(精选)线性代数第三章向量复习题
- 格式:doc
- 大小:491.00 KB
- 文档页数:11
第三章 习题与答案 习题 A1.求向量123(4,1,3,2),(1,2,3,2),(16,9,1,3)T T T=--=-=-ααα的线性组合12335.+-ααα 解 12341161293535331223⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪+-=+- ⎪ ⎪ ⎪-- ⎪ ⎪ ⎪-⎝⎭⎝⎭⎝⎭ααα1251613109491512561037⎛⎫⎛⎫⎛⎫⎛⎫⎪ ⎪ ⎪ ⎪ ⎪⎪ ⎪ ⎪=+-= ⎪ ⎪ ⎪ ⎪--- ⎪ ⎪ ⎪ ⎪--⎝⎭⎝⎭⎝⎭⎝⎭. 2.从以下方程中求向量α1233()2()5()-++=+αααααα,其中123(2,5,1,3),(10,1,5,10),(4,1,1,1).TT T ===-ααα 解 由方程得1233322550-++--=αααααα,1232104651112632532515118310124⎛⎫⎛⎫⎛⎫⎛⎫⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪=+-=+-= ⎪ ⎪ ⎪ ⎪- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭αααα故1234⎛⎫ ⎪ ⎪= ⎪ ⎪⎝⎭α,即(1,2,3,4)T =α.3.求证:向量组12i s α,α,,α,α 中的任一向量i α可以由这个向量组线性表出. 证 120010(1,2,,)i i s i s =+++++= ααααα4.证明: 包含零向量的向量组线性相关.证 设向量组为1211α,α,,α,0,α,,αi i s -+ ,则有12110α0αα00α0α0,0i i s k k -++++++++=≠而0,0,,0,,0,,0k 不全为0,故向量组线性相关.5.设有m 个向量12α,α,,αm ,证明: 若αα()i j i j =≠,则向量组12α,α,,αm 线性相关. 证 显然有1210α0αα0α()α0α0,0i i j m k k k +++++++-++=≠ , 而0,,0,,0,,0,,0,,0k k - 不全为0.故向量组线性相关.6.判断下列向量组的线性相关性(1) (1,1,0),(0,1,1,),(3,0,0,); (2) (2,0),(0,-1);(3) (-4,-5,2,6),(2,-2,1,3),(6,-3,3,9),(4,-1,5,6);(4) (1,0,0,2,5),(0,1,0,3,4),(0,0,1,4,7),(2,-3,4,11,12).解 (1)设有三个数123,,k k k ,使123(1,1,0)(0,1,1,) (3,0,0,)=(0,0,0)k k k ++则有方程组131223000k k k k k +=⎧⎪+=⎨⎪=⎩,因为系数行列式10311030010D =≠.方程组仅有零解,所以三个向量线性无关. (2)设有两个数12,k k 使12(2,0)(0,-1)=(0,0)k k + 则有方程组12200k k =⎧⎨-=⎩,由此解得120k k ==,所以两个向量线性无关.另外,也可由其分量不成比例看出两个向量线性无关. (3)设有四个数1234,,,k k k k ,使1234(-4,-5,2,6)(2,-2,1,3)(6,-3,3,9)(4,-1,5,6)=(0,0,0,0)k k k k +++,则有方程组1234123412341234426405230235063960k k k k k k k k k k k k k k k k +++=⎧⎪----=⎪⎨+++=⎪⎪+++=⎩,其系数行列式42645231021356396D ----==,所以方程组有非零解,向量组线性相关.(4) 设有四个数1234,,,k k k k ,使1234(1,0,0,2,5)(0,1,0,3,4)(0,0,1,4,7)(2,-3,4,11,12)=(0,0,0,0)k k k k +++则有方程组14243412341234203040234110547120k k k k k k k k k k k k k k +=⎧⎪-=⎪⎪+=⎨⎪+++=⎪⎪+++=⎩由前三个方程得1424342,3,4k k k k k k =-==-,代入第五个方程得4140k -=, 即40k =,从而1230k k k ===,所以向量组线性无关.7.设123α,α,α线性无关,证明:122331αα,αα,αα+++也线性无关. 证 设有三个数123,,k k k ,使()()()112223331αααααα0k k k +++++=, 则()()()131122233ααα0k k k k k k +++++=,因123α,α,α线性无关,故13122300k k k k k k +=⎧⎪+=⎨⎪+=⎩,因系数行列式10111020011D ==≠,所以只有1230k k k ===, 由此知122331αα,αα,αα+++线性无关.8.设12α,α,,αn 线性无关,问向量组122311αα,αα,,αα,ααn n n -++++ 是线性相关,还是线性无关?并给出证明. 解 设有n 个数12,,,,n k k k 使()()()()112223111αααααααα0n n n n n k k k k --++++++++= ,则得方程组1122310000n n n k k k k k k k k -+=⎧⎪+=⎪⎪+=⎨⎪⎪+=⎪⎩ 其系数行列式11000011100000110001(1),000110000011n n D +==+-可见,当n 为奇数时,20n D =≠,方程组仅有零解,向量组线性无关, 当n 为偶数时,0n D =,方程组有非零解,向量组线性相关.9.设12α(,,,)(1,2,,)i i i in a a a i n == ,证明:向量组12α,α,,αn 线性相关的充分必要条件是det()0ij a =.证 必要性:设12α,α,,αn 线性相关,则存在不全为0的n 个数12,,,,n k k k 使1122ααα0n n k k k +++= ,即有方程组()11121211212222112200*0n n n nn n nn n a k a k a k a k a k a k a k a k a k +++=⎧⎪+++=⎪⎨⎪⎪+++=⎩ 该方程组有非零解,故系数行列式0n D =,即det()0ij a =,充分性: 对于方程组(*)当det()0ij a =时,系数行列式0n D =,所以有非零解,即存在不全为0的12,,,,n k k k 使1122ααα0n n k k k +++= 成立,故12α,α,,αn 线性相关.10.设12α,α,,αn 是一组n 维向量.已知n 维标准单位向量组12e ,e ,,e n 能由它们线性表出,证明: 12α,α,,αn 线性无关.证 设12α(,,,)(1,2,,)i i i in a a a i n == ,则有1122αe e e ,i i i in n a a a =+++可见12α,α,,αn 也能由12e ,e ,,e n 线性表出,从而两个向量组等价. 因为12e ,e ,,e n 线性无关,所以12α,α,,αn 也线性无关.11.设12α,α,,αn 是一组n 维向量.证明:它们线性无关的充分必要条件是:任一n 维向量都可由它们线性表出.证 必要性:设12α,α,,αn 线性无关,β为任一n 维向量,则12α,α,,αn ,β必线性相关.(个数大于维数),因此β可由12α,α,,αn 线性表出.充分性:设任一n 维向量β都可由12α,α,,αn 线性表出.因此12α,α,,αn 与12e ,e ,,e n 等价,从而12α,α,,αn 线性无关.12.判断下列向量是否线性相关,并求出一个极大线性无关组.(1)123α(1,2,1,4),α(9,100,10,4),α(2,4,2,8);T T T =-==--- (2) 123α(1,1,0),α(0,2,0),α(0,0,3);T T T ===(3) 1234α(1,2,1,3),α(4,1,5,6),α(1,3,4,7),α(2,1,1,0);T T T T ==---=---=- 解 (1)19221004A 1102448-⎛⎫ ⎪-⎪= ⎪- ⎪-⎝⎭ 192082001900320-⎛⎫ ⎪ ⎪→ ⎪ ⎪-⎝⎭192010000000-⎛⎫ ⎪ ⎪→ ⎪ ⎪⎝⎭102010000000-⎛⎫⎪ ⎪→⎪ ⎪⎝⎭, 向量组的秩为2, 12α,α为一个极大线性无关组.(2) 100A 120003⎛⎫ ⎪= ⎪ ⎪⎝⎭100020003⎛⎫ ⎪→ ⎪ ⎪⎝⎭向量组的秩为3, 123α,α,α为一个极大线性无关组.(3) 14122131A 15413670⎛⎫ ⎪--⎪= ⎪--- ⎪--⎝⎭141209530953018106⎛⎫ ⎪--- ⎪→ ⎪--- ⎪---⎝⎭1412095300000000⎛⎫ ⎪--- ⎪→ ⎪ ⎪⎝⎭向量组的秩为2, 12α,α为一个极大线性无关组.13.求一个秩是4的方阵,它的两个行向量是(1,0,3,0,0),(1,1,0,0,0)--. 解 所求方阵可写成1030011000A 001000001000000⎛⎫ ⎪-- ⎪ ⎪= ⎪ ⎪ ⎪⎝⎭,则1030001300A 00100000100000⎛⎫⎪- ⎪⎪→⎪⎪ ⎪⎝⎭显然(A)4R =.14.已知12α,α,,αs 的秩为r ,证明: 12α,α,,αs 中任意r 个线性无关的向量都构成它的一个极大线性无关组.证 设12α,α,,α,r i i i 为12α,α,,αs 中任意r 个线性无关的向量,因为向量组的秩为r ,故1212α,α,,α,α,(,,)r i i i i r i i i i ≠ 线性相关.可见12α,α,,αs 中的每个向量都可由12α,α,,α,r i i i 线性表出.因此, 12α,α,,α,r i i i 是12α,α,,αs 的一个极大线性无关组.15.用初等变换化下列矩阵为阶梯形,并判断其秩.(1)001010100⎛⎫ ⎪ ⎪ ⎪⎝⎭; (2)1234110215610-⎛⎫ ⎪- ⎪ ⎪⎝⎭;(3)023*********-⎛⎫ ⎪- ⎪ ⎪--⎝⎭;(4)1725314353759413254759413420253248⎛⎫⎪⎪⎪⎪⎝⎭.解 (1) 001010100⎛⎫ ⎪ ⎪ ⎪⎝⎭131********r r ↔⎛⎫ ⎪→ ⎪ ⎪⎝⎭,秩为3.(2) 1234110215610-⎛⎫ ⎪- ⎪ ⎪⎝⎭2131123403360336r r r r+-⎛⎫ ⎪→ ⎪ ⎪⎝⎭32123403360000r r -⎛⎫ ⎪→ ⎪ ⎪⎝⎭,秩为2.(3)023*********-⎛⎫ ⎪- ⎪⎪--⎝⎭12011203430471r r ---⎛⎫⎪→- ⎪ ⎪--⎝⎭213134011200130039r r r r ++--⎛⎫ ⎪→-- ⎪ ⎪--⎝⎭323011*********r r ---⎛⎫⎪→-- ⎪ ⎪⎝⎭, 秩为2.(4)1725314353759413254759413420253248⎛⎫ ⎪ ⎪ ⎪ ⎪⎝⎭213143317253143201330153015r r r r r r ---⎛⎫ ⎪ ⎪→ ⎪ ⎪⎝⎭433217253143201310020000r r r r --⎛⎫⎪⎪→⎪ ⎪⎝⎭1310022013172531430000r r ↔⎛⎫ ⎪⎪→ ⎪ ⎪⎝⎭2131217100200110253190000r r r r --⎛⎫ ⎪- ⎪→ ⎪ ⎪⎝⎭23100202531900110000r r ↔⎛⎫⎪ ⎪→ ⎪- ⎪⎝⎭,秩为3. 16.证明: 两个矩阵和的秩不超过这两个矩阵秩的和,即 (A B)(A)(B)R R R +≤+.证 设1A (α,,α),(A),n R r == 1α,,αr 为一个极大线性无关组,1B (β,,β),(B),n R s == 1β,,βs 为一个极大线性无关组, 1A B (r ,,r )n += .因为1r ,,r n 可由1α,,αn ,1β,,βn 线性表出,从而也可由1α,,αr ,1β,,βs 线性表出.