动量守恒定律专题8 动量守恒定律8“小球(滑块)--圆弧轨道”模型2018学案
- 格式:doc
- 大小:102.34 KB
- 文档页数:3
1、在研究动量守恒中有一种类型题即子弹打木块的类型,由于子弹打击木块时内力远远大于外力,所以在外力不为零的 状态下也可以用动量守恒定律来求解,2 、在研究系统内物体的相互作用是,必须同时考虑动量关系和能量关系,否则问题往往会难以解决(1)动量关系一般是系统动量守恒(或某一方向动量恒).(2)对于能量关系,若系统内外均无滑动摩擦力,则对系统应用机械能守恒定律。
(3)若系统外部不受摩擦力,而内部有滑动摩擦力。
则系统应用摩擦生热的功能关系:=f Q F x E E =-相对系统末系统初 当然也可以分别对两个物体使用动能定理求解,只是过程繁琐点3、若研究对象为一个系统,最好考虑动量守恒定律和能量守恒定律,若研究的对象为单一物体,优先考虑动能定理。
例题分析:【例1】.质量为M 的均匀木块静止在光滑水平面上,木块左右两侧各有一位拿着完全相同步枪和子弹的射击手.左侧射手首先开枪,子弹相对木块静止时水平射入木块的最大深度为d 1,然后右侧射手开枪,子弹相对木块静止时水平射入木块的最大深度为d 2,如图所示.设子弹均未射穿木块,且两颗子弹与木块之间的作用力大小均相等,当两颗子弹均相对于木块静止时,下列判断正确的是( )A . 木块静止,d 1=d 2B . 木块向右运动,d 1<d 2C . 木块静止,d 1<d 2D . 木块向左运动,d 1=d 2【例2.】(多选)矩形滑块由不同材料的上、下两层粘合在一起组成,将其放在光滑的水平面上,质量为m 的子弹以速度v 水平射向滑块,若射击下层,子弹刚好不射出.若射击上层,则子弹刚好能射进一半厚度,如图所示,上述两种情况相比较( )A . 子弹对滑块做的功一样多B . 子弹对滑块做的功不一样多C . 系统产生的热量一样多D.系统产生的热量不一样多【例3】.如图所示,在固定的光滑水平杆上,套有一个质量为m=0.5 kg的光滑金属圆环,轻绳一端拴在环上,另一端系着一个质量为M=1.98 kg的木块,现有一质量为m0=20 g的子弹以v0=100 m/s的水平速度射入木块并留在木块中(不计空气阻力和子弹与木块作用的时间,g取10 m/s2),求:(1)圆环、木块和子弹这个系统损失的机械能;(2)木块所能达到的最大高度.专题练习1.(多选)矩形滑块由不同材料的上、下两层粘合在一起,将其放在光滑水平面上,如图所示,质量为m的子弹以速度v水平射向滑块,若子弹击中上层,子弹刚好不穿出;若子弹击中下层,则子弹整个刚好嵌入,由此可知()A.子弹射中上层时对滑块做功多B.两次子弹对滑块做的功一样多C.子弹射中上层系统产生热量多D.子弹与下层之间的摩擦力较大2.(2017·荆门期末)(多选)如图所示,光滑水平面上静止一个质量为M的木块,一颗质量为m的子弹以水平速度v0射入木块并留在木块之中.下列说法中正确的是()A.若M=3m,则此过程中子弹的动能将损失95%B.在子弹射入木块的过程中,子弹和木块受到的冲量一定相同C.若在此过程中木块获得的动能为6 J,则该过程中产生的热量不可能为6 JD.在子弹射入木块的过程中,子弹射入木块的深度一定大于木块的位移3.(多选)如图所示,水平传送带AB足够长,质量为M=1.0 kg的木块随传送带一起以v1=2 m/s的速度向左匀速运动(传送带的速度恒定),木块与传送带的动摩擦因数μ=0.5,当木块运动到最左端A点时,一颗质量为m=20 g的子弹,以v0=300 m/s的水平向右的速度,正对射入木块并穿出,穿出速度v=50 m/s,设子弹射穿木块的时间极短,(g取10 m/s2)则()A.子弹射穿木块后,木块一直做减速运动B.木块遭射击后远离A的最大距离为0.9 mC.木块遭射击后到相对传送带静止所经历的时间为1 sD.木块遭射击后到相对传送带静止所经历的时间为0.6 s4、如图所示,在光滑水平面上放置一质量为M的静止木块,一质量为m的子弹以水平速度v0射向木块,穿出后子弹的速度变为v1,求木块和子弹所构成的系统损失的机械能.5.如图所示,两个质量都是M=0.4 kg的沙箱A、B并排放在光滑的水平面上,一颗质量为m=0.1 kg的子弹以v0=200 m/s的水平速度射向A,射穿A后,进入B并最终一起运动,已知子弹恰好射穿A时,子弹的速度v1=100 m/s,求沙箱A、B的最终速度.6.如图所示,质量为3m、长度为L的木块静止放置在光滑的水平面上.质量为m的子弹(可视为质点)以初速度v0水平向右射入木块,穿出木块时速度变为v0.试求:(1)子弹穿出木块后,木块的速度大小;(2)子弹穿透木块的过程中,所受到平均阻力的大小.7.如图所示,两物块A、B并排静置于高h=0.80 m的光滑水平桌面上,物块的质量均为M=0.60 kg.一颗质量m=0.10 kg的子弹C以v0=100 m/s的水平速度从左面射入A,子弹射穿A后接着射入B并留在B中,此时A,B都没有离开桌面.已知物块A的长度为0.27 m,A离开桌面后,落地点到桌边的水平距离s=2.0 m.设子弹在物块A、B 中穿行时受到的阻力大小相等,g取10 m/s2.(平抛过程中物块看成质点)求:(1)物块A和物块B离开桌面时速度的大小分别是多少;(2)子弹在物块B中打入的深度;(3)若使子弹在物块B中穿行时物块B未离开桌面,则物块B到桌边的最小初始距离.8、如图所示,相距足够远完全相同的质量均为3m的两个木块静止放置在光滑水平面上,质量为m的子弹(可视为质点)以初速度v0水平向右射入木块,穿出第一块木块时速度变为v0,已知木块的长为L,设子弹在木块中的阻力恒定.试求:(1)子弹穿出第一块木块后,木块的速度大小v;(2)子弹在第二块木块中与该木块发生相对运动的时间t.9.如图所示,质量为M的小车静止在光滑水平轨道上,下面用长为L的细线悬挂着质量为m的沙箱,一颗质量为m0的子弹以v0的水平速度射入沙箱,并留在其中,在以后的运动过程中,求沙箱上升的最大高度.10.如图所示,质量为m的铅弹以大小为v0初速度射入一个装有砂子的总质量为M的静止的砂车中并与车相对静止,砂车与水平地面间的摩擦可以忽略.求:(1)铅弹和砂车的共同速度;(2)铅弹和砂车获得共同速度后,砂车底部出现一小孔,砂子从小孔中流出,当漏出质量为m0的砂子时砂车的速度.11.在一水平支架上放置一个质量m1=0.98 kg的小球A,一颗质量为m0=20 g的子弹以水平初速度v0=400 m/s的速度击中小球A并留在其中.之后小球A水平抛出恰好落入迎面驶来的沙车中,已知沙车的质量m2=3 kg,沙车的速度v1=2 m/s,水平面光滑,不计小球与支架间的摩擦.(1)若子弹打入小球A的过程用时Δt=0.01 s,求子弹与小球间的平均作用力;(2)求最终小车B的速度.12.如图所示,AOB是光滑水平轨道,BC是半径为R的光滑的固定圆弧轨道,两轨道恰好相切.质量为M的小木块静止在O点,一个质量为m的子弹以某一初速度水平向右射入小木块内,并留在其中和小木块一起运动.且恰能到达圆弧轨道的最高点C(木块和子弹均可以看成质点).(1)求子弹射入木块前的速度.(2)若每当小木块返回到O点或停止在O点时,立即有相同的子弹射入小木块,并留在其中,则当第9颗子弹射入小木块后,小木块沿圆弧轨道能上升的最大高度为多少?13.如图所示,质量为M的木块静止于光滑的水平面上,一质量为m、速度为v0的子弹水平射入木块且未穿出.设木块对子弹的阻力恒为F,求:(1)射入过程中产生的内能为多少?(2)木块至少为多长时子弹才不会穿出?14.如图所示,一质量为1 kg的物块静止在水平地面上,它与地面的动摩擦因数为0.2,一质量为10 g的子弹以水平速度500 m/s射入物块后水平穿出,物块继续滑行1 m距离停下.求:子弹射穿物块过程中系统损失的机械能.(g取10 m/s2)15.(2017年郑州高三质量预测)如图所示,质量为m=245 g的物块(可视为质点)放在质量为M=0.5 kg的木板左端,足够长的木板静止在光滑水平面上,物块与木板间的动摩擦因数为μ=0.4.质量为m0=5 g的子弹以速度v0=300 m/s沿水平方向射入物块并留在其中(时间极短),g取10 m/s2.子弹射入后,求:(1)子弹进入物块后一起向右滑行的最大速度v1.(2)木板向右滑行的最大速度v2.(3)物块在木板上滑行的时间t.16.(2017·郑州质检)如图所示,质量为m=245 g的物块(可视为质点)放在质量为M=0.5 kg的木板左端,足够长的木板静止在光滑水平面上,物块与木板间的动摩擦因数为μ=0.4.质量为m0=5 g的子弹以速度v0=300 m/s沿水平方向射入物块并留在其中(时间极短),g取10 m/s2.子弹射入后,求:(1)子弹进入物块后一起向右滑行的最大速度v1.(2)木板向右滑行的最大速度v2.(3)物块在木板上滑行的时间t.。
