辽宁省锦州市黑山县黑山中学2019-2020学年高一下学期线上教学检测数学试题
- 格式:docx
- 大小:109.63 KB
- 文档页数:4
辽宁省锦州市2019-2020年度高一下学期期中数学试卷D卷姓名:________ 班级:________ 成绩:________一、选择题 (共10题;共20分)1. (2分) (2017高一下·邯郸期末) 平面上有四个互异的点A,B,C,D,已知()=0,则△ABC的形状为()A . 直角三角形B . 等腰三角形C . 等腰直角三角形D . 等边三角形2. (2分)如图所示,函数f(x)=sin(ωx+φ)(ω>0,|φ|<)的图象与二次函数y=﹣ x2+ x+1的图象交于A(x1 , 0)和B(x2 , 1),则f(x)的解析式为()A . f(x)=sin( x+ )B . f(x)=sin( x+ )C . f(x)=sin( x+ )D . f(x)=sin( x+ )3. (2分)已知=(4,1),=(-1,K)若A,B,C三点共线,则实数k的值为()A . 4B . -4C . -D .4. (2分)已知tanθ=2,则的值为()A . 2B . ﹣2C . 0D .5. (2分)已知双曲线的离心率为.若抛物线的焦点到双曲线的渐近线的距离为,则抛物线的方程为()A .B .C .D .6. (2分)已知点P(x,y)为圆x2+y2=1上的动点,则3x+4y的最小值为()A . 5B . 1C . 0D . -57. (2分)(2017·辽宁模拟) 直线ax+by+1=0与圆x2+y2=1相切,则a+b+ab的最大值为()A . 1B . ﹣1C . +D . +18. (2分) (2019高一下·上海月考) 下列三个命题:①存在实数,使得成立;②存在实数,使成立;③若,则 .其中正确命题是()A . ①和②B . ②和③C . 仅有②D . 仅有③9. (2分)函数的图像与函数的图像所有交点的横坐标之和等于()A . 2B . 3C . 4D . 610. (2分) (2019高三上·日照期中) 已知函数若函数有三个零点,则实数b的取值范围为()A .B .C .D .二、填空题 (共5题;共6分)11. (2分) (2017高一下·新余期末) 弧长为3π,圆心角为135°的扇形半径为________,面积为________.12. (1分) (2016高三上·江苏期中) 若tanβ=2tanα,且cosαsinβ= ,则sin(α﹣β)的值为________.13. (1分) (2016高一下·大丰期中) 在平面直角坐标系xOy中,圆C的方程为x2+y2﹣8x+15=0,若直线y=kx﹣2上至少存在一点,使得以该点为圆心,1为半径的圆与圆C有公共点,则k的最大值是________.14. (1分) (2016高二上·扬州开学考) 设函数y=sinωx(ω>0)在区间上是增函数,则ω的取值范围为________.15. (1分)(2017·南通模拟) 如图,在平面四边形中,为的中点,且OA=3,OC=5.若,则的值是________三、解答题 (共5题;共50分)16. (10分) (2019高一上·双鸭山期末) 函数 = 的部分图像如图所示.(1)求函数的单调递减区间;(2)将的图像向右平移个单位,再将横坐标伸长为原来的倍,得到函数 ,若在上有两个解,求的取值范围.17. (10分)如图,已知过点的光线,经轴上一点反射后的射线过点 .(1)求点的坐标;(2)若圆过点且与轴相切于点,求圆的方程.18. (15分)如图,已知O、A、B、C、D、E、F、G、H为空间的9个点,且,,,,,, .求证:(1) A、B、C、D四点共面,E、F、G、H四点共面;(2);(3) .19. (10分) (2016高一上·周口期末) 已知圆M过两点A(1,﹣1),B(﹣1,1),且圆心M在直线x+y﹣2=0上.(1)求圆M的方程.(2)设P是直线3x+4y+8=0上的动点,PC、PD是圆M的两条切线,C、D为切点,求四边形PCMD面积的最小值.20. (5分) (2016高一下·枣阳期中) 若函数f(x)= x+m在区间上的最小值为3,求常数m的值及此函数当x∈[a,a+π](其中a可取任意实数)时的最大值.参考答案一、选择题 (共10题;共20分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、二、填空题 (共5题;共6分)11-1、12-1、13-1、14-1、15-1、三、解答题 (共5题;共50分) 16-1、16-2、17-1、17-2、18-1、18-2、18-3、19-1、19-2、20-1、。
辽宁省锦州市黑山县黑山中学2019-2020学年高一物理下学期线上教学检测试题(含解析)(考试时间:90分钟)一、选择题(本大题共12小题,每小题4分,共计48分。
其中下1-8题为单项选择,9-12题为多项选择。
选对得4分,选对但不全得2分,有选错的得0分)1.下列关于曲线运动的说法正确的是()A. 物体所受合外力一定不为零,其大小方向都在不断变化B. 曲线运动一定是变速运动,且速度的大小和方向都在不断变化C. 做曲线运动的物体,其速度方向与加速度方向不在同一条直线上D. 做直线运动的物体,其速度方向与加速度方向不在同一条直线上【答案】C【解析】【详解】A.物体做曲线运动的条件是合力与速度不在同一条直线上,因此合外力不可能为零,但其大小和方向都可以保持不变,即可以为恒力,例如平抛运动,故A错误;B.曲线运动的速度方向必然改变,因此属于变速运动,但大小不一定改变,例如匀速圆周运动,故B错误;C.物体做曲线运动的条件是合力与速度不在同一条直线上,根据牛顿第二定律可知加速度方向与合外力方向相同,即其速度方向与加速度方向不在同一条直线上,故C正确;D.如果速度方向与加速度方向不在同一条直线上,那么物体将做曲线运动,故D错误。
故选C。