故()1A B (r ,,r )n R R +=≤ ()11α,,α,β,,βr s R r s =+=(A)(B)R R +.17.设A 与B 可乘,且AB 0=,证明: (A)(B)A R R +≤的列数. 证法一 设A 为m n ⨯矩阵,B 为n l ⨯矩阵 由AB 0=,有11111111n l m mn n nl m n n l a a b b a a b b ⨯⨯⎛⎫⎛⎫ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭ 0000m l⨯⎛⎫ ⎪= ⎪ ⎪⎝⎭ 比较等式两边对应元素,有111111111100n n m mn n a b a b a b a b ++=⎧⎪⎨⎪++=⎩,11121211220,0n n m mn n a b a b a b a b ++=⎧⎪⎨⎪++=⎩ ,11111100l n nl m lmn nl a b a b a b a b ++=⎧⎪⎨⎪++=⎩ . 可见B 的列向量组为上述l 个齐次线性方程组的解向量,因此有 (B)(A)R n R ≤-, 移项得(A)(B)R R n +≤(A 的列数).证法二 设A 为m n ⨯矩阵,B 为n l ⨯矩阵, 12(A),(B)R r R r ==,因为1(A)R r =,则A 的标准形可写成1E 000r ⎛⎫⎪⎝⎭,即存在可逆阵P,Q 使得 PAQ 1E 000r ⎛⎫=⎪⎝⎭.又设()111B Q B B r m n r m ⨯--⨯⎛⎫= ⎪ ⎪⎝⎭, 则10(AB)(PAB)(PAQQ B)R R R -===,但()111111B E 0B PAQQ B Q B B 000r m r r m n r m ⨯⨯---⨯⎛⎫⎛⎫⎛⎫=== ⎪⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭, 可见11(B )(PAQQ B)0r m R R -⨯==,又因为12(Q B)(B)R R r -==,所以()12(B )n r m R r -⨯=,而()1B n r m -⨯共1n r -行,因此12n r r -≥,即12r r n +≤或(A)(B)R R n +≤.习题 B1.证明: 12α,α,,αs (其中1α0≠)线性相关的充要条件是至少有一个α(1)i i s <≤可被121α,α,,αi - 线性表出.证 必要性:设12α,α,,αs 线性相关(1α0≠),则存在不全为0的s 个数12,,,s k k k 使1122ααα0s s k k k +++= ,设i k 是12,,,s k k k 中最后一个不为零的数,即0i k ≠,而10i s k k +=== ,则1122ααα0i i k k k +++= ,因为1α0≠,所以1i >,即1i s <≤,(否则120,0s k k k ≠=== 则1α0k =不能成立),于是1111αααi i i i ik k k k --=--- ,即αi 可由121α,α,,αi - 线性表出.充分性:如果1111αααi i i k k --=++ ,则11111ααα0αα0i i i i s k k --+++-+++= ,而11,,,1,0,,0i k k -- 不全为0,所以12α,α,,αs 线性相关.2.证明:一个向量组的任一线性无关组都可扩充为一个极大线性无关组. 证 设有向量组12α,α,,αn 秩为s ,12α,α,,αr i i i 是它的任意一个线性无关组,如果r s =,则它就是12α,α,,αn 的一个极大线性无关组.如果r s <,则12α,α,,αn 的其余向量中一定可以选出向量1αr i +,使12α,α,,αr i i i ,1αr i +线性无关(否则与12α,α,,αn 秩s r >矛盾),只要1r s +<,重复上述过程,直到r i s +=时为止.这样121α,α,,α,α,,αr r s i i i i i + 就是由12α,α,,αr i i i 扩充成的一个极大线性无关组.3.已知两向量组有相同的秩,且其中之一可被另一个线性表出,证明:这两个向量组等价. 证 设12A :α,α,,α;s 12B:β,β,,βt 为两个秩为r 的向量组, 1212α,α,,α;β,β,,βr r 分别为A,B 极大线性无关组,设B 可由A 线性表出,则有()()1212β,β,,βα,α,,αTr r K = ,其中K 为组合系数构成的r 阶方阵,因为1212α,α,,α;β,β,,βr r 线性无关,所以K 可逆,()()11212α,α,,αβ,β,,βr r K -= ,从而12α,α,,αr 可由12β,β,,βr 线性表出,从而可由12β,β,,βt 线性表出,又12α,α,,αs 可由12α,α,,αr 线性表出,所以12α,α,,αs 可由12β,β,,βt 线性表出,即A 可由B 线性表出,因此向量组A ,B 等价.4.设向量组12α,α,,αs 的秩为r ,在其中任取m 个向量12α,α,,αm i i i ,证明:{}12α,α,,αm i i i R r m s ≥+- .证 设12α,α,,αm i i i 的秩为t ,从它的一个极大线性无关组(含t 个向量)可扩充为12α,α,,αs 的一个极大线性无关组(含r 个向量),所扩充向量的个数为r t -个.但12α,α,,αs 中除了12α,α,,αm i i i 外,还有s m -个向量,故r t s m -≤-,即t r m s ≥+-.5.设n m ⨯阶矩阵A 的秩为r ,证明:存在秩为r 的n r ⨯阶矩阵P 及秩为r 的r m ⨯阶矩阵Q ,使A PQ =.证 因(A)R r =,故可经有限次初等行变换和初等列变换化为标准形,即存在m 阶可逆阵F 和n 阶可逆阵G ,使得 E 0GAF 00r ⎛⎫=⎪⎝⎭,即11E 0A GF ,00r--⎛⎫= ⎪⎝⎭记111212122G G G ,G G -⎛⎫= ⎪⎝⎭111212122F F F F F -⎛⎫= ⎪⎝⎭,其中1111G ,F 均为r 阶方阵,则111211121121222122G G F F E0E 0A G F GG F F 0000rr--⎛⎫⎛⎫⎛⎫⎛⎫== ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭111112212122G 0F F G 0F F ⎛⎫⎛⎫ ⎪⎪⎝⎭⎝⎭=1111111221212122G F G F G F G F ⎛⎫ ⎪⎝⎭()11112121G F F G ⎛⎫= ⎪⎝⎭, 记1121G P G ⎛⎫=⎪⎝⎭,则P 为n r ⨯矩阵且(P )R r =(因1G -可逆,故其前r 列线性无关), ()1121Q F F =,则Q 为r m ⨯矩阵且(Q)R r =(因1F -可逆,故其前r 列线性无关),而A PQ =.。
1.设α1=(1 2−1 0),α2=(1312),α3=(24−2),α4=(1135),α5=(223),求向量组α1,α2,α3,α4,α5的一个极大(最大)无关组,并将其余向量用该极大无关组线性表出。
2.设A为mxn阶矩阵,B为nxp阶矩阵,C为pxs阶矩阵,R(C)=p,且ABC=0,证明B=0.3.设A为mxn阶矩阵,X与b为m维列向量,Y为n维列向量,证明AY=b有解的充要条件是满足A T X=0的所有X均满足b T=0.4. 设α1=(1003),α2=(11−12),α3=(12−2a ),β=(01b −1)问a,b 为何值时, (1) β不能由α1,α2,α3线性表出(2) β可以由α1,α2,α3线性表出,并且写出表达式5. 设A=(λ+312λλ−113λ+3λλ+3),讨论AX=0的解的情况。
6. 设A=(111a b c a 2b 2c 2),讨论AX=0的解的情况。
7. 设A=(1 10 1 1 12 20−132a −3−21a ),β=(01b −1),讨论方程组AX=β的解的情况。
8. 设A=(λ111λ111λ),b=(1λλ2),讨论方程组AX=b 的解的情况。
9. 已知三阶矩阵A 的第一行为a,b,c ,且a,b,c 不全为0,矩阵B=(12324636k)(k 为常数)满足AB =0,求AX =0的通解。
10. 设4元齐次线性方程组(I ){2x 1+3x 2−x 3=0x 1+2x 2+x 3−x 4=0,且已知另一个四元齐次线性方程组(II )的一个基础解系为α1=(2−1a +21),α2=(−124a +8),(1)求(I )的一个基础解系。
(2)a 为何值时(I )与(II )有非零公共解,并求所有非零公共解。
11. 在上例中将α1,α2改为α1=(a −51−1−1),α2=(−6a +3−12)求(I )与(II )的所有非零公共解。
习 题 3-11.设)1,0,2(-=α,)4,2,1(-=β,求32-αβ.解:)11,4,8()8,4,2()3,0,6()4,2,1(2)1,0,2(323--=---=---=-βα 2.设)4,3,2,1(=α,)3,4,1,2(=β,且324+=αγβ,求γ. 解:由324+=αγβ得αβγ232-= 所以)0,27,1,25()6,29,3,23()6,8,2,4()4,3,2,1(23)3,4,1,2(2-=-=-=γ。
3.试问下列向量β能否由其余向量线性表示,若能,写出线性表示式:(1))1,2(-=β,)1,1(1=α,)4,2(2-=α;(2))1,1(-=β,)1,1(1=α,)1,0(2=α,)0,1(3=α; (3))1,1,1(=β,)1,1,0(1-=α,)2,0,1(2=α,)0,1,1(3=α;(4))1,2,1(-=β,)2,0,1(1=α,)0,8,2(2-=α,0α(5)),,,(4321k k k k =β,)0,0,0,1(1=e ,)0,0,1,0(2=e ,)0,1,0,0(3=e ,)1,0,0,0(4=e . 解:(1)设2211ααβx x +=,即)4,2()4,2()1,1()1,2(212121x x x x x x -+=-+=-从而⎩⎨⎧-=-=+14222121x x x x ,解得⎪⎩⎪⎨⎧==21121x x所以β能由21,αα线性表示,表示式为2121ααβ+=。
(2)设332211αααβx x x ++=,即),()0,1()1,0()1,1()1,1(2131321x x x x x x x ++=++=-从而⎩⎨⎧-=+=+112131x x x x ,有无穷解⎪⎩⎪⎨⎧-=--==cx c x cx 11321所以β能由321,,ααα线性表示,表示式不唯一,为321)1()1(αααβc c c -+--+= (c 为任意常数)(3)设332211αααβx x x ++=即)2,,()0,1,1()2,0,1()1,1,0()1,1,1(213132321x x x x x x x x x +-++=++-=从而⎪⎩⎪⎨⎧=+-=+=+1211213132x x x x x x ,因为010********≠=-,所以有唯一解,解为⎪⎩⎪⎨⎧===011321x x x所以β能由321,,ααα线性表示,且表示式为3210αααβ⋅++=(4)设2211ααβx x +=,即)2,8,2()0,8,2()2,0,1()1,2,1(222121x x x x x x -+=-+=-从而⎪⎩⎪⎨⎧-==-=+1228121221x x x x ,由②,③式得211-=x ,412-=x 代入①式11)41(221≠-=-⋅+-所以该方程组无解, 即β不能由21,αα线性表示。
线性代数考试题库及答案第三章 向量一、单项选择题1. 321,,ααα, 21,ββ都是四维列向量,且四阶行列式m =1321βααα,n =2321ααβα,则行列式)(21321=+ββαααn m a +)( n m b -)( n m c +-)( n m d --)(2. 设A 为n 阶方阵,且0=A ,则( )。
成比例中两行(列)对应元素A a )( 线性组合中任意一行为其它行的A )b ( 零中至少有一行元素全为A c )( 线性组合中必有一行为其它行的A )d (3. 设A 为n 阶方阵,n r A r <=)(,则在A 的n 个行向量中( )。
