信号发生器实验报告(终)
- 格式:docx
- 大小:453.35 KB
- 文档页数:8
电子电路综合设计实验实验一函数信号发生器的设计与调测班级: 2009211108**: ***学号: ********小班序号: 26课题名称函数信号发生器的设计与实现一、摘要函数信号发生器是一种为电子测量提供符合一定要求的电信号的仪器, 可产生不同波形、频率和幅度的信号。
在测试、研究或调整电子电路及设备时, 为测定电路的一些电参量,用信号发生器来模拟在实际工作中使用的待测设备的激励信号。
信号发生器可按照产生信号产生的波形特征来划分:音频信号源、函数信号源、功率函数发生器、脉冲信号源、任意函数发生器、任意波形发生器。
信号发生器用途广泛, 有多种测试和校准功能。
本实验设计的函数信号发生器可产生方波、三角波和正弦波这三种波形, 其输出频率可在1KHz至10KHz范围内连续可调。
三种波形的幅值及方波的占空比均在一定范围内可调。
报告将详细介绍设计思路和与所选用元件的参数的设计依据和方法。
二、关键词函数信号发生器迟滞电压比较器积分器差分放大电路波形变换三、设计任务要求:1、(1)基本要求:2、设计一个可输出正弦波、三角波和方波信号的函数信号发生器。
3、输出频率能在1-10KHZ范围内连续可调, 无明显是真;4、方波输出电压Uopp≥12V, 上升, 下降沿小于10us, 占空比可调范围30%-70%;5、三角波输出电压Uopp≥8V;6、正弦波输出电压Uopp≥1V;设计该电源的电源电路(不要求实际搭建), 用PROTEL软件绘制完整的电路原理图(SCH)。
(2)提高要求:1.三种输出波形的峰峰值Uopp均在1V-10V范围内连续可调。
2.三种输出波形的输出阻抗小于100Ω。
3.用PROTEL软件绘制完整的印制电路板图(PCB)。
(3)探究环节:1.显示出当前输入信号的种类、大小和频率(实验演示或详细设计方案)。
2.提供其他函数信号发生器的设计方案(通过仿真或实验结果加以证明)。
四、设计思路和总体结构框图(1)原理电路的选择及总体思路:根据本实验的要求, 用两大模块实现发生器的设计。
信号发生器一、实验目的1、掌握集成运算放大器的使用方法,加深对集成运算放大器工作原理的理解。
2、掌握用运算放大器构成波形发生器的设计方法。
3、掌握波形发生器电路调试和制作方法 。
二、设计任务设计并制作一个波形发生电路,可以同时输出正弦、方波、三角波三路波形信号。
三、具体要求〔1〕可以同时输出正弦、方波、三角波三路波形信号,波形人眼观察无失真。
〔2〕利用一个按钮,可以切换输出波形信号。
〔3〕频率为1-2KHz 连续可调,波形幅度不作要求。
〔4〕可以自行设计并采用除集成运放外的其他设计方案〔5〕正弦波发生器要求频率连续可调,方波输出要有限幅环节,积分电路要保证电路不出现积分饱和失真。
四、设计思路根本功能:首先采用RC 桥式正弦波振荡器产生正弦波,然后通过整形电路(比拟器)将正弦波变换成方波,通过幅值控制和功率放大电路后由积分电路将方波变成三角波,最后通过切换开关可以同时输出三种信号。
五、具体电路设计方案Ⅰ、RC 桥式正弦波振荡器图1图2电路的振荡频率为:RCf π210=将电阻12k ,62k 及电容100n ,22n ,4.4n 分别代入得频率调节范围为:24.7Hz~127.6Hz ,116.7Hz~603.2Hz ,583.7Hz~3015Hz 。
因为低档的最高频率高于高档的最低频率,所以符合实验中频率连续可调的要求。
如左图1所示,正弦波振荡器采用RC 桥式振荡器产生频率可调的正弦信号。
J 1a 、J 1b 、J 2a 、J 2b 为频率粗调,通过J 1 J 2 切换三组电容,改变频率倍率。
R P1采用双联线性电位器50k ,便于频率细调,可获得所需要的输出频率。
R P2 采用200k 的电位器,调整R P2可改变电路A f 大小,使得电路满足自激振荡条件,另外也可改变正弦波失真度,同时使正弦波趋于稳定。
下列图2为起振波形。
RP2 R4 R13 组成负反应支路,作为稳幅环节。
R13与D1、D2并联,实现振荡幅度的自动稳定。
信号发⽣器实验报告信号发⽣器F组组长:***组员:***、*** 2013年8⽉12⽇星期⼀1系统⽅案 (4)1.1系统⽅案论证与选择 (4)1.2⽅案描述 (4)2理论分析与计算 (5)3电路与程序设计 (6)3.1电路的设计 (6)3.1.1 ICL8038模块电路 (6)3.1.2 放⼤电路 (6)3.2程序的设计 (7)4测试⽅案与测试结果 (9)4.1测试仪器与结果 (9)4.2调试出现的问题及解决⽅案 (9)5 ⼩结 (10)本系统设计的是信号发⽣器,是以 ICL8038和 STC89C51为核⼼设计的数控及扫频函数信号发⽣器。
ICL8038作为函数信号源结合外围电路产⽣占空⽐和频率可调的正弦波、⽅波、三⾓波;该函数信号发⽣器的频率可调范围1~100kHz,波形稳定,⽆明显失真。
单⽚机控制LCD12864液晶显⽰频率、频段和波形名称。
关键字:信号发⽣器ICL8038、 STC89C51、波形、LCD12864信号发⽣器实验报告1系统⽅案1.1系统⽅案论证与选择⽅案⼀:由单⽚机内部产⽣波形,经DAC0832输出,然后再经过uA741放⼤信号后,最后经过CD4046和CD4518组成的锁相环放⼤频率输出波形,可是输出的波形频率太低,达不到设计要求。