2.铁路在弯道处的内外轨道高度是不同的,已知内外轨道平面对水平面倾角为θ,如图所示,弯道处的圆弧半径为R,若质量为m的火车转弯时速度大于tangRθ,则()A. 内轨对内侧车轮轮缘有挤压B. 外轨对外侧车轮轮缘有挤压C. 内轨和外轨对车轮边缘均不挤压D. 这时铁轨对火车的支持力等于cos mgθ【答案】B 【解析】【详解】ABC .假设火车以某一速度v 通过弯道,内外轨道均不受侧压力作用,其所受的重力和支持力的合力提供向心力,由图可得tan F mg θ=合合外力等于向心力,因此又有2tan v mg m Rθ=解得v =即当v =>v 时,重力和支持力的合力不够提供向心力,则火车拐弯会挤压外轨,故AC 错误,B 正确; D .当内外轨没有挤压力时,受重力和支持力,此时cos mgN θ=由于外轨对火车的作用力沿轨道平面,可以把这个力分解为水平和竖直向下两个分力,由于竖直向下的分力的作用,使支持力变大,即此时铁轨的对火车的支持力大于cos mgθ,故D 错误。
辽宁省锦州市黑山中学2019-2020学年高一英语下学期线上教学检测试题考试时间:100分钟;满分:150分注意:本试卷包含Ⅰ、Ⅱ两卷。
第Ⅰ卷为选择题,所有答案必须用2B铅笔涂在答题卡中相应的位置。
第Ⅱ卷为非选择题,所有答案必须填在答题卷的相应位置。
答案写在试卷上均无效,不予记分。
第I卷听力(略)第一部分:阅读理解(共两节,满分35分)第一节(共10小题;每小题2.5分,满分25分)阅读下列短文,从每题所给的四个选项(A、B、C和D)中,选出最佳选项。
ABeijing, with co-host Zhangjiakou in Hebei Province, will hold the 2022 Winter Olympics. That will benefit the capital as well as its residents, so the below are something to be expected from the Winter Olympic Games.Blue SkiesIt is highly expected that hosting the Winter Olympic Games will push Beijing to reduce pollution and improve the air quality more effectively.Beijing began carrying out a five-year plan from 2013 that cost 130 billion US dollars to upgrade heating systems, cut car emissions and close heavy-polluting plants. Such efforts will not only be made in Beijing but in neighboring Hebei and Tianjin as well.TransportationAlthough Beijing is the host city of the 2022 Winter Olympic Games, Chongli county of Zhangjiakou in Hebei will host some of the snow events.The capital region is likely to benefit from investments in infrastructure (基础设施), including the Beijing-Zhangjiakou intercity (城市间的) railways, expansion of Beijing subway systems, upgraded highway networks and another regional airport.Winter SportsBeijing's vision is to develop a winter sports market for more than 300 million people in northern China.China plans to reuse 11 of 12 venues (场馆) built for the 2008 Olympics and only needs to build a new rink for speed skating, effectively easing possibleTransformationOn the back of the Winter Olympics, the Beijing government is looking at hopeful sports-related industry as a new growth driver to power its economy.The goal is to integrate (结合) the Winter Olympic Games with sustainable (可持续的) development plans for the wider region, focusing on clean energy, green technology, and improvement in ecology and air quality.TourismThe country's plans to develop a winter sports industry will improve Zhangjiakou’s reputation as a tourist destination by upgrading its transportation system and facilities, such as hotels and restaurants.21. What can be a suitable title for the text?A. How Important the 2022 Winter Olympics