个行向量线性无关必有r a )( 个行向量线性无关任意r )b (性无关组个行向量都构成极大线任意r c )(个行向量线性表示其它任意一个行向量都能被r )d (4. n 阶方阵A 可逆的充分必要条件是( )n r A r a <=)()(n A b 的列秩为)(零向量的每一个行向量都是非)(A c 的伴随矩阵存在)(A d5. n 维向量组s ααα,,,21 线性无关的充分条件是( ))(a s ααα,,,21 都不是零向量)(b s ααα,,,21 中任一向量均不能由其它向量线性表示 )(c s ααα,,,21 中任意两个向量都不成比例 )(d s ααα,,,21 中有一个部分组线性无关6. n 维向量组)2(,,,21≥s s ααα 线性相关的充要条件是( ))(a s ααα,,,21 中至少有一个零向量 s b ααα,,,)(21 中至少有两个向量成比例 s c ααα,,,)(21 中任意两个向量不成比例s d ααα,,,)(21 中至少有一向量可由其它向量线性表示7. n 维向量组)3(,,,21n s s ≤≤ααα 线性无关的充要条件是( )s k k k a ,,,)(21 存在一组不全为零的数使得02211≠++s s k k k ααα s b ααα,,,)(21 中任意两个向量都线性无关s c ααα,,,)(21 中存在一个向量,它不能被其余向量线性表示 s d ααα,,,)(21 中任一部分组线性无关8. 设向量组s ααα,,,21 的秩为r ,则( )s a ααα,,,)(21 中至少有一个由r 个向量组成的部分组线性无关 s b ααα,,,)(21 中存在由1+r 个向量组成的部分组线性无关 s c ααα,,,)(21 中由r 个向量组成的部分组都线性无关 s d ααα,,,)(21 中个数小于r 的任意部分组都线性无关9. 设s ααα,,,21 均为n 维向量,那么下列结论正确的是( ))(a 若02211=++s s k k k ααα ,则s ααα,,,21 线性相关 )(b 若对于任意一组不全为零的数s k k k ,,,21 ,都有02211≠++s s k k k ααα ,则s ααα,,,21 线性无关)(c 若s ααα,,,21 线性相关,则对任意不全为零的数s k k k ,,,21 ,都有02211=++s s k k k ααα)(d 若000021=++s ααα ,则s ααα,,,21 线性无关10. 已知向量组4321,,,αααα线性无关,则向量组( )14433221,,,)(αααααααα++++a 线性无关 14433221,,,)(αααααααα----b 线性无关 14433221,,,)(αααααααα-+++c 线性无关 14433221,,,)(αααααααα--++d 线性无关11. 若向量β可被向量组s ααα,,,21 线性表示,则( ))(a 存在一组不全为零的数s k k k ,,,21 使得s s k k k αααβ ++=2211 )(b 存在一组全为零的数s k k k ,,,21 使得s s k k k αααβ ++=2211 )(c 存在一组数s k k k ,,,21 使得s s k k k αααβ ++=2211 )(d 对β的表达式唯一12. 下列说法正确的是( ))(a 若有不全为零的数s k k k ,,,21 ,使得02211=++s s k k k ααα ,则s ααα,,,21 线性无关)(b 若有不全为零的数s k k k ,,,21 ,使得02211≠++s s k k k ααα ,则s ααα,,,21 线性无关)(c 若s ααα,,,21 线性相关,则其中每个向量均可由其余向量线性表示 )(d 任何1+n 个n 维向量必线性相关13. 设β是向量组T )0,0,1(1=α,T )0,1,0(2=α的线性组合,则β=( )T a )0,3,0)(( T b )1,0,2)(( T c )1,0,0)(( T d )1,2,0)((14. 设有向量组()T4,2,1,11-=α,()T2,1,3,02=α,()T 14,7,0,33=α,()T0,2,2,14-=α,()T 10,5,1,25=α,则该向量组的极大线性无关组为( )321,,)(αααa 421,,)(αααb 521,,)(αααc 5421,,,)(ααααd15. 设T a a a ),,(321=α,T b b b ),,(321=β,T a a ),(211=α,T b b ),(211=β,下列正确的是( );,,)(11也线性相关线性相关,则若βαβαa 也线性无关;线性无关,则若11,,)(βαβαb 也线性相关;线性相关,则若βαβα,,)(11c 以上都不对)(d二、填空题1. 若T )1,1,1(1=α,T )3,2,1(2=α,T t ),3,1(3=α线性相关,则t=▁▁▁▁。
1.已知向量:112[5,1,3,2,4],34[3,7,17,2,8],T T ααα=--=-- 求1223αα+ 解:∵ 21{[3,7,17,2,8][15,3,9,6,12]}4T T α=----- 1[12,4,8,8,4][3,1,2,2,1]4T T=-----=-∴ 1223[10,2,6,4,8][9,3,6,6,3][19,1,0,10,11]TTTαα+=-+-=2.设 12[2,5,1,3],[10,1,5,10],T T αα==3123[4,1,1,1],3()2()5()0T ααααααα=--++-+=并且 求 α解:∵ 1236325αααα=+-[6,15,3,9][20,2,10,20][20,5,5,5][6,12,18,24],T T TT=+--=∴ [1,2,3,4].T α=3.判断下列命题是否正确,为什么? (1)如果当 120m k k k ==== 时, 11220m m k k k ααα+++= 成立, 则向量组12,,m ααα 线性相关解:不正确.如:[][]121,2,3,4T Tαα==,虽然 12000,αα+=但12,αα线性无关。
(2) 如果存在m 个不全为零的数12,,,,m k k k 使11220,m m k k k ααα+++≠ 则向量组12,,,m ααα 线性无关。
解: 不正确. 如[][]11121,2,2,4,1,2,TTk αα====存在k 使121220,,.αααα+≠但显然线性相关(3) 如果向量组12,,,m ααα 线性无关,则其中任何一个向量都不能由其余向量线性表出. 解: 正确。
(反证)如果组中有一个向量可由其余向量线性表示,则向量组 12,,,m ααα 线性相关,与题没矛盾。
(4) 如果向量组123,,ααα线性相关,则3α一定可由12,αα线性表示。
解:不正确。
例如:[][][]1230,0,0,0,1,0,0,0,1,TTTααα===向量组123,,ααα线性相关,但3α不能由12,αα线性表示。
3、 设有n 维向量组(Ⅰ):12,,,r αααL 与(Ⅱ):12,,,()m m r ααα>L ,则( ).A 、向量组(Ⅰ)线性无关时,向量组(Ⅱ)线性无关B 、向量组(Ⅰ)线性相关时,向量组(Ⅱ)线性相关C 、向量组(Ⅱ)线性相关时,向量组(Ⅰ)线性相关D 、向量组(Ⅱ)线性无关时,向量组(Ⅰ)线性相关4、 下列命题中正确的就是( )(A)任意n 个1+n 维向量线性相关 (B)任意n 个1+n 维向量线性无关(C)任意1+n 个n 维向量线性相关 (D)任意1+n 个n 维向量线性无关5、 向量组r ααα,,,21Λ线性相关且秩为s ,则( )(A)s r = (B) s r ≤ (C) r s ≤ (D) r s <6、 n 维向量组 s ααα,,,Λ21(3≤ s ≤ n)线性无关的充要条件就是( )、 (A)s ααα,,,Λ21中任意两个向量都线性无关 (B) s ααα,,,Λ21中任一个向量都不能用其余向量线性表示 (C) s ααα,,,Λ21中存在一个向量不能用其余向量线性表示 (D) s ααα,,,Λ21中不含零向量 7、 向量组n ααα,,,21⋅⋅⋅线性无关的充要条件就是( )A 、任意i α不为零向量B 、n ααα,,,21⋅⋅⋅中任两个向量的对应分量不成比例C 、n ααα,,,21⋅⋅⋅中有部分向量线性无关D 、n ααα,,,21⋅⋅⋅中任一向量均不能由其余n-1个向量线性表示8、 设A 为n 阶方阵,n r A R <=)(,则A 的行向量中( )A 、必有r 个行向量线性无关B 、任意r 个行向量构成极大线性无关组C 、任意r 个行向量线性相关D 、任一行都可由其余r 个行向量线性表示9、 设A 为n 阶方阵,且秩12() 1.,A n αα=-就是非齐次方程组AX B =的两个不同的解向量,则AX =0的通解为( )A 、1αkB 、2αkC 、)(21αα-kD 、)(21αα+k10、 已知向量组()()()1231,1,1,1,2,0,,0,0,2,5,2t ααα=-==--的秩为2,则=t ( )、A 、3B 、-3C 、2D 、-211、 设A 为n 阶方阵,n r A R <=)(,则A 的行向量中( )A 、必有r 个行向量线性无关B 、任意r 个行向量构成极大线性无关组C 、任意r 个行向量线性相关D 、任一行都可由其余r 个行向量线性表示12、 设向量组A: 321,,ααα线性无关,则下列向量组线性无关的就是( )A 、321ααα++,321232ααα+-,321323ααα+-B 、21αα+,32αα+,13αα-C 、212αα+,3232αα+,133αα+D 、12-αα+,32αα+,3212ααα++-13、 A 、B 均为n 阶方阵,X 、Y 、b 为1⨯n 阶列向量,则方程⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛b O Y X O A B O 有解的充要条件就是( )A 、nB r =)( B 、n A r <)(C 、)()(b A r A r M= D 、n A r =)( 14、 已知向量组A 线性相关,则在这个向量组中( )(A)必有一个零向量 、(B)必有两个向量成比例 、(C)必有一个向量就是其余向量的线性组合 、(D)任一个向量就是其余向量的线性组合 、15、 设A 为n 阶方阵,且秩()1R A n =-,12,a a 就是非齐次方程组Ax b =的两个不同的解向量, 则0Ax = 的通解为 ( )(A)12()k a a + (B) 12()k a a - (C) 1ka (D) 2ka16、 已知向量组1,,m ααK 线性相关, 则( )(A)该向量组的任何部分组必线性相关 、(B) 该向量组的任何部分组必线性无关 、(C) 该向量组的秩小于m 、(D) 该向量组的最大线性无关组就是唯一的、17.已知123234(,,)2,(,,)3,R R αααααα==则 ( )(A)123,,ααα 线性无关 (B) 234,,ααα 线性相关(C) 1α能由23,αα 线性表示 (D) 4α能由123,,ααα 线性表示18、 若有 1133016,02135k k k ⎛⎫⎛⎫⎛⎫ ⎪⎪ ⎪= ⎪⎪ ⎪ ⎪⎪ ⎪--⎝⎭⎝⎭⎝⎭则k 等于(A) 1 (B) 2 (C) 3 (D) 4第三题 计算题:1、 已知向量组⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-=0221,8451,6352,2130,421154321ααααα (1)求向量组54321,,,,ααααα的秩以及它的一个极大线性无关组;(2)将其余的向量用所求的极大线性无关组线性表示。
第三章 向量【基本要求】1.理解n 维向量的概念。
2.理解向量组线性相关与线性无关的定义,并了解有关的重要结论。
3.理解向量组的极大线性无关组与向量组的秩的概念.4.知道矩阵的秩与向量组的秩的关系。
5.知道n 维向量空间、基、维数、坐标、基变换与坐标变换、过渡矩阵等概念。
6.掌握线性无关的向量组正交单位化的方法。
了解正交矩阵的概念与性质。
【主要内容】一、n 维向量的概念与运算:),,,(,),,(2121n n b b b a a a ==βα由加法及数乘运算可引出线性组合、线性相关等概念,由内积可引出单位化、正交化等问题。