⽅案⼆:采⽤单⽚机对信号发⽣器MAX038芯⽚进⾏程序控制的函数发⽣器,该发⽣器有正弦波、三⾓波和⽅波信号三种波形,输出信号频率在0.1Hz~100MHz 范围内。
MAX038为核⼼构成硬件电路能⾃动地反馈控制输出频率,通过按键选择波形,调节频率,可是MAX038芯⽚价格太⾼,过于昂贵。
⽅案三:利⽤芯⽚ICL8038产⽣正弦波、⽅波和三⾓波三种波形,根据电阻和电容的不同可以调节波形的频率和占空⽐,产⽣的波形频率⾜够⼤,能达到设计要求,⽽且ICL8038价格⽐较便宜,设计起来成本较低。
综上所述,所以选择第三个⽅案来设计信号发⽣器。
1.2⽅案描述本次设计⽅案是由ICL8038芯⽚和外围电路产⽣三种波形,由公式:,改变电阻和电容的⼤⼩可以改变波形的频率,有开关控制频段和波形并给单⽚机⼀个信号,由单⽚机识别并在LCD液晶屏上显⽰,电路的系统法案框图为下图1所⽰:图1 总系统框图2理论分析与计算如图2,占空⽐和频率调节电路:图2 占空⽐和频率调节电路所有波形的对称性都可以通过调节外部定时电阻来调节。
DDS信号发生器一、实验目的:学习利用EDA技术和FPGA实现直接数字频率综合器DDS的设计。
二、实验原理实验原理参考教材6.4节和6.11节相关内容。
三、实验内容1、实验原理参考教材6.4节相关内容。
根据6.4.2节和例6-10,在Quartus II上完成简易正弦信号发生器设计,进行编辑、编译、综合、适配、仿真;2、使用SignalTap II测试;3、硬件测试:进行引脚锁定及硬件测试。
信号输出的D/A使用DAC0832,注意其转换速率是1μs。
下载到实验系统上,接上D/A模块,用示波器测试输出波形;4、按照教材图6-72完成DDS信号发生器设计,进行编辑、编译、综合、适配、仿真,引脚锁定及硬件测试。
5、建立.mif格式文件。
四、实验步骤1、建立.mif文件:(1)设定全局参数:(2)设定波形:(3)文件保存:2、新建工程:3、LPM—ROM定制:(1)(2)(3)(4)(5)(6)(7)sinrom源程序:module SIN_CNT(RST,CLK,EN,Q,AR); output [7:0] Q;input [6:0] AR;input EN,CLK,RST;wire [6:0] TMP;reg[6:0] Q1;reg[7:0] F;reg C;always @(posedge CLK)if(F<AR) F<=F+1;elsebeginF=8'b00;C=~C;endalways @(posedge CLK or negedge RST)if(!RST) Q1<=7'b0000000;else if(EN) Q1<=Q1+1;else Q1<=Q1;assign TMP=Q1;sinrom IC1(.address(TMP),.clock(CLK),.q(Q)); endmodule4、锁相环:5、顶层文件:6、SignalTap II的使用7、锁定引脚8、下载。
南昌⼤学EDA实验报告实验六信号发⽣器
南昌⼤学实验报告
学⽣姓名:xx 学号:xx 专业班级:xx
实验类型:□验证□综合□设计□创新实验⽇期:2016.11.04 实验成绩:
实验六LPM信号发⽣器
(⼀)实验要求
1、LPM定制⽅法实现。
2、信号数字值存储在ROM中,可以是64个或128个,位长8位。
3、产⽣的信号可以是正弦波或⽅波、三⾓波、锯齿波等,⾃选。
4、⽤SignalTap逻辑分析/或输出到DAC⽰波器观察
(⼆)实验原理
定制LPM-ROM模块,并利⽤其设计⼀个信号发⽣器,该信号发⽣器由以下三部分组成:
(1)计数器或地址信号发⽣器;
(2)信号数据存储器ROM(6位地址线,8位数据线)(3)VHDL顶层程序设计
本实验中待测信号ar和q。
时钟选择clk;使能信号为en,⾼电平触发。
(三)实验步骤
1、定制初始化波形数据⽂件:建⽴.mif格式⽂件。
2、定制LPM_ROM元件:利⽤定制信号数据ROM宏功能块,并将以上波形加载与ROM中。
3、⽤VHDL语⾔完成信号发⽣器的顶层设计。
(四)实验仿真波形
(五)管脚分配
(六)下载测试。
将FPGA板接⽰波器,可实现⽅波,正弦波,三⾓波的波形输出。
控制按键s1,s2,s3,s4可改变波形的频率幅度⼤⼩。
(七)实验⼩结
本次实验我⽤到了创建mif⽂件rom存储,以及嵌⼊式逻辑分析仪的使⽤。
信号发生器实验报告信号发生器实验报告引言信号发生器是电子实验室中常见的一种仪器,用于产生各种类型的电信号。
本次实验旨在探究信号发生器的原理和应用,以及对其进行一系列的测试和测量。
一、信号发生器的原理信号发生器是一种能够产生不同频率、幅度和波形的电信号的设备。
其主要由振荡电路、放大电路和输出电路组成。
振荡电路负责产生稳定的基准信号,放大电路将基准信号放大到合适的幅度,输出电路将信号输出到外部设备。
二、信号发生器的应用1. 电子器件测试:信号发生器可以用于测试电子器件的频率响应、幅度响应等特性。
通过改变信号发生器的频率和幅度,可以模拟不同工作条件下的电子器件性能。
2. 通信系统调试:在通信系统的调试过程中,信号发生器可以用于模拟各种信号,如语音信号、数据信号等。
通过调整信号发生器的参数,可以测试通信系统的传输质量和容量。
3. 音频设备测试:信号发生器可以用于测试音频设备的频率响应、失真等特性。
通过产生不同频率和幅度的信号,可以对音频设备进行全面的测试和评估。