is.B. What Have Been Done for the 2022 Winter Olympics.C. When and Where to Hold the 2022 Winter Olympics.D. What to Be Expected from the 2022 Winter Olympics.22.What does the underlined word “idle”probably mean in the text?A. LazyB. Not in use.C. Not seriousD. Not working hard.23. Which is NOT the benefit of hosting the 2022 Winter Olympic Games?A. Air quality will be improved.B. Transportation will be more convenient.C. Winter sports will be popular across China.D. The winter sports industry will help attract tourists.24. “By 2025, around 600,000 new jobs will appear.” can be an example for _____.A. TransportationB. Winter sportsC. TransformationD. TourismBI had an old neighbor, a doctor named Gibbs. When Doctor Gibbs wasn't saving lives, he was planting trees.He had some interesting theories about planting trees. He hardly watered his new trees.Once I asked why and he told me that watering plants damaged them because it made them grow weaker. He said he had to make things difficult for the trees so that only the strongest could survive. He talked about how watering trees made them develop shallow roots and how, if they were not watered, trees would grow deep roots in search of water.So, instead of watering his trees every morning, he'd beat them with a rolled up newspaper. I asked him why he did that, and he said it was to get the trees' attention.Doctor Gibbs died a couple of years after I left home. Sometimes I walked by his house and looked at the trees I'd watched him plant 25years ago. They were tall and strong.I planted several trees myself a few years ago. Two years of caring for these trees meant they grew up weakly.Whenever a cold wind blew,my treesease never could.Every night before I go to bed,I check on my two sons.I often pray that their lives will be easy.But lately I've been thinking that it's time to change my prayer.I know my children are going to experience difficulties.There's always a cold wind blowing somewhere.What we need to do is to pray for deep roots, sowhen the rains fall and the winds blow, we won't be torn apart.25. How did the author feel about Doctor Gibbs's planting trees at first?A. Great.B. ImpracticalC. shockedD. Puzzled26. What did Doctor Gibbs do to the trees he planted? ______A. He let them grow quickly.B. He beat them to get their attention.C. He helped them search for water.D. He read a newspaper near them.27. What does the word "Adversity" in paragraph 5 mean? ______A. Bad weather.B. A shortage of water.C. Enough care or attention.D. Difficult living conditions.28. What does