二、极大线性无关组与等价:① 等价是向量组之间的一种关系,具有传递性、对称性及反身性; ② 任一向量组和它的极大无关组等价。
③ 同一向量组的任意两个极大无关组等价。
④ 两个等价的线性无关的向量组所含向量的个数相同。
⑤ 向量组s ααα,,,21 的任意两个极大无关组所含向量的个数相同。
三、极大线性无关组与等价:① n 个n 维向量线性相关⇔以这n 个n 维向量以行或列构成的n 阶行列式等于零;1+n 个n 维向量一定线性相关。
②s ααα,,,21 线性无关⇔向量方程0x x x s s 2211=α++α+α 只有零解⇔向量组的秩s r s =),,,(21ααα ⇔每一个向量i a 都不能用其余1-s 个向量线性表出。
③ 设A 为n 阶矩阵,则⇔≠0A A 的行(列)向量线性无关n )A (R =⇔,⇔=0A A 的行(列)向量相关.四、向量组线性相关性的一系列结论:① 如果向量组(Ⅰ)可由向量组(Ⅱ)线性表出,则r(Ⅰ)≤r(Ⅱ);特别的,等价的向量 组有相同的秩。
② 秩相同的向量组不一定等价。
如)2,0(),1,0()0,2(),1,0(2121====ββαα与有相同的秩,但是这两个向量组并不等价。
但如果)I (可以由)II (线性表示,且)II (R )I (R =,则)I (与)II (等价。
第三章向量复习题一、填空题:1.当____时,向量线性无关.2..向量则6,3.如果线性无关,且不能由线性表示,则的线性无关4.设,,当5/2时,线性相关.5.一个非零向量是线性无关;的,一个零向量是线性相关的.6.设向量组A:线性无关,,,线性相关7.设为阶方阵,且,是A X=0的两个不同解,则一定线性相关8.向量组能由向量组线性表示的充分必要条件是等于。
(填大于,小于或等于) 9.设向量组,,线性相关,则的值为。
二、选择题:1..阶方阵的行列式,则的列向量(A)A.线性相关B.线性无关C.D.2.设为阶方阵,,则的行向量中(A)A、必有个行向量线性无关B、任意个行向量构成极大线性无关组C、任意个行向量线性相关D、任一行都可由其余个行向量线性表示3.设有维向量组(Ⅰ):和(Ⅱ):,则(B).A、向量组(Ⅰ)线性无关时,向量组(Ⅱ)线性无关B、向量组(Ⅰ)线性相关时,向量组(Ⅱ)线性相关C、向量组(Ⅱ)线性相关时,向量组(Ⅰ)线性相关D、向量组(Ⅱ)线性无关时,向量组(Ⅰ)线性相关4.下列命题中正确的是(D)(A)任意个维向量线性相关(B)任意个维向量线性无关(C)任意个维向量线性相关(D)任意个维向量线性无关5.向量组线性相关且秩为s,则(D)(A)(B)(C)(D)6.维向量组(3≤s≤n)线性无关的充要条件是(). (A)中任意两个向量都线性无关(B)中任一个向量都不能用其余向量线性表示(C)中存在一个向量不能用其余向量线性表示(D)中不含零向量7.向量组线性无关的充要条件是(C)A、任意不为零向量B、中任两个向量的对应分量不成比例C、中有部分向量线性无关D、中任一向量均不能由其余n-1个向量线性表示8.设为阶方阵,,则的行向量中(D)A、必有个行向量线性无关B、任意个行向量构成极大线性无关组C、任意个行向量线性相关D、任一行都可由其余个行向量线性表示9.设为阶方阵,且秩是非齐次方程组的两个不同的解向量,则的通解为(A)A、B、C、D、10.已知向量组的秩为2,则().A、3B、-3C、2D、-211.设为阶方阵,,则的行向量中(A)A、必有个行向量线性无关B、任意个行向量构成极大线性无关组C、任意个行向量线性相关D、任一行都可由其余个行向量线性表示12.设向量组A:线性无关,则下列向量组线性无关的是(C)A、,,B、,,C、,,D、,,13.A、B均为n阶方阵,X、Y、b为阶列向量,则方程有解的充要条件是(C)A、B、C、D、14.已知向量组A线性相关,则在这个向量组中(C)(A)必有一个零向量.(B)必有两个向量成比例.(C)必有一个向量是其余向量的线性组合.(D)任一个向量是其余向量的线性组合.15.设为阶方阵,且秩,是非齐次方程组的两个不同的解向量,则的通解为()(A)(B)(C)(D)16.已知向量组线性相关,则(C)(A)该向量组的任何部分组必线性相关.(B)该向量组的任何部分组必线性无关.(C)该向量组的秩小于.(D)该向量组的最大线性无关组是唯一的.17.已知则(C)(A)线性无关(B)线性相关(C)能由线性表示(D)能由线性表示18.若有则k等于(A)1(B)2(C)(D)4第三题计算题:1.已知向量组(1)求向量组的秩以及它的一个极大线性无关组;(2)将其余的向量用所求的极大线性无关组线性表示。
线性代数[第三章n维向量]⼭东⼤学期末考试知识点复习第3章 n维向量⼀、n维向量的概念1.n维向量的定义由n个数a1,a2,…,a n所组成的⼀个有序数组α=(a1,a2,…,a n)称为⼀个n维向量,其中第i个数ai称为向量α的第i个分量(i=1,2,…,n).向量常⽤希腊字母α,β,γ,…来表⽰,其分量常⽤⼩写拉丁字母a,b,c,…来表⽰.2.零向量所有分量都是零的向量称为零向量.3.负向量向量α中的每个分量都变号后得到的向量,称为α的负向量,记为-α.4.向量相等两个向量相等的充要条件是它们的对应分量相等.⼆、向量的线性运算1.向量的加法设α=(a1,a2,…,a n),β=(b1,b2,…,b n),定义α+β为这两个向量的对应元素相加所得到的向量,即α+β=(a1+b1,a2+b2,…,a n+b n),并称其为向量的加法.2.数与向量的乘法设α=(a1,a2,…,a n),k∈R,则kα=(ka1,ka2,…,ka n)3.向量的减法设α=(a1,a2,…,a n),β=(b1,b2,…,b n),则α-β=(a1-b1,a2-b2,…,a n-b n).4.向量的线性运算向量的加法以及数与向量的乘法称为向量的线性运算.向量的线性运算满⾜以下⼋条运算规律:(1)α+β=β+α;(2)(α+β)+γ=α+(β+γ);(3)α+θ=α;(4)α+(-α)=θ;(5)1.α=α;(6)(kl)α=k(lα);(7)k(α+β)=kα+kβ;(8)(k+l)α=kα+lα三、向量的线性组合1.向量的线性组合的定义设β,α1,α2,…,αn是⼀组m维向量,如果存在数k1,k2,…,k n使得关系式β=k1α1+k2α2+…+k nαn成⽴,则称卢是向量组α1,α2,…,αn的线性组合,或称β可由向量组α1,α2,…,αn线性表⽰.2.⼏个常⽤结论(1)零向量可由任意同维向量组线性表⽰;(2)向量组中的任⼀向量可由该向量组线性表⽰;(3)任⼀n维向量α=(a1,a2,…,a n)都可由n维单位向量组ε1,ε2,…,ε线性表⽰,且α=a1ε1+a2ε2+…+a nεn.n四、向量组的等价1.定义设有两个向量组α1,α2,…,αm,(1)β1,β2,…,βn.(2)若向量组(1)中每个向量可以由向量组(2)线性表⽰,则称向量组(1)可由向量组(2)线性表⽰.若向量组(1)与向量组(2)可互相线性表⽰,则称两向量组等价,记作{α1,α2,…,αm}≌{β1,β2,…,βn}.2.向量组的等价性质向量组的等价满⾜反⾝性、对称性、传递性.五、向量组线性相关与线性⽆关1.定义设α1,α2,…,αn为n个m维向量,如果存在⼀组不全为零的数k1,k2,…,k n,使得k1α1+k2α2+…+k nαn=θ成⽴,则称向量组α1,α2,…,αn线性相关;否则,称向量组α1,α2,…,αn线性⽆关.线性⽆关的⼏种等价定义:(1)对任意⼀组不全为零的数k1,k2,…,k n,都有k1α1+k2α2+…+k nαn≠θ(2)k1α1+k2α2+…+k nαn=θ当且仅当k1,k2,…,k n全为零.2.⼏个常⽤结论(1)由⼀个向量α构成的向量组线性相关的充要条件是α=θ.(2)由两个向量构成的向量组线性相关的充要条件是其对应分量成⽐例.(3)含有零向量的任⼀向量组线性相关.(4)若⼀个向量组中有⼀个部分向量组线性相关,则该向量组线性相关;反之,若⼀个向量组线性⽆关,则它的任⼀部分组都线性⽆关.我们可把这个结论简单地记为“部分相关,整体相关;整体⽆关,部分⽆关”.(5)⼀个线性⽆关的向量组中的每个向量按相同的位置随意增加⼀些分量所得到的⾼维向量组仍线性⽆关.逆否命题:⼀个线性相关的向量组中的每个向量按相同的序号划去⼀些分量所得的低维向量组仍线性相关.(6)n维向量组α1,α2,…,αn线性⽆关的充要条件是D=det(α1,α2,…,αn)≠0;n维向量组α1,α2,…,αn线性相关的充要条件是D=det(α1,α2,…,αn)=0.(7)向量组α1,α2,…,αs(s≥2)线性相关的充要条件是其中⾄少有⼀个向量是其余s-1个向量的线性组合.(8)若向量组α1,α2,…,αs线性⽆关,⽽α1,α2,…,αs,β线性相关,则向量β可由向量组α1,α2,…,αs线性表⽰,且表⽰法惟⼀.(9)若向量组α1,α2,…,αs可由向量组β1,β2,…,βt线性表⽰,且s>t,则向量组α1,α2,…,αs线性相关.逆否命题:若向量组α1,α2,…,αs线性⽆关,且可由向量组β1,β2,…,βt线性表⽰,则s≤t.(10)m个n维向量组(m>n)必线性相关.(11)两个等价的线性⽆关的向量组必含有相同个数的向量.六、向量组的极⼤线性⽆关组1.极⼤线性⽆关组的概念向量组α1,α2,…,αr,αr+1,…,αs的部分组α1,α2,…,αr是极⼤⽆关组(1)α1,α2,…,αr线性⽆关;(2)α1,α2,…,αr,αr+1,…,αs中每个向量可由α1,α2,…,αr 线性表⽰.(1)α1,α2,…,αr线性⽆关;(2)α1,α2,…,αr,αr+1,…,αs中任意r+1个向量线性相关.2.关于极⼤线性⽆关组的常⽤结论(1)含⾮零向量的任⼀向量组⼀定存在极⼤⽆关组.(2)线性⽆关向量组的极⼤⽆关组是其⾃⾝、.(3)任何向量组均与其极⼤⽆关组等价.(4)⼀个向量组的任意两个极⼤⽆关组都含有相同个数的向量.七、向量组的秩1.向量组的秩的定义向量组α1,α2,…,αs的任⼀极⼤⽆关组所含向量的个数称为这个向量组的秩,记为r(α1,α2,…,αs).2.关于向量组的秩的常⽤结论(1)对任何向量组α1,α2,…,αs均有0≤r(α1,α2,…,αs)≤s;(2)向量组α1,α2,…,αs线性⽆关?r(α1,α2,…,αs)=s;(3)向量组α1,α2,…,αs线性相关?r(α1,α2,…,αs)(4)若向量组α1,α2,…,αs可由向量组β1,β2,…,βt线性表⽰,则r(α1,α2,…,αs)≤r(β1,β2,…,βt).特别地,若两向量组等价,则它们的秩相同;反之不真.(5)若向量组的秩为r,则其任何含r个向量的线性⽆关的部分组都是其极⼤线性⽆关组.⼋、矩阵的⾏秩与列秩1.定义矩阵A的⾏(列)向量组的秩称为A的⾏(列)秩.2.矩阵秩的性质(1)对任何矩阵A,都有A的⾏秩=A的列秩=r(A);(2)r(AB)≤min{r(A),r(B)};(4)r(A+B)≤r(A)+r(B).九、极⼤⽆关组的求法1.矩阵的初等⾏(列)变换不改变其列(⾏)向量间的线性关系2.求向量组α1,α2,…,αs的⼀个极⼤⽆关组的⽅法(1)以α1,α2,…,αs为列向量作矩阵A;(2)对A施以初等⾏变换化成阶梯形矩阵B,设r(B)=r,且B中第j1,j2,…,j r列有⼀个r阶⼦式不等于零,则αj1,αj2,…,αjr 即为所求向量组的⼀个极⼤⽆关组.3.求向量组α1,α2,…,αs的极⼤⽆关组并将其余向量⽤该极⼤⽆关组表出的⽅法(1)以α1,α2,…,αs为列向量作矩阵A;(2)对A施以初等⾏变换化成阶梯形矩阵B;(3)再通过初等⾏变换化为⾏简化阶梯形矩阵C,设矩阵C的第j1,j2,…,j r列为单位向量,则αj1,αj2,…,αjr即为所求向量组的⼀个极⼤⽆关组,且C 中列向量间的线性关系即为A中相应列向量间的线性关系.⼗*、向量空间1.向量空间的定义设V是⾮空的n维向量的集合,若集合V对于加法及数乘两种运算封闭,则称V是向量空间.2.向量空间的⽣成3.向量空间的相等若{α1,α2,…,αm}≌{β1,β2,…,βn},则span(α1,α2,…,αm)=span(β1,β2,…,βn).4.向量空间的⼦空间设有向量空间V1,V2,若V1?V2,则称V1是V2的⼦空间.5.向量空间的基及其维数设V是向量空间,如果存在r个向量α1,α2,…,αr∈V,满⾜(1)α1,α2,…,αr线性⽆关;(2)V中任⼀向量都可由α1,α2,…,αr线性表⽰;则称α1,α2,…,αr为V的⼀个基,r称为V的维数.⼗⼀、重点难点(⼀)重点(1)向量的线性运算可以看做是特殊矩阵的线性运算,它是后⾯讨论向量的线性组合、线性相关性等概念的基础,必须熟练掌握.(2)向量的线性组合、线性相关、线性⽆关的概念、性质及三者之间的关系定理是本章的重点,要熟练掌握三个概念及有关结论,详见内容提要;要深刻理解概念、定理的本质,熟练掌握线性相关和线性⽆关的有关性质及判别法,并能灵活应⽤.(3)向量组的极⼤⽆关组是特别重要的概念,它在向量组线性相关性的证明中往往能起到重要的作⽤;此外,还应当掌握求向量组的极⼤⽆关组的⽅法.(4)理解并掌握向量组的秩的概念,理解矩阵的秩与其⾏(列)向量组的秩的关系,熟练掌握求向量组的秩的⽅法,并能通过秩这⼀重要⼯具来判断向量组的线性相关性.(⼆)难点(1)向量组的线性相关性的证明.常见的⽅法有:定义法、利⽤有关结论及定理、利⽤齐次线性⽅程组有⽆⾮零解、利⽤向量组的秩与向量组所含向量的个数关系等.(2)向量组的秩与线性⽅程组有关理论的证明.。