三、实验过程1. 测试频率响应:将信号发生器连接到待测设备的输入端,逐渐改变信号发生器的频率,并记录待测设备的输出结果。
通过绘制频率响应曲线,可以了解待测设备在不同频率下的响应情况。
2. 测试幅度响应:将信号发生器连接到待测设备的输入端,逐渐改变信号发生器的输出幅度,并记录待测设备的输出结果。
通过绘制幅度响应曲线,可以了解待测设备对不同幅度信号的响应情况。
3. 测试波形输出:将信号发生器连接到示波器,通过改变信号发生器的波形设置,观察示波器上的波形变化。
通过比较不同波形的特征,可以了解信号发生器的波形生成能力。
四、实验结果与分析1. 频率响应:根据实验数据绘制的频率响应曲线显示,待测设备在低频段具有较好的响应能力,而在高频段则逐渐衰减。
这可能是由于待测设备的电路结构和元件特性导致的。
2. 幅度响应:根据实验数据绘制的幅度响应曲线显示,待测设备对于低幅度信号的响应较差,而对于高幅度信号的响应较好。
EDA学院:电气学院班级:电科1班学号:***********姓名:***实验三PWM信号发生器的设计1.实验目的(1)进一步熟悉掌握Quartus II。
(2)进一步熟悉和掌握GW48-CK或其他EDA实验开发系统的应用。
(3)学习和掌握VHDL进程语句和元件例化语句的使用。
2.实验内容设计并调试好PWM信号发生器电路PWM.VHD,并用GW48-CK或其他EDA实验开发系统进行硬件验证。
3.实验条件(1)开发软件:Quartus II。
(2)实验设备:GW48-CKEDA实验开发系统。
(3)拟用芯片:EP2C8Q208C8N。
4.实验设计1)系统原理框图为了简化设计并便于显示,本信号发生器电路PWM的设计分为两个层次,其底层电路可,再由包括两个完全相同的加载加法计数器LCNT8而成。
PWM 电路学 !»|\ System (27) Processing (9) fy Extra Info \ Info (9) \ Warnrg \ Critical V /arnng 入 Error 入 Stppresied 入 Flag /C |M essag© 0<rf 16~—土土J[T =2) VHDL 程序PWM 信号发生器的底层和顶层电路均采用VHDL 文本输 入,有关VHDL 程序如下。
加载加法计数器LCNT8的VHDL 源程序:LIBRARY IEEE;USE IEEE.STD LOGIC 1164.ALL; ENTITY LCNT8 ISPORT(CLK,LD:IN STD_LOGIC; D:IN INTEGER RANGE 0 TO 255; CAO:OUT STD 一LOGIC); END ENTITY LCNT8;ARCHITECTURE ART OF LCNT8 ISSIGNAL COUNT:INTEGER RANGE 0 TO 255; BEGINIF CLKEVENT AND CLK= 1 THEN IF LD=1THEN COUNTED;Cyclon® II EP2C5Q20eC8 •淼 PWfl•说 ITFT8 VI以 LCFT8 U2cbIn:pr:Fil妝ZB OO hHl«o$ <fels-kc QE典K BpLCMT8.U2SPWLCMT8U1CCLRTypeInessageV. w w.wInCo: Coximand: quactus_slu --cead_3ettmgs_£iles=on --wcite_setting3_Ciie3=oC£ pum -c pwu Info: Using vector source rile ”C"Documents and Settirigs/Ovner/jftffi/maa/pwn/pim.vur. Into: Option to pcesecve fewer signal transitions co reduce mexxory requicenents is enabled Into: Simulation partitioned into 1 sub-3imulations Info: Simulation coverage is 77.33 %Info: Munbec of transitions m simulation is 50002Inco: Quactus II Smulacor was successful. 0 errors, 0 uatnmgs5ELSE COUNT<=COUNT+1;END IF;END IF;END PROCESS;PROCESS(COUNT) ISBEGINIF COUNT=255 THEN CAO<=1;ELSE CAO<=0END IF;END PROCESS;END ARCHITECTURE ART;PWM信号发生器的VHDL源程序:LIBRARY IEEE;USE IEEE.STD LOGIC 1164.ALL;ENTITY PWM ISPORT(CLK:IN STD_LOGIC;A,B:IN STD_LOGIC_VECTOR(7 DOWNTO 0);PWM:OUT STD_LOGIC);END ENTITY PWM;ARCHITECTURE ART OF PWM ISCOMPONENT LCNT8 ISPORT(CLK,LD:IN STD_LOGIC;D:IN STD_LOGIC_VECTOR(7 DOWNTO 0);CAO:OUT STD.LOGIC);END COMPONENT LCNT8;SIGNAL CAO 1 ,CAO2:STD_LOGIC;SIGNAL