电网的距离保护(含笔记)
- 格式:docx
- 大小:717.86 KB
- 文档页数:26
3 电网的距离保护电流、电压保护,其保护范围受电力系统运行方式变化影响而不稳定。
对长距离、重负荷线路,由于线路的最大负荷电流可能与线路末端短路时的短路电流相差甚微,采用电流、电压保护,其灵敏性也常常不能满足要求。
所以,电流、电压保护一般较广泛应用于35kV 以下线路的保护,而在110 kV 及以上电压输电线路中多采用保护性能更优的距离保护作为主保护装置。
3.1 距离保护的基本概念3.1.1 定义置,由于线路阻抗的大小变化与线路故障点至保护安装处之间的距离成正比,所以亦称距离保护。
(图3.1 距离保护示意图)如果M 处的距离保护1的动作整定值为set Z ,其实际保护范围为线路MZ 。
当1k 点故障时,故障点1k 至保护装置安装处M 的阻抗为1k Z ,则1k Z >set Z ,距离保护1不动作;当2k 点故障时,故障点2k 至保护装置安装处M 的阻抗为2k Z ,则2k Z <set Z ,距离保护1动作。
由此可见,在距离保护1的保护范围MZ 内任何一点发生短路故障时,其短路阻抗总是小于保护装置的动作整定值set Z ,保护装置均能够动作;反之,短路故障点发生在保护范围MZ 外时,其短路阻抗总是大于保护装置的动作整定值set Z ,保护装置不动作。
总之,距离保护装置是否能够动作,就是根据保护装置检测到的线路短路阻抗k Z 与保护装置的动作整定值set Z 之间的比较判断结果来决定的。
这一比较判断过程一般采用距离保护装置中的核心元件——阻抗继电器来实现。
3.1.2 阻抗的测量距离保护装置中的阻抗继电器通常是经过电流互感器TA 和电压互感器TV 接入电力系统,并通过检测线路的电流和母线的电压来测量阻抗值。
阻抗继电器接入电力系统如图3.2所示。
正常运行时保护安装处继电器测量到的线路阻抗为负荷阻抗,当出现最大负荷电流时,ui L i L u L K KK n n Z n I n U I U Z min max min //∙∙∙∙∙∙∙=== (3.1)其中,Z K ——继电器测量阻抗;K U ∙——加入继电器的电压;K I ∙——加入继电器的电流;max ∙∙L I ——线路中最大负荷电流;min ∙∙L U ——最大负荷电流下保护安装处最低工作电压; min ∙L Z ——最小负荷阻抗;i n ——电流互感器变比;u n ——电压互感器变比。
第三章 电网的距离保护第一节 距离保护概述一、距离保护的基本概念思考:电流、电压保护的主要优点是简单、可靠、经济,但是,对于容量大、电压高或结构复杂的网络,它们难于满足电网对保护的要求。
电流、电压保护一般只适用于35kV 及以下电压等级的配电网。
对于110kV 及以上电压等级的复杂网,线路保护采用何种保护方式?解决方法:采用一种新的保护方式——距离保护。
距离保护是反应保护安装处至故障点的距离,并根据距离的远近而确定动作时限的一种保护装置。
测量保护安装处至故障点的距离,实际上是测量保护安装处至故障点之间的阻抗大小,故有时又称之为阻抗保护。
距离保护也有一个保护范围,短路发生在这一范围内,保护动作,否则不动作,这个保护范围通常只用给定阻抗zd Z 的大小来实现的。
正常运行时保护安装处测量到的线路阻抗为负荷阻抗fh Z ,即fhcl cl cl Z I UZ ==在被保护线路任一点发生故障时,测量阻抗为保护安装地点到短路点的短路阻抗d Z ,即dd cl clcl Z I U I U Z === 残距离保护反应的信息量比反应单一物理量的电流保护灵敏度高。
距离保护的实质是用整定阻抗zd Z 与被保护线路的测量阻抗cl Z 比较。
当短路点在保护范围以外时,即cl Z >zd Z 时继电器不动。
当短路点在保护范围内,即cl Z <zd Z 时继电器动作。