第三章 课后习题及解答将1,2题中的向量α表示成4321,,,αααα的线性组合:1.()()()()().1,1,1,1,1,1,1,1,1,1,1,1,,1,1,11,,1,12,1T4T3T21T--=--=--===αααααT2.()()()()().1,1,1,0,0,0,1,1,1,3,1,2,1,0,1,1,1,0,0,04321--=====ααααα解:设存在4321,,,k k k k 使得44332211αααααk k k k +++=,整理得14321=+++k k k k24321=--+k k k k14321=-+-k k k k14321=+--k k k k解得.41,41,41,454321-=-===k k k k 所以432141414145ααααα--+=. 设存在 4321,,,k k k k 使得44332211αααααk k k k +++=,整理得02321=++k k k ,04321=+++k k k k ,0342=-k k ,1421=-+k k k .解得 .0,1,0,14321=-===k k k k 所以31ααα-=.判断3,4题中的向量组的线性相关性: 3. ()()().6,3,1,5,2,0,1,1,1T3T2T1===ααα4. ()().3,0,7,142,1,3,0,)4,2,1,1(T3T2T 1==-=βββ,解:3.设存在 321,,k k k 使得0332211=++αααk k k ,即⎪⎩⎪⎨⎧=++=++=+065032032132131k k k k k k k k ,由0651321101=,解得321,,k k k 不全为零, 故321,,ααα线性相关.4.设存在 321,,k k k 使得0332211=++βββk k k ,即⎪⎪⎩⎪⎪⎨⎧=++=++=+-=+0142407203033213212131k k k k k k k k k k 可解得321,,k k k 不全为零,故321,,βββ线性相关. 5.论述单个向量)(n a a a ,,,21 =α线性相关和线性无关的条件.解:设存在k 使得0=αk ,若0≠α,要使0=αk ,当且仅当0=k ,故,单个向量线性无关的充要条件是0≠α;相反,单个向量)(n a a a ,,,21 =α线性相关的充要条件是0=α.6.证明:如果向量组线性无关,则向量组的任一部分组都线性无关. 证:设向量组n n αααα,,,,121- 线性无关,利用反证法,假设存在该向量组的某一部分组)(,,,21n i r i i i r ≤ααα 线性相关,则向量组n n αααα,,,,121- 线性相关,与向量组n n αααα,,,,121- 线性无关矛盾, 所以该命题成立.7.证明:若21,αα线性无关,则2121,αααα-+也线性无关.证:方法一,设存在21,k k 使得0)()(212211=-++ααααk k ,整理得,0)()(221121=-++ααk k k k ,因为21,αα线性无关,所以⎩⎨⎧=-=+02121k k k k ,可解得021==k k ,故2121,αααα-+线性无关.方法二,因为=-+)(2121,αααα⎪⎪⎭⎫⎝⎛-1111,21)(αα, 又因为021111≠-=-,且21,αα线性无关,所以向量组2121,αααα-+的秩为2,故2121,αααα-+线性无关.8.设有两个向量组s ααα,,,21 和,,,,21s βββ 其中,13121111⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=k a a a a α,3222122⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=ks a a a a α ,,321⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=ks s s s s a a a a αs βββ,,,21 是分别在s ααα,,,21 的k 个分量后任意添加m 个分量mj j j b b b ,,,21),,2,1(s j =所组成的m k +维向量,证明:(1) 若s ααα,,,21 线性无关,则s βββ,,,21 线性无关; (2) 若s βββ,,,21 线性相关,则s ααα,,,21 线性相关.证:证法1,(1)设()s A ααα,,,21 =,()s B βββ,,,21 =,因为s ααα,,,21 线性无关,所以齐次线性方程0=AX 只有零解,即,)(s A r = 且s B r =)(,s βββ,,,21 线性无关.证法2,因为s ααα,,,21 线性无关,所以齐次线性方程0=AX 只有零解,再增加方程的个数,得0=BX ,该方程也只有零解,所以s βββ,,,21 线性无关.(2) 利用反证法可证得,即假设s ααα,,,21 线性无关,再由(1)得s βββ,,,21 线性无关,与s βββ,,,21 线性相关矛盾.9. 证明:133221,,αααααα+++线性无关的充分必要条件是321,,ααα线性无关.证:方法1,(133221,,αααααα+++)=(321,,ααα)⎪⎪⎪⎭⎫ ⎝⎛110011101因为321,,ααα线性无关,且02110011101≠=,可得133221,,αααααα+++的秩为3所以133221,,αααααα+++线性无关.线性无关;反之也成立.方法2,充分性,设321,,ααα线性无关,证明133221,,αααααα+++线性无关.设存在321,,k k k 使得0)()()(133322211=+++++ααααααk k k ,整理得,0)()()(332221131=+++++αααk k k k k k因为321,,ααα线性无关,所以⎪⎩⎪⎨⎧=+=+=+000322131k k k k k k ,可解得0321===k k k ,所以133221,,αααααα+++线性无关. 必要性,(方法1)设133221,,αααααα+++线性无关,证明321,,ααα线性无关,假设321,,ααα线性相关,则321,,ααα中至少有一向量可由其余两个向量线性表示,不妨设321,ααα可由线性表示,则向量组133221,,αααααα+++可由32,αα线性表示,且23>,所以133221,,αααααα+++线性相关,与133221,,αααααα+++线性无关矛盾,故321,,ααα线性无关.方法2,令133322211,,ααβααβααβ+=+=+=,设存在321,,k k k 使得0332211=++αααk k k ,由133322211,,ααβααβααβ+=+=+=得)()()(32133212321121,21,21βββαβββαβββα---=-+=+-=,代入 0332211=++αααk k k 得,0212121321332123211=++-+-+++-)()()(βββββββββk k k ,即 0)()()(332123211321=+-+++-+-+βββk k k k k k k k k因为321,,βββ线性无关,所以⎪⎩⎪⎨⎧=+-=++-=-+000321321321k k k k k k k k k可解得0321===k k k ,所以321,,ααα线性无关.10.下列说法是否正确?如正确,证明之;如不正确,举反例:(1)m ααα,,,21 )(2>m 线性无关的充分必要条件是任意两个向量线性无关; 解:不正确,必要条件成立,充分条件不成立,例:2维向量空间不在一条直线的3个向量,虽然两两线性无关,但这3个向量线性相关。
B 、向量组(Ⅰ)线性相关时,向量组(Ⅱ)线性相关C 、向量组(Ⅱ)线性相关时,向量组(Ⅰ)线性相关D 、向量组(Ⅱ)线性无关时,向量组(Ⅰ)线性相关4、 下列命题中正确的就是( C ) (A)任意n 个1+n 维向量线性相关 (B)任意n 个1+n 维向量线性无关 (C)任意1+n 个n 维向量线性相关 (D)任意1+n 个n 维向量线性无关5、 向量组r ααα,,,21Λ线性相关且秩为s ,则( D )(A)s r = (B) s r ≤ (C) r s ≤ (D) r s <6、 n 维向量组 s ααα,,,Λ21(3≤ s ≤ n)线性无关的充要条件就是( B )、 (A)s ααα,,,Λ21中任意两个向量都线性无关 (B) s ααα,,,Λ21中任一个向量都不能用其余向量线性表示 (C) s ααα,,,Λ21中存在一个向量不能用其余向量线性表示 (D) s ααα,,,Λ21中不含零向量 7、 向量组n ααα,,,21⋅⋅⋅线性无关的充要条件就是(D ) A 、任意i α不为零向量B 、n ααα,,,21⋅⋅⋅中任两个向量的对应分量不成比例C 、n ααα,,,21⋅⋅⋅中有部分向量线性无关D 、n ααα,,,21⋅⋅⋅中任一向量均不能由其余n-1个向量线性表示 8、 设A 为n 阶方阵,n r A R <=)(,则A 的行向量中(A ) A 、必有r 个行向量线性无关B 、任意r 个行向量构成极大线性无关组C 、任意r 个行向量线性相关D 、任一行都可由其余r 个行向量线性表示9、 设A 为n 阶方阵,且秩12() 1.,A n αα=-就是非齐次方程组AX B =的两个不同的解向量,则AX =0的通解为( C )A 、1αkB 、2αkC 、)(21αα-kD 、)(21αα+k 10、 已知向量组()()()1231,1,1,1,2,0,,0,0,2,5,2t ααα=-==--的秩为2,则=t ( A)、 A 、3 B 、-3 C 、2 D 、-2 11、 设A 为n 阶方阵,n r A R <=)(,则A 的行向量中( A ) A 、必有r 个行向量线性无关B 、任意r 个行向量构成极大线性无关组C 、任意r 个行向量线性相关D 、任一行都可由其余r 个行向量线性表示12、 设向量组A: 321,,ααα线性无关,则下列向量组线性无关的就是(C ) A 、321ααα++,321232ααα+-,321323ααα+- B 、21αα+,32αα+,13αα- C 、212αα+,3232αα+,133αα+ D 、12-αα+,32αα+,3212ααα++-14、 已知向量组A 线性相关,则在这个向量组中( C ) (A)必有一个零向量 、 (B)必有两个向量成比例 、(C)必有一个向量就是其余向量的线性组合 、 (D)任一个向量就是其余向量的线性组合 、15、 设A 为n 阶方阵,且秩()1R A n =-,12,a a 就是非齐次方程组Ax b =的两个不同的解向量, 则0Ax = 的通解为 ( )(A)12()k a a + (B) 12()k a a - (C) 1ka (D) 2ka 16、 已知向量组1,,m ααK 线性相关, 则(C ) (A)该向量组的任何部分组必线性相关 、 (B) 该向量组的任何部分组必线性无关 、(C) 该向量组的秩小于m 、 (D) 该向量组的最大线性无关组就是唯一的、 17.已知123234(,,)2,(,,)3,R R αααααα==则 ( C )(A)123,,ααα 线性无关 (B) 234,,ααα 线性相关(C) 1α能由23,αα 线性表示 (D) 4α能由123,,ααα 线性表示18、 若有 1133016,02135k k k ⎛⎫⎛⎫⎛⎫ ⎪⎪ ⎪= ⎪⎪ ⎪ ⎪⎪ ⎪--⎝⎭⎝⎭⎝⎭则k 等于(A) 1 (B) 2 (C) 3 (D) 4第三题 计算题:1、 已知向量组⎪⎪⎪⎪⎪⎭⎫⎝⎛-=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-=0221,8451,6352,2130,421154321ααααα(1)求向量组54321,,,,ααααα的秩以及它的一个极大线性无关组; (2)将其余的向量用所求的极大线性无关组线性表示。
