:DOE V是等腰直角三角形; (3)如图2,点F 在AB 的延长线上,以OF 为斜边向上构等腰直角三角形OFM ,连接AM ,若94AB BF ==,,求AMF V 的面积.。
初二数学阶段性练习满分:130分时间:120分钟一、选择题(本大题共10小题,每小题3分,共30分.在每小题所给出的四个选项中,只有一项是正确的,请用2B 铅笔把答题卡上相应的选项标号涂黑.............)1.下列四个图形中,是轴对称图形的是()A. B. C. D.2.如图,将ABC 折叠,使点C 与点B 重合,折痕l 与边BC 交于点D ,连接AD ,则AD 是ABC 的()A.角平分线B.高线C.中线D.无法确定3.若等腰三角形有一个内角为110︒,则这个等腰三角形的底角是()A .70︒ B.45︒ C.35︒ D.50︒4.如图,点F ,B ,E ,C 在同一条直线上,ABC DEF ≌△△,若34A ∠=︒,36F ∠=︒,则DEC ∠的度数为()A .50︒ B.60︒ C.70︒ D.80︒5.如图,小敏做了一个角平分仪ABCD ,其中AB AD =,BC DC =,将仪器上的点A 与PRQ ∠的顶点R 重合,调整AB 和AD ,使它们分别落在角的两边上,过点A 、C 画一条射线AE ,AE 就是PRQ ∠的平分线.此角平分仪的画图原理是()A.SSSB.SASC.ASAD.AAS6.如图,在ABC 中,90C ∠=︒,AD 是BAC ∠的角平分线,若3CD =,8AB =,则ABD 的面积是()A.36B.24C.12D.107.到三角形三个顶点的距离相等的点是()A.三条角平分线的交点B.三边中线的交点C.三边上高所在直线的交点D.三边的垂直平分线的交点8.下列说法:①若三角形一边上的中线和这边上的高重合,则这个三角形是等腰三角形;②全等三角形的中线相等;③成轴对称的两个图形中,对应点的连线被对称轴垂直平分;④两条直角边对应相等的两个直角三角形全等.其中正确的说法有()A.1个 B.2个 C.3个 D.4个9.已知:如图ABC 中,=60B ∠︒,80C ∠=︒,在直线BA 上找一点D ,使ACD 或BCD △为等腰三角形,则符合条件的点D 的个数有()A.7个B.6个C.5个D.4个10.如图,直线MN PQ ⊥,垂足为O ,点A 是射线OP 上一点,2OA =,以OA 为边在OP 右侧作23AOF ∠=︒,且满足4OF =,若点B 是射线ON 上的一个动点(不与点O 重合),连接AB ,作AOB 的两个外角平分线交于点C ,在点B 在运动过程中,当线段CF 取最小值时,OFC ∠的度数为()A.90︒B.67︒C.23︒D.68︒二、填空题(本大题共8小题,8个空,每小空3分,共24分.不需写出解答过程,只需把答案直接填写在答题卡上相应的位置.........)11.在Rt ABC △中,CD 是斜边AB 上的中线,若10CD =,则AB =___________.12.已知图中的两个三角形全等,则α∠的度数是______.13.如图,已知点A 、D 、B 、F 在一条直线上,AC EF =,BC DE =,要使ABC FDE △≌△,还需添加一个条件,这个条件可以是_____.14.如图,在Rt ABC △中,90BAC ∠=︒,过顶点A 的直线DE BC ∥,ABC ∠,ACB ∠的平分线分别交DE 于点E 、D .若9AC =,12AB =,则DE 的长为____________.15.如图,已知线段20m AB =,射线MA AB ⊥于点A ,射线BD AB ⊥于B ,P 点从B 点向A 运动,每秒走1m ,Q 点从B 点向D 运动,每秒走4m ,P ,Q 同时从B 出发,则出发___________秒后,在线段MA 上有一点C ,使CAP 与PBQ 全等.16.如图,在ABC 中,直线l 是边AC 的垂直平分线,l 与边AB 交于点D E ,是边BC 上一点,把ABC 沿DE 折叠,点B 落在点F 处,DF 过点C ,且DC DE =.若42F ∠=︒,则A ∠的度数为___________度.17.如图,在四边形ABCD 中,E 是边BC 的中点,AE 平分BAD ∠,且90AED ∠=︒,若2CD AB =,四边形ABCD 的周长为18,5BC =,则AB 的值为___________.18.如图,在ABC 中,13AB AC ==,10BC =,BAC ∠的平分线交BC 于点D ,12AD =,点M N 、分别是边AD 和AB 上的动点,连接BM MN 、,则BM MN +的最小值为___________.三、解答题(本大题共8小题,共76分.请在答题卡指定区域.......内作答,解答时应写出文字说明、证明过程或演算步骤)19.已知:如图,点E 、F 在线段BD 上,BE DF =,AF CE =,AF CE ∥.求证:ABF CDE ≌△△.20.已知在ABC 中,20AB =,8BC =,22AC m =-.(1)求m 的取值范围;(2)若ABC 是等腰三角形,求ABC 的周长.21.利用网格线作图.(1)如图1,ABC 为格点三角形,在BC 上找一点P ,使点P 到AB 和AC 的距离相等,然后在射线AP 上找一点Q ,使QB QC =.(2)如图2,四边形ABCD 为格点四边形,在四边形ABCD 的对角线AC 上找一点P ,使APB APD ∠=∠.22.已知:如图,在ABC 中,AB AC =,D E 、分别在AC AB ,上,且AD AE =,BD 和CE 相交于点O .求证:点O 在线段BC 的垂直平分线上.23.如图,已知 ABC .(1)用直尺和圆规按下列要求作图:①作 ABC 的角平分线AD ;②作∠CBE =∠ADC ,BE 交CA 的延长线于点E ;③作AF ⊥BE ,垂足为F .(2)直接判断图中EF 与BF 的数量关系.24.如图,在ABC 中,点E 是BC 边上的一点,连接AE ,BD 垂直平分AE ,垂足为F ,交AC 于点D .连接DE .(1)若ABC 的周长为19,DEC 的周长为7,求AB 的长.(2)若35ABC ∠=︒,50C ∠=︒,求∠CDE 的度数.25.在八年级上册“轴对称图形”一章69页中我们曾做过“折纸与证明”的数学活动.折纸,常能为证明一个命题提供思路和方法.请用你所学知识解决下列问题.【感悟】(1)如图1,AD 是ABC 的高线,2C B ∠=∠,若2CD =,5AC =,求BC 的长.小明同学的解法是:将ABC 沿AD 折叠,则点C 刚好落在BC 边上的点E 处.……请你画出图形并直接写出答案:BC =___________.【探究】(2)如图2,2ACB B ∠=∠,AD 为ABC 的外角CAF ∠的平分线,交BC 的延长线于点D ,则线段AB AC CD 、、又有怎样的数量关系?请写出你的猜想并证明.【拓展】(3)如图3,在四边形ABCD 中,AC 平分BAD ∠,8AD =,10DC BC ==,①求证:180B D ∠+∠=︒;②若2D B ∠=∠,则AB 的长为___________.26.已知等腰直角ABC 中,90ABC ∠=︒,AB BC =,点D E 、分别在边BC 、边AC 上,连接DE ,以D 为直角顶点在DE 右侧作等腰直角DEF 中,连接FC .(1)如图1,点D 与点B 重合时,猜想AE 和FC 的关系,并说明理由;(2)如图2,BD CD =时,点M N 、分别为EF 和AC 的中点,①探究AE FC 、和AC 三条线段之间的数量关系并证明;②若10BC =,直接写出MN 的最小值.初二数学阶段性练习满分:130分时间:120分钟一、选择题(本大题共10小题,每小题3分,共30分.在每小题所给出的四个选项中,只有一项是正确的,请用2B 铅笔把答题卡上相应的选项标号涂黑.............)1.下列四个图形中,是轴对称图形的是()A. B. C. D.【答案】D【解析】【分析】根据轴对称图形的概念:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴,对选项进行分析即可.【详解】解:A ,B ,C 选项中的图形都不能找到这样的一条直线,使图形沿一条直线折叠,直线两旁的部分能够互相重合,所以不是轴对称图形,故不符合题意;D 选项中的图形能找到这样的一条直线,使图形沿一条直线折叠,直线两旁的部分能够互相重合,所以是轴对称图形,故符合题意.故选:D .【点睛】本题考查了轴对称图形的概念,解本题的关键在寻找图形的对称轴,看图形两部分折叠后是否能够互相重合.2.如图,将ABC 折叠,使点C 与点B 重合,折痕l 与边BC 交于点D ,连接AD ,则AD 是ABC 的()A.角平分线B.高线C.中线D.无法确定【答案】C【解析】【分析】根据折叠的性质可得:D 为BC 中点,于是可得AD 是ABC 的中线.【详解】解:∵将ABC 折叠,使点C 与点B 重合,∴D 为BC 中点,∴AD 是ABC 的中线;故选:C .【点睛】本题考查了折叠的性质和三角形中线的定义,正确理解题意是关键.3.若等腰三角形有一个内角为110︒,则这个等腰三角形的底角是()A .70︒ B.45︒ C.35︒ D.50︒【答案】C【解析】【分析】先判断出110︒的内角是这个等腰三角形的顶角,再根据等腰三角形的定义求解即可得.【详解】解: 等腰三角形有一个内角为110︒,∴这个等腰三角形的底角是180110352︒-︒=︒,故选:C .【点睛】本题考查了等腰三角形的定义,三角形内角和定理,解题的关键是熟练掌握等腰三角形的两个底角相等.4.如图,点F ,B ,E ,C 在同一条直线上,ABC DEF ≌△△,若34A ∠=︒,36F ∠=︒,则DEC ∠的度数为()A.50︒ B.60︒ C.70︒ D.80︒【答案】C【解析】【分析】根据全等三角形的性质可得34D A ∠=∠=︒,再三角形的外角性质,即可求解.【详解】解:∵ABC DEF ≌△△,34A ∠=︒,∴34D A ∠=∠=︒,∴70DEC D F ∠=∠+∠=︒.故选:C .【点睛】本题主要考查了全等三角形的性质,三角形的外角性质,熟练掌握全等三角形的性质是解题的关键.5.如图,小敏做了一个角平分仪ABCD ,其中AB AD =,BC DC =,将仪器上的点A 与PRQ ∠的顶点R 重合,调整AB 和AD ,使它们分别落在角的两边上,过点A 、C 画一条射线AE ,AE 就是PRQ ∠的平分线.此角平分仪的画图原理是()A.SSSB.SASC.ASAD.AAS【答案】A【解析】【分析】由“SSS ”证明ABC ADC △≌△,可得BAC DAC ∠=∠,可证AE 是PRQ ∠的角平分线,即可求解.【详解】解:在ABC 和ADC △中,AB AD BC CD AC AC =⎧⎪=⎨⎪=⎩,∴()ABC ADC SSS ≌,∴BAC DAC ∠=∠,∴AE 是PRQ ∠角平分线,故选:A .【点睛】本题考查全等三角形的判定与性质、角平分线的定义,熟练掌握全等三角形的判定与性质是解题的关键.6.如图,在ABC 中,90C ∠=︒,AD 是BAC ∠的角平分线,若3CD =,8AB =,则ABD 的面积是()A.36B.24C.12D.10【解析】【分析】过点D 作DE AB ⊥于E ,根据角平分线的性质求出DE ,根据三角形的面积公式计算,得到答案.【详解】解:过点D 作DE AB ⊥于E ,AD 是BAC ∠的角平分线,DE AB ⊥,90C ∠=︒,3DE CD ∴==,11831222ABD S AB DE ∴=⋅=⨯⨯= .故选:C .【点睛】本题考查了角平分线的性质,熟练掌握角平分线的性质是解题的关键.7.到三角形三个顶点的距离相等的点是()A.三条角平分线的交点B.三边中线的交点C.三边上高所在直线的交点D.三边的垂直平分线的交点【答案】D【解析】【分析】三角形三条边的垂直平分线相交于一点,并且这一点到三个顶点的距离相等.【详解】解:根据线段垂直平分线的性质可得:三角形三个顶点的距离相等的点是三边的垂直平分线的交点.故选:D .【点睛】本题考查的是线段垂直平分线的性质(三角形三条边的垂直平分线相交于一点,并且这一点到三个顶点的距离相等.),难度一般.8.下列说法:①若三角形一边上的中线和这边上的高重合,则这个三角形是等腰三角形;②全等三角形的中线相等;③成轴对称的两个图形中,对应点的连线被对称轴垂直平分;④两条直角边对应相等的两个直角三角形全等.其中正确的说法有()A.1个B.2个C.3个D.4个【答案】C【分析】画出图形,根据线段垂直平分线性质得出AB AC =,即可判断①;根据全等三角形对应边上的中线相等可判断②;根据成轴对称图形的性质,即可判断③;根据全等三角形的判定方法即可判断④.【详解】解:①如图所示,∵AD 是高,∴AD BC ⊥,∵BD CD =,∴AB AC =,即ABC 是等腰三角形,故①正确;②全等三角形对应边上的中线相等,故②错误;③成轴对称的两个图形中,对应点的连线被对称轴垂直平分,故③正确;④它们的夹角是直角相等,可以根据边角边定理判定全等,故正确.综上所述,正确的结论有3个.故选:C .【点睛】本题主要考查等腰三角形的性质,轴对称图形以及全等三角形的判断,解题的关键是掌握轴对称定义、等腰三角形的性质及全等三角形的判断方法.9.已知:如图ABC 中,=60B ∠︒,80C ∠=︒,在直线BA 上找一点D ,使ACD 或BCD △为等腰三角形,则符合条件的点D 的个数有()A.7个B.6个C.5个D.4个【答案】B【解析】【分析】分ACD 或BCD △为等腰三角形两种情况画出图形即可判断.【详解】解:如图:当BC BD =时,BCD △是等腰三角形;∵=60CBA ∠︒,∴BCD △是等边三角形,∴BC BD CD ==;当1BC BD =时,BCD △是等腰三角形;当23AC AD AD ==,4CA CD =,当55CD D A =时,ACD 都是等腰三角形;综上,符合条件的点D 的个数有6个.故选:B .【点睛】本题考查等腰三角形存在问题,如果题中没有说明等腰三角形的腰或者底分别是哪条线段,都要进行分类讨论,让三条线段分别两两相等,得出三种情况,再根据题意看有没有需要排除的情况,然后再一一分析符合条件的图形.10.如图,直线MN PQ ⊥,垂足为O ,点A 是射线OP 上一点,2OA =,以OA 为边在OP 右侧作23AOF ∠=︒,且满足4OF =,若点B 是射线ON 上的一个动点(不与点O 重合),连接AB ,作AOB 的两个外角平分线交于点C ,在点B 在运动过程中,当线段CF 取最小值时,OFC ∠的度数为()A.90︒B.67︒C.23︒D.68︒【答案】D【解析】【分析】作CE PQ ⊥于E ,CG MN ⊥于G ,CH AB ⊥于H ,连接OC ,由角平分线的性质可得CE CH =,CG CH =,从而得到CE CG =,即可推出OC 平分AOB ∠,即点C 在AOB ∠的角平分线上,得到45AOC ∠=︒,22FOC ∠=︒,当FC OC ''⊥时,C F '最小,此时点C 在C '处,再由90OFC FOC ''=︒-∠进行计算即可得到答案.【详解】解:如图,作CE PQ ⊥于E ,CG MN ⊥于G ,CH AB ⊥于H ,连接OC ,,AC 平分∠PAB ,CE PQ ⊥,CH AB ⊥,CE CH =∴,同理可得:CG CH =,CE CG ∴=,CE PQ ⊥ ,CG MN ⊥,OC ∴平分AOB ∠,即点C 在AOB ∠的角平分线上,45AOC =∴∠︒,23AOF ∠=︒ ,452322FOC AOC AOF ∴∠=∠-∠=︒-︒=︒,如图,当FC OC ''⊥时,C F '最小,此时点C 在C '处,90FC O '∴∠=︒,90902268OFC FOC ''∴=︒-∠=︒-︒=︒,∴当线段CF 取最小值时,OFC ∠的度数为68︒,故选:D .