LD1,LD2:STD一LOGIC;SIGNAL SPWM:STD_LOGIC;BEGINU1:LCNT8 PORT MAP(CLK=〉CLK,LD=〉LD1,D=〉A,CAO=〉CAO1); U2:LCNT8 PORT MAP(CLK=〉CLK,LD=〉LD2,D=〉B,CAO=〉CAO2); PROCESS(CAO 1,CAO2)ISBEGINIF CAO 1=4'THEN SPWM<=,0,;ELSIF CAO2,EVENTAND CAO2=TTHEN SPWM<=,1,;END IF;END PROCESS;LD1<=NOTSPWM;LD2<=SPWM;PWM<=SPWM;END ARCHITECTURE ART;Type Message3)工程编译后:Info: Cox&xand: quactus^sim --read_secting3_Cile3=on --ucite_settlngs_Clles=oCC pun -c pum Info: Using vector source file M C:/Docu»encs andSetcings/Oroer/iftffi/nlua/pvuQ/pwu.vtrf M Into: Option to preserve Cewer signal transitions to reduce aeaoty tequiceaents is enabled Into: SiwUacion partitioned into 1 sub-simulationsInfo: Sluulacion coverage Is 77.33 kInfo: Munhec of transitions In simulation is 50002Info: Quactus II Sntulatoc va3 successful. 0 errotSy 0 warningso \ System (27)入 Processing (9)人 EWraInf 。
一、实验目的1. 熟悉信号发生器的基本原理和组成。
2. 掌握信号发生器的操作方法和使用技巧。
3. 学习通过信号发生器进行信号测试和调试的方法。
4. 培养实验操作能力和分析问题、解决问题的能力。
二、实验原理信号发生器是一种能够产生各种波形信号的电子设备,广泛应用于科研、生产和教学等领域。
本实验所使用的信号发生器为函数信号发生器,可以产生正弦波、方波、三角波等基本波形信号。
三、实验设备1. 信号发生器一台2. 示波器一台3. 测试电缆若干4. 负载电阻若干四、实验内容1. 信号发生器的基本操作(1)打开信号发生器,调整频率、幅度和波形等参数。
(2)观察信号发生器输出波形,确认波形是否正常。
(3)调整输出幅度,使其符合实验要求。
2. 正弦波信号的测试(1)将信号发生器设置为正弦波,调整频率和幅度。
(2)使用示波器观察输出波形,确认波形为正弦波。
(3)测试输出波形的频率、幅度和相位,记录数据。
3. 方波信号的测试(1)将信号发生器设置为方波,调整频率和幅度。
(2)使用示波器观察输出波形,确认波形为方波。
(3)测试输出波形的频率、幅度和占空比,记录数据。
4. 三角波信号的测试(1)将信号发生器设置为三角波,调整频率和幅度。
(2)使用示波器观察输出波形,确认波形为三角波。
(3)测试输出波形的频率、幅度和上升时间、下降时间,记录数据。
5. 信号发生器的应用(1)利用信号发生器产生各种波形信号,进行电路测试和调试。
(2)使用信号发生器进行信号调制和解调实验。
(3)利用信号发生器进行信号分析实验。
五、实验结果与分析1. 正弦波信号测试结果频率:1kHz幅度:2Vpp相位:0°2. 方波信号测试结果频率:1kHz幅度:2Vpp占空比:50%3. 三角波信号测试结果频率:1kHz幅度:2Vpp上升时间:50μs下降时间:50μs实验结果表明,信号发生器能够产生各种波形信号,且波形质量符合实验要求。
六、实验总结1. 通过本次实验,我们熟悉了信号发生器的基本原理和组成,掌握了信号发生器的操作方法和使用技巧。
信号发生器实验报告一、信号发生器广泛应用于电子工程、通信工程、自动控制、遥测控制、测量仪器、仪表和计算机等技术领域。
采用集成运放和分立元件相结合的方式,利用迟滞比较器电路产生方波信号,以及充分利用差分电路进行电路转换,从而设计出一个能变换出三角波、正弦波、方波的简易信号发生器。
通过对电路分析,确定了元器件的参数,并利用protuse 软件仿真电路的理想输出结果,克服了设计低频信号发生器电路方面存在的技术难题,使得设计的低频信号发生器结构简单,实现方便。
该设计可产生低于10 Hz 的各波形输出,并已应用于实验操作。
信号发生器一般指能自动产生正弦波、方波、三角波电压波形的电路或者仪器。
电路形式可以采用由运放及分离元件构成;也可以采用单片集成函数发生器。
这里,采用分立元件设计出能够产生3种常用实验波形的信号发生器,并确定了各元件的参数,通过调整和模拟输出,该电路可产生频率低于10 Hz 的3种信号输出,具有原理简单、结构清晰、费用低廉的优点。
该电路已经用于实际电路的实验操作。
原理框架图:二、电源硬件电路图的设计(1)单片机的选择根据初步设计方案的分析,设计这样的一个简单的应用系统,可以选择带有EPROM 的单片机,应用程序直接存贮在片内,不用在外部扩展程序存储器,电路可以简化。