第三章 向量空间一、单项选择题1.设A ,B 分别为m ×n 和m ×k 矩阵,向量组(I )是由A 的列向量构成的向量组,向量组(Ⅱ)是由(A ,B )的列向量构成的向量组,则必有( )A .若(I )线性无关,则(Ⅱ)线性无关B .若(I)线性无关,则(Ⅱ)线性相关C .若(Ⅱ)线性无关,则(I )线性无关D .若(Ⅱ)线性无关,则(I )线性相关2.设4321,,,αααα是一个4维向量组,若已知4α可以表为321,,ααα的线性组合,且表示法惟一,则向量组4321,,,αααα的秩为( )A .1B .2C .3D .43.设向量组4321,,,αααα线性相关,则向量组中( )A .必有一个向量可以表为其余向量的线性组合B .必有两个向量可以表为其余向量的线性组合C .必有三个向量可以表为其余向量的线性组合D .每一个向量都可以表为其余向量的线性组合4.设有向量组A :α1,α2,α3,α4,其中α1,α2,α3线性无关,则( )A 。
α1,α3线性无关 B.α1,α2,α3,α4线性无关C.α1,α2,α3,α4线性相关D.α2,α3,α4线性相关5.向量组)2(,,,21≥s s ααα 的秩不为零的充分必要条件是( )A .s ααα,,,21 中没有线性相关的部分组B .s ααα,,,21 中至少有一个非零向量C .s ααα,,,21 全是非零向量D .s ααα,,,21 全是零向量6.设α1,α2,α3,α4是4维列向量,矩阵A =(α1,α2,α3,α4)。
如果|A |=2,则|—2A |=()A.-32B.-4C 。
4 D.327。
设α1,α2,α3,α4 是三维实向量,则( )A. α1,α2,α3,α4一定线性无关B. α1一定可由α2,α3,α4线性表出C. α1,α2,α3,α4一定线性相关 D 。
α1,α2,α3一定线性无关8.向量组α1=(1,0,0),α2=(1,1,0),α3=(1,1,1)的秩为( )A.1 B 。
______________________________________________________________________________________________________________第一部分 专项同步练习第一章 行列式一、单项选择题1.下列排列是5阶偶排列的是 ( ).(A) 24315 (B) 14325 (C) 41523 (D)24351 2.如果n 阶排列n j j j 21的逆序数是k , 则排列12j j j n 的逆序数是( ). (A)k (B)k n - (C)k n -2! (D)k n n --2)1(3. n 阶行列式的展开式中含1211a a 的项共有( )项.(A) 0 (B)2-n (C) )!2(-n (D) )!1(-n4.=0001001001001000( ). (A) 0 (B)1- (C) 1 (D) 25.=0001100000100100( ). (A) 0 (B)1- (C) 1 (D) 26.在函数1323211112)(x x x x x f ----=中3x 项的系数是( ).(A) 0 (B)1- (C) 1 (D) 27. 若21333231232221131211==a a a a a a a a a D ,则=---=323133312221232112111311122222 2a a a a a a a a a a a a D ( ). (A) 4 (B) 4- (C) 2 (D) 2- 8.若a a a a a =22211211,则=21112212ka a ka a ( ).(A)ka (B)ka - (C)a k 2 (D)a k 2-9. 已知4阶行列式中第1行元依次是3,1,0,4-, 第3行元的余子式依次为x ,1,5,2-, 则=x ( ).(A) 0 (B)3- (C) 3 (D) 210. 若5734111113263478----=D ,则D 中第一行元的代数余子式的和为( ). (A)1- (B)2- (C)3- (D)011. 若22351011110403--=D ,则D 中第四行元的余子式的和为( ).______________________________________________________________________________________________________________(A)1- (B)2- (C)3- (D)012. k 等于下列选项中哪个值时,齐次线性方程组⎪⎩⎪⎨⎧=++=++=++000321321321x x kx x kx x kx x x 有非零解.( )(A)1- (B)2- (C)3- (D)0二、填空题1. n 2阶排列)12(13)2(24-n n 的逆序数是.2.在六阶行列式中项261365415432a a a a a a 所带的符号是.3.四阶行列式中包含4322a a 且带正号的项是. 4.若一个n 阶行列式中至少有12+-n n 个元素等于0, 则这个行列式的值等于.5. 行列式=100111010100111.6.行列式=-000100002000010n n .7.行列式=--001)1(2211)1(111n n n n a a a a a a .8.如果M a a a a a a a a a D ==333231232221131211,则=---=323233312222232112121311133333 3a a a a a a a a a a a a D .9.已知某5阶行列式的值为5,将其第一行与第5行交换并转置,再用2乘所有元素,则所得的新行列式的值为.10.行列式=--+---+---1111111111111111x x x x .11.n 阶行列式=+++λλλ111111111 .12.已知三阶行列式中第二列元素依次为1,2,3, 其对应的余子式依次为3,2,1,则该行列式的值为.13.设行列式5678123487654321=D ,j A 4)4,3,2,1(=j 为D 中第四行元的代数余子式,则=+++44434241234A A A A .______________________________________________________________________________________________________________14.已知db c a cc a b b a b c a c b a D =, D 中第四列元的代数余子式的和为.15.设行列式62211765144334321-==D ,j A 4为)4,3,2,1(4=j a j 的代数余子式,则=+4241A A ,=+4443A A .16.已知行列式nn D001030102112531-=,D 中第一行元的代数余子式的和为.17.齐次线性方程组⎪⎩⎪⎨⎧=+-=+=++0020232121321x x x kx x x x kx 仅有零解的充要条件是.18.若齐次线性方程组⎪⎩⎪⎨⎧=+--=+=++0230520232132321kx x x x x x x x 有非零解,则k =.三、计算题1.cb a db a dc a dc bd c b a dcbad c b a++++++++33332222; 2.yxyx x y x y y x y x +++;3.解方程0011011101110=x x xx ; 4.111111321321221221221----n n n n a a a a x a a a a x a a a a xa a a a x;5. na a a a 111111111111210(n j a j ,,1,0,1 =≠);6. bn b b ----)1(1111211111311117. n a b b b a a b b a a a b 321222111111111; 8.xa a a a x a a a a x a a a a x n nn 321212121;______________________________________________________________________________________________________________9.2212221212121111nn n nnx x x x x x x x x x x x x x x +++; 10. 21000120000021001210001211.aa a aa a a a aD ---------=1101100011000110001.四、证明题1.设1=abcd ,证明:011111111111122222222=++++dddd c c c c b b b b a a a a .2.3332221112333332222211111)1(c b a c b a c b a x c b x a x b a c b x a x b a c b x a xb a -=++++++.3.))()()()()()((111144442222d c b a c d b d b c a d a c a b d c b a d c b a d c b a +++------=.4.∏∑≤<≤=----=nj i i jni innn nn nn n nna aa a a a a a a a a a a a a 1121222212222121)(111.5.设c b a ,,两两不等,证明0111333=c b a c ba 的充要条件是0=++cb a .参考答案一.单项选择题A D A C C D ABCD B B 二.填空题______________________________________________________________________________________________________________1.n ;2.”“-;3.43312214a a a a ;4.0;5.0;6.!)1(1n n --;7.1)1(212)1()1(n n n n n a a a ---; 8.M 3-; 9.160-; 10.4x ; 11.1)(-+n n λλ;12.2-; 13.0; 14.0; 15.9,12-; 16.)11(!1∑=-nk k n ; 17.3,2-≠k ; 18.7=k三.计算题1.))()()()()()((c d b d b c a d a c a b d c b a ------+++-; 2. )(233y x +-; 3. 1,0,2-=x ; 4.∏-=-11)(n k kax5.)111()1(00∑∏==-+-nk knk k a a ; 6. ))2(()1)(2(b n b b ---+- ; 7. ∏=--nk k kna b1)()1(; 8. ∏∑==-+nk k nk k a x a x 11)()(;9. ∑=+nk k x 11; 10. 1+n ;11. )1)(1(42a a a ++-. 四. 证明题 (略)第二章 矩阵一、单项选择题1. A 、B 为n 阶方阵,则下列各式中成立的是( )。
第三章复习题1.设矩阵1010 0010 1 00000 0A -⎛⎫ ⎪=- ⎪ ⎪⎝⎭,求矩阵A 的秩. 2.求矩阵310211211344A ⎛⎫ ⎪=-- ⎪ ⎪-⎝⎭的秩. 3.已知矩阵122343123119A t -⎡⎤⎢⎥=⎢⎥⎢⎥-⎣⎦的秩3)(<A R ,求t 的值. 4.设12312323k A k k -⎛⎫ ⎪=-- ⎪ ⎪-⎝⎭,问k 为何值时,可使(1)()1r A =, (2)()2r A =,(3)()3r A =. 5.设矩阵⎪⎪⎪⎭⎫ ⎝⎛-=12213121λA ,请讨论矩阵A 的秩.6.已知矩阵⎪⎪⎪⎭⎫ ⎝⎛--=613124321t A 的秩R (A )<3,请求t 的值. 7.已知向量组()()()2,5,4,0,0,,0,2,1,1,2,1321--==-=αααt 的秩为2,请求t 的值.8.设A 为n m ⨯矩阵,0≠b ,且n A r =)(,请确定线性方程组b Ax =的解的情况.9.若A 为n m ⨯矩阵,请给出非齐次线性方程组AX b =有唯一解的充分必要条件.10.若A 为n m ⨯矩阵,请给出方程组0AX =有非零解的充分要条件.11.请确定矩阵方程组m n A X B ⨯=有解的充分必要条件.12.如果n m ⨯矩阵A 的秩等于n ,请确定m 与n 之间的大小关系. 13.E 为n 阶单位矩阵,0k ≠,求()R kE .14.在矩阵A 中增加一列得到矩阵B ,设A B 、的秩分别为1r ,2r ,请确定1r 与2r 之间的大小关系.15.求非齐次线性方程组⎪⎪⎩⎪⎪⎨⎧=+-+=++-=+-+-=-+-7793183332154321432143214321x x x x x x x x x x x x x x x x 的通解. 16.设线性方程组为⎪⎩⎪⎨⎧=++=++=++23213213211λλλλλx x x x x x x x x ,试问λ取何值时,此线性方程组无解,有唯一解,有无穷多解?当其有无穷多解时,求其通解。