【点睛】本题考查了角平分线的判定与性质、垂线段最短等知识,熟练掌握角平分线的判定与性质,添加适当的辅助线是解此题的关键.二、填空题(本大题共8小题,8个空,每小空3分,共24分.不需写出解答过程,只需把答案直接填写在答题卡上相应的位置.........)11.在Rt ABC △中,CD 是斜边AB 上的中线,若10CD =,则AB =___________.【答案】20【解析】【分析】利用直角三角形斜边上的中线性质,即可解答.【详解】解:由题意得:220AB CD ==,故答案为:20.【点睛】本题考查了直角三角形斜边上的中线,熟练掌握直角三角形斜边上的中线性质是解题的关键.12.已知图中的两个三角形全等,则α∠的度数是______.【答案】50︒##50度【解析】【分析】根据全等三角形对应角相等解答即可.【详解】解:如图:58,72B C �靶= ,180587250A \Ð=°-°-°=°,∵两个三角形全等,50D A a \Ð=Ð==°.故答案为:50︒.【点睛】本题考查全等三角形的性质,掌握全等三角形的对应边相等,对应角相等是解题关键.13.如图,已知点A 、D 、B 、F 在一条直线上,AC EF =,BC DE =,要使ABC FDE △≌△,还需添加一个条件,这个条件可以是_____.【答案】ACB FED ∠=∠(答案不唯一)【解析】【分析】要判定ABC FDE △≌△,已知AC EF =,BC DE =,具备了两组边对应相等,故添加A F ∠=∠,利用SAS 可证全等.(也可添加其它条件).【详解】解:若添加条件:ACB FED ∠=∠,因为AC EF =,AB DF =,所以AC EF ACB FED BC DE =⎧⎪∠=∠⎨⎪=⎩,所以()SAS ABC FDE ≌△△;若添加条件:AB FD =,因为AC EF =,AB DF =,所以AC EF AB FD BC DE =⎧⎪=⎨⎪=⎩,所以()SSS ABC FDE ≌;故答案为:ACB FED ∠=∠(答案不唯一).【点睛】本题考查了全等三角形的判定;熟练掌握三角形全等的判定定理是解题的关键.14.如图,在Rt ABC △中,90BAC ∠=︒,过顶点A 的直线DE BC ∥,ABC ∠,ACB ∠的平分线分别交DE 于点E 、D .若9AC =,12AB =,则DE 的长为____________.【答案】21【解析】【分析】由平行线的性质、角平分线的性质推知E ABE ∠=∠,则AB AE =.同理可得AD AC =,所以线段DE 的长度转化为线段AB 、AC 的和.【详解】解:D E B C ∥,E EBC ∴∠=∠.BE 平分ABC ∠,ABE EBC ∴∠=∠,E ABE ∴∠=∠,AB AE =∴.同理可得:AD AC =,21DE AD AE AB AC ∴=+=+=.故答案为:21.【点睛】本题综合考查了平行线的性质以及等腰三角形的判定与性质,将平行线的性质和等角对等边相结合是常见的考查方法.15.如图,已知线段20m AB =,射线MA AB ⊥于点A ,射线BD AB ⊥于B ,P 点从B 点向A 运动,每秒走1m ,Q 点从B 点向D 运动,每秒走4m ,P ,Q 同时从B 出发,则出发___________秒后,在线段MA 上有一点C ,使CAP 与PBQ 全等.【答案】4或10##10或4【解析】【分析】分两种情况考虑:当≌APC BQP △△时与当≌APC BPQ △△时,根据全等三角形的性质即可确定出时间.【详解】解:设出发x 秒后,在线段MA 上有一点C ,使CAP 与PBQ 全等.当≌APC BQP △△时,AP BQ =,即204x x -=,解得:4x =;当≌APC BPQ △△时,1102AP BP AB ===米,此时所用时间10x =,综上,出发4秒或10秒后,在线段MA 上有一点C ,使CAP 与PBQ 全等.故答案为:4或10.【点睛】此题考查了全等三角形的性质,熟练掌握全等三角形的性质是解本题的关键.16.如图,在ABC 中,直线l 是边AC 的垂直平分线,l 与边AB 交于点D E ,是边BC 上一点,把ABC 沿DE 折叠,点B 落在点F 处,DF 过点C ,且DC DE =.若42F ∠=︒,则A ∠的度数为___________度.【答案】32【解析】【分析】由折叠的性质可得42B F ∠=∠=︒,BDE CDE ∠=∠,设BDE CDE x ∠=∠=,则42DEC BDE B x ∠=∠+∠=+︒,由等腰三角形的性质可得42DCE DEC x ∠=∠=+︒,由三角形内角和定理求出32x =︒,从而得出74DCB ∠=︒,再由线段垂直平分线的性质可得AD CD =推出A ACD ∠=∠,最后由三角形内角和定理进行计算即可得到答案.【详解】解:由折叠的性质可得:42B F ∠=∠=︒,BDE CDE ∠=∠,设BDE CDE x ∠=∠=,则42DEC BDE B x ∠=∠+∠=+︒,DC DE = ,42DCE DEC x ∴∠=∠=+︒,180CDE DCE DEC ∠+∠+∠=︒ ,4242180x x x ∴++︒++︒=︒,解得:32x =︒,32BDE CDE ∴∠=∠=︒,42324274DCB x ∴∠=+︒=︒+︒=︒,直线l 是边AC 的垂直平分线,AD CD ∴=,A ACD ∴∠=∠,180A ACD DCB B ∠+∠+∠+∠=︒ ,27442180A ∴∠+︒+︒=︒,32A ∴∠=︒,故答案为:32.【点睛】本题主要考查了折叠的性质、三角形内角和定理、线段垂直平分线的性质、等腰三角形的判定与性质等知识点,熟练掌握以上知识点是解此题的关键.17.如图,在四边形ABCD 中,E 是边BC 的中点,AE 平分BAD ∠,且90AED ∠=︒,若2CD AB =,四边形ABCD 的周长为18,5BC =,则AB 的值为___________.【答案】136##126【解析】【分析】由E 是边BC 的中点可得BE CE =,由角平分线的定义可得BAE DAE ∠=∠,在AD 上截取AF AB =,连接EF ,证明()SAS ABE AFE △≌△得到BE EF =,BEA FEA ∠=∠,再证明()SAS DEF DEC △≌△得到2DF AB =,最后根据四边形ABCD 的周长为18即可求出AB 的值.【详解】解: E 是边BC 的中点,BE CE ∴=,AE 平分BAD ∠,BAE DAE ∴∠=∠,如图,在AD 上截取AF AB =,连接EF ,,在ABE 和AFE △中,AB AF BAE FAE AE AE =⎧⎪∠=∠⎨⎪=⎩,()SAS ABE AFE ∴≌△△,BE EF ∴=,BEA FEA ∠=∠,BE EF CE ∴==,90AED ∠=︒ ,90AEF DEF ∴∠+∠=︒,180AED DE AEB C ∠+∠=︒∠+ ,90AEB DEC ∴∠+∠=︒,DEC DEF ∴∠=∠,在DEF 和DEC 中,EF EC DEF DEC DE DE =⎧⎪∠=∠⎨⎪=⎩,()SAS DEF DEC ∴ ≌,CD DF ∴=,2CD AB = ,2DF AB ∴=,四边形ABCD 的周长为18,18AB BC CD AD ∴+++=,52218AB AB AB AB ∴++++=,136AB ∴=,故答案为:136.【点睛】本题考查了角平分线的定义、三角形全等的判定与性质等知识点,添加适当的辅助线,证明三角形全等是解此题的关键.18.如图,在ABC 中,13AB AC ==,10BC =,BAC ∠的平分线交BC 于点D ,12AD =,点M N 、分别是边AD 和AB 上的动点,连接BM MN 、,则BM MN +的最小值为___________.【答案】12013##3913【解析】【分析】作BE AC ⊥交AC 于点E ,交AD 与M ',作M N AB ''⊥交AB 于点N ',由角平分线的性质可得M N EM '''=,CAD BAD ∠=∠,则BM MN +的最小值为BE ,证明()SAS ACD ABD △≌△得到BD CD =,从而得到AD BC ⊥,再根据1122ABC S BC AD AC BE =⋅=⋅△求出BE 的长即可得到答案.【详解】解:如图,作BE AC ⊥交AC 于点E ,交AD 与M ',作M N AB ''⊥交AB 于点N ', AD 平分CAB ∠,BE AC ⊥,M N AB ''⊥,M N EM '''∴=,CAD BAD ∠=∠,BM M N BM M E BE '''''∴+=+=,即BM MN +的最小值为BE ,在ACD 和ABD △中,AC AB CADF BAD AD AD =⎧⎪∠=∠⎨⎪=⎩,()SAS ACD ABD ∴ ≌,CD BD ∴=,AD BC ∴⊥,1122ABC S BC AD AC BE =⋅=⋅ ,101213BE ∴⨯=⨯,12013BE ∴=,∴BM MN +的最小值为12013,故答案为:12013.【点睛】本题考查了角平分线的性质定理、三角形全等的判定与性质、等腰三角形的性质、三角形的面积公式等知识点,熟练掌握以上知识点,添加适当的辅助线是解此题的关键.三、解答题(本大题共8小题,共76分.请在答题卡指定区域.......内作答,解答时应写出文字说明、证明过程或演算步骤)19.已知:如图,点E 、F 在线段BD 上,BE DF =,AF CE =,AF CE ∥.求证:ABF CDE ≌△△.【答案】见解析【解析】【分析】两边夹角对边对应相等的两个三角形全等,据此利用SAS 进行判定即可.【详解】证明:BE DF = ,BE EF DF EF ∴+=+,即BF DE =,∵AF CE ∥,∴AFB CED ∠=∠,在ABF △和CDE 中,AF CE AFB CED BF DE =⎧⎪∠=∠⎨⎪=⎩,()SAS ABF CDE ∴≌△△.【点睛】此题考查了全等三角形的判定,熟练掌握全等三角形的判定方法是解本题的关键.20.已知在ABC 中,20AB =,8BC =,22AC m =-.(1)求m 的取值范围;(2)若ABC 是等腰三角形,求ABC 的周长.【答案】(1)715m <<(2)48【解析】【分析】(1)根据三角形三边关系求解即可;(2)分AB AC =,BC AC =两种情况讨论即可.【小问1详解】解:根据题意,得AB BC AC AB BC -<<+,即20822208m -<-<+,解得715m <<;【小问2详解】解:当20AB AC ==时,ABC 的周长为2020848++=;当8BC AC ==时,16BC AC AB +=<,∴ABC 不存在,故舍去,的周长为48.∴ABC【点睛】本题考查了三角形三边关系,等腰三角形的定义,解不等式组等知识,掌握三角形三边关系是解题的关键.21.利用网格线作图.为格点三角形,在BC上找一点P,使点P到AB和AC的距离相等,然后在射线AP (1)如图1,ABC=.上找一点Q,使QB QC∠=∠.(2)如图2,四边形ABCD为格点四边形,在四边形ABCD的对角线AC上找一点P,使APB APD 【答案】(1)见解析(2)见解析【解析】∠的角平分线交CB于点P,作线段BC的垂直平分线交AP于点Q,点P、【分析】(1)利用网格线作CAB点Q即为所求;(2)作点B关于AC的对称点B',连接DB'并延长交AC于点P,点P即为所求.【小问1详解】解:如图,点P、点Q即为所求,,由角平分线的性质可得点P到AB和AC的距离相等,=;由线段垂直平分线的性质可得QB QC【小问2详解】解:如图,点P即为所求,,由轴对称的性质可得APB APD ∠=∠.【点睛】本题考查了作图—复杂作图,角平分线的性质、线段垂直平分线的性质、轴对称的性质等知识点,熟练掌握以上知识点是解此题的关键.22.已知:如图,在ABC 中,AB AC =,D E 、分别在AC AB ,上,且AD AE =,BD 和CE 相交于点O .求证:点O 在线段BC 的垂直平分线上.【答案】见解析【解析】【分析】先证明()SAS ABD ACE △≌△得到ABD ACE ∠=∠,再由等边对等角可得A ABC CB =∠∠,从而推出CBO BCO ∠=∠,进而得出BO CO =,即可得证.【详解】证明:在ABD △和ACE △中,AE AD BAD CAE AB AC =⎧⎪∠=∠⎨⎪=⎩,()SAS ABD ACE ∴△≌△,ABD ACE ∴∠=∠,AB AC = ,ABC ACB ∴∠=∠,ABC ABD ACB ACE ∴∠-∠=∠-∠,CBD BCE ∴∠=∠,即CBO BCO ∠=∠,BO CO ∴=,∴点O 在线段BC 的垂直平分线上.【点睛】本题考查了全等三角形的判定与性质、等腰三角形的判定与性质、线段垂直平分线的判定,熟练掌握以上知识点是解此题的关键.23.如图,已知 ABC .(1)用直尺和圆规按下列要求作图:①作 ABC 的角平分线AD ;②作∠CBE =∠ADC ,BE 交CA 的延长线于点E ;③作AF ⊥BE ,垂足为F .(2)直接判断图中EF 与BF 的数量关系.【答案】(1)①作图见解析;②作图见解析;③作图见解析(2)EF BF=【解析】【分析】(1)①如图1,运用直尺与圆规按要求画角平分线即可得直线AD ;②如图1,根据EBC ADC ∠=∠得到AD BE ,过B 作BE AD ∥,交CA 延长线于E 即可;③如图1,根据ABE AEB ∠=∠,可知AE AB =,由AF BE ⊥可知AF 为线段BE 的垂直平分线,作图即可;(2)如图1,由(1)可知,BEA EBA ∠=∠,进而可判定ABE 是等腰三角形,由等腰三角形的性质可证BF EF =.【小问1详解】①解:如图1,射线AD 就是∠BAC 的角平分线;②解:作∠EBC =∠ADC ,点E 就是所求作的点,如图1所示;③解:作线段BE 的垂直平分线AF ,如图1所示;【小问2详解】解:BF EF =.由(1)可知BAD CAD∠=∠∵∠CBE =∠ADC∴AD BE∴CAD BEA ∠=∠,EBA BAD∠=∠∴BEA EBA∠=∠∴AB AE=∴ABE 是等腰三角形∵AF BE⊥∴BF EF =.【点睛】本题考查了作角平分线、作一个角等于已知角、作线段的垂直平分线、等腰三角形的判定与性质.解题的关键在于对知识的灵活运用.24.如图,在ABC 中,点E 是BC 边上的一点,连接AE ,BD 垂直平分AE ,垂足为F ,交AC 于点D .连接DE .(1)若ABC 的周长为19,DEC 的周长为7,求AB 的长.(2)若35ABC ∠=︒,50C ∠=︒,求∠CDE 的度数.【答案】(1)6AB =;(2)45CDE ∠=︒.【解析】【分析】(1)根据线段垂直平分线的性质得到AB BE AD DE ==,,根据三角形的周长公式计算,得到答案;(2)根据三角形内角和定理求出BAC ∠,证明BAD BED △≌△,根据全等三角形的性质得到95BED BAC ∠=∠=︒,根据三角形的外角性质计算即可.【小问1详解】解:∵BD 是线段AE 的垂直平分线,∴AB BE AD DE ==,,∵ABC 的周长为19,DEC 的周长为7,∴19AB BE EC CD AD ++++=,7CD EC DE CD CE AD ++=++=,∴19712AB BE +=-=,∴6AB =;【小问2详解】解:∵35ABC ∠=︒,50C ∠=︒,∴180355095BAC ∠=︒-︒-︒=︒,在BAD 和BED 中,BA BE BD BD DA DE =⎧⎪=⎨⎪=⎩,∴()SSS BAD BED ≌,∴95BED BAC ∠=∠=︒,∴955045CDE BED C ∠=∠-∠=︒-︒=︒.