专题8 应用动力学解决滑块-滑板模型问题1.模型特点上、下叠放的两个物体,并且两物体在摩擦力的相互作用下发生相对滑动。
2.解题指导(1)分析滑块和木板的受力情况,根据牛顿第二定律分别求出滑块和木板的加速度;(2)对滑块和木板进行运动情况分析,找出滑块和木板之间位移关系或速度关系,建立方程。
(3)通常所说物体运动的位移、速度、加速度都是对地而言的。
在相对运动的过程中相互作用的物体之间位移、速度、加速度、时间一定存在关联。
它就是解决问题的突破口。
(4)求时间通常会用到牛顿第二定律加运动学公式或动量定理:应用动量定理时特别要注意条件和方向,最好是对单个物体应用动量定理求解。
(5)求位移通常会用到牛顿第二定律加运动学公式或动能定理,应用动能定理时研究对象为单个物体或可以看成单个物体的整体。
另外求相对位移时,通常会用到系统能量守恒定律。
(6)求速度通常会用到牛顿第二定律加运动学公式或动能定理或动量守恒定律:应用动量守恒定律时要特别注意系统的条件和方向。
3.两种位移关系滑块由滑板的一端运动到另一端的过程中,若滑块和滑板同向运动,二者位移之差等于滑板长度;反向运动时,二者位移之和等于滑板长。
4.易错点(1)不清楚滑块、滑板的受力情况,求不出各自的加速度;(2)不清楚物体间发生相对滑动的条件。
说明:两者发生相对滑动的条件:(1)摩擦力为滑动摩擦力(动力学条件);(2)二者速度或加速度不相等(运动学条件)。
(其中动力学条件是判断的主要依据)5.分析“滑块—滑板模型”问题时应掌握的技巧(1)分析题中滑块、滑板的受力情况,求出各自的加速度; (2)画好运动草图,找出位移、速度、时间等物理量间的关系; (3)明确每一过程的末速度是下一过程的初速度。
例1.如图,质量为M 且足够长的倾角为θ的斜面体C 始终静止在水平面上,一质量为m 的长方形木板A 上表面光滑,木板A 获得初速度v 0后恰好能沿斜面匀速下滑,当木板A 匀速下滑时将一质量也为m 的滑块B 轻轻放在木板上,滑块B 在木板A 上下滑的过程中,下列说法正确的是( )A.A 与B 组成的系统在沿斜面的方向上动量不守恒B.A 的加速度大小为2g sin θC.A 的速度为012v 时B 的速度也是012v D.水平面对斜面体有向右的摩擦力 【答案】C【解析】A.因木板A 获得初速度v 0后恰好能沿斜面匀速下滑,即沿斜面方向受合力为零,可知sin cos mg mg θμθ=当放上木块B 后,对AB 系统沿斜面方向仍满足2sin 2cos mg mg θμθ=⋅可知系统沿斜面方向受到的合外力为零,则系统沿斜面方向动量守恒,选项A 错误;B.A 的加速度大小为sin 2cos sin A mg mg a g mθμθθ-⋅==-选项B 错误;C.由系统沿斜面方向动量守恒可知012v mv mmv =+ 解得12v v =选项C 正确;D.斜面体受到木板A 垂直斜面向下的正压力大小为2cos mg θ,A 对斜面体向下的摩擦力大小为2cos =2sin mg mg μθθ⋅,这两个力的合力竖直向下,可知斜面体水平方向受力为零,即水平面对斜面体没有摩擦力作用,选项D 错误。
1、掌握动量守恒定律中的几种重要考试模型,清晰如何分析及进行运用。
[例题1](2024春•高新区期末)如图所示,一小车静止于光滑水平面,其上固定一光滑弯曲轨道,例题3]如甲图所示,水平光滑地面上用两颗钉子的小车,小车的四分之一圆弧轨道是光滑的,半径为切,视为质点的质量为m=1kg的物块从(1)两小球速度相同时,弹簧最短,弹性势能最大A.m B=4mB.第一次碰撞过程中,弹簧弹性势能的最大值为0.6m v20C.第一次碰撞过程中,弹簧压缩量的最大值为0.768v0t0D.第一次碰撞过程中,弹簧压缩量的最大值为1.128v0t0例题5](2024•黄陂区校级一模)质量为2kg的小球b静止在光滑的水平地面上,左端连接一水平A.π+2m,π―2mA.球A沿槽C下滑过程中,槽B.整个过程中球A、球B和槽C.球A第一次滑至槽C最低点过程中,球D.球A与弹簧作用后,能够追上槽[例题7](2024春•天河区校级期末)如图所示,水平桌面光滑,轻弹簧一端固定在墙上,另一端A.动量不守恒,机械能守恒[例题10](2022秋•历下区校级期中)向空中发射一枚炮弹,不计空气阻力,当此炮弹的速度恰好例题12]有人对鞭炮中炸药爆炸的威力产生了浓厚的兴趣,他设计如下实验,在一光滑水平面上放置两个大小相等(可视为质点)紧挨着的1.(多选)(2024•济南三模)质量为A.子弹击中物块后瞬间,物块水平方向的速度大小变为B.子弹击中物块后瞬间,物块竖直方向的速度大小变为C.物块下落的总时间为A.滑块从A到B时速度大小等于A.滑块C与弹簧脱离的瞬间获得的速度v c=1m/sB.轻弹簧长度最短时,所具有的弹性势能E p=12JC.滑块C在传送带上因摩擦产生的热量Q1=8J(2024春•温州期中)为了探究物体间碰撞特性,设计了如图所示的实验装置。
水平直轨道AB、CD和水平传送带平滑无缝连接,两半径均为管道DEF与轨道CD和足够长的水平直轨道2m的滑块c用劲度系数k=100N/m的轻质弹簧连接,静置于轨道的滑块a以初速度v0=17m/s从A处进入,经传送带和(1)物块a到达D点的速度;(2)物块a刚到达与O1等高的E点时对轨道的压力的大小;(3)若a、b两物块碰后粘在一起,则在接下来的运动中弹簧的最大压缩量。
2022高考物理复习冲刺压轴题精练力学部分专题8动量守恒定律一、单选题1.若采用下图中甲、乙两种实验装置来验证动量守恒定律(图中小球半径相同、质量均已知,且m A>m B,B、B´两点在同一水平线上),下列说法正确的是A.采用图甲所示的装置,必需测量OB、OM、OP和ON的距离B.采用图乙所示的装置,必需测量OB、B´N、B´P和B´M的距离C.采用图甲所示的装置,若m A•ON=m A•OP+m B•OM,则表明此碰撞动量守恒=,则表明此碰撞机械能也守恒D.2.如图所示,一质量为0.5kg的一块橡皮泥自距小车上表面1.25m高处由静止下落,恰好落入质量为2kg、速度为2.5m/s沿光滑水平地面运动的小车上,并与小车一起沿水平地面运动,取g=10m/s2,不计空气阻力,下列说法正确的是A.橡皮泥下落的时间为0.3sB.橡皮泥与小车一起在水平地面上运动的速度大小为3.5m/sC.橡皮泥落入小车的过程中,橡皮泥与小车组成的系统动量守恒D.整个过程中,橡皮泥与小车组成的系统损失的机械能为7.5J3.我国女子短道速滑队在2013年世锦赛上实现女子3000m接力三连冠.观察发现,“接棒”的运动员甲提前站在“交棒”的运动员乙前面,并且开始向前滑行,待乙追上甲时,乙猛推甲一把,使甲获得更大的速度向前冲出.在乙推甲的过程中,忽略运动员与冰面间在水平方向上的相互作用,则()A.甲对乙的冲量一定等于乙对甲的冲量B.甲、乙的动量变化一定大小相等方向相反C.甲的动能增加量一定等于乙的动能减少量D.甲对乙做多少负功,乙对甲就一定做多少正功4.一枚火箭搭载着卫星以速率v 0进入太空预定位置,由控制系统使箭体与卫星分离.已知前部分的卫星质量为m 1,后部分的箭体质量为m 2,分离后箭体以速率v 2沿火箭原方向飞行,若忽略空气阻力及分离前后系统质量的变化,则分离后卫星的速率v 1为()A.v 0-v 2B.v 0+v 2C.21021m v v v m =-D.5.如图所示,弹簧的一端固定在竖直墙上,质量为m 的光滑弧形槽静止在光滑水平面上,底部与水平面平滑连接,一个质量也为m 的小球从槽高h 处开始自由下滑则()A.在以后的运动过程中,小球和槽的动量始终守恒B.在下滑过程中小球和槽之间的相互作用力始终不做功C.被弹簧反弹后,小球和槽都做速率不变的直线运动D.被弹簧反弹后,小球和槽的机械能守恒,小球能回到槽高h 处二、多选题6.如图所示,水平面上固定着两根足够长的平行导槽,质量为2m 的U 形管恰好能在两导槽之间自由滑动,一质量为m 的小球沿水平方向,以初速度0v 从U 形管的一端射入,从另一端射出。