习题三 A 组1. 设1232()3()2()αααααα-++=+,求α,其中1110α⎛⎫ ⎪= ⎪⎪⎝⎭, 2011α⎛⎫ ⎪= ⎪⎪⎝⎭,3340α⎛⎫ ⎪= ⎪⎪⎝⎭。
解123103423221312430103αααα-⎛⎫⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪ ⎪=+-=+-=- ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭2. 判定下列向量组是线性相关还是线性无关。
(1)131-⎛⎫ ⎪ ⎪ ⎪⎝⎭,210⎛⎫ ⎪ ⎪⎪⎝⎭,141⎛⎫ ⎪ ⎪⎪⎝⎭;(2)230⎛⎫ ⎪⎪⎪⎝⎭,140-⎛⎫⎪⎪⎪⎝⎭,002⎛⎫ ⎪ ⎪⎪⎝⎭解(1)121121121101101314077011011011101022000000000-----⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎪⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭::::, R(A)=2,线性相关(2)210210*********00102002000002-⎛⎫-⎛⎫⎛⎫⎪ ⎪ ⎪⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎪⎝⎭⎝⎭⎝⎭::, R(A)=3,线性无关 3. a 取什么值时,下列向量组线性相关?111a α⎛⎫ ⎪= ⎪ ⎪⎝⎭, 211a α-⎛⎫⎪= ⎪ ⎪⎝⎭,311a α⎛⎫ ⎪=- ⎪ ⎪⎝⎭ 解 (法一)求系数行列式3211112(1)(2)11a a a a a a a a-=-+=+-+,令其为0,得1a =-。
由此可知,当1a =-时,R(A)<3,即题给向量组线性相关。
(法二)()23121212311110110101,,111101101111111111r r r r r r a a a a a a a a a a a a a a a a a ααα-+--+-+-++⎛⎫⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪ ⎪=-------- ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭:::向量组线性相关,所以10a +=,即1a =-4. 设123,,ααα线性无关,证明:1α,12αα+,123ααα++也线性无关. 证明:设112123123()()0,k k k αααααα+++++=即123123233()()0.k k k k k k ααα+++++=由123,,ααα线性无关,有1232330,0,0.k k k k k k ++=⎧⎪+=⎨⎪=⎩ 所以1230k k k ===,即112123,,αααααα+++线性无关. 5.设1(1,1,1)α=,2(1,2,3)α=,3(1,3,)t α=,问: (1) t 为何值时向量组123,,ααα线性相关。
第三章 向量1、基本概念定义1:由n 个数构成的一个有序数组[]n a a ,,a 21 称为一个n 维向量,称这些数为它的分量。
分量依次是a 1,a 2,⋯ ,a n 的向量可表示成:=α[]n a a ,,a 21 ,称为行向量,或=T α[]T n a a ,,a 21 称为列向量。
请注意,作为向量它们并没有区别,但是作为矩阵,它们不一样(左边是1⨯n 矩阵,右边是n ⨯1矩阵)。
习惯上把它们分别(请注意与下面规定的矩阵的行向量和列向量概念的区别)。
一个m ⨯n 的矩阵的每一行是一个n 维向量,称为它的行向量;每一列是一个m 维向量,称为它的列向量,常常用矩阵的列向量组来写出矩阵,例如当矩阵A 的列向量组为m ααα,,21 时(它们都是表示为列的形式!)可记A =(m ααα,,21 )。
矩阵的许多概念也可对向量来规定,如元素全为0的向量称为零向量,通常也记作0。
两个向量和相等(记作=),是指它的维数相等,并且对应的分量都相等.2、向量的线形运算3、向量组的线形相关性定义2:向量组的线性组合:设m ααα,,21 是一组n 维量,m k k k 21,是一组数,则m m k k k ααα ++2211为m ααα,,21 的线性组合。
n 维向量组的线性组合也是n 维向量。
定义3:线形表出:如果n 维向量β能表示成m ααα,,21 的一个线性组合,即=βm m k k k ααα ++2211,则称β可以用量组m ααα,,21 线性表示。
判别β是否可以用m ααα,,21 线性表示? 表示方式是否唯一?就是问:向量方程βααα=++m m x x x 2211是否有解?解是否唯一?用分量写出这个向量方程,就是以()βααα m 21,为增广矩阵的线性方程组。
反之,判别“以()β A 为增广矩阵的线性方程组是否有解?解是否唯一?的问题又可转化为β是否可以用A 的列向量组线性表示? 表示方式是否唯一?”的问题。
第三章练习题1.已知R (α1,α2,α3)=2,R (α2,α3,α4)=3,证明:(1)α1能由α2,α3线性表示;(2)α4不能由α1,α2,α3线性表示.证明:(1)因为R (α2,α3,α4)=3,于是α1可由α2,α3唯一的线性表示(2)反证,若α4可由α1,α2,α3线性表示,则α4可由α2,α3线性表示,与R (α2,α3,α4)=3矛盾2.a 取什么值时下列向量组线性相关?α1=(a,1,1)T ,α2=(1,a,−1)T ,α3=(1,−1,a )T解: a 111a −11−1a−→01+a 1−a 201+a −(1+a )1−1a那么a =−1或a =2,则三个向量线性相关3.设α1,α2线性无关,α1+β,α2+β线性相关,求向量β用α1,α2线性表示的表示式.解:因为α1+β=k (α2+β),于是β=1k −1α1+k1−k α24.举例说明下列各命题是错误的:(1)若向量组α1,α2,...,αm 是线性相关的,则α1可由α2,α3,...,αm1线性表示;解:例如α1=0,α2,α3为零向量,显然α1不能用其余向量线性表示(2)若有不全为0的数λ1,λ2,...,λm,使得λ1α1+λ2α2+···+λmαm+λ1β1+···+λmβm=0成立,则α1,...,αm线性相关,β1,β2,...,βm亦线性相关.解:取α1=(1,0,0)T,α2=(0,1,0)T,β1=(−1,0,0)T,β2= (0,−1,0)α1+α2+β1+β2=0,但α1,α2线性无关,且β1,β2也线性无关(3)若只有当λ1,...,λm全为0时,等式λ1α1+···+λmαm+λ1β1+···+λmβm=0才能成立,则α1,α2,...,αm线性无关,β1,β2,...,βm 亦线性无关.解:取α1=(1,0,0)T,α2=(1,0,0)T,α3=(0,0,0)Tβ1=(0,1,1)T,β2= (0,0,1)T,β3=(0,0,1)T(4)若α1,α2,...,αm线性相关,β1,β2,...,βm亦线性相关,则有不全为0的数λ1,...,λm,使得λ1α1+···+λmαm=0,λ1β1+···+λmβm=0同时成立.解:取α1=(0,0,0)T,α2=(0,1,0)T,α3=(1,1,0)Tβ1=(1,0,0)T,β2=2(0,0,0)T ,β3=(−1,−1,1)T5.利用初等行变换求下列矩阵的列向量组的一个最大线性无关组,并把其余列向量用最大线性无关组线性表示.(1)2531174375945313275945413425322048解:2531174375945313275945413425322048α1α2α3α4−→ 25311743012301350135−→ 25311743012300120000−→10085010−100120000于是最大线性无关向量组之一为α1,α2,α3α4=85α1−α2+2α3(2) 112210215−1203−131104−1 解: 112210215−1203−131104−1α1α2α3α4α5−→ 112210215−100203000001104−10103−1001−1100000 −→ 100100103−1001−1100000于是最大线性无关向量组之一为α1,α2,α3α4=α1+3α2−α3,α5=α3−α236.设α1,α2,...,αn是一组n维向量,已知n维单位坐标向量e1,e2,...,e n能由它们线性表示,证明α1,α2,...,αn线性无关.证明:因为n=R(e1,...,e n)≤R(α1,...,αn)≤n于是R(α1,...,αn)=n,则α1,α2,...,αn线性无关7.设向量组α1,α2,...,αm线性相关,且α1=0,证明:存在某一个向量αk(2≤k≤m)使得αk能由α1,α2,...,αk−1线性表示.证明:反证若∀αk都不能被α1,α2,...,αk−1线性表示,于是对于k1α1+k2α2+···+k mαm=0,则k m=0,若否αm可以被前面m−1个向量线性表示以此类推k2=k3=···=k m−1=k m=0,由于k1,k2,...,k m不全为零,于是k1=0,那么α1=0与题设矛盾,因此命题成立.8.设向量组B:β1,β2,...,βr能由向量组A:α1,α2,...,αs线性表示为(β1,β2,...,βr)=(α1,α2,...,αs)K,其中K为s×r矩阵,且A向量组线性无关,证明:向量组B 线性无关的充分必要条件是矩阵K的秩为r证明:(=⇒)因为向量组B线性无关,于是R(β1,...,βr)=r,注意到r=R(B)≤R(K)≤r那么R(K)=r4(⇐=)若R (K )=r ,那么线性方程组KX =0只有零解,令KX =Y ,注意到向量组A 线性无关,于是线性方程组AY =0只有零解,由于BX =AY =AKX ,那么BX =0只有零解,于是R (B )=r ,即向量组B 线性无关.9.求下列齐次线性方程组的基础解系:(1) x 1−8x 2+10x 3+2x 4=02x 1+4x 2+5x 3−x 4=08x 1+7x 2+6x 3−3x 4=0解 1−8102245−1876−3−→100−2083010−1783001583ξ=(−20,−17,5,83)T(2) 2x 1−3x 2−2x 3+x 4=03x 1+5x 2+4x 3−2x 4=03x 1+8x 2+6x 3−2x 4=0解 3−3−21354−2386−2−→100−12010−7201−214ξ=(2,14,−21,4)T10.