因此,距离保护又称为低阻抗保护。
动作阻抗:使距离保护刚能动作的最大测量阻抗。
二、时限特性距离保护的动作时间t 与保护安装处到故障点之间的距离l 的关系称为距离保护的时限特性,目前获得广泛应用的是阶梯型时限特性,如图3—1所示。
这种时限特性与三段式电流保护的时限特性相同,一般也作成三阶梯式,即有与三个动作范围相应的三个动作时限:t '、t ''、t '''。
图3—1 距离保护的时限特性三、距离保护的组成三段式距离保护装置一般由以下四种元件组成,其逻辑关系如图3—2所示。
第三章电网距离保护1.距离保护的定义和基本原理【距离保护:是利用短路时电压、电流同时变化的特征,测量电压与电流的比值,反映故障点与保护安装处的距离而工作的保护。
】【基本原理:按照几点保护选择性的要求,安装在线路两端的距离保护仅在线路MN内部故障时,保护装置才应立即动作,将相应的断路器跳开,而在保护区的反方向或本线路之外的正方向短路时,保护装置不应动作。
】【与电流速断保护一样,为了保证在下级线路出口处短路时保护不误动作,在保护区的正方向(对于线路MN的M侧保护来说,正方向就是由M指向N的方向)上设定一个小于线路全长的保护范围,用整定距离Lset表示。
】【当系统发生故障时,首先判断故障的方向,若故障位于保护区的正方向上,则设法测出故障点到保护安装处的距离Lk,并将Lk与Lset比较,若Lk小于Lset,说明故障发生在保护范围以内,这时保护应立即动作,跳开相应的断路器;若Lk大于Lset,说明故障发生在保护范围之外,保护不应动作,对应的断路器不会跳开。
若故障位于保护区的反方向上,则无需进行比较和测量,直接判断为区外故障而不动作。
】(3.8为什么阻抗继电器动作特性是区域。
常用区域)由于互感器误差、过渡电阻等影响,继电器实际测量的Zm不能严格落在Zset同向直线上,而是该直线附近的区域,为保证区内故障情况下阻抗继电器可靠动作,在复平面上,其动作范围是包括Zset对应线段在内,在Zset方向上不超过Zset的区域。
【a:偏移圆无死区,不具有完全方向性,反方向出口短路动作,只能作为后备段】【b:方向圆有方向性,只在正向区内故障动作,但动作特性经过原点,在正向/反向出口短路时Zm很小,处在临界动作区域,可能拒动/误动,必须采取专门措施防止出口故障时拒动或误动】【c:上抛圆】【d:全阻抗圆无电压死区,不具有方向性】【e苹果特性与橄榄特性:苹果特性有较高的耐受过渡电阻的能力,耐受过负荷的能力比较差;橄榄特性正好相反。
电⽹的距离保护(含笔记)第三章电⽹的距离保护第⼀节距离保护的作⽤原理⼀﹑基本概念电流保护的优点:简单﹑可靠﹑经济。
缺点:选择性﹑灵敏性﹑快速性很难满⾜要求(尤其35kv 以上的系统)。
距离保护的性能⽐电流保护更加完善。
Z dU d....1fe f dd d ld I U Z I U Z Z =<==,反映故障点到保护安装处的距离——距离保护,它基本上不说系统的运⾏⽅式的影响。
⼆﹑距离保护的时限特性距离保护分为三段式: I 段:AB Idz Z Z )85.0~8.0(1=,瞬时动作主保护 II 段:)(21I dz AB II K II dz Z Z K Z +=,t=0.5’’ III 段:躲最⼩负荷阻抗,阶梯时限特性。
————后备保护第⼆节阻抗继电器阻抗继电器按构成分为两种:单相式和多相式单相式阻抗继电器:指加⼊继电器的只有⼀个电压U J (相电压或线电压)和⼀个电流I J (相电流或两相电流之差)的阻抗继电器。
JJ J I U Z ..=——测量阻抗Z J =R+jX 可以在复平⾯上分析其动作特性它只能反映⼀定相别的故障,故需多个继电器反映不同相别故障。
多相补偿式阻抗继电器:加⼊的是⼏个相的补偿后的电压。
它能反映多相故障,但不能利⽤测量阻抗的概念来分析它的特性。