动量守恒定律的综合应用1、质量为M长为L的木块静止在光滑水平面上,现有一质量为m的子弹以水平初速度V。
射入木块,穿出时子弹速度为v,求子弹与木块作用过程中系统损失的机械能。
动量守恒:mV o=Mv木+mVv 木=(mV)-mV)/M能量损失E=m(v。
)2/2-M((mV o-mV)/M) 2/22、如图所示,在竖直平面内,一质量为M的木制小球(可视为质点)悬挂于O点,悬线长为L. 一质量为m的子弹以水平速度V o射入木球且留在其中,子弹与木球的相互作用时间极短,可忽略不计.(1)求子弹和木球相互作用结束后的瞬间,它们共同速度的大小;(2)若子弹射入木球后,它们能在竖直平面内做圆周运动,v o应为多大?(1)由动量守恒mv o= (m+M v所以V=mv o (/m+M)(2)设小球在竖直平面内做圆周运动时,通过最高点的最小速度为V,根据牛顿第二定律有(m+M)g = (m+M)v‘ 2/L小球在竖直平面内做圆周运动的过程中机械能守恒,取小球做圆周运动的最低点所在水平面为零势能平面,所以(m+M)v2/2 = 2(m+M)gL+ (m+M)v‘ 2/2 解得v o=( m+M / m?5gL即v o>( m+M ) /m ?5gL3、如图所示,长为L、质量为M的小船停在静水中,一个质量为m的人站在船头,若不计水的y庆」阻* I* * I力,当人从船头走到船尾的过程中,人相对地面的位移各是多少?设某时刻人对地的速度为v人,船对地的速度为V船,取人行进的方向为正方向,根据动量守恒定律有:m人v人-m船v船=0 即v船:v人=v人:m船.人的位移s人=V人t,船的位移s 船= V船t ,所以船的位移与人的位移也与它们的质量成反比,即s船:s人=口人:m船①由图中可以看出:s船+s 人=L②叫%由①②两式解得s人=「• 11 L, s船=匕一、L4、如图所示,在光滑的水平面上有两物体m和m2,其中m2静止,m以速度v 0向m2运动并发生碰撞,设碰撞中机械能的损失可忽略不计.求两物体的最终速度.并讨论以下种情况,m>>m时,m和m2的速度分别是多少?m=m时,m和m2的速度分别是多少?m<<m时,m和m2的速度分别是多少?m、m碰时动量守恒mv o=mv i+mv2---①弹性碰撞机械能守恒mv o2/2= m i V i2/2+ m 2V22/2-②由①②得:2mv o -m i v i2=mv22,即:v o+v i=v2 ------------------- ③由①③得:V i=(m i-m2)v o/(m i+m)—④v2=2mv o/(m i+m) ------- ⑤讨论:①m=m时,v i=0, V2=v o两球交换速度②m> m时,v i、V2与④⑤式相等vi> 0, V2> 0③m v m时,v i、V2与④⑤式相等v i< 0, V2> 0④m<< m时,v i=-v o、V2=0, m反弹,m不动⑤m>> m时,v i=v、V2~2 V2, m不受影响,m碰后飞出去.5、如图所示,一个质量为m的玩具青蛙,蹲在质量为M的小车的细杆上,小车放在光滑的水平桌面上.若车长为L ,细杆高为h,且位于小车的中点,试求玩具青蛙至多以多大的水平速度跳出,才能落到车面上?解;(1)由物块与千弹一起恰能通过轨道最高点小1由牛顿第二定律得’(灯亠朋逗=口厂加二・22?物体与子弹组成的系统机械能守恒,由机械能守屯定谭得:\(M+m)七汁〔M+血)計2尺二2 (M+m)代入数据解得s ^-=6R/E;■(2〕系统动童守恒,以向右为正方向,由动量守恒定律得:JfiV=(爪+皿〕V-r代入数IS解得:v-600m/s;(3)由能量守恒定律得:1 , I °i E=-mv i-7 1K+m) v-t j代入数据解得;AE=17S2J;6、如图所示,ABC[是由两部分光滑轨道平滑连接在一起组成的,AB为水平轨道,BCD是半径为R的半圆弧轨道,质量为M的小物块,静止在AB轨道上,一颗质7为m子弹水平射入物块但未穿出,物块与子弹一起运动,恰能贴着轨道内侧通过最高点从D点飞出.取重力加速度g,求: 物块与子弹一起刚滑上圆弧轨道B点的速度;子弹击中物块前的速度;系统损失的机械能.解:m 由物块与千弹一起恰能通过轨道最高点D,由牛顿第二定律得:.2R物体与干弹组成的系统机械能守恒,宙机械能守恒定谭得=[CM+m)寸J+ 5+2 計西丄(M+m)代入数据解得:v- = 6m/£;(2〕系颈动童守恒■以向右为正方向,由动量守恒定律得:jnv= (M+m]代入数4S解得:v=600m/s;⑶由能量守恒定律得:1 ° 1 °A E=-mv i-7 IM+m) v=S!■jF代入数据解得:AE=17S2J;中, 为7、如图所示,木块A 和B 的质量分别为 m 和mi ,固定在轻质 弹簧的两端,静止于光滑的水平面上. 现给A 以向右的水平速度V o ,问在两物体相互作用的过程 什么时候弹性势能最大,其最大值 多少?求弹簧恢复原长时两物体的 度.解:木块 A 、B 相互作用过程中,速度相等时弹簧的弹性势能 最大,设共同速度的大小为 V .由动量守恒定律有 mv o = (m + m2) v ①木块A 、B 减少的动能转化为弹簧的弹性势能,有 1 2 1 2 一E 弹=—△ E k = 2耐0— 2(m + m )v②由①②式联立解得弹簧的弹性势能的最大值为:2mmv om+ m8、如图所示,在光滑的水平面上有一静止的光滑曲面滑块,质量为m2.现有一大小忽略不计的小球,质量为m i,以速度v 0冲向滑块,并进入滑块的光滑轨道,设轨道足够高.求小球在轨道上能上升的最大高度. 若m2=m,则两物体最后速度分别为多少?解:小球和滑块具有相同速度时,小球的上升高度最大,由①②式联立解得mv2 h—2 mi+ m g设共同速度的大小为V.由动量守恒定律有m1v0= (m l + n2) v 设小球在轨道上能上升的最大高度为h.由于水平面光滑,故小球和滑块组成的系统机械能守恒,以水平地面为零势能面,1 2 1 22m i v o= 2(m+ m) v + mgh9、如图所示,一大小可忽略不计、质量为m i的小物体放在质量为m2的长木板的左端,长木板放在光滑的水平面上. 现让m i 获得向右的速度V。
高中物理第08章动量守恒 动量守恒定律应用四种常见模型Lex Li01、动量守恒定律概述(1)动量守恒定律的五性:①条件性:满足系统条件或近似条件;②系统性:动量守恒是相对与系统的,对于一个物体无所谓守恒;③矢量性:表达式中涉及的都是矢量,需要首先选取正方向,分清各物体初、末动量的正、负。
④相对性:方程中的所有动量必须相对于同一参考系;⑤同时性:动量是状态量,动量守恒指对应每一时刻的总动量都和初时刻的总动量相等。
不同时刻的动量不能相加。
(2)应用动量守恒定律解题的步骤①对象(系统性):分析题意,明确研究对象;②受力(条件性):对各阶段所选系统内物体进行受力分析,判定能否应用动量守恒; ③过程(矢量性、相对性、同时性):确定过程的始、末状态,写出初动量和末动量表达式;④方程:建立动量守恒方程求解。