the author learn from Doctor Gibbs?A. Elders are treasures.B. Two heads are better than one.C. No pain, no gain.D. Only those who bear the most become the highest.CWould you like to be a king or queen? To have people waiting on you hand and foot? Many Americans experience this royal (王室的)treatment every day. How? By being customers (顾客),The American idea of customer service is to make each customer the center of attention. Need proof? Just listen to the advertisements. Most of them sound like the M cDonald‘s ad: We do it all for you.” Actually, not all stores in America roll out the red carpet (地毯)for their customers. But wherever you go,good customer service means making customers feel special.People going shopping in America can expect to be treated with respect from the very beginning. Most places don’t have a“furniture street”or a“computer road” which allow you to compare prices easily. Instead, people often use thetelephone and “let their fingers do the walking” through the Yellow Pages. FromThe Contact for the first time can help them decide where to shop.When customers get to the store, they are treated as honored guests. Customers don‘t usually find store clerks sitting around watching TV or playing cards. Instead, the clerks greet them warmly and offer to help them find what they want. In most stores, the signs that label each department make shopping very easy. Customers usually don’t have to ask how much items cost, since prices are clearly marked. And unless they’re at a flea market (跳蚤市场)or a yard sale,they don’t bother trying to bargain (讨价还价).When customers are ready to check out,they find the nearest and shortest checkout way. Good stores open new checkout ways when the ways get too long. Some even offer express ways for customers with 10 items or less. After they pay for their purchases,customers receive a smile and a warm“thank you”from the clerk. Many stores even allow customers to take their shopping bags out to the parking place. That way, they don't have to carry heavy bags out to the car.29. We can learn from the first paragraph that customers in America ________ .A. are kings or queens from different countriesB. are the God in the customer serviceC. are served with red carpet everywhereD. are treated in different ways30. The underlined word“courteous”in Paragraph 2 is closest in meaning to “________”A. VariousB. loyalC. specialD. polite第二节:阅读七选五(共5小题:每小题2分,满分10分)根据短文内容,从短文后的选项中选出能填入空白处的最佳选项。