【点睛】本题考查的是线段垂直平分线的性质、三角形全等的判定和性质,掌握线段垂直平分线上的点到线段两端点的距离相等是解题的关键.25.在八年级上册“轴对称图形”一章69页中我们曾做过“折纸与证明”的数学活动.折纸,常能为证明一个命题提供思路和方法.请用你所学知识解决下列问题.【感悟】(1)如图1,AD 是ABC 的高线,2C B ∠=∠,若2CD =,5AC =,求BC 的长.小明同学的解法是:将ABC 沿AD 折叠,则点C 刚好落在BC 边上的点E 处.……请你画出图形并直接写出答案:BC =___________.【探究】(2)如图2,2ACB B ∠=∠,AD 为ABC 的外角CAF ∠的平分线,交BC 的延长线于点D ,则线段AB AC CD 、、又有怎样的数量关系?请写出你的猜想并证明.【拓展】(3)如图3,在四边形ABCD 中,AC 平分BAD ∠,8AD =,10DC BC ==,①求证:180B D ∠+∠=︒;②若2D B ∠=∠,则AB 的长为___________.【答案】(1)9;(2)AB AC CD +=,证明见解析;(3)①证明见解析;②18【解析】【分析】(1)根据题意画出图形,由折叠的性质可得:5AC AE ==,2DE CD ==,C AED ∠=∠,由2C B ∠=∠可得2AED B ∠=∠,再由三角形外角的定义及性质可得AED B BAE ∠=∠+∠,推出B BAE ∠=∠,进而得到5BE AE ==,最后进行计算即可得到答案;(2)在AF 上截取AG AC =,连接DG ,证明()SAS CAD GAD ≌得到CD GD =,ACD AGD ∠=∠,证明ACB DGF ∠=∠,再由2ACB B ∠=∠得到2DGF B ∠=∠,再根据三角形外角的定义及性质得出B BDG ∠=∠,进而得到BG DG =,即可得证;(3)①在AB 上截取AH AD =,连接CH ,证明()SAS CAH CAD ≌,得到D CHA ∠=∠,CD CH =,从而得到CB CH =,进而B CHB ∠=∠,再由180CHB CHA ∠+∠=︒即可得证;②由①得180B D ∠+∠=︒,结合2D B ∠=∠可得=60B ∠︒,从而推出BCH V 是等边三角形,得出10BH =,最后由AB BH AH =+即可得到答案.【详解】解:(1)如图,将ABC 沿AD 折叠,则点C 刚好落在BC 边上的点E 处,,由折叠的性质可得:5AC AE ==,2DE CD ==,C AED ∠=∠,2C B ∠=∠ ,2AED B ∴∠=∠,AED B BAE ∠=∠+∠ ,B BAE ∴∠=∠,5BE AE ∴==,5229BC BE DE CD ∴=++=++=,故答案为:9;(2)AB AC CD +=,证明:如图,在AF 上截取AG AC =,连接DG ,,AD 平分CAF ∠,CAD GAD ∴∠=∠,在CAD 和GAD 中,AG AC CAD GAD AD AD =⎧⎪∠=∠⎨⎪=⎩,()SAS CAD GAD ∴ ≌,CD GD ∴=,ACD AGD ∠=∠,180ACD ACB ∠+∠=︒ ,180AGD DGF ∠+∠=︒,ACB DGF ∴∠=∠,2ACB B ∠=∠ ,2DGF B ∴∠=∠,DGF B BDG ∠=∠+∠ ,B BDG ∴∠=∠,BG DG ∴=,BA AG BG DG CD ∴+===,AB AC CD ∴+=;(3)①如图,在AB 上截取AH AD =,连接CH ,,AC 平分BAD ∠,HAC DAC ∴∠=∠,在CAH 和CAD 中,AH AD HAC DAC AC AC =⎧⎪∠=∠⎨⎪=⎩,()SAS CAH CAD ∴ ≌,D CHA ∴∠=∠,CD CH =,CB CD = ,CB CH ∴=,B CHB ∴∠=∠,180CHB CHA ∠+∠=︒ ,180B D ∴∠+∠=︒;②由①得180B D ∠+∠=︒,10BC CH ==,2D B ∠=∠ ,2180B B ∴∠+∠=︒,60B ∴∠=︒,10BC CH == ,BCH ∴ 为等边三角形,10BH ∴=,10818AB BH AH ∴=+=+=,故答案为:18.【点睛】本题主要考查了角平分线的定义、三角形全等的判定与性质、三角形外角的定义及性质、等边三角形的判定与性质、等腰三角形的判定与性质、折叠的性质等知识点,熟练掌握以上知识点,添加适当的辅助线是解此题的关键.26.已知等腰直角ABC 中,90ABC ∠=︒,AB BC =,点D E 、分别在边BC 、边AC 上,连接DE ,以D 为直角顶点在DE 右侧作等腰直角DEF 中,连接FC .(1)如图1,点D 与点B 重合时,猜想AE 和FC 的关系,并说明理由;(2)如图2,BD CD =时,点M N 、分别为EF 和AC 的中点,①探究AE FC 、和AC 三条线段之间的数量关系并证明;②若10BC =,直接写出MN 的最小值.【答案】(1)AE CF =,AE CF ⊥,理由见解析(2)①12AE CF AC +=,证明见解析;②MN 的最小值为52【解析】【分析】(1)由ABC 、DEF 为等腰直角三角形,点D 与点B 重合,可得90ABC EBF ∠=∠=︒,BE BF =,45BAC BCA ∠=∠=︒,证明ABE CBF △≌△得到AE CF =,45BAE BCF ∠=∠=︒,从而得出90ACF ∠=︒,即可得证;(2)①连接DN ,由三角形中位线定理可得DN AB ∥,1122DN AB CB ==,从而得到90CDN ABC ∠=∠=︒,DN DC =,证明()SAS DEN DCF ≌得到CF EN =,再由12AE EN AN AC +==即可得出结论;②连接DM 、CM ,作MG CD ⊥交CD 于点G ,交AC 于点H ,先证得90ECF ∠=︒,从而得到DM CM =,推出M 在CD 的垂直平分线上,当MN MG ⊥时,MN 最小,再利用等腰直角三角形的判定与性质及勾股定理进行计算即可得到答案.【小问1详解】解:AE CF =,AE CF ⊥,理由如下:ABC 、DEF 为等腰直角三角形,点D 与点B 重合,90ABC EBF ∴∠=∠=︒,BE BF =,45BAC BCA ∠=∠=︒,ABC EBC EBF EBC ∴∠-∠=∠-∠,即ABE CBF ∠=∠,在ABE 和CBF V 中,AB CB ABE CBF BE BF =⎧⎪∠=∠⎨⎪=⎩,()SAS ABE CBF ∴ ≌,AE CF ∴=,45BAE BCF ∠=∠=︒,454590ACF ACB BCF ∴∠=∠+∠=︒+︒=︒,CF AE ∴⊥;【小问2详解】解:①12AE CF AC +=,证明:如图,连接DN ,。
天津市武清区杨村第八中学 2024-2025学年八年级上学期数学10月月考试卷一、单选题1.下列各组线段中,能组成三角形的是( )A .2,6,8B .4,6,7C .5,6,12D .2,3,6 2.下列图形中不具有稳定性的是( )A .B .C .D .3.若一个多边形的内角和为外角和的3倍,则这个多边形为 ( )A .八边形B .九边形C .十边形D .十二边形 4.如图,在ABC V 中,AD BC ⊥,AE 平分BAC ∠,若140∠=︒,225∠=︒,则B ∠的度数为( )A .25︒B .35︒C .45︒D .55︒5.如图是雨伞在开合过程中某时刻的截面图,伞骨AB AC =,点D ,E 分别是AB ,AC 的中点,DM ,EM 是连接弹簧和伞骨的支架,且=DM EM ,已知弹簧M 在向上滑动的过程中,总有ADM AEM △≌△,其判定依据是( )A .SASB .ASAC .HLD .SSS6.如图所示,直线a ∥直线b ,175∠=︒,225∠=︒,则3∠的度数为( )A .40︒B .45︒C .50︒D .55︒7.如图,在ABC V 中,12∠=∠,G 为AD 的中点,延长BG 交AC 于点E ,F 为AB 上的一点,CF AD ⊥于点H .下列判断错误的有( )A .AG 是ABE V 的角平分线B .CH 为ACD V 边AD 上的高C .BE 是ABD △边AD 上的中线 D .AH 为AFC V 的高线8.如图所示,某同学把一块三角形的模具不小心打碎成了三块,现在要去商店配一块与原来一样的三角形模具,那么最省事的是带哪一块去( )A .①B .②C .③D .①和②9.如图,CD AB ⊥,BE AC ⊥,垂足分别为D ,E ,BE ,CD 相交于点F ,连接AF ,BD CE =.图中的全等三角形一共有( )A .1对B .2对C .3对D .4对10.下列说法中,错误的有( )A .三角形是边数最少的多边形B .等边三角形和长方形都是正多边形C .n 边形有n 条边、n 个顶点、n 个内角、2n 个外角D .六边形从一个顶点出发可以画3条对角线,所有的对角线共有9条11.下列说法中,正确的有( )①形状相同的两个图形是全等形;②面积相等的两个图形是全等形;③全等三角形的周长相等,面积相等;④若ABC DEF V V ≌,则A D ∠=∠.A .1个B .2个C .3个D .4个12.根据下列已知条件,能画出唯一 ABC V 的是( )A .3AB =,4BC =,7AC =B .4AB =,3BC =,30C ∠=︒C .7BC =,3AB =,45B ∠=︒D .90C ∠=︒,4AB =二、填空题13.已知ABC V 的两条边长分别为2,3,且周长为偶数,则其第三边长等于 . 14.如图,在ABC V 中,点D ,E ,F 分别为BC ,AD ,CE 的中点,且28cm ADC S =△,则阴影部分的面积为2cm .15.如图所示,AD BC 、相交于点O ,AO DO =,若要用SAS 判断ABO DCO △≌△,应添加的条件为.16.如图,在ABC V 中,60B C ∠=∠=︒,将BDE V 沿直线DE 翻折,使点B 落在1B 处,11DB EB 、分别交边AC 于点F 、G .若80ADF ∠=︒,则GEC ∠=︒.17.如图,90AC BC ACB =∠=︒,,AE 平分BAC ∠,BF AE ⊥,交AC 延长线于点F ,且垂足为点 E ,则下列结论:①AD BF =;②BAE FBC ∠=∠;③ADB ADC S S =△△;④2AD BE =.其中正确的结论有.(填写序号)三、解答题18.将下面求解的过程补充完整:如图,在ABC V 中,2531B BAC ∠=︒∠=︒,,过点A 作BC 边上的高,交BC 的延长线于点D ,CE 平分ACD ∠交AD 于点E ,求AEC ∠的度数.解:∵ACD ∠是ABC V 的一个外角,且2531B BAC ∠=︒∠=︒,,∴ACD ∠=∠______+∠______=______︒(三角形的外角等于与它______的和). 又∵CE 平分ACD ∠, ∴12ECD ACD ∠=∠=______. 又∵AEC ∠是CDE V的一个外角,且AD BD ⊥, AEC ∠=∠______+∠______=______.19.已知a ,b ,c 是三角形的三边长.(1)化简:a b c b c a c a b --++----;(2)若10a =,8b =,6c =,求(1)中式子的值. 20.已知:如图,点A 、F 、C 、D 在同一直线上,AF DC =,AB DE =,AB DE ∥,连接BC ,BF ,CE .求证:BC EF =,ABC DEF △≌△.21.已知:如图,A 、C 、F 、D 在同一直线上,AF DC =,AB DE =,BC EF =,求证:A D ∠=∠,ABC DEF V V ≌.22.如图,在Rt ABC △中,直角顶点A 在直线l 上,AB AC =,过点B ,C 分别做直线l 的垂线,垂足分别为点D 、E .请你在图中找出一对全等三角形.并加以证明.。
2024-2025学年度上学期八年级单元检测数学试题第I 卷一、单项选择题(本题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的)1. 我国建造的港珠澳大桥全长55公里,集桥、岛、隧于一体,是世界最长的跨海大桥.如图,这是港珠澳大桥中的斜拉索桥,那么你能推断出斜拉索大桥中运用的数学原理是( )A. 三角形不稳定性B. 三角形的稳定性C. 四边形的不稳定性D. 四边形的稳定性2. 如图,用三角板作ABC 的边AB 上的高线,下列三角板的摆放位置正确的是( )A B.C. D.3. 已知三条线段的长分别是3,7,m ,若它们能构成三角形,则整数m 的最大值是( )A. 11B. 10C. 9D. 74. 如图,在ABC 和ABD △中,已知AC AD =,则添加以下条件,仍不能判定ABC ABD △≌△的是( )的.A. BC BD =B. ABC ABD ∠=∠C. 90C D ∠=∠=°D. CAB DAB ∠=∠5. 如图,点F ,A ,D ,C 在同一直线上,EF BC ∥,且EF BC =,DE AB ∥.已知3,11,AD CF ==则AC 的长为()A. 5B. 6C. 7D. 6.56. 在下列条件中:①A B C ∠+∠=∠,②::1:2:3A B C ∠∠∠=,③90AB ∠=°−∠,④12A B C ∠=∠=∠,⑤23A B C ∠=∠=∠中,能确定ABC 是直角三角形的条件有( ) A. 2个 B. 3个 C. 4个 D. 5个7. 如图,小林从P 点向西直走 12米后,向左转,转动的角度为α,再走12米,如此重复,小林共走了96米回到点P . 则α=( )A. 30°B. 45°C. 60°D. 90°8. 窗棂是中国传统木构建筑的框架结构设计,窗棂上雕刻有线槽和各种花纹,构成种类繁多的优美图案.如图是从某窗棂样式结构图案上摘取的部分.已知//385BC DE ∠°,,则1234∠∠∠∠+++的度数是( )A. 320°B. 265°C. 245°D. 225°9. 如图,在ABC 中,延长CA 至点F ,使得AF CA =,延长AB 至点D ,使得2BD AB =,延长BC 至点E ,使得3CE CB =,连接EF 、FD 、DE ,若36DEF S =△,则ABC S ( )A. 1B. 2C. 3D. 410. 如图,在ABC ,AB AC =,D 为BC 上的一点,28BAD ∠=°,在AD 的右侧作ADE ,使得AE AD =,DAE BAC ∠=∠,连接CE 、DE ,DE 交AC 于点O ,若CE AB ∥,则DOC ∠的度数为( )A. 124°B. 102°C. 92°D. 88°二、填空题 (本题共5小题,每小题3分,共15分. )11. 如图所示,要使一个六边形木架在同一平面内不变形,至少还要再钉上_____根木条.12. 如图,正八边形和正五边形按如图方式拼接在一起,则CAB ∠=______°.13. 如图,在ABC 中,AD 是高线,AE BF 、是角平分线,它们相交于点5070O BAC C EAD ∠=°∠=°∠,,,度数为_________.为14. 如图,在 3×3的方格图中,每个小方格的边长都为1,则1∠与2∠的关系是__________________.15. 如图,在平面直角坐标系中,将直角三角形的直角顶点放在点()3,3P 处,两直角边分别与坐标轴交于点A 和点B ,则OA OB +的值为___________.三、解答题:(本题共 8 小题,解答应写出文字说明、证明过程或演算步骤. 共75分) 16. 如图,经测量,B 处在A 处的南偏西57°的方向,C 处在A 处的南偏东15°方向,C 处在B 处的北偏东82°方向,求C ∠的度数.17. 如图,F 、C 是AD 上两点,且AF CD =,点E 、F 、G 在同一直线上,且BC GF ,BC EF =.求证:ABC DEF ≌△△18. 如图,在ABC 和DCB △中,AC 与BD 相交于点O ,AB DC =,AC BD =.求证:ABO DCO △≌△.19. 已知一个多边形的内角和与外角和相加等于2160°.(1)求这个多边形的边数及对角线的条数.(2)这个多边形剪去一个角后,所形成的新多边形有几条边?内角和是多少?20. 在ABC 中, A B C ∠∠∠,,的对边分别为a , b , c .(1)化简代数式:a b c b a c +−+−−=; (2)若AB AC AC =,边上的中线BD 把ABC 的周长分为15和6两部分,求底边BC 的长. 21. 如图,在ABC 中.(1)如果7cm AB =,5cm AC =,BC 是能被3整除的偶数,求这个三角形的周长.(2)如果BP 、CP 分别是∠和ACB ∠的角平分线.①当50A ∠=°时,求BPC ∠的度数.②当A n ∠=°时,求BPC ∠的度数.22. 如图1,一张三角形ABC 纸片,点D 、E 分别是ABC 边上两点.研究(1):如果沿直线DE 折叠,使A 点落在CE 上,则BDA ′∠与A ∠的数量关系是 ;研究(2):如果折成图2的形状,猜想BDA ′∠、CEA ′∠和A ∠的数量关系还成立吗?若成立,请说明理由; 若不成立,直接写出他们的关系.研究(3):如果折成图3的形状,猜想BDA ′∠、CEA ′∠和A ∠的数量关系是 .23. 如图,在ABC 和CDE 中,AC BC =,CD CE =,ACB DCE ∠=∠,连接AD ,BE 交于点M .(1)如图1,当点B ,C ,D 在同一条直线上时,可以得到图中一对全等三角形,即_____≌_____; (2)当点D 不直线BC 上时,如图2位置,且ACB DCE α∠=∠=.①求证:AD BE =;②求EMD ∠的大小(用含α的代数式表示).的在。