02、常见模型(1)碰撞、爆炸:作用时间极短,内力远大于外力,系统动量守恒①弹性碰撞:系统动量守恒,机械能守恒.设质量m 1的物体以速度v 0与质量为m 2的在水平面上静止的物体发生弹性正碰,则: 动量守恒:221101v m v m v m += 动能不变:222211111011v m v m v m +=解得:121012m m v v m m −=+ 120122m v v m m =+②非弹性碰撞:部分机械能转化成物体的内能,系统损失了机械能两物体仍能分离.动量守恒用公式表示为:m 1v 1+m 2v 2= m 1v 1′+m 2v 2′机械能损失:22'2'21111112211222222()()E m v m v m v m v ∆=+−+ ③完全非弹性碰撞:碰撞后两物体粘在一起运动,此时动能损失最大,而动量守恒. 用公式表示为: m 1v 1+m 2v 2=(m 1+m 2)v机械能损失:222111112212()()E m v m v m m v ∆=+−+④爆炸:系统动量守恒,机械能增加例01 如图所示,光滑水平面上有A、B、C三个物块,其质量分别为m A=2.0 kg,m B=m C =1.0 kg,现用一轻弹簧将A、B两物块连接,并用力缓慢压缩弹簧使A、B两物块靠近,此过程外力做功108 J(弹簧仍处于弹性限度范围内),然后同时释放,弹簧开始逐渐变长,当弹簧刚好恢复原长时,C恰好以4 m/s的速度迎面与B发生碰撞并瞬时粘连.求:(1)弹簧刚好恢复原长时(B与C碰撞前),A和B物块速度的大小;(2)当弹簧第二次被压缩时,弹簧具有的最大弹性势能.针对训练01 如图所示,总质量为M的大小两物体,静止在光滑水平面上,质量为m的小物体和大物体间有压缩着的弹簧,另有质量为2m的物体以v0速度向右冲来,为了防止冲撞,大物体将小物体发射出去,小物体和冲来的物体碰撞后粘合在一起.小物体发射的速度至少应多大,才能使它们不再碰撞?(2)人船模型(平均动量守恒问题):特点:初态时相互作用物体都处于静止状态,在物体发生相对运动的过程中,某一个方向的动量守恒(如水平方向动量守恒).例02 质量为m的人站在质量为M,长为L的静止小船的右端,小船的左端靠在岸边。
专题08 动量1.(2021·湖南高考真题)如图(a ),质量分别为m A 、m B 的A 、B 两物体用轻弹簧连接构成一个系统,外力F 作用在A 上,系统静止在光滑水平面上(B 靠墙面),此时弹簧形变量为x 。
撤去外力并开始计时,A 、B 两物体运动的a t -图像如图(b )所示,1S 表示0到1t 时间内A 的a t -图线与坐标轴所围面积大小,2S 、3S 分别表示1t 到2t 时间内A 、B 的a t -图线与坐标轴所围面积大小。
A 在1t 时刻的速度为0v 。
下列说法正确的是( )A .0到1t 时间内,墙对B 的冲量等于m A v 0 B . m A > m BC .B 运动后,弹簧的最大形变量等于xD .123S S S -= 【答案】ABD【解析】A .由于在0 ~ t 1时间内,物体B 静止,则对B 受力分析有F 墙 = F 弹则墙对B 的冲量大小等于弹簧对B 的冲量大小,而弹簧既作用于B 也作用于A ,则可将研究对象转为A ,撤去F 后A 只受弹力作用,则根据动量定理有I = m A v 0(方向向右)则墙对B 的冲量与弹簧对A 的冲量大小相等、方向相同,A 正确;B .由a —t 图可知t 1后弹簧被拉伸,在t 2时刻弹簧的拉伸量达到最大,根据牛顿第二定律有F 弹 = m A a A = m B a B由图可知a B > a A则m B < m AB 正确;C .由图可得,t 1时刻B 开始运动,此时A 速度为v 0,之后AB 动量守恒,AB 和弹簧整个系统能量守恒,则0+A A B A A v v m m m v =可得AB 整体的动能不等于0,即弹簧的弹性势能会转化为AB 系统的动能,弹簧的形变量小于x ,C 错误;D .由a —t 图可知t 1后B 脱离墙壁,且弹簧被拉伸,在t 1—t 2时间内AB 组成的系统动量守恒,且在t 2时刻弹簧的拉伸量达到最大,A 、B 共速,由a —t 图像的面积为∆v ,在t 2时刻AB 的速度分别为12A v S S =-,3B v S =A 、B 共速,则123S S S -=D 正确。
1、在研究动量守恒中有一种类型题即子弹打木块的类型,由于子弹打击木块时内力远远大于外力,所以在外力不为零的 状态下也可以用动量守恒定律来求解,2 、在研究系统内物体的相互作用是,必须同时考虑动量关系和能量关系,否则问题往往会难以解决(1)动量关系一般是系统动量守恒(或某一方向动量恒).(2)对于能量关系,若系统内外均无滑动摩擦力,则对系统应用机械能守恒定律。
(3)若系统外部不受摩擦力,而内部有滑动摩擦力。
则系统应用摩擦生热的功能关系:=f Q F x E E =-相对系统末系统初 当然也可以分别对两个物体使用动能定理求解,只是过程繁琐点3、若研究对象为一个系统,最好考虑动量守恒定律和能量守恒定律,若研究的对象为单一物体,优先考虑动能定理。
例题分析:【例1】.质量为M 的均匀木块静止在光滑水平面上,木块左右两侧各有一位拿着完全相同步枪和子弹的射击手.左侧射手首先开枪,子弹相对木块静止时水平射入木块的最大深度为d 1,然后右侧射手开枪,子弹相对木块静止时水平射入木块的最大深度为d 2,如图所示.设子弹均未射穿木块,且两颗子弹与木块之间的作用力大小均相等,当两颗子弹均相对于木块静止时,下列判断正确的是( )A . 木块静止,d 1=d 2B . 木块向右运动,d 1<d 2C . 木块静止,d 1<d 2D . 木块向左运动,d 1=d 2【例2.】(多选)矩形滑块由不同材料的上、下两层粘合在一起组成,将其放在光滑的水平面上,质量为m 的子弹以速度v 水平射向滑块,若射击下层,子弹刚好不射出.若射击上层,则子弹刚好能射进一半厚度,如图所示,上述两种情况相比较( )A . 子弹对滑块做的功一样多B . 子弹对滑块做的功不一样多C . 系统产生的热量一样多D.系统产生的热量不一样多【例3】.如图所示,在固定的光滑水平杆上,套有一个质量为m=0.5 kg的光滑金属圆环,轻绳一端拴在环上,另一端系着一个质量为M=1.98 kg的木块,现有一质量为m0=20 g的子弹以v0=100 m/s的水平速度射入木块并留在木块中(不计空气阻力和子弹与木块作用的时间,g取10 m/s2),求:(1)圆环、木块和子弹这个系统损失的机械能;(2)木块所能达到的最大高度.专题练习1.(多选)矩形滑块由不同材料的上、下两层粘合在一起,将其放在光滑水平面上,如图所示,质量为m的子弹以速度v水平射向滑块,若子弹击中上层,子弹刚好不穿出;若子弹击中下层,则子弹整个刚好嵌入,由此可知()A.子弹射中上层时对滑块做功多B.两次子弹对滑块做的功一样多C.子弹射中上层系统产生热量多D.子弹与下层之间的摩擦力较大2.(2017·荆门期末)(多选)如图所示,光滑水平面上静止一个质量为M的木块,一颗质量为m的子弹以水平速度v0射入木块并留在木块之中.下列说法中正确的是()A.若M=3m,则此过程中子弹的动能将损失95%B.在子弹射入木块的过程中,子弹和木块受到的冲量一定相同C.若在此过程中木块获得的动能为6 J,则该过程中产生的热量不可能为6 JD.在子弹射入木块的过程中,子弹射入木块的深度一定大于木块的位移3.(多选)如图所示,水平传送带AB足够长,质量为M=1.0 kg的木块随传送带一起以v1=2 m/s的速度向左匀速运动(传送带的速度恒定),木块与传送带的动摩擦因数μ=0.5,当木块运动到最左端A点时,一颗质量为m=20 g的子弹,以v0=300 m/s的水平向右的速度,正对射入木块并穿出,穿出速度v=50 m/s,设子弹射穿木块的时间极短,(g取10 m/s2)则()A.子弹射穿木块后,木块一直做减速运动B.木块遭射击后远离A的最大距离为0.9 mC.木块遭射击后到相对传送带静止所经历的时间为1 sD.