本节只讨论单相式阻抗继电器。
⼀﹑阻抗继电器的动作特性、PTld PT l lPT JJ J n n Z n n I U n I n U I U Z ?=?===1.1.1.1...BC 线路距离I 段内发⽣单相接地故障,Z d 在图中阴影内。
由于1)线路参数是分布的,Ψd有差异2)CT,PT 有误差 3)故障点过渡电阻 4)分布电容等所以Z d 会超越阴影区。
因此为了尽量简化继电器接线,且便于制造和调试,把继电器的动作特性扩⼤为⼀个圆,见图。
圆1:以od 为半径——全阻抗继电器(反⽅向故障时,会误动,没有⽅向性)圆2:以od 为直径——⽅向阻抗继电器(本⾝具有⽅向性)圆3:偏移特性继电器另外,还有椭圆形,橄榄形,苹果形,四边形等⼆﹑利⽤复数平⾯分析阻抗继电器它的实现原理:幅值⽐较原理 B A U U ..≥J相位⽐较原理 90arg 90..≤≤-DC U U(⼀)全阻抗继电器特性:以保护安装点为圆⼼(坐标原点),以Z zd 为半径的圆。
第三章 电网的距离保护 第一节距离保护的作用原理一﹑基本概念电流保护的优点:简单﹑可靠﹑经济。
缺点:选择性﹑灵敏性﹑快速性很难满足要求(尤其35kv 以上的系统)。
距离保护的性能比电流保护更加完善。
Z dU d....1fe f dd d ld I U Z I U Z Z =<==,反映故障点到保护安装处的距离——距离保护,它基本上不说系统的运行方式的影响。
二﹑距离保护的时限特性距离保护分为三段式: I 段:AB Idz Z Z )85.0~8.0(1=,瞬时动作 主保护 II 段:)(21I dz AB II K II dz Z Z K Z +=,t=0.5’’ III 段:躲最小负荷阻抗,阶梯时限特性。
————后备保护第二节 阻抗继电器阻抗继电器按构成分为两种:单相式和多相式单相式阻抗继电器:指加入继电器的只有一个电压U J (相电压或线电压)和一个电流I J (相电流或两相电流之差)的阻抗继电器。
JJ J I U Z ..=——测量阻抗Z J =R+jX 可以在复平面上分析其动作特性它只能反映一定相别的故障,故需多个继电器反映不同相别故障。
多相补偿式阻抗继电器:加入的是几个相的补偿后的电压。
它能反映多相故障,但不能利用测量阻抗的概念来分析它的特性。
本节只讨论单相式阻抗继电器。
一﹑阻抗继电器的动作特性、PTld PT l lPT JJ J n n Z n n I U n I n U I U Z ⨯=⨯===1.1.1.1...BC 线路距离I 段内发生单相接地故障,Z d 在图中阴影内。
由于1)线路参数是分布的, Ψd有差异2)CT,PT 有误差 3)故障点过渡电阻 4)分布电容等 所以Z d 会超越阴影区。
因此为了尽量简化继电器接线,且便于制造和调试,把继电器的动作特性扩大为一个圆,见图。
圆1:以od 为半径——全阻抗继电器(反方向故障时,会误动,没有方向性) 圆2:以od 为直径——方向阻抗继电器(本身具有方向性) 圆3:偏移特性继电器另外,还有椭圆形,橄榄形,苹果形,四边形等二﹑利用复数平面分析阻抗继电器它的实现原理:幅值比较原理 B A U U ..≥J相位比较原理 90arg 90..≤≤-DC U U(一) 全阻抗继电器 特性:以保护安装点为圆心(坐标原点),以Z zd 为半径的圆。
圆内为动作区。
Z dz.J ——测量阻抗正好位于圆周上,继电器刚好动作,这称为继电器的起动阻抗。
无论Ψd 多大,zd J dz Z Z =.,它没有方向性。
1. 幅值比较原理:zd J Z Z ≤两变同乘J I .,且J J J U Z I ..=,所以zd J J Z I U ..≤,这也就是动作方程。
2.90arg90≤-+≤-Jzd Jzd Z Z Z Z分子分母同乘以I J ,90arg90....≤-+≤-Jzd J J zd J U Z I U Z I(二) 方向阻抗继电器 以Z zd 为直径,通过坐标原点的圆。