河南省南阳市宛城区官庄一中2024-2025学年八年级数学上学期10月份月考试卷一、单选题1.“3的算术平方根”可用数学式子表示为( )AB C .()23+D .2.公元6世纪,毕达哥拉斯学派认为“万物皆数”,即一切量都可以用整数或整数的比(分数)表示,后来,这一学派中的希帕索斯发现,边长为1的正方形的对角线的长度不能用整数或整数的比表示,从而发现了无理数.希帕索斯发现的这个无理数是( )A .713B C D .π3.与()43a -运算结果相等的是( ) A .12aB .12a -C .7a -D .7a4.在学习对复杂多项式进行因式分解时,苏老师示范了如下例题:因式分解:()()22232516x x x x +-+++.解:设22x x y +=, 原式()()3516y y =-++ 221516y y =+-+ 221y y =++()2221x x =++()221x ⎡⎤=+⎣⎦()41x =+.例题中体现的主要思想方法是( ) A .函数思想 B .整体思想 C .分类讨论思想D .数形结合思想5.下列等式从左到右的变形,属于因式分解的是( )A .()a x y ax ay -=-B .()()22a b a b a b -=+-C .()22121x x x x ++=++D .()()21343x x x x ++=++6.若3y ,则xy =( ) A .-15B .-9C .9D .157.下列算式中能用平方差公式计算的是( ) A .()()22x y y x +- B .()()4334x y y x --+ C .()()33a b a b --+D .()()m n m n -+--8.若将多项式291m +加上一个单项式A 后,就能够在我们所学范围内因式分解,则单项式A 不可能是( ) A .2-B .210m -C .6m -D .9m -9.已知多项式3ax -与2223x x ++的乘积展开式中不含x 的一次项,则a 的值为( ) A .0B .2-C .2D .310.已知a ,b ,c 是ABC V 的三边长,且2222a ab c bc +=+,则ABC V 是( )A .直角三角形B .等边三角形C .等腰三角形D .等腰直角三角形二、填空题11.比较大小:﹣“>”、“<”或“=”). 12n 的最小值是. 13.32134ab a a ÷=+-.14.已知2m a =,6n a =,则2m n a -的值是.15.我国南宋数学家杨辉在其著作《详解九章算法》中揭示了()na b +(n 为非负整数)展开式的项数及各项系数的有关规律,后人将下图称为“杨辉三角”.这个三角形的构造法则为:两腰上的数都是1,其余每个数均为上方左右两数之和.请根据上述规律,写出()21x y +展开式中含19x 项的系数是.三、解答题 16.计算(2)()202412-.17.解方程: (1)2(1)810x --=; (2)31(23)255x +=. 18.因式分解 (1)61218am bm cm -+ (2)416x - (3)3269x x x -+19.(1)先化简,再求值()()()()22222a b a b a b a ⎡⎤-++-÷⎣⎦,其中2a =,1b =-. (2)利用简便方法计算:① 2202420232025-⨯; ② ()()2024202520262.1.513⎛⎫-⨯-⨯- ⎪⎝⎭20.在学习平方根这一课后,小明同学提出了一个有趣的问题:一个数的算术平方根为32x -,平方根为()2x ±+,求这个数.小明的解答过程如下: 解:Q 一个数的算术平方根为32x -,平方根为()2x ±+,322x x ∴-=+或()322x x -=-+,①当322x x -=+时,解得2x =,2(32)16x ∴-=,∴这个数为16;②当()322x x -=-+时,解得0x =, 2(32)4x ∴-=,这个数为4.综上所述,这个数为16或4.请判断小明的解答正确吗?如果正确,请把小明的过程抄写一遍;如果不正确,请写出正确的解答过程.21.我们知道,负数没有算术平方根,但对于三个互不相等的负整数,若两两乘积的算术平方根都是整数,则称这三个数为“完美组合数”.例如:941-,-,-6=,3=2=,其结果6,3,2都是整数,所以这941-,-,-三个数称为“完美组合数”.(1)2541---,,这三个数是“完美组合数”吗?请说明理由;(2)若三个数805a --,,…是“完美组合数”,其中有两个数乘积的算术平方根为10,求a 的值.22.在分解因式时,小彬和小颖对同一道题产生了分歧,下面是他们的解答过程,请认真阅读并完成相应的任务.任务:①经过讨论,他们发现两人中只有一人的解答正确,你认为解答正确的同学是______,这位同学的解答过程中第1步依据的乘法公式可以用字母表示为______;而另一位同学的解答是从第______步开始出错的,你认为这位同学解答过程错误的原因是____________. ②按照做错同学的思路,写出正确的解答过程;23.阅读下列文字:我们知道对于一个图形,通过不同的方法计算图形的面积,可以得到一个数学等式,例如,由图①可以得到 ()()22232a b a b a ab b ++=++.请解答下列问题:(1)小明同学打算用如图③的x 张边长为a 的正方形纸片A 和y 张边长为b 的正方形纸片 B ,z 张相邻两边长分别为a 、b 的长方形纸片 C 拼出一个面积为()()3547a b a b ++的长方形,那么他总共需要张纸片A 、张纸片B 、张纸片 C ; (2)写出图②中所表示的数学等式;(3)利用(2)中所得到的结论,解决下面的问题:已知a b c ++=9?²²23a b c ++=,,求ab bc ac ++的值.。
云南省曲靖市麒麟区第四中学2024-2025学年八年级上学期10月第一次月考数学试卷八年级 数学(人教版) 试卷范围:八上11.1~12.2(全卷三个大题,共27个小题,共8页;满分100分,考试用时120分钟)注意事项:1.本卷为试题卷.答题前请在答题卡指定位置填写学校、班级、姓名等信息。
答案书写在答题卡相应位置上,答在试题卷或草稿纸上的答案无效。
2.考试结束后,请将试题卷和答题卡一并交回。
一、选择题(本大题共15小题,每个小题只有一个正确选项,每小题2分,共30分)1.下列长度的三条线段能组成三角形的是( )A.3,8,4B.5,10,6C.4,4,8D.3,7,112.下列各组图形中,两个图形属于全等图形的是( )A. B. C. D.3.直角三角形的一个锐角是,则它的另一个锐角是( )A. B. C. D.或4.下列说法正确的是( )A.三角形的外角和为 B.面积相等的两个三角形全等C.周长相等的两个三角形全等D.两条边及其一角相等的两个三角形全等5.如图,为了使自行车稳定停放,停放时常常放下它的脚架,这里所运用的几何原理是( )A.两点之间,线段最短B.三角形具有稳定性C.两点确定一条直线D.垂线段最短6.已知图中的两个三角形全等,则等于()60︒30︒60︒120︒30︒60︒360︒1∠A. B. C. D.7.如图,在中,,,则( )A. B. C. D.8.如图,亮亮书上的三角形被墨迹污染了一部分,很快他就根据所学知识画出一个与书上完全一样的三角形.他的依据是( )A.SASB.ASAC.AASD.SSS9.如图,的边上的高是( )A.线段B.线段C.线段D.线段10.如图,如果,那么下列结论不正确的是( )A. B. C. D.11.小刚要将一块如图所示的三角形纸板分成面积相同的两部分,则图中他所作的线段应该是的()50︒58︒60︒72︒ABC △55B ︒∠=40C ︒∠=DAC ∠=75︒85︒95︒100︒ABC △BC AF BD BF BEABC FED △≌△BD EC =//AB EF //AC FD BD DF=AD ABC△A.高线B.中线C.角平分线D.以上都不是12.如图,已知,下列所给条件不能证明的是( )A. B. C. D.13.多边形的每个内角均为,则这个多边形是( )A.四边形B.五边形C.六边形D.八边形14.下列尺规作图的语句正确的是( )A.残长射线到点B.延长线段至点,使得C.作直线D.以为圆心,任意长为半径画弧15.如图,是的角平分线,,交于点,,交于点,若,则的度数为( )A. B. C. D.二、填空题(本大题共4小题,每小题2分,共8分)16.一个七边形的内角和度数为________.17.已知的三条边长均为整数,其中两边长分别是2和5,第三边长为奇数,则此三角形的周长为________.18.如图,,,若,则的度数为________.ABC DCB ∠=∠ABC DCB △≌△A D ∠=∠AB DC =AC DB =ACB DBC∠=∠120︒AB C AB C AC BC =3cmAB =O AD ABC △//DE AC AB E //DF AB AC F 150︒∠=2∠40︒45︒50︒60︒ABC △AB AC =BD CD =70B ︒∠=DAC ∠19.如图,先将两个全等的直角三角形、重叠在一起,再将三角形沿方向平移,、相交于点.若,,则阴影部分的面积为________.三、解答题(本大题共8小题,共62分)20.(6分)一个多边形的内角和是外角和的3倍,求这个多边形的边数.21.(6分)如图,,,求证:.22.(7分)如图,在与中,点、、、在一条直线上,,,.(1)求证::(2)若,,求线段的长.23.(7分)为了测量一栋6层楼的高度,在旗杆与楼之间选定一点,测得旗杆顶的视线与地面的夹角,测得楼顶的视线与地面的夹角,测各点到楼底的距离与旗仠的高度都等于12米,测得旗杆与楼之间的距离米.求这栋6层楼的高度.ABC DEF DEF CA 2cm AB EF G 8cm BC =3cm GE =2cm 90B D ︒∠=∠=AB AD =ABC ADC △≌△ABC △DEF △B E C F //AC DF AC DF =A D ∠=∠ABC DEF △≌△7BF =3CE =BE CD P C PC 33DPC ︒∠=A PA 57APB ︒∠=P PB CD 30BD =24.(8分)如图,是的高,、是的角平分线,且.(1)求的度数;(2)若,求的度数.25.(8分)如图,在中,,点是的中点,点在上.(1)找出图中所有全等的三角形:(2)任选一组你写出的全等三角形进行证明.26.(8分)如图,点是的平分线与的平分线的交点.(1)若,,则________;(2)探究与的数量关系,并说明理由.27.(12分)如图,与相交于点,,,,点从点出发,沿方向以的速度运动,点同时从点出发,沿方向以的速度运动,当点到达点时,、两点同时停止运动,设点的运动时间为.AD ABC △AE BF ABC △30CBF ︒∠=BAD ∠70AFB ︒∠=DAE ∠ABC △AB AC =D BC E AD D CBE ∠CAB ∠60BAC ︒∠=40D ︒∠=DBE ∠=︒C ∠D ∠AE BD C AC EC =BC DC =8cm AB =P A A B A →→2cm /s Q D D E →1cm /s P A P Q P s t(1)当点在运动时,________;(用含的代数式表示)(2)求证:;(3)当,,三点共线时,求的值.P A B →BP =t AB ED =P Q C t2点·教学评——质量跟踪练习题(一)八年级 数学(人教版) 参考答案一、选择题(本大题共15小题,每小题2分,共30分)题号123456789101112131415答案BDAABACBADBCCDC二、填空题(本大题共4小题,每小题2分,共8分)16.17.1218.19.13三、解答题(本大题共8小题,共62分)20.(6分)解:设这个多边形的边数为,则,解得:,这个多边形的边数是8....................................................................................................6分21.(6分)证明:,和都是直角三角形,在和中,,.........................................................................................6分22.(7分)(1)证明:,在和中,,;...........................................................................................4分(2),,,,,,...................................................................................................................7分23.(7分)解:由题意可得:,,,900︒20︒n (2)1803603n ︒︒-+=⨯8n =∴90B D ︒∠=∠= ABC ∴△ADC △Rt ABC ∴△Rt ADC △AB ADAC AC =⎧⎨=⎩Rt Rt (HL)ABC ADC ∴△≌△//AC DF ACB F∴∠=∠ABC △DEF △A DAC DF ACB F ∠=∠⎧⎪=⎨⎪∠=∠⎩(ASA)ABC DEF ∴△≌△ABC DEF △≌△BC EF ∴=BE CE CF CE ∴+=+BE CF ∴=7BF = 3CE =2BE CF ∴==90CDP PBA ︒∠=∠⇒57APB ︒∠= 33PAB ︒∴∠=,米,米,米,在和中,,,米,这栋6层楼高18米.........................................................................................................7分24.