木块遭射击后到相对传送带静止所经历的时间为0.6 s4、如图所示,在光滑水平面上放置一质量为M的静止木块,一质量为m的子弹以水平速度v0射向木块,穿出后子弹的速度变为v1,求木块和子弹所构成的系统损失的机械能.5.如图所示,两个质量都是M=0.4 kg的沙箱A、B并排放在光滑的水平面上,一颗质量为m=0.1 kg的子弹以v0=200 m/s的水平速度射向A,射穿A后,进入B并最终一起运动,已知子弹恰好射穿A时,子弹的速度v1=100 m/s,求沙箱A、B的最终速度.6.如图所示,质量为3m、长度为L的木块静止放置在光滑的水平面上.质量为m的子弹(可视为质点)以初速度v0水平向右射入木块,穿出木块时速度变为v0.试求:(1)子弹穿出木块后,木块的速度大小;(2)子弹穿透木块的过程中,所受到平均阻力的大小.7.如图所示,两物块A、B并排静置于高h=0.80 m的光滑水平桌面上,物块的质量均为M=0.60 kg.一颗质量m=0.10 kg的子弹C以v0=100 m/s的水平速度从左面射入A,子弹射穿A后接着射入B并留在B中,此时A,B都没有离开桌面.已知物块A的长度为0.27 m,A离开桌面后,落地点到桌边的水平距离s=2.0 m.设子弹在物块A、B 中穿行时受到的阻力大小相等,g取10 m/s2.(平抛过程中物块看成质点)求:(1)物块A和物块B离开桌面时速度的大小分别是多少;(2)子弹在物块B中打入的深度;(3)若使子弹在物块B中穿行时物块B未离开桌面,则物块B到桌边的最小初始距离.8、如图所示,相距足够远完全相同的质量均为3m的两个木块静止放置在光滑水平面上,质量为m的子弹(可视为质点)以初速度v0水平向右射入木块,穿出第一块木块时速度变为v0,已知木块的长为L,设子弹在木块中的阻力恒定.试求:(1)子弹穿出第一块木块后,木块的速度大小v;(2)子弹在第二块木块中与该木块发生相对运动的时间t.9.如图所示,质量为M的小车静止在光滑水平轨道上,下面用长为L的细线悬挂着质量为m的沙箱,一颗质量为m0的子弹以v0的水平速度射入沙箱,并留在其中,在以后的运动过程中,求沙箱上升的最大高度.10.如图所示,质量为m的铅弹以大小为v0初速度射入一个装有砂子的总质量为M的静止的砂车中并与车相对静止,砂车与水平地面间的摩擦可以忽略.求:(1)铅弹和砂车的共同速度;(2)铅弹和砂车获得共同速度后,砂车底部出现一小孔,砂子从小孔中流出,当漏出质量为m0的砂子时砂车的速度.11.在一水平支架上放置一个质量m1=0.98 kg的小球A,一颗质量为m0=20 g的子弹以水平初速度v0=400 m/s的速度击中小球A并留在其中.之后小球A水平抛出恰好落入迎面驶来的沙车中,已知沙车的质量m2=3 kg,沙车的速度v1=2 m/s,水平面光滑,不计小球与支架间的摩擦.(1)若子弹打入小球A的过程用时Δt=0.01 s,求子弹与小球间的平均作用力;(2)求最终小车B的速度.12.如图所示,AOB是光滑水平轨道,BC是半径为R的光滑的固定圆弧轨道,两轨道恰好相切.质量为M的小木块静止在O点,一个质量为m的子弹以某一初速度水平向右射入小木块内,并留在其中和小木块一起运动.且恰能到达圆弧轨道的最高点C(木块和子弹均可以看成质点).(1)求子弹射入木块前的速度.(2)若每当小木块返回到O点或停止在O点时,立即有相同的子弹射入小木块,并留在其中,则当第9颗子弹射入小木块后,小木块沿圆弧轨道能上升的最大高度为多少?13.如图所示,质量为M的木块静止于光滑的水平面上,一质量为m、速度为v0的子弹水平射入木块且未穿出.设木块对子弹的阻力恒为F,求:(1)射入过程中产生的内能为多少?(2)木块至少为多长时子弹才不会穿出?14.如图所示,一质量为1 kg的物块静止在水平地面上,它与地面的动摩擦因数为0.2,一质量为10 g的子弹以水平速度500 m/s射入物块后水平穿出,物块继续滑行1 m距离停下.求:子弹射穿物块过程中系统损失的机械能.(g取10 m/s2)15.(2017年郑州高三质量预测)如图所示,质量为m=245 g的物块(可视为质点)放在质量为M=0.5 kg的木板左端,足够长的木板静止在光滑水平面上,物块与木板间的动摩擦因数为μ=0.4.质量为m0=5 g的子弹以速度v0=300 m/s沿水平方向射入物块并留在其中(时间极短),g取10 m/s2.子弹射入后,求:(1)子弹进入物块后一起向右滑行的最大速度v1.(2)木板向右滑行的最大速度v2.(3)物块在木板上滑行的时间t.16.(2017·郑州质检)如图所示,质量为m=245 g的物块(可视为质点)放在质量为M=0.5 kg的木板左端,足够长的木板静止在光滑水平面上,物块与木板间的动摩擦因数为μ=0.4.质量为m0=5 g的子弹以速度v0=300 m/s沿水平方向射入物块并留在其中(时间极短),g取10 m/s2.子弹射入后,求:(1)子弹进入物块后一起向右滑行的最大速度v1.(2)木板向右滑行的最大速度v2.(3)物块在木板上滑行的时间t.。
动量守恒定律专题8 小球(滑块)----圆弧轨道模型例题1、如左下图,一内外侧均光滑的半圆柱槽置于光滑的水平面上.槽的左侧有一竖直墙壁.现让一小球(可认为质点)自左端槽口A点的正上方从静止开始下落,与半圆柱槽相切并从A点进入槽内.正确的是( CD )A.小球离开右侧槽口以后,将做竖直上抛运动B.小球在槽内运动的全过程中,只有重力对小球做功C.小球在槽内运动的全过程中,小球与槽组成的系统机械能守恒D.小球在槽内运动的全过程中,小球与槽组成的系统水平方向动量不守恒解析小球从下落到最低点的过程中,槽没有动,与竖直墙之间存在挤压,动量不守恒;小球经过最低点往上运动的过程中,槽与竖直墙分离,水平方向动量守恒;全过程中有一段时间系统受竖直墙弹力的作用,故全过程系统水平方向动量不守恒,选项D正确;小球离开右侧槽口时,水平方向有速度,将做斜抛运动,选项A错误;小球经过最低点往上运动的过程中,槽往右运动,槽对小球的支持力对小球做负功,小球对槽的压力对槽做正功,系统机械能守恒,选项B错误,C正确.例题2、带有1/4光滑圆弧轨道质量为M的滑车静止置于光滑水平面上,如图所示,一质量也为M的小球以速度v0水平冲上滑车,到达某一高度后,小球又返回车的左端,则[BC ]A.小球以后将向左做平抛运动B.小球将做自由落体运动C.此过程小球对小车做的功为D.小球在弧形槽上升的最大高度为例题3、如图所示,A和B并排放在光滑的水平面上, A上有一光滑的半径为R的半圆轨道,半圆轨道右侧顶点有一小物体C,C由顶点自由滑下,设A、B、C的质量均为m.求:(1)A、B分离时B的速度多大?(2)C由顶点滑下到沿轨道上升至最高点的过程中做的功是多少?解析:小物体C自由滑下时,对槽有斜向右下方的作用力,使A、B一起向右做加速运动;当C滑至槽的最低点时,C、A之间的作用力沿竖直方向,这就是A、B分离的临界点,因C将沿槽上滑,C对A有斜向左下方的作用力,使A向右做减速运动,而B以A分离时的速度向右,做匀速运动。