ATMEL 公司生产的AT89C 系列单片机,AT89C 系列与C51系列的单片机相比有两大优势:第一,片内程序存储器采用闪存存储器,使程序的写入更加方便;第二,提供了更小尺寸的芯片,使整个硬件电路的体积更小。
它以较小的体积、良好的性能价格备受亲密。
在家电产品、工业控制、计算机产品、医疗器械、汽车工业等应用方面成为用户降低成本的首选器件。
因此,我们可选用AT89C2051单片机。
该芯片的功能与MCS-系列单片机完全兼容,并且还具有程序加密等功能,物美价廉,经济实用。
AT89C2051是ATMEL公司生产的带2K字节课编程闪速存储器的8位COMS单计算机,工作电压范围为2.7~6V,全静态工作频率为0~24MHZ。
函数信号发生器及常用电信号的观察与测量实验报告09光信2班1、实验目的1)掌握常见点新高的观察与测量方法。
2)了解单片集成函数信号发生器的功能特点。
3)熟悉信号与系统试验箱信号的产生方法。
1、实验仪器1)信号与系统实验箱一台。
2) 20MHz双踪示波器一台。
3、实验原理ICL8038是单片机集成函数信号发生器,其内部框图如图1」所示。
它由恒流源人和厶、电压比较器A和B、触发器、缓冲器和三角波变正弦波电路等组成。
外接电容-V EE图1.1 ICL8038原理方框图外接屯容C由两个恒流源充电和放电,电压比较器A、B的阀值分别为电源电压(指人的2/3和1/3。
恒流源人和厶的人小可通过外接屯阻调节,但必须/2 >/,o当触发器的输出为低电平时,恒流源厶断开,恒流源人给C 充电,它的两端电压UC随时间线性上升,当UC达到电源电压的2/3时,电压比较器A的输出电压发生跳变,使触发器输岀由低电平变为高电平,恒流源C接通, 由于/2 > /.(设人=2人),恒流源厶将电流2人加到C上反充电,相当于C由一个净电流I 放电,C两端的电压UC 乂转为直线下降。
当它下降到电源电圧的1/3 时,电压比较器B的输出电压发生跳变,使触发器的输出由高电平跳变为原来的低电平,恒流源人断开,人再给C充电,…如此周而复始,产生振荡。
若调整电路,使/2 = 2/,,则触发器输出为方波,经反相缓冲器由管脚⑨输出方波信号。
C 上的电压"c上升与下降时间相等时为三角波,经屯压跟随器从管脚③输出三角波信号。
将三角波变成正弦波是经过一个非线性的变换网络(正弦波变换器)而得以实现,在这个非线性网络屮,当三角波电位向两端顶点摆动时,网络提供的交流通路阻抗会减小,这样就使三角波的两端变为平滑的正弦波,从管脚②输出。
TCL8038管脚功能如图1. 2所示。
图1. 2 1CL8038管脚图电源电压为单屯源10〜30U或双电源土5U〜土实验电路如图1.3所示。
函数发生器设计(1)一、设计任务和指标要求1、可调频率范围为10Hz~100Hz 。
2、可输出三角波、方波、正弦波。
、可输出三角波、方波、正弦波。
3、三角波、方波、正弦波信号输出的峰-峰值0~5V 可调。
可调。
4、三角波、方波、正弦波信号输出的直流电平-3V~3V 可调。
可调。
5、输出阻抗约600Ω。
二、电路构成及元件参数的选择 1、振荡器、振荡器由于指标要求的振荡频率不高,由于指标要求的振荡频率不高,对波形非线性无特殊要求。
对波形非线性无特殊要求。
对波形非线性无特殊要求。
采用图采用图1所示的电路。
所示的电路。
同时同时产生三角波和方波。
产生三角波和方波。
图1 振荡电路振荡电路振荡电路根据输出口的信号幅度要求,可得最大的信号幅度输出为:根据输出口的信号幅度要求,可得最大的信号幅度输出为:V M =5/2+3=5.5V 采用对称双电源工作(±V CC ),电源电压选择为:,电源电压选择为: V CC ≥V M +2V=7.5V 取V CC =9V选取3.3V 的稳压二极管,工作电流取5mA ,则:,则: V Z =V DZ +V D =3.3+0.7=4V 为方波输出的峰值电压。
为方波输出的峰值电压。
OM Z CC Z 3Z Z V -V V -1.5V -V 9-1.5-4R ==700ΩI I 5»=()1AR4R2R1R3DZ DZRW2AR5R7CVozVosR6Vi+取680680ΩΩ。
取8.2K 8.2KΩΩ。
R 1=R 2/3=8.2/1.5=5.47(K Ω)取5.1K Ω。
三角波输出的电压峰值为:三角波输出的电压峰值为:V OSM =V Z R 1/R 2=4×5.1/8.2=2.489(V ) R 4=R 1∥R 2=3.14 K Ω取3K Ω。
Z Z V 4RW=8K 0.1~0.2I 0.15==W ´()()取10K Ω。
R 6=RW/9=10/9=1.11(K Ω)取1K Ω。
线性电子电路实验信号发生器专业:班级:姓名:学号:实验原理:一、方案比较网上方案:参考电路:方案比较:与网上方案相比,提供的参考电路有如下几个优点:①比较简单方便,比较两张电路图,可以明显看出参考电路比较简洁,所用的原件比较少,不容易出错,便于检查,而且比较便宜。
②网上方案所用的是ua747和ua741是通用的运放器,精度不高,性能不是很好。
而参考电路用的是TL084精度高,输入电阻很大,并且运行速度很快。
③网上方案用到了选择开关来选择接入的电路,使实验变得不方便。
而参考电路属于全自动,并不需要更多操作。
④网上方案在三角波——正弦波转换电路利用了场效应管3DJ13A而参考电路只用了TL084和电阻、电容,是一种技术上的进步。