(8分)解:(1)平分,,,是的高,,,...........................................................................................4分(2),,,,平分,,..............................................................8分25.(8分)解:(1),,;....3分(2),点是的中点,,在和中,,,,33PAB CPD ︒∴∠=∠=30BD = 12PB =18DP BD PB ∴=-=BAP △DPC △CDP PBA PAB CPD CD PB ∠=∠⎧⎪∠=∠⎨⎪=⎩(AAS)BAP DPC ∴△≌△18AB DP ∴==∴BF ABC ∠30CBF ︒∠=260ABC CBF ︒∴∠=∠=AD ABC △90ADB ︒∴∠=906030BAD ︒︒︒∴∠=-=AFB FBC C ∠=∠+∠ 70AFB ︒∠=703040C ︒︒︒∴∠=-=18080BAC ABC C ︒︒∴∠=-∠-∠=AE BAC ∠40BAE ︒∴∠=403010DAE BAE BAD ︒︒︒∴∠=∠-∠=-=ABE ACE △≌△BDE CDE △≌△ABD ACD △≌△AB AC = D BC BD CD ∴=ABD △ACD △AB AC AD AD BD CD =⎧⎪=⎨⎪=⎩(SSS)ABD ACD ∴△≌△BDE CDE ∴∠=∠在和中,,,,在和中,,.................................................................................................8分(答案不唯一,推理正确即可得分)26.(8分)解:(1)70;..................................................................................................3分(2),理由如下:,平分,平分,,,,,,......................................................................................................................8分27.(12分)解:(1);........................................................................................3分(2)在和中,,,;.....................................................................................................................7分(2)根据题意得:,,则,,,在和中,BDE △CDE △BD CD BDE CDE DE DE =⎧⎪∠=∠⎨⎪=⎩(SAS)BDE CDE ∴△≌△BE CE ∴=ABE △ACE △AB AC AE AE BE CE =⎧⎪=⎨⎪=⎩(SSS)ABE ACE ∴△≌△2C D ∠=∠CBE CAB C ∠=∠+∠ AD CAB ∠BD CBE ∠12CBD CBF ∴∠=∠12CAD CAB ∠=∠12CBD CAD C ∴∠=∠+∠CBD D CAD C ∠+∠=∠+∠ 12CAD C D CAD C ∴∠+∠+∠=∠+∠2C D ∴∠=∠82t -ABC △EDC △AC EC ACB ECD BC DC =⎧⎪∠=∠⎨⎪=⎩(SAS)ABC EDC ∴△≌△AB ED ∴=DQ t =2AP t =8EQ t =-ABC EDC △≌△A E ∴∠=∠8cmDE AB ==ACP △ECQ △,,,当时,,解得:,当时,,,解得:,综上所述,当、、三点共线时,的值为或.......................................12分A E AC ECACP ECQ ∠=∠⎧⎪=⎨⎪∠=∠⎩(ASA)ACP ECQ ∴△≌△AP EQ ∴=∴04t ……28t t =-83t =48t <…162AP t =-1628t t ∴-=-8t =∴P C Q t 8s 8s 3。
湖北省武汉市外国语学校2024-2025学年八年级上学期10月月考数学试题一、单选题1.如图,已知A D ∠=∠,12∠=∠,那么要得到ABC DEF ≌△△,还应给出的条件是( )A .EB ∠=∠ B .ED BC = C .AB EF =D .AF CD = 2.小明不慎将一块三角形的玻璃碎成如图所示的四块(图中所标1、2、3、4),你认为将其中的哪一块带去,就能配一块与原来大小一样的三角形玻璃?应该带去( )A .第1块B .第2块C .第3块D .第4块 3.已知ABC DEF ≌△△,6cm BC EF ==,ABC V 的面积为18平方厘米,则EF 边上的高是( )A .3cmB .6cmC .8cmD .9cm4.如图,在四边形ABCD 中,CB CD =,90ABC ADC ∠=∠=︒,35BAC ∠=︒,则B C D ∠的度数为( )A .145°B .130°C .110°D .70°5.尺规作图中蕴含着丰富的数学知识和思想方法.如图,为了得到MBN PAQ ∠=∠,在用直尺和圆规作图的过程中,得到ACD BEF ≌△△的依据是( ).A .SASB .SSSC .ASAD .AAS6.如图为6个边长相等的正方形组成的图形,则∠1+∠2+∠3的大小是( )A .90°B .120°C .135°D .150°7.如图,已知线段AB =20米,MA ⊥AB 于点A ,MA =6米,射线BD ⊥AB 于B ,P 点从B 点向A 运动,每秒走1米,Q 点从B 点向D 运动,每秒走3米,P 、Q 同时从B 出发,则出发x 秒后,在线段MA 上有一点C ,使△CAP 与△PBQ 全等,则x 的值为( )A .5B .5或10C .10D .6或108.如图,在Rt ABC △中,90BAC ∠=︒,ABC ∠的角平分线交AC 于点D ,DE BC ⊥于点E ,若ABC V 与CDE V 的周长分别为13和3,则AB 的长为( )A .10B .16C .8D .59.如图,ABC V 中,AD 是角平分线,BE 是ABD △的中线,若ABE V 的面积是2.553AB AC ==,,,则ABC V 的面积是( )A .5B .6.8C .7.5D .810.如图,在ABC V 中,90ACB ∠=︒,AC BC =,AD 平分BAC ∠,CE AD ⊥交AB 于E ,点G 是AD 上的一点,且45ACG ∠=︒,连BG 交CE 于P ,连DP ,下列结论:①AC AE =,②CD BE =,③2BG DP AD +=,④PG PE =,其中正确的有( )A .①②③B .①②④C .①③④D .①②③④二、填空题11.一个三角形的三条边长分别为6,7,x ,另一个三角形的三条边长分别为y ,6,4,若这两个三角形全等,则x y +=.12.在ABC V 中,86AB AC ==,,则BC 边上的中线AD 的取值范围是.13.如图,在ABC V 中,AB AC =,BF CD =,BD CE =,65FDE ∠=︒,则A ∠的度数是.14.如图,直线 1l ,2l ,3l 分别过正方形ABCD 的三个顶点A ,D ,C ,且相互平行,若 1l ,2l 的距离为 1,2l ,3l 的距离为2, 则正方形的边长为.15.如图,B 、C 、E 三点在同一条直线上,CD 平分ACE ∠,DB DA =,DM BE ⊥于M ,若2AC =,32BC =,则CM 的长为.16.如图:在△ABC 中,∠ACB =90°,点D 在边AB 上,AD =AC ,点E 在BC 边上,CE =BD ,过点E 作EF ⊥CD 交AB 于点F ,若AF =2,BC =8,则DF 的长为三、解答题17.如图,已知12AB AC AD AE =∠=∠=,,.求证:BAD CAE V V ≌.18.如图,D 、C 、F 、B 四点在一条直线上,AB DE =,AC BD ⊥,EF BD ⊥,垂足分别为点C 、点F ,CD BF =.求证:AB DE ∥.19.已知,如图AB AE =,B E ∠=∠,BC ED =,AF 平分BAE ∠,求证:AF CD ⊥.20.如图,在Rt ABC △中,90ABC ∠=︒,在Rt DBE V 中,90DBE ∠=︒,AB DB =,BAC BDE ∠=∠.连接CD ,连接AE 交BD 于F ,点F 恰好是AE 的中点,求证:2CD BF =.21.如图是由小正方形组成的66⨯网格,每个小正方形的顶点叫做格点,点A 、B 、C 、D 都是格点,点P 是线段AB 上一点.仅用无刻度的直尺在给定网格中完成画图,画图过程用虚线表示.(1)在图1中,画出ABC V 的中线AM 和高线BN ;(2)在图2中,在边AC 上取一点E ,使得=45ABE ∠︒;(3)在图3中,在线段AD 上取一点Q ,使得AQ AP =.22.在ABC V 中,AE 、BF 是角平分线,交于O 点.(1)如图1,AD 是高,50BAC ∠=︒,70C ∠=︒,直接写出DAC ∠和BOA ∠的度数.(2)如图2,若OE OF =,AC BC ≠,求C ∠的度数.(3)如图3,若90C ∠=︒,8BC =,6AC =,10AB =,直接写出AOB S V .23.如图,已知AC BC =,点D 是BC 上一点,ADE C ∠=∠.图1 图2(1)如图1,若90C ∠=︒,135DBE ∠=︒,求证:①EDB A ∠=∠②DA DE =(2)如图2,请直接写出DBE ∠与C ∠之间满足什么数量关系时,总有DA DE =成立. 24.ABE V 和ACF △始终有公共角A ∠,连接BC ,EF ,BE ,CF 相交于点O .(1)如图1,若ABE ACF ∠=∠,BE CF =,求证:ABE ACF V V ≌.(2)如图2,若ABE ACF α=∠=∠,且CE CF =,求CBE ∠的度数(用含α的式子表示)(3)如图3,若BE CF =,过点C 作CD AB ∥且CD AB =,连接DO 并延长交AC 于点G ,过点G 作GH CF ⊥于点H ,请直接写出OGH ∠与COE ∠的关系为:_____________.。
江苏省南通市崇川区南通市田家炳初级中学2024-2025学年八年级上学期10月月考数学试题一、单选题1.下列倡导节约的图案中,是轴对称图形的是( )A .B .C .D . 2.下列计算正确的是( )A .336a a a +=B .339a a a ⋅=C .235a a a +=D .326()a a = 3.如图,由AB =AC ,∠B =∠C ,便可证得V BAD ≌V CAE ,其全等的理由是( )A .SSSB .SASC .ASAD .AAS 4.已知点P 在∠AOB 的平分线上,点P 到OA 的距离为10,点Q 是OB 边上的任意一点,则下列结论正确的是( )A .PQ >10B .PQ≥10C .PQ <10D .PQ≤10 5.在Rt ABC △中,90ACB ∠=︒,=60B ∠︒,CD 是斜边AB 上的高,则下列关系式不正确的是( )A .12CD AC =B .12BD CD =C .14BD AB = D .12BC AB = 6.如图,AB CD ⊥,且A B C D =,E ,F 是AD 上两点,CE AD ⊥,BF AD ⊥.若4CE =,3BF =,2EF =,则AD 的长为( )A.3B.5C.6D.77.计算:202520241(2)2⎛⎫-⋅- ⎪⎝⎭等于()A.2-B.2C.12-D.128.如图,在等边三角形ABC中,BC=2,D是AB的中点,过点D作DF⊥AC于点F,过点F作EF⊥BC于点E,则BE的长为()A.1 B.32C.54D.439.如图,AD是△ABC的中线,BE交AC于E,交AD于F,且AE=a,EF=a,BF=b,则AC的长为()A.a+b B.2b C.1.5b D.b10.如图,在直角坐标系中,点A、B的坐标分别为(1,4)和(3,0),点C是y轴上的一个动点,且A、B、C三点不在同一条直线上,当△ABC的周长最小时,点C的坐标是()A .(0,0)B .(0,1)C .(0,2)D .(0,3)二、填空题11.点P (2,-5)关于x 轴对称的点的坐标为.12.如图,在22⨯的正方形网格中,线段AB 、CD 的端点为格点,则12∠+∠=o .13.57()()x x -⋅-=.14.如图,在ACB △中,90ACB ∠=︒,AC BC =,点C 的坐标为()2,0-,点A 的坐标为()6,3-,则B 点的坐标是.15.如图,已知△ABC 的周长是21,OB ,OC 分别平分∠ABC 和∠ACB ,OD ⊥BC 于点D ,且OD =4,△ABC 的面积是.16.如图,在ABC V 中,AD BC ⊥,CE AB ⊥,垂足分别是D ,E .AD ,CE 交点H ,已知3EH EB ==,5AE =,则CH 的长是.17.若等腰三角形一腰上的高与另一腰的夹角为40︒,则这个等腰三角形的底角度数是. 18.如图,等腰ABC V ,AB AC =,120BAC ∠=︒,AD BC ⊥于D ,点P 是BA 延长线上一点,点O 是线段AD 上一点,OP OC =,下面结论:①APO ACO ∠=∠;②90APO PCB ∠+∠=︒;③PC PO =.其中正确的有.(填正确结论序号)三、解答题19.计算:(1)()33628x x x ⋅⋅; (2)()()2332422a a a a +⋅+. 20.如图,在正方形网格上有一个ABC V .(1)画出ABC V 关于直线MN 的对称图形(不写画法);(2)若网格上的每个小正方形的边长为1,求ABC V 的面积.21.如图,90A D ∠=∠=︒,AC ,BD 相交于点E ,BE CE =.求证:ABC DCB △△≌.22.(1)已知1020a =,10050b =,求26a b ++的值.(2)若m ,n 为正整数()m n <,且22464m n ⨯⨯=,求mn 的值.23.如图,ABC V 中,P 为AB 上一点,Q 为BC 延长线上一点,且PA CQ =,过点P 作PM AC ⊥于点M ,过点Q 作QN AC ⊥交AC 的延长线于点N ,且P M Q N =,连PQ 交AC 边于D .求证:(1)APM CQN ≌△△; (2)12DM AC =. 24.如图,在四边形ABCD 中,AB ∥CD ,连接BD ,点E 在BD 上,连接CE ,若∠1=∠2,AB =ED .(1)求证:BD =CD .(2)若∠A =120°,∠BDC =2∠1,求∠DBC 的度数.25.已知,在△ABC 中,AC =BC ,AD ⊥CE ,BE ⊥CE ,垂足分别为D ,E ,且AD=CE . (1)求证:∠ACB =90°;(2)点O 为AB 的中点,连接OD ,OE .请判断△ODE 的形状?并说明理由.26.甲乙两位同学在学习直角三角形过程中得出两个结论.甲的结论:直角三角形中,60︒内角的两夹边长是2倍的关系.乙的结论:在一个三角形中,如果60︒内角的两夹边长是2倍的关系,那么这个三角形是直角三角形.(1)甲的结论.(填写“正确”或“不正确”)(2)乙的结论正确吗?如果你认为正确,请你利用图1给出证明.如果你认为不正确,请给出反例.(3)如图2,若等边ABCV边长为5,点E从点A出发沿边AC运动,点F从点C出发沿边CB 运动,速度是每秒1个单位长度,当E点到达C点时停止运动.请问当运动时间是多少秒时,△是直角三角形?请你给出解题过程.CEF⊥于N,BM (4)在问题(3)的前提下,点E,F运动过程中AF,BE交于M点,作BN AF与MN之间的数量关系是否发生变化?说明理由.。