回扣练8:动量定理和动量守恒定律1.将一个光滑的半圆形槽置于光滑的水平面上如图,槽左侧有一个固定在水平面上的物块.现让一个小球自左侧槽口A 点正上方由静止开始落下,从A 点落入槽内,则下列说法中正确的是( )A .小球在半圆槽内运动的过程中,机械能守恒B .小球在半圆槽内运动的全过程中,小球与半圆槽组成的系统动量守恒C .小球在半圆槽内由B 点向C 点运动的过程中,小球与半圆槽组成的系统动量守恒D .小球从C 点离开半圆槽后,一定还会从C 点落回半圆槽解析:选D.只有重力做功时物体机械能守恒,小球在半圆槽内运动由B 到C 过程中,除重力做功外,槽的支持力也对小球做功,小球机械能不守恒,由此可知,小球在半圆槽内运动的全过程中,小球的机械能不守恒,故A 错误.小球在槽内运动的前半过程中,左侧物体对槽有作用力,小球与槽组成的系统水平方向上的动量不守恒,故B 错误.小球自半圆槽的最低点B 向C 点运动的过程中,系统在水平方向所受合外力为零,故小球与半圆槽在水平方向动量守恒,故C 错误.小球离开C 点以后,既有竖直向上的分速度,又有与槽相同的水平分速度,小球做斜上抛运动,然后可以从C 点落回半圆槽,故D 正确.故选D.2.如图所示,质量为m 的A 球在水平面上静止放置,质量为2m的B 球向左运动速度大小为v 0,B 球与A 球碰撞且无机械能损失,碰后A 球速度大小为v 1,B 球的速度大小为v 2,碰后相对速度与碰前相对速度的比值定义为恢复系数e =v 1-v 2v 0-0,下列选项正确的是( ) A .e =1B .e =12C .e =13D .e =14解析:选A.AB 在碰撞的过程中,根据动量守恒可得,2mv 0=mv 1+2mv 2,在碰撞的过程中机械能守恒,可得12·2mv 20=12mv 21+12·2mv 22,解得v 1=43v 0,v 2=13v 0,碰后相对速度与碰前相对速度的比值定义为恢复系数e =v 1-v 2v 0-0=1,故A 正确,BCD 错误;故选A. 3.如图所示,AB 两小球静止在光滑水平面上,用轻弹簧相连接,A 球的质量小于B 球的质量.若用锤子敲击A 球使A 得到v 的速度,弹簧压缩到最短时的长度为L 1;若用锤子敲击B 球使B 得到v 的速度,弹簧压缩到最短时的长度为L 2,则L 1与L 2的大小关系为( )A .L 1>L 2B .L 1<L 2C .L 1=L 2D .不能确定解析:选C.若用锤子敲击A 球,两球组成的系统动量守恒,当弹簧最短时,两者共速,则m A v =(m A +m B )v ′,解得v ′=m A v m A +m B ,弹性势能最大,最大为ΔE p =12m A v 2-12(m A +m B )v ′2=m A m B v 22(m A +m B );若用锤子敲击B 球,同理可得m B v =(m A +m B )v ″,解得v ″=m B v m A +m B ,弹性势能最大为ΔE p =12m B v 2-12(m A +m B )v ′2=m A m B v 22(m A +m B ),即两种情况下弹簧压缩最短时,弹性势能相等,故L 1=L 2,C 正确.4.如图所示,足够长的传送带以恒定的速率v 1逆时针运动,一质量为m 的物块以大小为v 2的初速度从左轮中心正上方的P 点冲上传送带,从此时起到物块再次回到P 点的过程中,下列说法正确的是( )A .合力对物块的冲量大小一定为2mv 2B .合力对物块的冲量大小一定为2mv 1C .合力对物块的冲量大小可能为零D .合力对物块做的功可能为零解析:选D.若v 2>v 1,物块在传送带上先向右做匀减速直线运动,速度减为零后再返回做匀加速直线运动,达到速度v 1后做匀速直线运动,可知物块再次回到P 点的速度大小为v 1,规定向左为正方向,根据动量定理得,合外力的冲量I 合=mv 1-m (-v 2)=mv 1+mv 2.根据动能定理知,合外力做功W 合=12mv 21-12mv 22;若v 2<v 1,物块在传送带上先向右做匀减速直线运动,速度减为零后再返回做匀加速直线运动,物块再次回到P 点的速度大小为v 2,规定向左为正方向,根据动量定理得,合外力的冲量为:I 合=mv 2-m (-v 2)=2mv 2;根据动能定理知,合外力做功为:W 合=12mv 22-12mv 22=0.故D 正确,ABC 错误.故选D. 5.如图甲所示,工人利用倾斜钢板向车内搬运货物,用平行于钢板向上的力将货物从静止开始由钢板底端推送到顶端,到达顶端时速度刚好为零.若货物质量为100 kg ,钢板与地面的夹角为30°,钢板与货物间的滑动摩擦力始终为50 N ,整个过程中货物的速度—时间图象如图乙所示,重力加速度g 取10 m/s 2.下列说法正确的是( )A .0~2 s 内人对货物做的功为600 JB .整个过程中人对货物的推力的冲量为1 000 N·sC .0~2 s 和2~3 s 内货物所受推力之比为1∶2D .整个过程中货物始终处于超重状态解析:选A.0~2 s 内货物的加速度a 1=Δv Δt=0.5 m/s 2,根据牛顿第二定律:F 1-f -mg sin 30°=ma 1,解得F 1=600 N ;0~2 s 内货物的位移:x 1=12×2×1 m=1 m ;则人对货物做的功为W F =Fx 1=600 J ,选项A 正确;整个过程中,根据动量定理:I F -(f +mg sin 30°)t =0,解得整个过程中人对货物的推力的冲量为I F =(f +mg sin 30°)t =(50+100×10×0.5)×3=1 650 N·s,选项B 错误;2~3 s 内货物的加速度大小a 2=1 m/s 2,根据牛顿第二定律:f +mg sin 30°-F 2=ma 2所受推力F 2=450 N ;则0~2 s 和2~3 s 内货物所受推力之比为F 1∶F 2=600∶450=4∶3,选项C 错误;整个过程中货物的加速度先沿斜面向上,后向下,先超重后失重,选项D 错误;故选A.6.(多选)如图所示,光滑水平面上有大小相同的A 、B 两球在同一直线上运动.两球质量关系为m B =2m A ,规定向右为正方向,A 、B 两球的动量均为6 kg·m/s,运动中两球发生碰撞,碰撞后A 球的动量增量为-4 kg·m/s,则( )A .该碰撞为弹性碰撞B .该碰撞为非弹性碰撞C .左方是A 球,碰撞后A 、B 两球速度大小之比为2∶5D .右方是A 球,碰撞后A 、B 两球速度大小之比为1∶10解析:选AC.规定向右为正方向,碰撞前A 、B 两球的动量均为6 kg·m/s,说明A 、B 两球的速度方向向右,两球质量关系为m B =2m A ,所以碰撞前v A >v B ,所以左方是A 球.碰撞后A 球的动量增量为-4 kg·m/s,所以碰撞后A 球的动量是2 kg·m/s;碰撞过程系统总动量守恒:m A v A +m B v B =-m A v A ′+m B v B ′所以碰撞后B 球的动量是10 kg·m/s,根据m B =2m A ,所以碰撞后A 、B 两球速度大小之比为2∶5,故C 正确,D 错误.碰撞前系统动能:p 2A 2m A +p 2B 2m B=622m A +622×2m A =27m A ,碰撞后系统动能为:p A ′22m A +p B ′22m B =222m A +1022×2m A =27m A,则碰撞前后系统机械能不变,碰撞是弹性碰撞,故A 正确,B 错误;故选AC.7.(多选)质量为M =3 kg 的滑块套在水平固定着的轨道上并可在轨道上无摩擦滑动.质量为m =2 kg 的小球(视为质点)通过长L =0.75 m 的轻杆与滑块上的光滑轴O 连接,开始时滑块静止,轻杆处于水平状态.现给小球一个v 0=3 m/s 的竖直向下的初速度,取g =10 m/s 2.则( )A .小球m 从初始位置到第一次到达最低点的过程中,滑块M 在水平轨道上向右移动了0.3 mB .小球m 从初始位置到第一次到达最低点的过程中,滑块M 在水平轨道上向右移动了0.2 mC .小球m 相对于初始位置可以上升的最大高度为0.27 mD .小球m 从初始位置到第一次到达最大高度的过程中,滑块M 在水平轨道上向右移动了0.54 m解析:选AD.可把小球和滑块水平方向的运动看作人船模型,设滑块M 在水平轨道上向右运动了x ,由滑块和小球系统在水平方向上动量守恒,有m M =x L -x,解得:x =0.3 m ,选项A 正确、B 错误.根据动量守恒定律,小球m 相对于初始位置上升到最大高度时小球和滑块速度都为零,由能量守恒定律可知,小球m 相对于初始位置可以上升的最大高度为0.45 m ,选项C 错误.此时杆与水平面的夹角为cos α=0.8,设小球从最低位置上升到最高位置过程中滑块M 在水平轨道上又向右运动了x ′,由滑块和小球系统在水平方向时动量守恒,有m M =x ′L cos α-x ′,解得:x ′=0.24 m .