辽宁省锦州市黑山县黑山中学2019-2020学年高一数学6月质量检测试题注意事项:1.答题前填写好自己的姓名、班级、考号等信息 2.请将答案正确填写在答题卡上 第I 卷(选择题)请点击修改第I 卷的文字说明评卷人 得分一、选择题(本题共12道小题,每小题5分,共60分)1.复数2i i 在复平面内对应的点位于( )A. 第一象限B. 第二象限C. 第三象限D. 第四象限 2. sin225°的值为( )A. 2-B.2C. D.3.函数()2cos2f x x =的最小正周期是( ) A.4π B.2π C. πD. 2π4.已知3cos 25πα⎛⎫-= ⎪⎝⎭,则cos α=( )A.35 B. 45-C.45D.45± 5.在△ABC 中,2a =,3b =,则sin :sin A B 的值是( )A.23B.32C.25 D.526.在△ABC 中,角A 、B 的对边分别为a 、b ,根据下列条件解三角形,其中有两解的是( )A. 50a =,30b =,60A =B. 30a =,65b =,30A =C. 30a =,60b =,30A =D. 30a =,50b =,30A =7.已知1a =,=(0,2)b ,且1a b ⋅=,则向量a 与b 夹角的大小为( )A.6π B.4π C.3π D.2π 8.在△ABC 中,60A ︒∠=,||2AB =,||1CA =,则AB CA ⋅的值为( )A. -1B. 12-C.12D. 1 9.已知12,e e 是单位向量,若12|4|13e e -=则1e 与2e 的夹角为( )A. 30°B. 60°C. 90°D.120°10.已知函数()sin()f x x ωϕ=+(0>ω,0ϕπ<<)的最小正周期为π,且图象向右平移6π个单位后得到函数()cos g x x ω=的图象,则ϕ=( )A. 6π B.3π C.23π D.56π11.已知函数()sin f x a x x =-的图像的一条对称轴为直线56x π=,且12()()4f x f x ⋅=-,则12x x +的最小值为( )A. 3π-B. 0C.3π D.23π 12.在△ABC 中,内角A 、B 、C 所对的边分别为a 、b 、c ,已知23C π=,sin 3sin B A =,若△ABC 的面积为,则c =( )A. B.C. D.第II 卷(非选择题)评卷人 得分二、填空题(本题共4道小题,每小题5分,共20分)13.若复数()13z i i +=-,则z =______.14.在△ABC 中,内角A 、B 、C 的对边分别是a 、b 、c ,若223a b bc -=,sin 23sin C B =,则A =____.15.已知a →,b →为单位向量,2c a b →→→=-,且,3a b π→→<>=,则,a c →→〈〉=________.16.如图,在边长为2的菱形ABCD 中60BAD ∠=,E 为CD 中点,则AE BD ⋅= 、评卷人 得分三、解答题(共6道小题,第17题10分,其它各题每题12分)17.已知z 为复数,2z i +和2zi-均为实数,其中i 是虚数单位.(1)求复数z 和z ;(2)若11712z z i m m =+--+在第四象限,求m 的取值范围.18.已知函数f (x )=2sin x cos x +32x 3 (1)求函数f (x )的最小正周期和单调减区间;(2)已知△ABC 的三个内角A ,B ,C 的对边分别为a ,b ,c ,其中a =7,若锐角A 满足π26A f ⎛⎫-= ⎪⎝⎭,且sin sin B C +=bc 的值.19.在△ABC 中,a 、b 、c 是角A 、B 、C 所对的边,且()2cos cos 0a b C c A -+=.(1)求C 的大小;(2)若2b =,c =AB 边上的高.20.已知2,1a b ==,a b 与的夹角为45°.(1)求a b 在方向上的投影; (2)求2a b +的值;(3)若向量()2-3a b a b λλ-与(的夹角是锐角,求实数λ的取值范围.21.已知函数()21cos 2cos f x x x x m =--+在R 上的最大值为3.(1)求m 的值及函数f (x )的单调递增区间;(2)若锐角△ABC 中角A 、B 、C 所对的边分别为a 、b 、c ,且()0f A =,求b c的取值范围.22.在△ABC 中,a ,b ,c 分别是角A ,B ,C 的对边,向量BA 与AC 的夹角的余弦值为13。
线上教学检测试卷数学(高二)试卷试卷总分:150分;考试时间:120分钟;命题人:学校:___________姓名:___________班级:___________考号:___________注意事项:1.答题前填写好自己的姓名、班级、考号等信息 2.请将答案正确填写在答题卡上一、选择题(本题共12道小题,每小题5分,共60分)1.下列求导计算正确的是( ) A. 2ln ln 1()'x x x x -= B. 22log (log )'e x x= C. 1(2)'2ln 2x x= D. (sin )'cos x x x = 2.已知函数f (x )=(2x -a )e x ,且f ′(1)=3e ,则曲线y = f (x )在x =0处的切线方程为( ) A. x -y+1=0 B. x -y -1=0 C. x -3y+1=0D. x +3y+1=03.现对某次大型联考的1.2万份成绩进行分析,该成绩ξ服从正态分布N (520, σ2),已知P (470≤ξ≤570)=0.8,则成绩高于570的学生人数约为( ) A. 1200B. 2400C. 3000D. 15004.袋中有10个大小相同但编号不同的球,6个红球和4个白球,无放回地依次摸出2个球,在第一次摸出红球的条件下,第二次也摸到红球的概率为( ) A.35B.25C.110D.595.已知曲线e ln x y a x x =+在点()1,ae 处的切线方程为2y x b =+,则( ) A. ,1a e b ==- B. ,1a e b == C. 1,1a e b -==D. 1,1a e b -==-6.有8件产品,其中4件是次品,从中有放回地取3次(每次1件),若X 表示取得次品的次数,则(2)P X ≤=( ) A. 38B.1314C.45D.787.