河北省衡水市第七中学2024-2025学年八年级上学期10月月考数学试题一、单选题1.若将分式22x x x+化简得1x x +,则x 应满足的条件是()A .x>0B .x<0C .x 0≠D .x 1≠-2.已知27x y =,则222232237x xy y x xy y -+-+的值是()A .28103B .4103C .20103D .71033.口袋中有若干个形状大小完全相同的白球,为估计袋中白球的个数,现往口袋中放入10个形状大小与白球相同的红球.混匀后从口袋中随机摸出50个球,发现其中有6个红球.设袋中有白球x 个,则可用于估计袋中白球个数的方程是()A .10506x =B .10650x =C .1050106x =+D .1061050x =+4.计算222a b b a a ba b a b a b+--⋅÷-++的结果是()A .2a b a b+-B .-2a b a b +-C .2a b a b-+D .-2a b a b-+5.下列各式计算正确的是()A .a x ab x b+=+B .112a b a b+=+C .22a ab b ⎛⎫=⎪⎝⎭D .11x y x y-=-+-6.甲、乙两个工程队进行污水管道整修,已知乙比甲每天多修3km ,甲整修6km 的工作时间与乙整修8km 的工作时间相等,求甲、乙两个工程队每天分别整修污水管道多少km ?设甲每天整修km x ,则可列方程为()A .683x x=-B .683x x =+C .683x x=+D .683x x =-7.根据下列条件利用尺规作图作△ABC ,作出的△ABC 不唯一的是()A .AB =7,AC =5,∠A =60°B .AC =5,∠A =60°∠C =80°C .AB =7,AC =5,∠B =40°D .AB =7,BC =6,AC =58.下列等式中,正确的有()①2211m mx x =-+-②22x y x y x y -=+-③1b a a b-=--④()()()()212331x x x x x x +-+=++-⑤()111555a b a b -=-.A .1个B .2个C .3个D .4个9.已知下列命题:①若a b =,则22a b =;②若>0,则x x =;③三角形是由三条线段组成的图形;④全等三角形的对应边相等;其中原命题与逆命题均为真命题的有()A .1个B .2个C .3个D .4个10.下列条件能判定△ABC ≌△DEF 的是()A .∠A=∠D ∠B=∠E ∠C=∠FB .AB=BC DE=EF AC=DF C .AB=DE AC=DF ∠C=∠FD .∠B=∠E ∠C=∠F BC=EF11.下列能作为证明依据的是()A .已知条件B .定义和基本事实C .定理和推论D .以上三项都可以12.《千里江山图》是宋代王希孟的作品,如图,它的局部画面装裱前是一个长为2.4米,宽为1.4米的矩形,装裱后,整幅图画宽与长的比是8:13,且四周边衬的宽度相等,则边村的宽度应是多少米?设边衬的宽度为x 米,根据题意可列方程()A .1.482.413x x -=-B .1.482.413x x +=+C .1.4282.4213x x -=-D .1.4282.4213x x +=+二、填空题13.若2x y +=,2xy =-,则y x x y+=.14.如图所示,点A 、B 、C 、D 均在正方形网格格点上,则ABC ADC ∠+∠=.15.已知ABC DEF ≌△△,ABC V 的三边长分别为4、m 、n ,DEF 的三边长分别为5、p 、q .若ABC V 的三边长均为整数,则m n p q +++的最大值为.16.整体思想就是通过研究问题的整体形式从面对问题进行整体处理的解题方法.如113237x y xy⎧+=⎪⎪⎨⎪+=⎪⎩,此题设“1a x =,1b y =”,得方程3237a b a b +=⎧⎨+=⎩,解得21a b =⎧⎨=⎩,0.51x y =⎧∴⎨=⎩.利用整体思想解决问题:采采家准备装修-厨房,若甲,乙两个装修公司,合做6需周完成,甲公司单独做4周后,剩下的由乙公司来做,还需9周才能完成,设甲公司单独完成需x 周,乙公司单独完成需y 周,则得到方程.利用整体思想,解得.三、解答题17.计算:(1)()0120223211232-⎛⎫⎛⎫--+- ⎪ ⎪⎝⎭⎝⎭;(2)()()()2222a b a b a b +--+;(3)224248y x x y xx y⎛⎫÷-⋅ ⎪⎝⎭;(4)222141244x x x x x x x +-⎛⎫⎛⎫-÷- ⎪ ⎪--+⎝⎭⎝⎭.18.解方程(1)11222x x x-=---(2)2321212141x x x x +-=+--.19.已知2a b x a+=,2(by a a b =+,b 都是正数).(1)计算:122x y -;(2)若x y =,说明a b =的理由;(3)设3M y x=+,且M 为正整数,试用等式表示a ,b 之间的关系.20.某校因物理实验室需更新升级,现决定购买甲、乙两种型号的滑动变阻器.若购买甲种滑动变阻器用了1650元,购买乙种用了1000元,购买的甲种滑动变阻器的数量是乙种的1.5倍,甲种滑动变阻器单价比乙种单价贵5元.(1)求甲、乙两种滑动变阻器的单价分别为多少元.(2)该校拟计划再订购这两种滑动变阻器共100个,总费用不超过5200元,那么该校最多可以购买多少个甲种滑动变阻器?21.如图,已知AM 是ABC V 的中线,BE AM ⊥交AM 的延长线于点E ,CF AM ⊥于点F .求证:BE CF =.22.近年来,新能源汽车特别是纯电动汽车受到越来越多消费者的关注,下面是价格相同的燃油车与纯电动汽车的部分相关信息对比:燃油车油箱容积:40升油价:7.5元/升续航里程:m 千米每千米行驶费用:407.5m⨯元纯电动汽车电池容量:80千瓦时电价:0.55元/千瓦时续航里程:m 千米每千米行驶费用:________元(1)用含m 的代数式表示纯电动汽车的每千米行驶费用;(2)若纯电动汽车每千米行驶费用比燃油车少0.64元.①分别求出这两款车的每千米行驶费用;②若燃油车和纯电动汽车每年的其它费用分别为3600元和6800元.小明家要购置新车,他们家每年行驶里程大于6000千米,则他们购买哪一款汽车的年费用更低?(年费用=年行驶费用+年其它费用)23.某数学兴趣小组在活动时,老师提出了这样一个问题:如图1,在ABC V 中,6AB =,8AC =,D 是BC 的中点,求BC 边上的中线AD 的取值范围.小明在组内经过合作交流,得到了如下的解决方法:延长AD 到E ,使DE AD =,请补充完整证明“ABD ECD ≌”的推理过程.(1)求证:ABD ECD≌证明:延长AD 到点E ,使DE AD =在ABD △和ECD 中()()()______________________________AD ED ADB EDC CD ⎧=⎪∠=∠⎨⎪=⎩中点定义ABD ECD ∴ ≌(__________)请补齐空白处(2)由(1)的结论,根据AD 与AE 之间的关系,探究得出AD 的取值范围是__________;(3)【感悟】解题时,条件中若出现“中点”“中线”等字样,可以考虑延长中线构造全等三角形,把分散的已知条件和所求证的结论集合到同一个三角形中.【问题解决】如图2,ABC V 中,90B Ð=°,2AB =,AD 是ABC V 的中线,CE BC ⊥,4CE =,且90ADE ∠=︒,求AE 的长.24.阅读理解材料1:小学时常常会遇到将一个假分数写成带分数的问题,在这个过程中,先计算分子中包含几个分母,求出整数部分,再把剩余的部分写成一个真分数.例如:52111333=+=.类似的,我们可以将分式写成一个整数与一个新分式的和.例如:111x x x +=+,()12121111x x x x x -++==+---.材料2:为了研究字母x 和分式21x -得变化关系,小明制作了如下表格:x …3-2-1-01234…21x -…12-23-1-2-无意义2123…从表格可以看出,当x 的取值大于0时,随着x 的增大,21x -的取值减小,当x 的取值小于0时,随着x 的减小,21x -的取值增大.请根据上述材料完成下列问题:(1)把下列分式写成一个整数与一个新分式的和的形式;6x x +=__________,222x x +=-_________.(2)随着x 值的变化,分式6x x+的值是如何变化的?(3)当x 大于2时,随着x 的增大,分式222x x +-的值无限趋近于一个数,这个数是__________.。
广东省珠海市文园中学2024—2025学年上学期10月月考八年级数学试卷一、单选题1.下列长度的三条线段能组成三角形的是( )A .1,2,3B .3,4,5C .3,1,1D .3,4,7 2.从六边形的一个顶点出发作对角线,可以作( )A .6条B .5条C .4条D .3条3.若一个三角形的三个内角度数的比为1:2:3,则这个三角形是( )A .锐角三角形B .直角三角形C .钝角三角形D .等腰三角形4.如果直角三角形的一个锐角是另一个锐角的4倍,那么这个直角三角形中较小一个锐角的度数是( )A .9B .18C .27D .365.如图,在ABC V 中,AD 是高,AE 是角平分线,AF 是中线,则下列说法中错误的是( )A .BF CF =B .90C CAD ∠+∠=︒ C .BAF CAF ∠=∠ D .2ABC ABF S S =△△6.请仔细观察用直尺和圆规作一个角等于已知角的示意图,请你根据所学的三角形全等有关的知识,说明画出A O B AOB '''∠=∠的依据是( )A .SASB .ASAC .AASD .SSS7.如图,在四边形ABCD 中,AB AD =,CB CD =,则B ∠与D ∠的关系是( )A .B D ∠>∠ B .B D ∠<∠C .BD ∠=∠ D .不能确定8.如图,已知ABC DCB V V ≌,那么下列结论中,不正确的是( )A .AB DC = B .ABC DCB ∠=∠ C .AC BC =D .DAC ADB ∠=∠ 9.如图,ABC AEF ≌△△,则对于结论①AC AF =,②FAB EAB ∠=∠,③EF BC =,④EAB FAC ∠=∠,其中正确结论的个数是( )A .1个B .2个C .3个D .4个10.如图,将ABC V 纸片沿DE 折叠,使点A 落在点A '处,若60A ∠=︒,则12∠+∠的度数为( )A .90°B .100︒C .110︒D .120︒二、填空题11.如图所示,人字梯中间一般会设计一“拉杆”,这样做的依据是.12.如图,B 处在A 处的南偏西45︒方向,C 处在A 处的南偏东30︒方向,C 处在B 处的北偏东80︒方向,则ACB ∠为度.13.已知三角形的三边长分别为5,8,21x +,则x 的取值范围是.14.如图,BAC ABD ∠=∠,请你添加一个条件:,使BC AD =.15.如图,在五边形ABCDE 中,A B E a ∠+∠+∠=,DP ,CP 分别平分EDC ∠,BCD ∠,则P ∠的度数是.三、解答题16.如图,ABC V 的边BC 上的高为AD ,且9cm BC =,2cm AD =,6cm AB =.(1)画出ABC V 的边AB 上的高CE ;(2)CE 的长为_____________.17.一个多边形的内角和比它的外角和的2倍多180︒,求这个多边形的边数.18.如图,AE 与AD 分别是ABC V 的角平分线和高.若70B ∠=︒,60C ∠=︒,求D AE ∠度数.19.如图,A 、D .F. B 在同一直线上,AD=BF,AE=BC,且AE ∥BC ,求证:(1)△AEF ≌△BCD ;(2)EF ∥CD .20.如图,在△ABC 中,∠ACB =90°,AC =BC ,BE ⊥CE 于E ,AD ⊥CE 于D . (1)求证:△ADC ≌△CEB .(2)AD =5cm ,DE =3cm ,求BE 的长度.21.如图,在ABC V 中,ABC ∠与ACB ∠的平分线交于点P .(1)若60A ∠=︒,则BPC ∠=________;(2)若A α∠=︒,试用含α的式子表示BPC ∠的值.22.某数学兴趣小组在一次活动中进行了探究试验活动,请你来加入.【探究与发现】(1)如图1,AD 是ABC V 的中线,延长AD 至点E ,使ED AD =,连接BE ,证明:ACD EBD ≌△△.【理解与应用】(2)如图2,EP 是DEF V 的中线,若5EF =,3DE =,设E P x =,则x 的取值范围是________. (3)如图3,AD 是ABC V 的中线,E 、F 分别在AB 、AC 上,且DE DF ⊥,求证:BE CF EF +>. 23.在Rt ABC △中,90ACB ∠=︒,直线l 过点C .(1)当AC BC =时,如图1,分别过点A 、B 作AD l ⊥于点D ,BE l ⊥于点E ,2AD =,6BE =,求DE 的长;(2)当8AC =,6BC =时,如图2,点B 与点F 关于直线l 对称,连接BF ,CF ,动点M 从点A 出发,以每秒1个单位长度的速度沿AC 边向终点C 运动,同时动点N 从点F 出发,以每秒3个单位的速度沿F C B C F →→→→向终点F 运动,点M 、N 到达相应的终点时停止运动,过点M 作MD l ⊥于点D ,过点N 作NE l ⊥于点E ,设运动时间为t 秒. ①CM =______;(用含t 的代数式表示)②当N 在F C →路径上时,CN = ______;(用含t 的代数式表示)③直接写出当MDC △与CEN V 全等时t 的值.。