小球m 从初始位置到第一次到达最大高度的过程中,滑块在水平轨道上向右移动了x +x ′=0.3 m +0.24 m =0.54 m ,选项D 正确.8.(多选)如图所示,一辆质量为M =3 kg 的平板小车A 停靠在竖直光滑墙壁处,地面水平且光滑,一质量为m =1 kg 的小铁块B (可视为质点)放在平板小车A 最右端,平板小车A 上表面水平且与小铁块B 之间的动摩擦因数μ=0.5,平板小车A 的长度L =0.9 m .现给小铁块B 一个v 0=5 m/s 的初速度使之向左运动,与竖直墙壁发生弹性碰撞后向右运动,重力加速度g =10 m/s 2.下列说法正确的是( )A .小铁块B 向左运动到达竖直墙壁时的速度为2 m/sB .小铁块B 与墙壁碰撞过程中所受墙壁的冲量为8 N·sC .小铁块B 向左运动到达竖直墙壁的过程中损失的机械能为4 JD .小铁块B 在平板小车A 上运动的整个过程中系统损失的机械能为9 J解析:选BD.设小铁块B 向左运动到达竖直墙壁时的速度为v 1,根据动能定理得:-μmgL =12mv 21-12mv 20,解得:v 1=4 m/s ,选项A 错误.与竖直墙壁发生弹性碰撞,反弹速度为-4 m/s ,由动量定理可知,小铁块B 与墙壁碰撞过程中所受墙壁的冲量为I =2mv 1=8 N·s,选项B 正确.小铁块B 向左运动到达竖直墙壁的过程中损失的机械能为μmgL =4.5 J ,选项C 错误.假设发生弹性碰撞后小铁块B 最终和平板小车A 达到的共同速度为v 2,根据动量守恒定律得:mv 1=(M +m )v 2,解得:v 2=1 m/s.设小铁块B 在平板小车A 上相对滑动的位移为x 时与平板小车A 达到共同速度v 2,则根据功能关系得:-μmgx =12(M +m )v 22-12mv 21,解得:x =1.2 m ,由于x >L ,说明小铁块B 在没有与平板小车A 达到共同速度时就滑出平板小车A ,所以小铁块B 在平板小车上运动的整个过程中系统损失的机械能为ΔE =2μmgL =9 J ,选项D 正确.9.(多选)在地面上以大小为v 1的初速度竖直向上抛出一质量为m 的皮球,皮球落地时速度大小为v 2.若皮球运动过程中所受空气阻力的大小与其速率成正比,重力加速度为g .下列判断正确的是( )A .皮球上升的最大高度为v 212gB .皮球从抛出到落地过程中克服阻力做的功为12mv 21-12mv 22 C .皮球上升过程经历的时间为v 1gD .皮球从抛出到落地经历的时间为v 1+v 2g解析:选BD.减速上升的过程中受重力、阻力作用,故加速度大于g ,则上升的高度小于v 212g ,上升的时间小于v 1g,故AC 错误;皮球从抛出到落地过程中重力做功为零,根据动能定理得克服阻力做功为W f =12mv 21-12mv 22,故B 正确;用动量定理,结合数学知识,假设向下为正方向,设上升阶段的平均速度为v ,则:mgt 1+kvt 1=mv 1,由于平均速度乘以时间等于上升的高度,故有:h =vt 1,即:mgt 1+kh =mv 1 ①,同理,设下降阶段的平均速度为v ′,则下降过程:mgt 2-kv ′t 2=mv 2,即:mgt 2-kh =mv 2 ②,由①②得:mg (t 1+t 2)=m (v 1+v 2),解得:t =t 1+t 2=v 1+v 2g,故D 正确;故选BD. 10.(多选)如图所示,足够长的光滑水平导轨间距为2 m ,电阻不计,垂直导轨平面有磁感应强度为1 T 的匀强磁场,导轨上相隔一定距离放置两根长度略大于间距的金属棒,a 棒质量为1 kg ,电阻为5 Ω,b 棒质量为2 kg ,电阻为10 Ω.现给a 棒一个水平向右的初速度8 m/s ,当a 棒的速度减小为4 m/s 时,b 棒刚好碰到了障碍物,经过很短时间0.5 s 速度减为零(不反弹,且a 棒始终没有与b 棒发生碰撞),下列说法正确的是( )A .从上向下看回路产生逆时针方向的电流B .b 棒在碰撞前瞬间的速度大小为2 m/sC .碰撞过程中障碍物对b 棒的平均冲击力大小为6 ND .b 棒碰到障碍物后,a 棒继续滑行的距离为15 m解析:选ABD.根据右手定则可知,从上向下看回路产生逆时针方向的电流,选项A 正确;系统动量守恒,由动量守恒定律可知:m a v 0=m a v a +m b v b 解得v b =2 m/s ,选项B 正确;b 碰到障碍物时,回路的感应电动势:E =BL (v a -v b )=4 V ;回路的电流:I =E R a +R b =415 A ;b 棒所受的安培力:F b =BIL =815N ;b 与障碍物碰撞时,由动量定理:(F b -F )t =0-m b v b 解得:F =8.5 N ,选项C 错误;b 碰到障碍物后,a 继续做减速运动,直到停止,此时由动量定理:B IL Δt =m a v a ,其中I Δt =q =ΔΦR a +R b =BLx R a +R b联立解得x =15 m ,选项D 正确;故选ABD. 11.(多选)两个小球A 、B 在光滑水平面上相向运动,已知它们的质量分别是m 1=4 kg ,m 2=2 kg ,A 的速度v 1=3 m/s(设为正),B 的速度v 2=-3 m/s ,则它们发生正碰后,其速度可能分别是( )A .均为1 m/sB .+4 m/s 和-5 m/sC .+2 m/s 和-1 m/sD .-1 m/s 和5 m/s解析:选AD.由动量守恒,可验证四个选项都满足要求.再看动能情况E k =12m 1v 21+12m 2v 22=12×4×9 J+12×2×9 J=27 J E k ′=12m 1v 1′2+12m 2v 2′2由于碰撞过程动能不可能增加,所以应有E k ≥E k ′,可排除选项B.选项C 虽满足E k ≥E k ′,但A、B沿同一直线相向运动,发生碰撞后各自仍能保持原来的速度方向(v A′>0,v B′<0),这显然是不符合实际的,因此C错误.验证选项A、D均满足E k≥E k′,故答案为选项A(完全非弹性碰撞)和选项D(弹性碰撞).。
动量守恒中的常见模型考点一、碰撞(1)定义:相对运动的物体相遇,在极短时间内,通过相互作用,运动状态发生显著变化的过程叫做碰撞。
(2)碰撞的特点①作用时间极短,内力远大于外力,总动量总是守恒的.②碰撞过程中,总动能不增.因为没有其它形式的能量转化为动能.③碰撞过程中,当两物体碰后速度相等时,即发生完全非弹性碰撞时,系统动能损失最大.④碰撞过程中,两物体产生的位移可忽略.(3)碰撞的分类①弹性碰撞(或称完全弹性碰撞)如果在弹性力的作用下,只产生机械能的转移,系统内无机械能的损失,称为弹性碰撞(或称完全弹性碰撞).此类碰撞过程中,系统动量和机械能同时守恒.②非弹性碰撞如果是非弹性力作用,使部分机械能转化为物体的内能,机械能有了损失,称为非弹性碰撞.此类碰撞过程中,系统动量守恒,机械能有损失,即机械能不守恒.③完全非弹性碰撞如果相互作用力是完全非弹性力,则机械能向内能转化量最大,即机械能的损失最大,称为完全非弹性碰撞.碰撞物体粘合在一起,具有同一速度.此类碰撞过程中,系统动量守恒,机械能不守恒,且机械能的损失最大.(4)判定碰撞可能性问题的分析思路①判定系统动量是否守恒.②判定物理情景是否可行,如追碰后,前球动量不能减小,后球动量在原方向上不能增加;追碰后,后球在原方向的速度不可能大于前球的速度.③判定碰撞前后动能是不增加.【例题1】如图所示,物体A静止在光滑的水平面上,A的左边固定有轻质弹簧,与A质量相同的物体B以速度v向A运动并与弹簧发生碰撞,A、B始终沿同一直线运动,则A、B组成的系统动能损失最大的时刻是()A.A开始运动时B.A的速度等于v时C.B的速度等于零时D.A和B的速度相等时【例题2】如图所示,位于光滑水平面桌面上的小滑块P和Q都视作质点,质量相等。
Q与轻质弹簧相连。
设Q静止,P以某一初速度向Q 运动并与弹簧发生碰撞。