已知随机变量X 的分布如下表所示,则()E X 等于( ) X -1 0 1 P 0.5 0.2 p 8.函数()262xf x x x e =-+的极值点所在的区间为( ) A. (0,1) B. (-1,0) C. (1,2)D. (-2,-1)9.如图是函数()y f x =的导函数()f x '的图象,则下面判断正确的是( )A. 在区间(-2,1)上f (x )是增函数B. 在(1,3)上f (x )是减函数C. 在(4,5)上f (x )是增函数D. 当4x =时, f (x )取极大值10.已知函数()2()x x f x e e x x R -=--∈,则不等式()2(1)10f x f x ++-≥的解集是( )A.[-2,1]B.[-1,2]C. (-∞,-1]∪[2,+∞)D. (-∞,-2]∪[1,+∞)11.若()32()61f x x ax a x =++++有极大值和极小值,则a 的取值范围是( )A.(-1,2)B. (-∞,-1)∪(2,+∞)C. (-3,6)D. (-∞,-3)∪(6,+∞)12.已知定义在R 上的函数()f x 的导函数为()f x ',且对任意x ∈R 都有()2f x '>,(1)3f =,则不等式()210f x x -->的解集为( ) A.(-∞,1)B. (1,+∞)C. (0,+∞)D. (-∞,0)第II 卷(非选择题)二、填空题(本题共4道小题,每小题5分,共20分)13.已知随机变量X 的分布列为P (X =k )=2ka(k =1,2,3,4),则a 等于_______. 14.设服从二项分布(),B n p 的随机变量ξ的期望与方差分别是15和454,则n =____,p =____. 15.已知曲线()(1)ln f x ax x =-在点(1,0)处的切线方程为1y x =-,则实数a 的值为 . 16.若x =1是函数f (x )=(x 2+ax -5)e x 的极值点,则f (x )在[-2,2]上的最小值为______.三、解答题(本题共6道小题,共70分)17.(本题10分)已知函数()32322,,12f x x x x x ⎡⎤=+++∈-⎢⎥⎣⎦. (1)求f (x )的单调区间; (2)求f (x )的最大值和最小值.18. (本题12分)已知函数3()32f x x ax =-+,曲线()y f x =在1x =处的切线方程为30x y m ++=.(Ⅰ)求实数a ,m 的值; (Ⅱ)求()f x 在区间[1,2]上的最值.19. (本题12分)已知函数()()22xf x x x e =-.(1)求曲线()y f x =在原点处的切线方程. (2)当2x ≤时,求函数()y f x =的零点个数;20. (本题12分)某超市在节日期间进行有奖促销,凡在该超市购物满200元的顾客,将获得一次摸奖机会,规则如下:一个袋子装有5只形状和大小均相同的玻璃球,其中两只是红色,三只是绿色,顾客从袋子中一次摸出两只球,若两只球都是红色,则奖励20元;共两只球都是绿色,则奖励10元;若两只球颜色不同,则不奖励.(1)求一名顾客在一次摸奖活动中获得20元的概率;(2)记X 为两名顾客参与该摸奖活动获得的奖励总数额,求随机变量X 的分布列和数学期望.21. (本题12分)某射手每次射击击中目标的概率是23,且各次射击的结果互不影响,假设这名射手射击3次. (1)求恰有2次击中目标的概率;(2)现在对射手的3次射击进行计分:每击中目标1次得1分,未击中目标得0分;若仅有2次连续击中,则额外加1分;若3次全击中,则额外加3分.记X 为射手射击3次后的总得分,求X 的概率分布列与数学期望()E X .22. (本题12分)已知函数2()2(1)2ln (0)f x x a x a x a =-++>(1)当1a =时,求曲线()y f x =在点(1,(1))f 处的切线方程; (2)求f (x )的单调区间;(3)若f (x )≤0在区间[1,e ]上恒成立,求实数a 的取值范围.高二数学试卷答案1.B2.B3.A4.D5.D6.D7.B8.A9.C 10.A 11.D 12.B 13.5由概率的基本性质知:41()k P X k ==⇒∑11321,522a a a a a+++== 14.6014【详解】由二项分布的性质:E (X )=np =15,D (X )=np (1﹣p )454= 解得p 14=,n =60 故答案为60 14. 15.21()ln ax f x a x x-'=+,(1)11f a '=-=,∴2a =. 16.-3e 【详解】,则,解得,所以,则.令,得或;令,得.所以在上单调递减;在上单调递增.所以.17.(1)见解析;(2)最大值为6,最小值为138. 【详解】(1) f′(x)=3x 2+4x +1=3(x +13)(x +1).由f′(x)>0,得x<-1或x>-13; 由f′(x)<0,得-1<x<-13.因此,函数f(x)在[-32,1]上的单调递增区间为[-32,-1],[-13,1],单调递减区间为[-1,-13]. (2)f(x)在x =-1处取得极大值为f(-1)=2; f(x)在x =-13处取得极小值为f(-13)=5027.又∵f(-32)=138,f(1)=6,且5027>138, ∴f(x)在[-32,1]上的最大值为f(1)=6,最小值为f 31328⎛⎫-=⎪⎝⎭.18.(Ⅰ)最大值为2-,最小值为2-(Ⅱ)最大值为-2,最小值为2-【详解】解:(Ⅰ)2()33f x x a '=-,∵曲线3()32f x x ax =-+在1x =处的切线方程为30x y m ++=,∴(1)333(1)333f a f a m =-=-⎧⎨=-=--'⎩解得2a =,0m =.(Ⅱ)由(Ⅰ)知,3()62f x x x =-+,则2()36f x x '=-,令()0f x '=,解得x =∴()f x 在上单调递减,在上单调递增,又(1)1623f =-+=-,3(2)26222f =-⨯+=-,3622f=-=-∴()f x 在区间[1,2]上的最大值为2-,最小值为2-19.