求下列非齐次线性方程组的一般解(1) 2x 1+7x 2+3x 3+x 4=63x 1+5x 2+2x 3+2x 4=49x 1+4x 2+x 3+7x 4=2解 273163522494172 −→274161−2−11−21−24−113−221−2−11−20115−1100−22−102−20−→1−2−11−20115−11003齐次方程的基础解系为ξ1=(2111,511,1,0)T ,ξ2=(−911,111,0,1)T5非齐次方程的一个解为η=(−211,1011,0,0)T ,于是原方程组的通解为ξ=C 1ξ1+C 2ξ2+η,其中C j (j =1,2)为任意常数(2) x 1+x 2+x 3+x 4+x 5=73x 1+2x 2+x 3+x 4−3x 5=−2x 2+2x 3+2x 4+6x 5=235x 1+4x 2+3x 3+3x 4−x 5=12解1111173211−3−201226235433−112−→1111170122623000000000000齐次方程的基础解系为ξ1=(5,−6,0,0,1)T ,ξ2=(1,−2,0,1,0)T ,ξ3=(1,−2,1,0,0)T非齐次方程组的一个解为η=(−16,23,0,0,0)T于是原方程组的通解为ξ=C 1ξ1+C 2ξ2+C 3ξ3+η,其中C j (j =1,2,3)为任意常数11.设n 阶矩阵A 满足:A 2=A,E 为n 阶单位矩阵,证明:R (A )+R (A −E )=n证明:因为A (A −E )=0若A =E ,所证命题显然成立若A =E ,则线性方程组AX =0有非零解,即矩阵A −E 的列向量组是AX =0的解集,必然可以由其基础解系线性表示,那么6R (A −E )≤n −R (A ),即R (A )+R (A −E )≤n又n =R (E )=R (A +E −A )≤R (A )+R (E −A )=R (A )+R (A −E ),于是R (A )+R (A −E )=n12.设A 为n 阶矩阵,求A 的伴随矩阵A ∗的秩R (A ∗)解:因为AA ∗=|A |E ,若|A |=0,则|A ∗|=0,所以R (A ∗)=R (A )=n若|A |=0则R (A )≤n −1,当R (A )<n −1时A 的所有n −1阶子式全为零,所以A ∗=0故R (A ∗)=0,当R (A )=n −1时A 至少有一个n −1阶子式不为零,故A ∗=0,则R (A ∗)≥1,而AA ∗=0即A (a ∗1,a ∗2,...,a ∗n )=0这说明A ∗的列向量a ∗j (j =1,2,...,n )是方程组AX =0的解,所以该列向量组可以被方程组AX =0的基础解系线性表示,那么该向量组的秩R (A ∗)≤(基础解系的秩)n −R (A )=n −(n −1)=1,由以上分析得知R (A ∗)=1综上所述R (A ∗)=n |A |=00R (A )<n −11R (A )=n −113.设a =(a 1,a 2,a 3)T ,b =(b 1,b 2,b 3)T ,c =(c 1,c 2,c 3)T .证明:三条直线ℓ1:a 1x +b 1y +c 1=0ℓ2:a 2x +b 2y +c 2=0ℓ:a 3x +b 3y +c3=0(a 2i +b 2i =0,i =1,2,3)相交于一点的充分必要条件是:向量组a ,b 线性无关,且向量组a ,b ,c 线性相关.7证明:(=⇒)因为三条直线相交于一点,于是必有两条直线彼此相交,不妨设ℓ1,ℓ2相交,那么a1 b1=a2b2,于是向量a与向量b线性无关,注意到齐次线性方程组x a+y b+1c=0有非零解(x,y,1)T,则向量a,b,c线性相关(⇐=)向量组a,b线性无关,且向量组a,b,c线性相关,则向量组−c可由向量组a,b唯一的线性表示,即x a+y b+c=0,中系数x,y,1是唯一确定的,即三条直线ℓ1:a1x+b1y+c1=0ℓ2:a2x+b2y+c2=0ℓ:a3x+b3y+c3=0相较于唯一点14.α1,α2...,αm,α1=0,αi(i=2,3...,m)都不能由α1,α2,...,αi−1线性表示,证明α1,α2...,αm线性无关。
C 、任意r 个行向量线性相关
D 、任一行都可由其余r 个行向量线性表示 3. 设有n 维向量组(Ⅰ):12,,,r αααL 和(Ⅱ):12,,,()m m r ααα>L ,则( ). A 、向量组(Ⅰ)线性无关时,向量组(Ⅱ)线性无关 B 、向量组(Ⅰ)线性相关时,向量组(Ⅱ)线性相关 C 、向量组(Ⅱ)线性相关时,向量组(Ⅰ)线性相关
D 、向量组(Ⅱ)线性无关时,向量组(Ⅰ)线性相关
4. 下列命题中正确的是( ) (A)任意n 个1+n 维向量线性相关 (B)任意n 个1+n 维向量线性无关 (C)任意1+n 个n 维向量线性相关 (D)任意1+n 个n 维向量线性无关
5. 向量组r ααα,,,21Λ线性相关且秩为s ,则( )
(A )s r = (B) s r ≤ (C) r s ≤ (D) r s <
6. n 维向量组 s ααα,,
,Λ21(3£ s£ n)线性无关的充要条件是( ). (A )s ααα,,
,Λ21中任意两个向量都线性无关 (B) s ααα,,
,Λ21中任一个向量都不能用其余向量线性表示 (C) s ααα,,
,Λ21中存在一个向量不能用其余向量线性表示 (D) s ααα,,
,Λ21中不含零向量 7. 向量组n ααα,,,21⋅⋅⋅线性无关的充要条件是( ) A 、任意i α不为零向量
B 、n ααα,,,21⋅⋅⋅中任两个向量的对应分量不成比例
C 、n ααα,,,21⋅⋅⋅中有部分向量线性无关
D 、n ααα,,,21⋅⋅⋅中任一向量均不能由其余n-1个向量线性表示 8. 设A 为n 阶方阵,n r A R <=)(,则A 的行向量中( ) A 、必有r 个行向量线性无关
B 、任意r 个行向量构成极大线性无关组
C 、任意r 个行向量线性相关
D 、任一行都可由其余r 个行向量线性表示
9. 设A 为n 阶方阵,且秩12() 1.,A n αα=-是非齐次方程组AX B =的两个不同的解向量,则AX =0的通解为( )
A 、1αk
B 、2αk
C 、)(21αα-k
D 、)(21αα+k
10. 已知向量组()()()1231,1,1,1,2,0,,0,0,2,5,2t ααα=-==--的秩为2,则=t ( ). A 、3 B 、-3 C 、2 D 、-2 11. 设A 为n 阶方阵,n r A R <=)(,则A 的行向量中( ) A 、必有r 个行向量线性无关
B 、任意r 个行向量构成极大线性无关组
C 、任意r 个行向量线性相关
D 、任一行都可由其余r 个行向量线性表示
12. 设向量组A: 321,,ααα线性无关,则下列向量组线性无关的是( ) A 、321ααα++,321232ααα+-,321323ααα+- B 、21αα+,32αα+,13αα- C 、212αα+,3232αα+,133αα+ D 、12-αα+,32αα+,3212ααα++-
13. A 、B 均为n 阶方阵,X 、Y 、b 为1⨯n 阶列向量,则方程⎪⎪⎭⎫
⎝⎛=⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛b O Y X O A B O 有
解的充要条件是( )
A 、n
B r =)( B 、n A r <)(
C 、)()(b A r A r M
= D 、n A r =)(
14. 已知向量组A 线性相关,则在这个向量组中( ) (A)必有一个零向量 . (B)必有两个向量成比例 .
(C)必有一个向量是其余向量的线性组合 . (D)任一个向量是其余向量的线性组合 .
15. 设A 为n 阶方阵,且秩()1R A n =-,12,a a 是非齐次方程组Ax b =的两个不同的解向量, 则0Ax = 的通解为 ( )
(A )12()k a a + (B) 12()k a a - (C) 1ka (D) 2ka 16. 已知向量组1,,m ααK 线性相关, 则( ) (A )该向量组的任何部分组必线性相关 . (B) 该向量组的任何部分组必线性无关 .
(C) 该向量组的秩小于m . (D) 该向量组的最大线性无关组是唯一的. 17.已知123234(,,)2,(,,)3,R R αααααα==则 ( ) (A )123,,ααα 线性无关 (B) 234,,ααα 线性相关 (C) 1α能由23,αα 线性表示 (D) 4α能由123,,ααα 线性表示
18. 若有 1133016,02135k k k ⎛⎫⎛⎫⎛⎫ ⎪⎪ ⎪
= ⎪⎪ ⎪ ⎪⎪ ⎪--⎝⎭⎝⎭⎝⎭
则k 等于
(A) 1 (B) 2 (C) 3 (D) 4
第三题 计算题:
1. 已知向量组⎪⎪⎪⎪
⎪⎭
⎫ ⎝⎛-=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-=0221,8451,6352,2130,421154321ααααα
(1)求向量组54321,,,,ααααα的秩以及它的一个极大线性无关组; (2)将其余的向量用所求的极大线性无关组线性表示。
2. 求向量组A :
T )-2,6,2,0(1=α ,T )1,-2,-1,0(2=α,T
)-2,-4,0,2(3=α,
T )22,10,0(4-=,α,的一个极大无关组,并将其余向量由它线性表示.
3. 设()()()1231,4,32,,12,3,1T
T
T
a ααα==-=-,,
1) a 为何值时, 123,ααα,
线性无关. 2) a 为何值时, 123,ααα,
线性相关. 4. 求向量组()()()123:1,2,1,12,3,1,24,1,1,0T
T
T
A ααα=-=--=-、、的极大无关
组,并把其余向量用极大无关组线性表示.
5. 已知()()()()1231,4,22,7,30,1,3,10,4T T T T
a αααβ====,,,,问a 为何值时,β可由123ααα,,唯一线性表示?并写出表示式
6. 设矩阵 211121121
4462243697
9A --⎛⎫
⎪-
⎪= ⎪--
⎪-⎝⎭
求矩阵A 的列向量组的一个极大无关组 并把不属于极大无关组的列向量用极
大无关组线性表示
7. 求向量组A : T )2,1,1(1-=α,T )1,3,0(2=α,3(1,5,4)T α=,T )2,2,1(4-=α,
5(2,3,4)T α=-的一个极大无关组,并将其余向量由它线性表示.
8. 试求向量组1α=(1,1,2,2)T ,2α=(0,2,1,5)T ,3α=(2,0,3,-1)T ,4α=(1,1,0,4)T 的秩和该向量组的一个最大无关组,并将其他向量用此最大无关组表示。
9. 求向量组1α=(1,-2,3,-1,2)T ,2α=(3,-1,5,-3,-1)T ,
3α=(5,0,7,-5,-4)T ,4α=(2,1,2,-2,-3)T 的秩和该向量组的一个最大无关组,并将不在最大无关组中的向量用最大无关组线性表示。
四、证明题:(10分)
1. 设向量组321,,a a a 线性无关,证明32121,,a a a a a -+也线性无关。
2. 设向量组A :321,,ααα线性无关,求证:212αα+,3232αα-,133αα+线性无关.
3.已知向量组,,αβγ线性无关,123,,ηαβηβγηαγ=+=+=+,试证明向量组
123,,ηηη线性无关.
4.已知向量组123,,a a a 线性无关,1223132αααααα++2,+2,线性无关.
5. 若向量组ααα123,, 线性无关, 而1123βααα=++,21232βααα=++,
312323βααα=++,试 证:βββ123,, 线性无关。
6. 已知向量组A
1(0,1,1)T a =,2(1,1,0)T a =,向量组B
1(1,0,1)T b =-,2(1,2,1)T b =,3(3,2,1)T b =-, 证明:向量组A 与向量组B 等价
(注:专业文档是经验性极强的领域,无法思考和涵盖全面,素材和资料部分来自网络,供参考。
可复制、编制,期待你的好评与关注)。