二、电路图:参数设计:R1=10K R2=22K R3=1K R4=2K R5=1K R6=1K R7=10K R8=2K R9=10K R P1=10K R P2=10K C1=10nF C2=10nF 稳压管三、电路仿真结果方波:三角波及正弦波:四、硬件实物图五、调试结果:频率大约在500Hz~5KHz六、实验总结本次实验,参考了老师给的参考资料和网上资料,使用了Multisim仿真软件进行仿真,仿真出来的结果非常符合要求,非常理想。
但是在实物焊接后,因元器件和人工的原因,出现了误差,比较容易出现失真,误差比较大。
七、体会和建议1、要熟练掌握仿真软件的使用和对电路图的理解,这样才能比较容易的理解这个实验,不容易出现失误。
2、仿真结果没有出现理想的波形图,要检查电路,对电路的节点也要检测。
要有耐心。
3、电路排线要尽可能的少,这样对于后续的电路检测有很大的帮助。
信号发生器实验报告
本实验使用的是13种基本的信号发生器,各种信号的发生方式、它的特点、参数和其特定应用场合都进行了详细的介绍。
实验分为三部分:实验前准备、实验操作和实验总结与讨论。
实验前准备时,开展了仪器以及各种试验电路的检查,确保相关仪器以及试验电路的准确性,为接下来实验提供了必要的条件和确保。
接下来进行实验操作时,首先熟悉了相关操作步骤和各个参数的功能,然后尝试了各种基本的信号发生模式,熟悉了各种信号的构成及其特点,以及它们的具体应用,并根据实验条件,对其进行了变换和测量,以明确信号变换和测量时各参数变化的影响,探讨出最符合要求的参数组合。
最后,在实验总结中首先汇总了上述实验的总结,可以得出以下结论:将所需的参数调整至最优的组合会使得所发生的信号能够满足实际需求、尽可能减少相关误差,以获得有效的测量结果。
此外,应对各种不同应用场景的参数的组合也要适当变化,以达到最佳效果。
最后,本实验可以说收获颇丰,熟悉了13种基本信号发生器的参数选择及其特点,从而掌握了一般信号发生器的操作流程,进而将所学到的知识运用到实际工程中,从而取得更好的效果。
信号发生器实验报告摘要:本实验旨在通过使用信号发生器,对不同频率和幅度的信号进行产生和测量,探索信号发生器的基本原理和应用。
通过实验可以进一步理解信号发生器的工作原理以及频率和幅度的关系,并掌握信号发生器的操作方法。
1.引言2.原理3.实验步骤3.1准备工作:将信号发生器连接到电源,打开电源开关,并等待设备启动。
3.2选择频率:根据需要选择一个特定的频率,调整频率控制旋钮,并观察频率显示器上的数值变化。
3.3设置幅度:根据需要选择一个特定的幅度,调整幅度控制旋钮,并观察幅度显示器上的数值变化。
3.4选择波形:根据需要选择合适的波形,如正弦波、方波、三角波等,调整波形控制旋钮,并观察波形。
3.5连接测量仪器:将信号输出端口连接到示波器或其他测量仪器上。
根据需要选择不同的接口和线缆。
3.6测量信号参数:根据需要使用示波器或其他测量仪器,测量并记录信号的频率、幅度等参数。
4.实验结果通过实验,我们成功地产生了不同频率和幅度的信号,并使用示波器对其进行了测量。
根据测量数据,我们制作了频率-幅度图和波形图,对信号的特性进行了分析和比较。
5.讨论与分析在实验中,我们观察到信号发生器能够准确地产生所需的信号,并且改变频率和幅度时,输出信号的特性也相应改变。
通过对信号的测量,我们验证了信号发生器的性能和准确性。
6.实验总结通过本次实验,我们学习和掌握了信号发生器的基本原理和应用。
实验中我们成功地产生了不同频率和幅度的信号,并对其进行了测量和分析。
通过这些实验,我们进一步加深了对信号发生器的理解和应用能力。
信号发生器摘要函数发生器是一种在科研和生产中经常用到的基本波形产生器,集成函数波形发生器一般都采用ICL8038或5G8038。
本文介绍由单片机AT89S52和D/A转换器DAC0832及LM35组成的函数波形发生器,该电路能够产生正弦波、方波和三角波信号,频率能在100Hz~100kHz范围内可调。
关键词:函数波形发生器;单片机AT89S52; D/A转换器DAC0832;LM358;电位器;稳压管;二极管;第一部分:系统需求分析一、概论信号发生器又称信号源或振荡器,在生产实践和科技领域中有着广泛的应用。
各种波形曲线均可以用三角函数方程式来表示。
能够产生多种波形,如三角波、锯齿波、矩形波(含方波)、正弦波的电路被称为函数信号发生器。
函数信号发生器在电路实验和设备检测中具有十分广泛的用途。
例如在通信、广播、电视系统中,都需要射频(高频)发射,这里的射频波就是载波,把音频(低频)、视频信号或脉冲信号运载出去,就需要能够产生高频的振荡器。
在工业、农业、生物医学等领域内,如高频感应加热、熔炼、淬火、超声诊断、核磁共振成像等,都需要功率或大或小、频率或高或低的振荡器。
本设计要求实现一个信号发生器,能够产生正弦波,三角波和方波信号。
二、技术指标(1)输出信号频率在100Hz~100kHz范围内可调;(2)输出信号频率稳定度优于10-3;(3)在1k 负载条件下,输出正弦波信号的电压峰-峰值Vopp在0~5V范围内可调;三、要求(1)信号发生器能产生正弦波、方波和三角波三种周期性波形(2)输出信号波形无明显失真;(3)自制稳压电源。
第二部分:方案设计与论证一、方案论证与比较函数信号产生方案对于函数信号产生电路,一般有多种实现方案,如模拟电路实现方案、数字电路实现方案(如DDS 方式)、模数结合的实现方案等。
数字电路的实现方案:一般可事先在存储器里存储好函数信号波形,再用D/A 转换器进行逐点恢复。