在整个过程中,弹簧具有最大弹性势能等于()A.P的初动能B .P的初动能的1/2C.P的初动能的1/3D.P的初动能的1/4【例题3】小球A和B的质量分别为mA 和mB 且mA»mB 在某高度处将A和B先后从静止释放。
高中物理专题复习动量及动量守恒定律一、动量守恒定律的应用1.碰撞两个物体在极短时间内发生相互作用,这种情况称为碰撞。
由于作用时间极短,一般都满足内力远大于外力,所以可以认为系统的动量守恒。
碰撞又分弹性碰撞、非弹性碰撞、完全非弹性碰撞三种。
仔细分析一下碰撞的全过程:设光滑水平面上,质量为m 1的物体A 以速度v 1向质量为m 2的静止物体B 运动,B 的左端连有轻弹簧。
在Ⅰ位置A 、B 刚好接触,弹簧开始被压缩,A 开始减速,B 开始加速;到Ⅱ位置A 、B 速度刚好相等(设为v ),弹簧被压缩到最短;再往后A 、B 开始远离,弹簧开始恢复原长,到Ⅲ位置弹簧刚好为原长,A 、B 分开,这时A 、B 的速度分别为21v v ''和。
全过程系统动量一定是守恒的;而机械能是否守恒就要看弹簧的弹性如何了。
⑴弹簧是完全弹性的。
Ⅰ→Ⅱ系统动能减少全部转化为弹性势能,Ⅱ状态系统动能最小而弹性势能最大;Ⅱ→Ⅲ弹性势能减少全部转化为动能;因此Ⅰ、Ⅲ状态系统动能相等。
这种碰撞叫做弹性碰撞。
由动量守恒和能量守恒可以证明A 、B 的最终速度分别为:121121212112,v m m m v v m m m m v +='+-='。
⑵弹簧不是完全弹性的。
Ⅰ→Ⅱ系统动能减少,一部分转化为弹性势能,一部分转化为内能,Ⅱ状态系统动能仍和⑴相同,弹性势能仍最大,但比⑴小;Ⅱ→Ⅲ弹性势能减少,部分转化为动能,部分转化为内能;因为全过程系统动能有损失(一部分动能转化为内能)。
这种碰撞叫非弹性碰撞。
⑶弹簧完全没有弹性。
Ⅰ→Ⅱ系统动能减少全部转化为内能,Ⅱ状态系统动能仍和⑴相同,但没有弹性势能;由于没有弹性,A 、B 不再分开,而是共同运动,不再有Ⅱ→Ⅲ过程。
这种碰撞叫完全非弹性碰撞。
可以证明,A 、B 最终的共同速度为121121v m m m v v +='='。
在完全非弹性碰撞过程中,系统的动能损失最大,为:()()21212122121122121m m v m m v m m v m E k +='+-=∆。
动量守恒定律专题8 小球(滑块)----圆弧轨道模型
例题1、如左下图,一内外侧均光滑的半圆柱槽置于光滑的水平面上.槽的左侧有一竖直墙壁.现让一小球(可认为质点)自左端槽口A点的正上方从静止开始下落,与半圆柱槽相切并从A点进入槽内.正确的是( )
A.小球离开右侧槽口以后,将做竖直上抛运动
B.小球在槽内运动的全过程中,只有重力对小球做功
C.小球在槽内运动的全过程中,小球与槽组成的系统机械能守恒
D.小球在槽内运动的全过程中,小球与槽组成的系统水平方向动量不守恒
例题2、带有1/4光滑圆弧轨道质量为M的滑车静止置于光滑水平面上,如图所示,一质量也为M的小球以速度v0水平冲上滑车,到达某一高度后,小球又返回车的左端,则[ ]
A.小球以后将向左做平抛运动 B.小球将做自由落体运动
C.此过程小球对小车做的功为D.小球在弧形槽上升的最大高度为
例题3、如图所示,A和B并排放在光滑的水平面上, A上有一光滑的半径为R的半圆轨道,半圆轨道右侧顶点有一小物体C,C由顶点自由滑下,设A、B、C的质量均为m.求:
(1)A、B分离时B的速度多大?(2)C由顶点滑下到沿轨道上升至最高点的过
程中做的功是多少?
例题4、两质量分别为M1和M2的劈A和B,高度相同,放在光滑水平面上,A和B的倾斜面都是光滑曲面,曲面下端与水平面相切,如图所示,一质量为m的物块位于劈A的倾斜面上,距水平面的高度为h。
物块从静止滑下,然后滑上劈B。
求物块在B上能够达到的最大高度。
例题5、如图所示,光滑水平面上有一质量M=4.0kg的平板车,车的上表面右侧是一段长L=1.0m的水平轨道,水平轨道左侧连一半径R=0.25m的1/4光滑圆弧轨道,圆弧轨道与水平轨道在O/点相切.车右端固定一个尺寸可以忽略、处于锁定状态的压缩弹簧,一质量m=1.0kg的小物块紧靠弹簧,小物块与水平轨道间的动摩擦因数μ=0.5.整个装置处于静止状态,现将弹簧解除锁定,小物块被弹出,恰能到达圆弧轨道的最高点A,g取10m/s2.求:
(1)解除锁定前弹簧的弹性势能;
(2)小物块第二次经过O/点时的速度大小;
(3)最终小物块与车相对静止时距O/点的距离.
练习1、如图所示,半径为R ,质量为M ,内表面光滑的半球物体放在光滑的水平面上,左端紧靠着墙壁,一个质量为m 的物块从半球形物体的顶端的a 点无初速释放,图中b 点为半球的最低点,c 点为半球另一侧与a 同高的顶点,关于物块M 和m 的运动,下列说法的正确的有( )
A .m 从a 点运动到b 点的过程中,m 与M 系统的机械能守恒、动量守恒
B .m 从a 点运动到b 点的过程中,m 的机械能守恒
C .m 释放后运动到b 点右侧,m 能到达最高点c
D .当m 首次从右向左到达最低点b 时,M 的速度达到最大
练习2、如图5-11所示将一光滑的半圆槽置于光滑水平面上,槽的左侧有一固定在水平面上的物块。
今让一小球自左侧槽口A 的正上方从静止开始落下,与圆弧槽相切自A 点进入槽内,则以下结论中正确的 ( )
A .小球在半圆槽内运动的全过程中,只有重力对它做功
B .小球在半圆槽内运动的全过程中,小球与半圆槽在水平方向动量守恒
C .小球自半圆槽的最低点B 向C 点运动的过程中,小球与半圆槽在水平方向动量守恒
D .小球离开C 点以后,将做竖直上抛运动。
练习3、如图所示,带有1/4圆弧的光滑轨道的小车放在光滑水平地面上,弧形轨道的半径为R ,最低点与水平线相切,整个小车的质量为M 。
现有一质量为m 的小滑块从圆弧的顶端由静止开始沿轨道下滑,求当滑块脱离小车时滑块和小车的各自速度。
练习4、如图1-11所示,质量为M ,半径为R 的光滑半圆槽第一次被固定在光滑水平地面上,质量为m 的小球,以某一初速度冲向半圆槽刚好可以到达顶端C .然后放开半圆槽,使其可以自由运动,小球又以同样的初速度冲向半圆槽,小球最高可以到达与圆心等高的B 点,(g =10 m/s 2
)试求:
①半圆槽第一次被固定时,小球运动至C 点后平抛运动的水平射程x =?
②小球质量与半圆槽质量的比值m /M 为多少?
练习5、质量为M 的楔形物块上有圆弧轨道,静止在水平面上。
质量为m 的小球以速度v 1向物块运动。
不计一切摩擦,圆弧小于90°且足够长。
求小球能上升到的最大高度H 和物块的最终速度v 。
M m
O R
练习6、如图所示,光滑水平面上有带有1/4光滑圆弧轨道的滑块,其质量为2m,一质量为m的小球以速度v0沿水平面滑上轨道,并能从轨道上端飞出,则:
①小球从轨道上端飞出后,能上升的最大高度为多大?②滑块能达到的最大速度为多大?
练习7、一质量为2m的物体P静止于光滑水平地面上,其截面如图所示.图中ab为粗糙的水平面,长度为L;bc为一光滑斜面,斜面和水平面通过与ab与bc均相切的长度可忽略的光滑圆弧连接.现有一质量为m的木块以大小为v0的水平初速度从a点向左运动,在斜面上上升的最大高度为h,返回后在到达a点前与物体P相对静止.重力加速度为g.求:(1)木块在ab段受到的摩擦力f;(2)木块最后距a点的距离s.
练习8、如图所示,在光滑的水平面上,有一A、B、C三个物体处于静止状态,三者质量均为m,物体的ab部分为半径为R的光滑1/4圆弧,bd部分水平且粗糙,现让小物体C自a点静止释放,当小物C到达b 点时物体A将与物体B发生碰撞,且与B粘在一起(设碰撞时间极短),试求:(1)小物体C刚到达b点时,物体A的速度大小?(2)如果bd部分足够长,试用文字表述三个物体的最后运动状态。
需简要说明其中理由。
练习9、如图所示,在光滑水平地面上有一辆质量为M的小车,车上装有一个半径为R的光滑圆环.一个质量为m的小滑块从跟车面等高的平台上以速度V0滑入圆环.试问:小滑块的初速度V0满足什么条件才能使它运动到环顶时恰好对环顶无压力?。