圆内为动作区。
Z dz.J 随ΨJ 改变而改变,当 ΨJ 等于Z zd 的阻抗角时,Z dz.J 最大,即保护范围最大,工作最灵敏。
Ψlm ——最大灵敏角,它本身具有方向性。
1. 幅值比较原理:zd zd J Z Z Z 2121≤-Jzd J zd J J Z I Z I U ...2121≤-2. 相位比较原理: 90arg90≤-≤-Jzd JZ Z Z90arg90...≤-≤-Jzd J J U Z I U(三) 偏移特性阻抗继电器 正方向:整理阻抗Z zd 反方向:偏移-αZ zd (α<1) 圆内动作。
圆心zd zd zd Z Z Z Z )1(21)(210αα-=-=半径:zd Z )1(21α+ Z dz.J 随 ΨJ 变化而变化,但没有安全的方向性。
1. 幅值比较原理zd J Z Z Z )1(210α+≤- zdJ Z Z )1(21)1(21αα+≤--....)1(21)1(21zd J zd J J Z I Z I U αα+≤--2. 相位比较原理90arg90≤-+≤-Jzd zdJ Z Z Z Z α90arg90....≤-+≤-Jzd J zd J J U Z I Z I U α总结三种阻抗的意义:1) 测量阻抗Z J :由加入继电器的电压U J 与电流I J 的比值确定。
JJ J I U ..arg=ϕ2) 整定阻抗Z zd :一般取继电器安装点到保护范围末端的线路阻抗。
全阻抗继电器:圆的半径方向阻抗继电器:在最大灵敏角方向上圆的直径偏移特性阻抗继电器:在最大灵敏角方向上由原点到圆周的长度。
3) 起动阻抗(动作阻抗)Z dz.J :它表示当继电器刚好动作时,加入继电器的电压U J 和电流I J 的比值。
除全阻抗继电器以外:Z dz.J 随ΨJ 的不同而改变。
当ΨJ =Ψlm 时,Z dz.J =Z zd ,此时最大。
三﹑阻抗继电器的构成主要由两大基本部分组成:电压形成路和幅值比较或相位比较回路。
U A ﹑U B ﹑U C ﹑U D 基本上是由U J 和I J Z zd 组合而成。
而U J 可直接从PT 二次侧取得,必要时经YB 变换。
而I J Z zd 则经过DKB 获得。
(一) 方向阻抗继电器交流回路的原理接线zd J AZ I U ..21= J c U U ..=交流回路交流回路zd J J BZ I U U ...21-= J zd J D U Z I U ...-=其它的继电器的交流回路的组成,可参照此图自行作成。
(二) 幅值比较回路将U A 和U B 分别整流后进行幅值比较,有两种类型: 1. 均压式U A 整流后在R 1上产生U a , U B 整流后在R 2上产生U b 。
继电器反应U ab =U a -U b 而动作。
2.环流式U A 整流后在R 1回路产生I a ,U B 整流后在R 2回路产生I b 。
继电器反应I a -I b 而动作。
(三) 相位比较回路BB90arg90..≤≤-DC U U它是以测定U C 和U D 同时为正的时间来判断它们的相位。
2加移相器后移相90º,.90'.-=eU U C C90arg90..≤≤-DC U U) 90º——5ms 不动作动作第三节 阻抗继电器的接线方式一﹑基本要求要使Z J 正比于l d ,且与故障类型无关。
二﹑常用接线方式参见P 90,表3-2,其中0º接线,+30º接线和-30º接线的阻抗继电器用于反映各种相间短路。
相电压和具有k3I 0补偿的相电流接线用于反映各种接地故障。