这种方案的波形精度主要取决于函数信号波形的存储点数、D/A 转换器的转换速度、以及整个电路的时序处理等。
简单正弦信号发生器设计实验报告专业:电子信息工程班级课题名称:简单正弦信号发生器设计一:实验要求(1)设计一个正弦信号发生器,要求ROM是8位数据线,8位地址。
256个8位波形数据的mif文件通过两种方式建立,一种用Quartus II的专用编辑器建立,另一种是使用附录的mif文件生成器建立。
首先创建原理图工程,调用LPM_ROM等模块;在原理图编辑窗中绘制电路图,全程编译,对设计进行时序仿真,根据仿真波形说明此电路的功能,引脚锁定编译,编程下载于FPGA中,用实验系统上的DAC0832做波形输出,用示波器来观察波形。
完成实验报告。
(2)学习使用Quartus II的In-System Memory Content Editor来观察FPGA 中的LPM_ROM中的z形波数据,并在在线改变数据后,从示波器上观察对应的输出波形的改变情况。
(3)学习使用Quartus II的Signal Tap II观察FPGA的正弦波形。
二:实验原理正弦信号发生器的结构框图由四个部分组成:(1)计数器或地址发生器,用来作为正弦波数据ROM的地址信号发生器。
ROM中的数据将随地址数据的递增而输出波形数据,然后由DAC输出波形。
(2)正弦信号数据ROM,含64个8位数据。
(3)原理图顶层设计。
(4)8位D/A。
DAC的输出接示波器。
三:实验内容1、定制初始化波形数据文件:建立.mif格式文件。
File—new—other files,选择 Memory Initialization File选项,选择64点8位的正弦数据,弹出表格后输入教材图4-38中的数据。
然后以romd.mif的名字保存至新建的文件夹中。
2、定制LPM_ROM元件:利用MegaWizard Plug-In Manager定制正弦信号数据ROM宏功能块,并将以上的波形数据加载于此ROM中。
并以data_rom.vhd名字将生成的用于例化的波形数据ROM文件保存至上述文件夹中。
反馈移位型序列信号发生器的设计实验报告引言移位型序列信号发生器是一种能够产生特定序列的电路或设备,其在通信、计算机科学、数字信号处理等领域中有着广泛的应用。
在本实验中,我们设计了一种基于移位寄存器的移位型序列信号发生器,并对其进行了性能测试和分析。
本报告将对该实验的设计、实现和测试结果进行详细说明。
实验设计1.移位寄存器基本原理移位寄存器是一种常用的数字电路元件,其可以实现对二进制数据的移位、存储和输出。
它由若干个触发器组成,每个触发器接收相邻位的信号,并向右或向左移位。
例如,在一个4位移位寄存器中,初始存储的数据为1010,当向右移位时,数据变为0101。
2.移位型序列发生器的基本原理移位型序列发生器是一种利用移位寄存器和异或门构成的电路,用于产生特定的数字序列。
该电路的工作原理如下:将初始数据存储到移位寄存器中,然后依次对寄存器中的每个元素进行移位操作,并将移位后的数据与某个固定的数进行异或运算,得到输出序列的每一位。
例如,一个长度为4的序列发生器,初始数据为1010,异或运算的固定数为0011,则输出序列为1101、1110、0111、1011、0101、1010、1001、0100。
3.实验设计本实验中,我们设计了一个4位移位型序列发生器。
其基本原理如下图所示:图1. 移位型序列发生器电路图该电路由4个D触发器、2个与门和1个异或门组成。
其中,D触发器用于存储移位后的数据,两个与门用于控制移位寄存器的移位方向,异或门用于计算输出序列的每一位。
初始数据为1010,异或运算的固定数为0011。
具体实现过程如下:(1)首先将初始数据1010存储到4个D触发器中。
(2)然后依次进行4次移位操作,每次移位后将移位后的数据输入到异或门中进行计算,并将计算结果存储到一个新的移位寄存器中。
(3)当新的移位寄存器中存储的数据与初始数据相同时,停止计算,输出序列结束。
实验实现根据上述设计原理,我们完成了移位型序列发生器的实现。
函数信号发生器的设计实验报告院系:电子工程学院班级:2012211209**:***班内序号:学号:实验目的:设计一个设计制作一个可输出方波、三角波、正弦波信号的函数信号发生器。
1,输出频率能在1—10KHz范围内连续可调,无明显失真;2,方波输出电压Uopp = 12V,上升、下降沿小于10us(误差<20%);3,三角波Uopp = 8V(误差<20%);4,正弦波Uopp≥1V。
设计思路:1,原理框图:2,系统的组成框图:分块电路和总体电路的设计:函数发生器是指能自动产生方波、三角波和正弦波的电压波形的电路或者仪器。
电路形式可以采用由运放及分离元件构成;也可以采用单片集成函数发生器。
根据用途不同,有产生三种或多种波形的函数发生器,本课题采用由集成运算放大器与晶体差分管放大器共同组成的方波—三角波、三角波—正弦波函数发生器的方法。
本课题中函数信号发生器电路组成如下:第一个电路是由比较器和积分器组成方波—三角波产生电路。
单限比较器输出的方波经积分器得到三角波;第二个电路是由差分放大器组成的三角波—正弦波变换电路。
差分放大器的特点:工作点稳定,输入阻抗高,抗干扰能力较强等。
特别是作为直流放大器时,可以有效地抑制零点漂移,因此可将频率很低的三角波变换成正弦波波形变换的原理是利用差分放大器的传输特性曲线的非线性。