湖北省武汉市华宜寄宿学校2024-2025学年八年级上学期10月月考数学试题一、单选题1.在下列长度的组线段中,能组成三角形的是( )A .2、3、6B .3、5、9C .3、4、5D .2、3、5 2.在ABC V 中,如果90A B ∠∠+=o ,那么ABC V 是( )A .直角三角形B .钝角三角形C .锐角三角形D .斜三角形 3.已知一个多边形的内角和等于1620︒,则这个多边形是( )A .九边形B .十边形C .十一边形D .十二边形 4.已知等腰三角形两边长分别为6cm ,12cm ,则这个三角形的周长是( ) A .24cm B .30cm C .24cm 或30cm D .18cm 5.如图,已知AB AD =,那么添加下列一个条件后,不能判定ABC ADC △≌△的是( )A .CB CD =B .BAC DAC ∠=∠ C .BCA DCA ∠=∠D .90B D ∠=∠=︒6.如图,ABC V 中,90C ∠=o ,AC BC =,AD 平分CAB ∠交BC 于D ,DE AB ⊥于E ,且6cm AB =,则DEB V 的周长为( )A .7cmB .6cmC .8cmD .10cm 7.如图,已知AB AC =,点D 、E 分别在AC 、AB 上,BD 与CE 相交于点O ,欲使ABD ACE ≌△△.甲、乙、丙三位同学分别添加下列条件:甲:BEC CDB ∠=∠;乙:AE AD =;丙:OB OC =.其中满足要求的条件是( )A .仅甲B .仅乙C .甲和乙D .甲、乙、丙均可 8.如图,已知BF 平分ABC V 的外角ABE ∠,D 为BF 上一点,ABC ADC ∠=∠,过点D 作DH AB ⊥于点H ,若7AH =,1BH =,则线段CB 的长为( )A .6B .5C .4D .5.59.如图,已知点P 为ABC V 三条内角平分线AD BE CF 、、的交点,过D 作DG PC ⊥于G ,则PDG ∠等于( )A .ABE ∠B .DAC ∠ C .BCF ∠D .CPE ∠ 10.如图,四边形ABCD 中,90DAB ABC ∠+∠=︒,对角线AC 、BD 相交于O 点,且分别平分DAB ∠和ABC ∠,若4BO OD =,则AO OC的值为( )A .95B .53C .32D .43二、填空题11.工程建筑中经常采用三角形的结构,如图的屋顶钢架,其中的数学道理是 .12.一个三角形的两边长分别是2和3,若它的第三边长为奇数,则这个三角形的周长为.13.一个多边形外角和是内角和的29,则这个多边形的对角线共有条. 14.Rt ABC △中,90C ∠=︒,10AB =,8BC =,6AC =,点I 为Rt ABC △三条角平分线的交点,则点I 到边AB 的距离为.15.如图,在ABC V 中,22.5ABE CBE ∠∠==o ,AD 、BE 是ABC V 的高,AD 与BE 交于点H ,下列结论:2BH AE =①;BD DH AB +=②;120AED ∠=︒③;④若DF BE ⊥于点F ,则AE FH DF -=.其中正确的是(填序号).16.如图,ABC V 中,4AB AC -=,7BC =,BD 垂直于BAC ∠的角平分线AD 于点D ,E 为AC 的中点,连接BE 交AD 于F ,则BDF V 、AEF △的面积之差的最大值为.三、解答题17.在ABC V 中,若22A B C ∠=∠=∠,请判断这个三角形的形状,并说明理由. 18.如图,点B E C F 、、、在一条直线上,AB DE ∥,A D ∠=∠,BE CF =,求证:AC DF ∥.19.如图,A C E 、、三点在同一条直线上,AB AD =,B DAC ∠=∠,BC AE =.(1)求证:BC DE CE =+;(2)当ABC V 满足__________时,BC DE ∥?20.如图1,在ABC V 中,两个内角ABC ∠和ACB ∠的平分线交于点O ,连接AO ,OE AB ⊥于点E ,OF AC ⊥于点F .(1)求证:AO 平分BAC ∠;(2)如图2,延长CA 至点D ,使C D C B =,若D A O D ∠=∠,66ACB ∠=︒,求BAC ∠的度数. 21.如图1,在147⨯的长方形网格中,每个小正方形的边长为1,小正方形的每一个顶点叫做格点.线段ED 和ABC V 的顶点都在格点上.(1)直接写出ABC S =V ______.(2)请仅用无刻度直尺完成下列画图,不写画法,保留画图痕迹.①请画出ABC V 的中线AP 和高BH .②在线段ED 右侧找到点F ,使得ABC EFD ≌△△.(3)要求在图2中仅用无刻度的直尺作图在x 轴上找点F ,使AE 平分BEF ∠.22.如图,ABC V 中,CD AB ⊥于点D ,CD BD =,点E 在CD 上,DE DA =,连接BE .(1)求证:BE CA =;(2)延长BE 交AC 于点F ,连接DF ,求CFD ∠的度数;(3)过点C 作CM CA ⊥,CM CA =,连接BM 交CD 于点N ,若12BD =,5AD =,直接写出NBC V 的面积.23.如图1,在五边形ABCDE 中,90E ∠=o ,BC DE =,连接AC AD 、,且A B A D =,AC BC ⊥.(1)求证:AC AE =;(2)如图2,若ABC CAD ∠∠=,AF 为BE 边上的中线,求证:AF CD ⊥;(3)如图3,在(2)的条件下,5AB =,4AE =,3DE =,则五边形ABCDE 的面积为______;点E 到直线AB 的距离为______.24.平面直角坐标系中,已知A a ,0 ,()0,B b ,且a b 、()230b -=.(1)请直接写出A B 、两点的坐标;(2)如图为1,点P 为OA 延长线上的动点,点N 在x 轴负半轴上运动,且始终满足AP ON =,过O 作NB 的垂线交AB 的延长线于M ,连接MP ,探究线段NB OM MP 、、之间的数量关系为__________,请证明你的结论;(3)如图2,G 为AOB V 内一点,OG BG ⊥,在GO 的延长线上取点H ,连接BH ,若ABG HBO ∠∠=,点()2,G n n ,求G 点的坐标.。
山东省济南市2023-2024学年八年级上学期10月月考数学试题学校:___________姓名:___________班级:___________考号:___________一、单选题A.5米B.63.下列各组数中,互为相反数的是(A.-2与12-B.-4.如图,有一个面积为1的正方形,经过一次正方形,其中,三个正方形围成的三角形是直角三角形,再经过一次了如图所示的形状,若继续次后形成的图形中所有的正方形的面积和是(A.2024B.20235.下列各式中,正确的是(A.164=±B.6.如图,矩形ABCD的边点为圆心,对角线AC长为半径画弧,交数轴于点A .2πB .3π8.实数a b ,在数轴上的位置如图所示,化简A .2a b -B .a 9.按如图所示的程序计算,若开始输入的A .2B .310.如图,圆柱的高为8cm ,底面半径为吃食,要爬行的最短路程是(15.若21(2)x y z -+-+三、解答题17.求下列各式中的x 的值:(1)16x 2=81(2)(x+1)3=﹣27.18.小明想知道学校旗杆的高,他发现旗杆上的绳子垂到地面还多了1m ,当他把绳子的下端拉开5m 后,发现下端刚好接触地面,求旗杆的高.(1)求风筝的垂直高度(2)如果小明想风筝沿23.计算:(1)如图1,当点D 在边BC 上时,①请写出BD 和CE 之间的数量关系____________,位置关系_____________;②线段CE ,CD ,BC 之间的数量关系是______________________________;(2)如图2,当点D 在边BC 的延长线上且其他条件不变时,(1)中CE ,CD ,BC 之间存在的数量关系是否成立?若成立,请证明;若不成立,请说明理由;(3)如图3,当点D 在边CB 的延长线上且其他条件不变时,若6BC =,1CE =,求线段DE 的长.。
江苏省盐城市康居路初中教育集团 2024-2025学年八年级上学期10月月考数学试题一、单选题1.中国是第一个实现奥运“全满贯”(先后举办奥运会、残奥会、青奥会、冬奥会、冬残奥会)的国家.下列奥运会徽是轴对称图形的是( )A .B .C .D . 2.在等边ABC V 中,2AB =,则BC =( )A .2B .3C .4D .53.如果等腰三角形的一个内角为100︒,则它的一个底角度数为( )A .100︒B .40︒C .50︒D .60︒4.如图,在Rt ABC △中,90ACB ∠=︒,CD 是斜边AB 上的中线.若4CD =,则AB 的长为( )A .2B .4C .6D .85.如图,OC 平分AOB ∠,点P 在OC 上,PD OB ⊥,2PD =,则点P 到OA 的距离是( )A .4B .3C .2D .16.如图,分别以Rt △ABC 的三条边为边向外作正方形,面积分别记为S 1, S 2, S 3.若S 1= 36,S 2= 64,则S 3=( )A .8B .10C .80D .1007.如图,已知12∠=∠,那么添加下列一个条件后,仍无法判定ABC ADC △≌△的是( )A .CB CD = B .AB AD =C .BCA DCA ∠=∠D .B D ∠=∠ 8.如图,在四边形ABCD 中,AB CD ∥,AD BC ∥,BE 平分ABC ∠,交边AD 于点E ,过点A 作AF BE ⊥交DC 的延长线于点F ,交BC 于点G .图中一定是等腰三角形的有( )A .2个B .3个C .4个D .5个二、填空题9.已知点P 在线段AB 的垂直平分线上,P A =4cm ,则PB =cm .10.如图,在Rt ABC △中,90ACB ∠=︒,30A ∠=︒,若20AB =,则BC 的长为.11.如图,已知ABC DEF ≌△△,且60A ∠=︒,40B ∠=︒,则F ∠的度数为.12.等腰三角形的两边长分别为11和4,则第三边长为.13.如图、用尺规作一个已知角的角平分线的原理如下:依据判定CON △和COM △全等,进而得到AOC BOC ∠=∠.(从SSS,SAS,ASA,AAS,HL 中选择其一填空)14.将一张长方形纸片折叠成如图所示的图形,若6AB =,5BC =,则AC =.15.《九章算术》提供了许多勾股数如()3,4,5,()5,12,13等,其中一组勾股数中最大的数称为“弦数”.经研究,若m 是大于1的奇数,把它平方后拆成相邻的两个整数,则m 与这两个数组成勾股数;若m 是大于2的偶数,把它除以2后再平方,然后用这个平方数分别减1,加1,得到两个整数,则m 与这两个数组成勾股数.根据上面的规律,由12生成的勾股数的“弦数”是.16.在等腰ABC V 中,AB AC =,45A ∠=︒,D E 、两点分别是边AB AC 、上的动点,且2CE AD =,将线段DE 绕点D 顺时针旋转45︒得到线段DF ,连接CF BF 、,若6BC =,则当线段CF 取得最小值时,BFC △的面积为.三、解答题17.如图,在正方形网格中,每个小正方形的边长都是1.网格中有一个格点ABC V .(1)画出ABC V 关于直线MN 的对称图形111A B C △;(2)在直线MN 上找一点P ,使AP CP +的距离最短,在图中作出P 点的位置. 18.如图,AD 与BC 相交于点O ,OA OC =,A C ∠=∠,BE DE =.求证:(1)OB OD =;(2)OE 垂直平分BD .19.如图,,A B CE DA CE ∠=∠∥交AB 于点,60E BCE ∠=︒.求证:BCE V 是等边三角形20.古往今来,人们对勾股定理的证明一直保持着极大的热情.意大利著名画家达g 芬奇用如图所示的方法证明了勾股定理,其中图1的空白部分是由两个正方形和两个直角三角形组成,图2的空白部分由两个直角三角形和一个正方形组成.设图1中空白部分的面积为1S ,图2中空白部分的面积为2S .请利用达g 芬奇的方法证明勾股定理.21.如图,车高()2.4m 2.4m AC =,货车卸货时后面支架AB 弯折落在地面1A 处,经过测量11.2m AC =,求弯折点B 与地面的距离.22.如图,将ABC V 分割成四边形ABDE 和EDC △,90EDC ∠=︒,3DC =,5CE =,7BD =,8AB =,1AE =,求四边形ABDE 的面积.23.如图,在ABC V 中,AD 平分,BAC D ∠为BC 的中点.求证:AB AC =.小芳同学解题过程如下:解:D Q 为BC 的中点,DB DC ∴=.第一步AD Q 平分BAC ∠,BAD CAD ∴∠=∠.第二步AB AC ∴=.第三步(1)小芳同学解题过程中,出现错误的是第______步;(2)写出正确的解题过程.24.如图,在Rt ABC V 中,90ACB ∠=︒,8AC =,6BC =,将ABC V 扩充为等腰三角形ABD ,使扩充的部分是以AC 为直角边的直角三角形,请用尺规作图....画出图形,并求CD 的长.25.【问题背景】小明遇到这样一个问题:如图1,在Rt ABC V 中,90BAC ∠=︒,60C ∠=︒,AD 平分BAC ∠,试判断AB 和AC CD 、之间的数量关系.【初步探索】小明发现,将ACD V 沿AD 翻折,使点C 落在AB 边上的E 处,展开后连接DE ,则得到一对全等的三角形,从而将问题解决(如图2).(1)写出图2中全等的三角形;(2)直接写出AB 和AC CD 、之间的数量关系;【类比运用】(3)如图3,在ABC V 中,2C B ∠=∠,AD 平分CAB ∠,8AB =,5AD =,借鉴上述方法,求ACD V 的周长;【实践拓展】(4)如图4,在一块形状为四边形ABCD 的空地上,养殖场王师傅想把这块地用栅栏围成两个小型的养殖场,即图4中的ABC V 和ACD V ,若AC 平分BAD ∠,13m BC CD ==,20m AC =,11m AD =.请你帮王师傅算一下需要买多长的栅栏.26.定义:如图1,平面内有一点P 到ABC V 的三个顶点的距离分别为PA PB PC 、、,若有222PA PB PC +=,则称点P 为ABC V 关于点C 的勾股点.【知识感知】(1)如图2,在43⨯的方格纸中,每个小正方形的边长均为1,ABC V 的顶点在格点上,则123P P P 、、这三个点中是ABC V 关于点A 的勾股点的有______(填“12P P 、、3P”); (2)如图3,ABC V 为等腰直角三角形,P 是斜边BC 延长线上一点,连接AP ,以AP 为直角边作等腰直角APD △(点A P D 、、顺时针排列),90PAD ∠=︒,连接,DC DB ,求证:点P 为BDC V 关于点D 的勾股点;【知识应用】(3)如图4,在等腰三角形ABC 中,AB AC =,10BC =,作BC 边上的中线AO .点D 是AOC △外一点,且点C 是AOD △关于点A 的勾股点,12CD =,求OA 的长;【知识拓展】(4)如图5,ABC V 是等边三角形,点P 为平面内一点(不与点、、A B C 重合),当点P 是ABC V 关于点A 的勾股点时,请直接写出此时BPC ∠的度数.。