(1)2y x =-(2)函数()y f x =零点个数为两个【详解】(1)由题意,函数()()22x f x x x e =-,则()()22xf x x e '=-,则()02f '=-,从而曲线()y f x =在原点处的切线方程为2y x =-.(2)由(1)知()()22xf x x e '=-,令()0f x '=得x x =从而函数()y f x =单调增区间为(,-∞,)+∞单调减区间为(,当x <()()220xf x x x e =->恒成立,所以在(,-∞上没有零点;当x <<时,函数在区间(单调递减,且()00f =,存在唯一零点;当x >)+∞递增,且()20f =,存在唯一零点.综上,当2x ≤时,函数()y f x =零点个数为两个. 20.(1)110;(2)见解析【详解】(1)记一名顾客摸球中奖20元为事件A从袋中摸出两只球共有:25C 种取法;摸出的两只球均是红球共有:22C 种取法()2225110C P A C ∴==(2)记一名顾客摸球中奖10元为事件B ,不中奖为事件C则:()2325310C P B C ==,()()()631105P C P A P B =--== 由题意可知,X 所有可能的取值为:0,10,20,30,40 则()()()9025P X P C P C ==⋅=;()()()910225P X P B P C ==⋅=; ()()()()()21202100P X P A P C P B P B ==⋅+⋅=;()()()330250P X P A P B ==⋅=; ()()()140100P X P A P A ==⋅= ∴随机变量X 的分布列为:()99213101020304010252510050100E X ∴=⨯+⨯+⨯+⨯+⨯= 21.(1)49;(2)()86=27E X【详解】(1)记“射手射击3次,恰有2次击中目标”为事件A , 因为射手每次射击击中目标的概率是23, 所以223224()1339P A C ⎛⎫⎛⎫=⨯⨯-= ⎪ ⎪⎝⎭⎝⎭;(2)由题意可得,X 的可能取值为0,1,2,3,6,321(0)1327P X ⎛⎫==-= ⎪⎝⎭;213222(1)1339P X C ⎛⎫==⨯⨯-= ⎪⎝⎭;2124(2)33327P X ==⨯⨯=,2211228(3)33333327P X ==⨯⨯+⨯⨯=,328(6)327P X ⎛⎫===⎪⎝⎭; 所以X 的分布列如下:X12 36P12729427827827因此,1248886()0123627927272727E X =⨯+⨯+⨯+⨯+⨯=. 22.(1)∵a =1,∴f (x )=x 2-4x +2lnx , ∴f ′(x )=(x>0),f (1)=-3,f ′(1)=0,所以切线方程为y =-3.(2)f ′(x )=(x>0),令f ′(x )=0得x 1=a ,x 2=1,当0<a<1时,在x ∈(0,a )或x ∈(1,+∞)时,f ′(x )>0,在x ∈(a ,1)时,f ′(x )<0,∴f (x )的单调递增区间为(0,a )和(1,+∞),单调递减区间为(a ,1);当a =1时,f ′(x )=≥0,∴f (x )的单调增区间为(0,+∞);当a>1时,在x ∈(0,1)或x ∈(a ,+∞)时,f ′(x )>0,在x ∈(1,a )时,f ′(x )<0,∴f (x )的单调增区间为(0,1)和(a ,+∞),单调递减区间为(1,a ).(3)由(2)可知,f (x )在区间[1,e]上只可能有极小值点,∴f (x )在区间[1,e]上的最大值必在区间端点取到,∴f (1)=1-2(a +1)≤0且f (e )=e 2-2(a +1)e +2a≤0,解得a≥.。
辽宁省六校协作体2019-2020学年下学期线上期中考试高一数学试题一、单选题:(每题4分,计40分) 1、计算4tan2cossin 2πππ++的值等于( )A .1B .2C .3D . 42、命题“x ∀,1cos sin ≥+x x ”的否定为( ) A .x ∀,1cos sin <+x x B .x ∀,1cos sin ≤+x x C .x ∃,1cos sin ≥+x x D .x ∃,1cos sin <+x x3、若向量BA →=(2,3),CA →=(4,7),则BC →等于( )A .(-2,-4)B .(2,4)C .(6,10)D .(-6,-10)4、角α的终边经过)4,3(-P ,那么角α可以是( )A .54arcsin B .)53arccos(- C .53arccos 2+πD . )34arctan(- 5、某单位青年、中年、老年职员的人数之比为10∶8∶7,从中抽取200名职员作为样本,若每人被抽取的概率是0.2,则该单位青年职员的人数为( ) A .280 B .320 C .400 D .10006、样本数据1021,,x x x Λ的标准差为2,那么12,12,121021---x x x Λ标准差为( ) A .16 B .8 C .4 D .27、函数)sin()(ϕω+=x x f )0,0(πϕω<<>在某个周期内的递减区间为]3,6[ππ-那么ϕω,的值分别为( ) A .65,2πϕω== B .6,2πϕω== C .3,21πϕω==D .32,21πϕω== 8、1cos =a ,1sin =b ,1tan =c ,那么a ,b ,c 的大小关系为( ) A .c b a >> B .a b c >> C .a c b >> D .b a c >>9、ABC ∆中090,2,3A AB AC ∠===,设P Q 、满足AP AB λ=u u u r u u u r ,(1)AQ AC λ=-u u u r u u u r,R λ∈,若1BQ CP ⋅=u u u r u u u r,则λ=( )A .31 B .32 C . 