传输特性曲线越对称,线性区域越窄越好;三角波的幅度Uim应正好使晶体接近饱和区域或者截至区域。
Ⅰ、方波—三角波产生电路设计方波输出幅度由稳压管的稳压值决定,即限制在(Uz+UD)之间。
方波经积分得到三角波,幅度为Uo2m=±(Uz+UD)方波和三角波的震荡频率相同,为f=1/T=āRf/4R1R2C,式中ā为电位器RW 的滑动比(即滑动头对地电阻与电位器总电阻之比)。
即调节RW可改变振荡频率。
根据两个运放的转换速率的比较,在产生方波的时候选用转换速率快的LM318,这样保证生成的方波上下长短一致,用LM741则会不均匀。
南昌大学实验报告
学生姓名:王晟尧学号:6102215054 专业班级:通信152班
实验类型:□验证□综合□设计□创新实验日期:实验成绩:
信号发生器设计
一、设计任务
设计一信号发生器,能产生方波、三角波和正弦波并进行仿真。
二、设计要求
基本性能指标:(1)频率范围100Hz~1kHz;(2)输出电压:方波U p-p≤24V,三角波U p-p=6V,正弦波U p-p>1V。
扩展性能指标:频率范围分段设置10Hz~100Hz, 100Hz~1kHz,1kHz~10kHz;波形特性方波t r<30u s(1kHz,最大输出时),三角波r△<2%,正弦波r~<5%。
三、设计方案
信号发生器设计方案有多种,图1是先产生方波、三角波,再将三角波转换为正弦波的组成框图。
图1 信号发生器组成框图
主要原理是:由迟滞比较器和积分器构成方波——三角波产生电路,三角波在经过差分放大器变换为正弦波。
方波——三角波产生基本电路和差分放大器电路分别如图2和图4所示。
图2所示,是由滞回比较器和积分器首尾相接形成的正反馈闭环系统,则比较器A1输出的方波经积分器A2积分可得到三角波,三角波又触发比较器自动翻转形成方波,这样即可构成三角波、方波发生器。
其工作原理如图3所示。
图2 方波和三角波产生电路
图3 比较器传输特性和波形
利用差分放大器的特点和传输特性,可以将频率较低的三角波变换为正弦波。
其基本工作原理如图5所示。
为了使输出波形更接近正弦波,设计时需注意:差分放大器的传输特性曲线越对称、线性区越窄越好;三角波的幅值V
应接近晶
m
体管的截止电压值。
图4 三角波→正弦波变换电路
图5 三角波→正弦波变换关系
在图4中,RP
1调节三角波的幅度,RP
2
调整电路的对称性,并联电阻R
E2
用
来减小差分放大器的线性区。
C
1、C
2
、C
3
为隔直电容,C
4
为滤波电容,以滤除谐
波分量,改善输出波形。
波形发生器的性能指标:
①输出波形种类:基本波形为正弦波、方波和三角波。
②频率范围:输出信号的频率范围一般分为若干波段,根据需要,可设置n 个波段范围。
③输出电压:一般指输出波形的峰-峰值U p-p。
④波形特性:表征正弦波和三角波特性的参数是非线性失真系数r~和r△;表征方波特性的参数是上升时间t r。
四、电路仿真与分析
1.电路图
参数计算
比较器A1与积分器A2的元件参数如下; 由
CC
T pp o V RP R R V V 1
32
22+=
∆=得:
CC
M
O V V R R R 21632
=+=
4
1,取
Ω=Ω=Ω=K R K R K R 50,5,21632。
平衡电阻Ω≈+=K R R R R 8.1)//(13321。
而根据输出频率的表达式2
13224)(41
f R RP R C RP R ++=
可以推算出C2、C6、C7,R4
以及R15。
而当实现频率波段的转换,R4及R15的取值不变。
取平衡电阻R5=10K Ω。
三角波—正弦波电路的参数选择原则是:隔直电容C1、C3、C4要取的比较大,因为输出频率很低,则取C1=C3=C4=470F μ;滤波电容C5的取值一般视输出波形而定,若含高次谐波成分较多,则C6一般为几十皮法至0.1F μ。
R18=100Ω与R7=100Ω相并联,以减少差分放大器的线性区。
2.三角波方波单元电路图
设计思路:依据输出三角波的峰—峰值就是比较器的门限宽度,即:
CC T pp o V RP R R V V 1
32
22+=
∆=,积分电路的输出地电压2O U 从-T V 上升到+T V 所需的时
间是震荡周期的一半,即在2/T 时间内的2O U 变化量等于PP O V 2。
同时可以得知,方波—三角波的频率为2
13224)(41
f R RP R C RP R ++=
,并根据所需频率范围所需的各
项设置要求,由此我们就可以算出元件大致参数。
3.差分单元电路图
差分放大器采用BJT 单端输入—单端输出差分放大器。
由于方波的幅度接近电源电压,所以取电源电压V V V EE 12,12V CC -=-+=+。
差分放大器的静态工作点可通过观察传输特性曲线、调整RP7及电阻R13来确定。
4.具体要求波形及参数
要求输出电压:方波U p-p≤24V,三角波U p-p=6V,正弦波U p-p>1V。
各频率调节范围表格:
以下为具体波形:(1)、1kHz~10kHz:
(2)、100Hz~1kHz:
(3)、10Hz~100Hz:
五、心得总结
通过这次课程设计,使我更加扎实掌握了有关电子技术方面的知识,他不仅给了我很多专业知识和专业技能上的提升,同时设计让我感触很深。
通过这次课程设计,我掌握了常用元件的知识和测试,熟悉了常用仪器、仪表,了解电路的连线方式以及如何提高电路的性能等等,掌握了电路参数的设计与思考。