云南省昭通市昭阳区苏家院乡中学2020-2021学年八年级10月月考数学试题学校:___________姓名:___________班级:___________考号:___________一、单选题1.下列图形不具有稳定性的是()A.正方形B.等腰三角形C.直角三角形D.钝角三角形2.下列大学的校徽图案是轴对称图形的是()A.B.C.D.3.如图,以正方形ABCD的中心为原点建立平面直角坐标系,点A的坐标为(2,2),则点C的坐标为()A.(2,2)B.(﹣2,2)C.(﹣2,﹣2)D.(2,﹣2)4.若(x﹣2)(x+3)=x2+ax+b,则a,b的值分别为()A.a=5,b=﹣6 B.a=5,b=6 C.a=1,b=6 D.a=1,b=﹣6 5.若长方形的长为(4a2-2a +1) ,宽为(2a +1) ,则这个长方形的面积为()A.8a3-4a2+2a-1 B.8a3-1C.8a3+4a2-2a-1 D.8a3 +16.如图,五边形ABCDE 中,AB∥CD,则图中x 的值是()A .75°B .65°C .60°D .55°7.下列命题中,正确的是( )A .三角形的一个外角大于任何一个内角B .三角形的一条中线将三角形分成两个面积相等的三角形C .两边和其中一边的对角分别相等的两个三角形全等D .三角形的三条高都在三角形内部8.如图,已知ABC 中,90C ∠=︒,若沿图中虚线剪去C ∠,则12∠+∠等于( )A .90°B .135°C .270°D .315°9.等腰三角形两条边的长分别为5,2,则该等腰三角形的周长为( )A .9B .10C .12D .9或1210.等腰三角形的一个角是70°,则它的底角是( )A .70°B .70°或55°C .80°和100°D .110°11.如图,在∠AOB 的两边上,分别取OM=ON ,再分别过点M 、N 作OA 、OB 的垂线,交点为P ,画射线OP ,则OP 平分∠AOB 的依据是( )A .HLB .SASC .AASD .SSS12.如图,已知点B 、C 、D 在同一条直线上,△ABC 和△CDE 都是等边三角形.BE 交AC 于F ,AD 交CE 于G .则下列结论中错误的是( )A .AD =BEB .BE ⊥AC C .△CFG 为等边三角形D .FG ∥BC二、填空题13.若正多边形的一个外角等于36°,那么这个正多边形的边数是________.14.若点 A (3,﹣2)与点 B 关于 y 轴对称,则点 B 的坐标为_____.15.若圆形的半径为 (2a +1) ,则这个圆形的面积为_____.16.如图所示,把一张长方形纸片沿EF 折叠后,点D C ,分别落在点D C '',的位置.若65EFB ︒∠=,则AED '∠等于________.17.一个多边形切去一个角后,形成的另一个多边形的内角和为1 080°,那么原多边形的边数为________.18.如图,AC BC =,ACB 90∠=,AE 平分BAC ∠,BF AE ⊥,交AC 延长线于F ,且垂足为E ,则下列结论:AD BF ①=; BF AF =②; AC CD AB +=③,AB BF =④;AD 2BE.⑤=其中正确的结论有______.(填写序号)三、解答题19.化简(1)(a-2b)(a+2b +1) (2)4(a 2-a+2)-(2a-1)220.如图,在平面直角坐标系xOy 中,A (1,2),B (3,1),C (﹣2,﹣1).(1)在图中作出△ABC 关于x 轴的对称图形△A 1B 1C 1.(2)写出点A 1,B 1,C 1的坐标(直接写答案)A 1________B 1________C 1________(3)求△ABC 的面积.21.如图,点O 是线段AB 和线段CD 的中点.(1)求证:△AOD ≌△BOC ;(2)求证:AD ∥BC .22.已知:△ABC 中, ∠A=105° , ∠B-∠C=15° ,求∠B、∠C 的度数.23.如图,在△ABC 和ADEF 中,点B ,E ,C ,F 在同一直线上,AB= DE ,BE= CF ,AB // DE.求证△ABC ≌△DEF.24. 已知32(34)x mx n x x ++-+()的计算结果中不含3x 和2x 项(1)求m 、n 的值(2)当m 、n 取第(1)小题的值时,化简并求(m+n )22m mn n -+()的值 25.如图,在△ABC 中,点D 是BC 边上的一点,∠B=50°,∠BAD=30°,将△ABD 沿AD 折叠得到△AED ,AE 与BC 交于点F .(1)填空:∠AFC=______度;(2)求∠EDF 的度数.参考答案1.A【解析】【分析】三角形具有稳定性,其它多边形不具有稳定性.【详解】解:根据三角形的稳定性可得,B、C、D都具有稳定性,不具有稳定性的是A选项,故选A.【点睛】本题主要考查三角形稳定性,解决本题的关键是要熟练掌握三角具有稳定性,四边形不具有稳定性.2.B【分析】根据轴对称图形的概念对各选项分析判断即可得解.【详解】解:A、不是轴对称图形,故本选项错误;B、是轴对称图形,故本选项正确;C、不是轴对称图形,故本选项错误;D、不是轴对称图形,故本选项错误.故选:B.【点睛】本题考查了轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.3.C【解析】A,C点关于原点对称,所以,C点坐标是(-2,-2)选C.4.D【分析】等式左边利用多项式乘多项式法则计算,再利用多项式相等的条件求出a与b的值即可.【详解】解:∵(x﹣2)(x+3)=x2+x﹣6=x2+ax+b,∴a=1,b=﹣6,故选:D.【点睛】此题考查了多项式乘多项式以及多项式相等的条件,熟练掌握运算法则是解本题的关键.5.D【分析】利用长方形的面积等于长乘以宽,然后再根据多项式乘多项式的法则计算即可.【详解】解:根据题意,得S长方形=(4a2-2a+1)(2a+1)=8a3+1.故选D.【点睛】本题主要考查多项式乘以多项式运算,解决本题的关键是要熟练掌握多项式乘法法则. 6.A【分析】先根据平行线的性质求得∠B的值,再根据多边形内角和定理即可求得∠E的值即可.【详解】解:∵AB∥CD,∴∠B=180°-∠C=180°-60°=120°,∵五边形ABCDE内角和为(5-2)×180°=540°,∴在五边形ABCDE中,∠E=540°-135°-120°-60°-150°=75°.故图中x的值是75.故选A.【点睛】本题主要考查了平行线的性质,多边形内角和定理,解决本题的关键是对基础知识的熟练掌握及综合运用.7.B【解析】试题分析:A、当钝角三角形时,钝角的外角就小于内角;C、当两条边和两边的夹角对应相等的时候,两个三角形全等;D、当三角形为直角三角形时,其中有两条高在三角形上. 考点:三角形的性质.8.C【分析】如图(见解析),先根据三角形的外角性质可得13C ∠=∠+∠,再根据邻补角的定义即可得.【详解】如图,由三角形的外角性质得:13903C ∠=∠+∠=︒+∠,23180∠+∠=︒,12290180270903∠+∠=+∠=︒+︒=∴︒+∠︒,故选:C .【点睛】本题考查了三角形的外角性质、邻补角,熟练掌握三角形的外角性质是解题关键. 9.C【解析】试题分析:当三角形的腰长为2时,则2、2、5无法构成三角形;当三角形的腰长为5时,则三角形的三边长分别为5、5、2,则周长为12,故选择C .点睛:本题主要考查的就是三角形的三边关系和等腰三角形的性质,属于简单题型.对于解等腰三角形的题目时,我们要时刻牢记是否需要进行分类讨论,告诉我们两边时,我们需要对这两边是腰长还是底边进行分类;如果出现腰上的高线时,我们要注意高线是在三角形内部还是在三角形外部等等,总之,看到等腰三角形我们就要考虑全面一点.10.B【解析】试题解析:分类讨论:当70是底角的时候,另一个底角也是70.当70是顶角的时候,底角()18070255.=-÷=故选B.11.A【分析】利用判定方法“HL ”证明Rt △OMP 和Rt △ONP 全等,进而得出答案.【详解】解:在Rt △OMP 和Rt △ONP 中,OM ON OP OP =⎧⎨=⎩, ∴Rt △OMP ≌Rt △ONP (HL ),∴∠MOP=∠NOP ,∴OP 是∠AOB 的平分线.故选择:A.【点睛】本题考查了全等三角形的应用以及基本作图,熟练掌握三角形全等的判定方法并读懂题目信息是解题的关键.12.B【解析】试题解析:A.ABC 和CDE △均为等边三角形,60AC BC EC DC ACB ECD ∴==∠=∠=︒,,,在ACD 与BCE 中,{AC BCACD BCE CD CF =∠=∠=,ACD BCE ∴≌,AD BE ∴=,正确.B .据已知不能推出F 是AC 中点,即AC 和BF 不垂直,所以AC BE ⊥错误,故本选项符合题意.C.CFG 是等边三角形,理由如下:180606060ACG BCA ∠=︒-︒-︒=︒=∠,ACD BCE ≌,CBE CAD ∴∠=∠,在ACG和BCF中,{CAG CBF AC BCBCF ACG∠=∠=∠=∠,ACG BCF∴≌,CG CH∴=,又∵∠ACG=60°CFG∴是等边三角形,正确.D.CFG是等边三角形,60CFG ACB∴∠︒=∠﹦,.FG BC∴正确.故选B.13.十【分析】根据正多边形的外角和为360°,除以每个外角的度数即可知.【详解】解:∵正多边形的外角和为360°,∴正多边形的边数为360=10 36,故答案为:十.【点睛】本题考查了正多边形的外角与边数的关系,解题的关键是熟知正多边形外角和等于每个外角的度数与边数的乘积.14.(-3,-2).【分析】根据关于y轴对称的点,纵坐标相同,横坐标互为相反数解答.【详解】解:∵点A(3,-2)与点B关于y轴对称,∴点B的坐标为(-3,-2).故答案为:(-3,-2).【点睛】本题考查了关于x轴、y轴对称的点的坐标,解决本题的关键是掌握好对称点的坐标规律. 15.4πa2+4πa+π【分析】依据圆面积计算公式列式,再根据多项式乘法法则计算即可得到结果.【详解】解:∵圆形的半径为(2a+1),∴这个圆形的面积为:π×(2a+1)2=π×(4a2+4a+1)=4πa2+4πa+π,故答案为:4πa2+4πa+π.【点睛】本题主要考查了圆面积的计算公式以及完全平方公式的运用,解题时注意正确运用:(a+b)2=a2+2ab+b2.16.50°【分析】先根据平行线的性质得出∠DEF的度数,再根据翻折变换的性质得出∠D′EF的度数,根据平角的定义即可得出结论.【详解】∵AD∥BC,∠EFB=65°,∴∠DEF=65°,又∵∠DEF=∠D′EF,∴∠D′EF=65°,∴∠AED′=50°.【点睛】本题考查翻折变换(折叠问题)和平行线的性质,解题的关键是掌握翻折变换(折叠问题)和平行线的性质.17.7或8或9【解析】【分析】首先求得内角和为1080°的多边形的边数,即可确定原多边形的边数.【详解】解:设内角和为1080°的多边形的边数是n,则(n-2)•180°=1080°,解得:n=8.则原多边形的边数为7或8或9.故答案是:7或8或9.【点睛】本题考查了多边形的内角和定理,一个多边形截去一个角后它的边数可能增加1,可能减少1,或不变.18.①③⑤【分析】根据∠ACB=90°,BF⊥AE,得出∠ACB=∠BED=∠BCF=90°,推出∠F=∠ADC,证△BCF≌△ACD,根据全等三角形的性质即可判断①②;假如AC+CD=AB,求出∠F+∠FBC≠90°,和已知矛盾,即可判断③④,证根据全等三角形的判定ASA得出△BEA≌△FEA,推出BE=EF,即可判断⑤.【详解】解:∵∠ACB=90°,BF⊥AE,∴∠ACB=∠BED=∠BCF=90°,∴∠F+∠FBC=90°,∠BDE+∠FBC=90°,∴∠F=∠BDE,∵∠BDE=∠ADC,∴∠F=∠ADC,∵AC=BC,∴△BCF≌△ACD,∴AD=BF,∴①正确;②错误;∵△BCF≌△ACD,∴CD=CF,∴AC+CD=AF,假如AC+CD=AB,∴AB=AF,∴∠F=∠FBA=65°,∴∠FBC=65°﹣45°=20°,∴∠F+∠FBC≠90°,∴③错误;④错误;由△BCF≌△ACD,∴AD=BF,∵AE平分∠BAF,AE⊥BF,∴∠BEA=∠FEA=90°,∠BAE=∠FAE,∵AE=AE,∴△BEA≌△FEA,∴BE=EF,∴⑤正确;故答案为①③⑤.【点睛】本题主要考查对三角形的内角和定理,全等三角形的性质和判定,角平分线的定义,垂线,等腰三角形的性质和判定等知识点的理解和掌握,综合运用这些性质进行证明是证此题的关键.19.(1)a2+a-4b2-2b;(2)7.【分析】(1)根据多项式乘多项式法则展开后,合并同类项可得;(2)根据单项式乘多项式和完全平方公式将原式展开,再去括号、合并同类项即可得.【详解】解:(1)原式=a2+2ab+a-2ab-4b2-2b=a2+a-4b2-2b;(2)原式=4a2-4a+8-(4a2-4a+1)=4a2-4a+8-4a2+4a-1 =7.【点睛】本题主要考查整式的混合运算,解题的关键是掌握多项式乘多项式、单项式乘多项式法则和完全平方公式.20.(1)如图:(2)(1,-2),(3,-1),(-2,1)(3)4.5【分析】分别作出点A,B,C关于x轴的对称点,再顺次连接起来,即可;根据所作的图形,即可;利用割补法即可求解.【详解】(1)如图:∴△A1B1C1即为所求;(2)由上图可知:A1,B1,C1的坐标分别为:(1,-2),(3,-1),(-2,1)S=⨯-⨯÷-⨯÷-⨯÷=(3)35332122522 4.5ABC【点睛】根据题意画出对称点,然后作出对称三角形,注意,在方格纸中求三角形的面积,一般要用割补法进行求解,比较方便.21.详见解析.【解析】试题分析:(1)由点O是线段AB和线段CD的中点可得出AO=BO,CO=DO,结合对顶角相等,即可利用全等三角形的判定定理(SAS)证出△AOD≌△BOC;(2)结合全等三角形的性质可得出∠A=∠B,依据“内错角相等,两直线平行”即可证出结论.试题解析:证明:(1)∵点O是线段AB和线段CD的中点,∴AO=BO,CO=DO.在△AOD和△BOC中,∵AO=BO,∠AOD=∠BOC,CO=DO,∴△AOD≌△BOC(SAS).(2)∵△AOD≌△BOC,∴∠A=∠B,∴AD∥BC.22.∠A=30°;∠B=45°【解析】【详解】试题分析:根据三角形的内角和定理得∠A+∠B+∠C=180°,再把∠A=105°,∠B=∠C+15°代入可计算出∠C ,然后计算∠B 的度数.试题解析:∵∠A+∠B+∠C=180°, 而∠A=105°,∠B=∠C+15°, ∴105°+∠C+15°+∠C=180°, ∴∠C=30°, ∴∠B=∠C+15°=30°+15°=45°. 23.详见解析.【分析】根据AB ∥DE 可得∠B =∠DEF ,由BE =CF 可得BC =EF ,然后利用SAS 即可证明△ABC ≌△DEF .【详解】证明:∵AB // DE ,∴∠B=∠DEF.∵BE =CF ,∴BE + EC=FC+ EC.即BC= EF.在△ABC 和△DEF 中,AB DE B DEF BC EF =⎧⎪∠=∠⎨⎪=⎩∴△ABC ≌△DEF(SAS).【点睛】本题考查了全等三角形的判定,判定两个三角形全等的一般方法有:SSS 、SAS 、ASA 、AAS 、HL .24.(1)m=-4,n=-12 (2)-1792【分析】(1)原式利用多项式乘以多项式法则计算,根据结果中不含3x 和2x 项,求出m 与n 的值即可;(2)先利用多项式乘以多项式的法则将()()22m n m mn n +-- 展开,再合并同类项化为最简形式,然后将(1)中所求m 、n 的值代入计算即可.【详解】(1)原式=()()()5432343434x x m x n m x m n x n -+++-+-+ 由展开式不含3x 和2x 项,得到4030m n m +=⎧⎨-=⎩ 解得:m=-4,n=-12(2)当m=-4,n=-12时,原式=322223+m m n mn m n mn n -++-=33m n +当m=-4,n=-12时,=()()33-4+-12=-64-1728=-1792【点睛】本题考查多项式乘多项式,熟练掌握计算法则是解题关键.25.(1)1100;(2)200【分析】(1)根据折叠的特点得出∠BAD=∠DAF ,再根据三角形一个外角等于它不相邻两个内角之和,即可得出答案;(2)根据已知求出∠ADB 的值,再根据△ABD 沿AD 折叠得到△AED ,得出∠ADE=∠ADB ,最后根据∠EDF=∠EDA+∠BDA ﹣∠BDF ,即可得出答案.【详解】解:(1)∵△ABD 沿AD 折叠得到△AED ,∴∠BAD=∠DAF ,∵∠B=50°∠BAD=30°,∴∠AFC=∠B+∠BAD+∠DAF=110°;故答案为110.(2)∵∠B=50°,∠BAD=30°,∴∠ADB=180°﹣50°﹣30°=100°,∵△ABD沿AD折叠得到△AED,∴∠ADE=∠ADB=100°,∴∠EDF=∠EDA+∠BDA﹣∠BDF=100°+100°﹣180°=20°.【点睛】本题考查的三角形内角和定理;三角形的外角性质;翻折变换(折叠问题),解答的关键是灵活运用外角与内角的联系.。