三﹑分析(一) 母线残压计算公式: 假设:Z 1=Z 2,不计负荷电流...10.00.22.11...d A d A d A d A AD A l Z I l Z I l Z I l Z I U U -+++=dA Ad d A d A Ad l Z I k I U l Z Z I l Z I U ..1.0.....100.1..)3()(++=-++= (其中:k=(Z 0-Z 1)/3Z 1,零序补偿系数)同理:..1.0.)3(d B Bd B l Z I k I U U ++=d C Cd C l Z I k I U U 1.0...)3(++=(二) 0º接线方式的分析(设n PT =n l =1)1. 三相短路因为三相对称,继电器1,继电器2,继电器3工作情况完全相同,所以就以继电器1为例分析。
0...===Cd Bd Ad U U U 03.0=Id BA dB A BA B A J l Z I I l Z I I I I U U Z 1..1......1)(=--=--=同理Z J2=Z j3=Z 1l d结论:在三相短路时,Z J1,Z J2,Z J3均等于短路点到保护安装处点的线路正序阻抗。
Ul d2. 两相短路以BC 两相短路为例。
C B I I ..-= 0.=A I 03.0=I..A A E U = dB Bd B l Z I U U 1...+= dC Cd C l Z I U U 1...+=d CB dC B CB C B J l Z I I l Z I I I I U U Z 1..1......2)(=--=--=..Cd Bd U U =d BABd d BdB Bd A BA B A J l Z I E U l Z I l Z I U E I I U U Z 1...1..1......1>-+=---=--=d CACd d CAd C Cd AC A C J l Z I E U l Z I E l Z I U I I U U Z 1...1..1......2>-+=-+=--=结论:接于故障环路的阻抗继电器可以正确反映保护安装处到故障点之间的线路正序阻抗。
其余两只阻抗继电器的测量阻抗很大,不会动作。
这也就是为什么要用三个阻抗继电器并分别接于不同相间的原因。
3. 中性点直接接地电网的两相接地短路 仍然以BC 两相接地短路为例0..==Cd Bd U U 03.0≠Id CB dd d C B C B C B J l Z I I l Z I k l Z I k l Z I I I I U U Z 1..1.01.01......233)(=--+-=--=d BA B A J l Z I I U U Z 1....1>--= d J l Z Z 13>结论:同两相短路。
(三) 接地短路阻抗继电器的接线方式以A 相接地短路为例0.=Ad U d A dA A A J l Z I k I l Z I k I I k I U Z 1..1.0....13)3(3=++=+=可见:它能正确测量以短路点到保护安装处之间线路正序阻抗。
d B B B J l Z I k E I k I U Z 1.....233>=+=d J l Z Z 13> 均不动所以必须采用三个阻抗继电器。
该接线方式能正确反映两相短路和三相短路。
(自行分析)第四节 方向阻抗继电器的特性分析由于方向阻抗继电器的应用最为广泛,故进一步分析之。
一﹑方向阻抗继电器的死区和清除方法 (一) 产生死区的原因在保护正方向出口发生相间短路时,U J =0,继电器不动作。
发生这种情况的一定范围,就称为“死区”。
1. 幅值比较式zd J zd J U zd J zd J J Z I Z I Z I Z I U J ..0...21212121.=-⇒≤-=而实际上,继电器的执行元件动作需要一定的功率,所以继电器不动。
2. 相位比较式90arg90...≤-≤-Jzd J J U Z I U因为U J =0,无法比相,所以继电器不动。