34D .210、函数⎪⎩⎪⎨⎧-=x x x f 2sin )(π)40()0(<≤<x x ,方程m x f =)(有三个根321,,x x x ,那么321x x x ++取值范围是( )A .)1,0(B .)2,1(C .)3,1(D .)4,3(多选题:(每题有多个答案,选对一个得2分,多选或不选不得分,全部选对得4分,计12分) 11、已知函数)321sin()(π-=x x f ,那么下列式子恒成立的是( )A . )2()2(ππ-=+x f x fB . )()310(x f x f =-πC .)()65(x f x f =-π D . )()35(x f x f -=-π12、C ∆AB 是边长为2的等边三角形,已知向量a r ,b r 满足2a AB =u u u r r ,C 2a b A =+u u u r rr ,则下列结论正确的是( )A .1= B . b a ⊥ C . 1-=⋅b a D . ()4C a b +⊥B u u u r rr13、如图,矩形ABCD 中,AD AB 2=,E 为边AB 的中点,将ADE ∆沿直线DE 翻转成DE A 1∆(∉1A 平面ABCD ),若O M ,分别为线段DE C A ,1翻转过程中,下列说法正确的是( )A .与平面DE A 1垂直的直线必与直线MB 垂直 B .BM E A //1C .存在某个位置,使MO DE ⊥D .三棱锥ADE A -1外接球半径与棱AD 的长之比为定值 填空题:(每题每空2分,计16分)14、从三名男生和两名女生中选派三人参加数学竞赛,选派三人都是男生的概率为 ;选派三人既有男生又有女生的概率为 。
辽宁省锦州市黑山县黑山中学2019-2020学年高一下学期线上教学检测试题(考试时间:90分钟)一、选择题(本大题共12小题,每小题4分,共计48分。
其中下1-8题为单项选择,9-12题为多项选择。
选对得4分,选对但不全得2分,有选错的得0分)1.下列关于曲线运动的说法正确的是()A. 物体所受合外力一定不为零,其大小方向都在不断变化B. 曲线运动一定是变速运动,且速度的大小和方向都在不断变化C. 做曲线运动的物体,其速度方向与加速度方向不在同一条直线上D. 做直线运动的物体,其速度方向与加速度方向不在同一条直线上『答案』C 『解析』『详解』A.物体做曲线运动的条件是合力与速度不在同一条直线上,因此合外力不可能为零,但其大小和方向都可以保持不变,即可以为恒力,例如平抛运动,故A错误;B.曲线运动的速度方向必然改变,因此属于变速运动,但大小不一定改变,例如匀速圆周运动,故B错误;C.物体做曲线运动的条件是合力与速度不在同一条直线上,根据牛顿第二定律可知加速度方向与合外力方向相同,即其速度方向与加速度方向不在同一条直线上,故C正确;D.如果速度方向与加速度方向不在同一条直线上,那么物体将做曲线运动,故D错误。
故选C。
2.铁路在弯道处的内外轨道高度是不同的,已知内外轨道平面对水平面倾角为θ,如图所示,gRθ,则()弯道处的圆弧半径为R,若质量为m的火车转弯时速度大于tanA. 内轨对内侧车轮轮缘有挤压B. 外轨对外侧车轮轮缘有挤压C. 内轨和外轨对车轮边缘均不挤压D. 这时铁轨对火车的支持力等于cos mgθ『答案』B 『解析』『详解』ABC .假设火车以某一速度v 通过弯道,内外轨道均不受侧压力作用,其所受的重力和支持力的合力提供向心力,由图可得tan F mg θ=合,合外力等于向心力,因此又有2tan v mg m Rθ=,解得v 即当v =火车在转弯时不挤压轨道。
而当>v AC 错误,B 正确;D .当内外轨没有挤压力时,受重力和支持力,此时cos mgN θ=,由于外轨对火车的作用力沿轨道平面,可以把这个力分解为水平和竖直向下两个分力,由于竖直向下的分力的作用,使支持力变大,即此时铁轨的对火车的支持力大于cos mgθ,故D 错误。
辽宁省锦州市黑山县黑山中学2019-2020学年高一下学期线上教学检测数学试题
学校_________ 班级__________ 姓名__________ 学号__________
一、单选题
1. 是()
A.第一象限角B.第二象限角C.第三象限角D.第四象限角
2. 已知且,则角的终边所在的象限是()
A.第一象限B.第二象限C.第三象限D.第四象限
3. 已知向量,,若,则实数()A.-1 B.1 C.2 D.-2
4. 若角的终边与单位圆交于点,则()
D.不存在A.B.C.
5. 下列函数中,最小正周期为的是()
A.B.
D.
C.
6. 已知弧度数为2的圆心角所对的弦长也是2,则这个圆心角所对的弧长是()
A.2
C.D.
B.
7. 已知,则()
A.B.C.D.
8. ()
A.B.
C.D.
9. 函数的定义域是()
A.B.
C.D.
10. 已知是实数,则函数的图象不可能是()A.B.C.D.
11. 已知,是方程的两根,若,则
()
A.B.或
C.或D.
12. 若将函数的图像向右平移个单位长度后,与函数
的图像重合,则的最小值为
A.B.C.D.
二、填空题
13. 已知,且,则向量在向量上的投影等于______
14. ,则________
15. _____
16. 已知函数的最小正周期为,若将该函数的图像向
左平移个单位后,所得图像关于原点对称,则的最小值为________.
三、解答题
17. (1)已知,且为第三象限角,求,的值
(2)已知,求的值.
18. 设向量,满足,且.
(1)求与的夹角;
(2)求的大小.
19. 已知,,.
(1)求;
(2)求.
20. 函数的部分图象如图所示.
(1)求的解析式.
(2)若不等式,对任意恒成立,求实数的取值范围.
21. 已知函数,.
(1)求的最大值和最小值;
(2)若关于x的方程在上有两个不同的实根,求实数的取值范围.
22. 已知为坐标原点,,,,若
.
⑴ 求函数的最小正周期和单调递增区间;
⑵ 将函数的图象上各点的横坐标伸长为原来的倍(纵坐标不变),再
将得到的图象向左平移个单位,得到函数的图象,求函数
在上的最小值.。