第一讲 机电系统建模与仿真
- 格式:ppt
- 大小:10.95 MB
- 文档页数:40
《机电系统建模与仿真》实验指导书王红茹编写适用专业:机械工程________________________江苏科技大学机械工程学院2015年11月实验一:多闭环直流伺服系统仿真分析实验学时:2 实验类型:综合实验要求:必修 一、实验目的1. 掌握运用MATLAB/Simulink 进行多闭环伺服控制系统仿真分析的方法。
二、实验内容及原理主要针对工程领域常用的自动控制系统--双闭环控制系统进行建模与仿真实验,并对其原理进行详细介绍。
采用PI 控制器的转速负反馈单闭环调速系统能在系统稳定的前提下实现转速无静差,但不能满足调速系统对动态性能要求较高时的场合,且对扰动的抑制能力也较差。
双闭环调速系统是在单闭环调速的基础上,将转速和电流分开控制,分别设计转速、电流两个控制器,且转速控制器的输出作为电流控制器(内环)的给定输入,从而形成转速、电流双闭环控制。
这种双闭环调速系统是直流调速的一种典型形式。
以双闭环V-M 调速系统为例,介绍运用MATLAB/Simulink 进行双闭环控制系统动态分析的方法。
双闭环V-M 调速系统的结构如图1.1所示。
图中,直流电机参数:kW P nom 10=,V U nom 220=,A I nom 5.53=,min /1500r n nom =,电枢电阻Ω=31.0a R ,系统主电路总电阻Ω=4.0R ,电枢回路电磁时间常数s T a 0128.0=,机电时间常数s T m 042.0=;三相桥平均失控时间s T s 00167.0=,触发器放大系数30=s K ; 电流反馈系数A V K i /072.0=,电流环滤波时间常数s T oi 002.0=;转速反馈系数r V K t min/0067.0⋅=,转速环滤波时间常数s T on 01.0=。
①电流环、转速环选型原则。
电流环的重要作用是保持电枢电流在动态过程中不超过允许值,且突加控制作用时超调量越小越好。
电流环的控制对象是双惯性型的,两个惯性时间常数之比为1049.3002.000167.00128.0<=+=+oi s a T T T 。
复杂机电系统的建模与仿真技术研究现代机电技术越来越注重复杂系统的研究和开发,但是复杂系统往往由多个子系统的耦合构成,使得系统的设计、测试和优化等方面变得极为复杂和困难。
在这方面,建模和仿真技术的快速发展为复杂机电系统的研究提供了一种新的途径。
一、复杂机电系统的建模建模是复杂机电系统研究的重要基础,合理的建模可以快速的形成有效的仿真模型。
当然,建模的方法和技术是多种多样的,常见的有基于数学模型的建模方法,基于物理模型的建模方法和神经网络建模方法等等。
但是不管采用何种建模方法,建模效果好坏的关键在于模型的准确性和可靠性。
下面以数学模型为例,对复杂机电系统建模的几个关键点进行探讨。
1. 选择合适的建模工具选择合适的建模工具是建立复杂机电系统的数学模型的首要任务。
例如在机电一体化系统中因为涉及到多学科交叉,如电、机、液体等领域,因此在进行建模时需要采用比较通用的模型语言如Modelica或者MATLAB/Simulink等。
此外在涉及到特定领域,如风电系统、电力工程等,需要采用相应的软件,如ANSYS等。
当然,选择合适的建模工具不仅与领域有关,也需要考虑建模的复杂程度、重复利用性等因素。
2. 建立合理的变量模型建立复杂机电系统的数学模型,还需要考虑变量的建模。
系统中的变量包括输入、输出和控制变量等,它们具有不同的物理意义和参考系。
在模型建立过程中,需要建立一套合理的变量模型来表示系统的物理特征。
通常来说,在进行机电系统的变量建模时,需要将其分为机械、电气、液压和控制四个方面。
对于机械系统,常见的变量有位移、速度和加速度等。
对于电气系统,常见的变量有电流、电势和电磁力等。
液压系统中需要表达变量如液压油压力、流速等。
控制方面常用的变量如误差、控制量等。
理性建立合理的变量模型对模型的准确性和可靠性具有至关重要的意义。
3. 导出正确的物理方程机电的数学模型通常是由一系列的微分方程和代数方程组成的,因此构建数学模型的关键在于正确的表示物理方程。
SimElectronics ——电子和机电系统的建模与仿真机械工程SimElectronics——电子和机电系统的建模与仿真SimElectronicsTM为电子和机电系统的建模与仿真提供工具扩展了Simsca pe的功能。
SimElectronics使得电子和机电系统部件如物理网络一样进行多领域系统建成为可能。
它提供了半导体、电机、驱动、传感器和作动器部件,以及搭建可运行的定制的子系统模块。
通过SimElectronics可以在用于开发和分析控制系统与信号处理算法的环境中设计磨损和设备模型。
SimElectronics能够用于各种汽车、航空航天、工业自动化、通信和信号处理领域。
特点∙象物理网络一样对电子和机电系统建模的环境。
∙包括传感器、半导体和作动器在内超过55个电子和机电组件。
∙参数化的方法,使得可以直接输入从工业上采集的关键参数值。
∙能够将模型转换成C代码(使用RTW,可以独立使用)。
∙使用Simscape中的线性和固态计算能力。
强大功能电子和机电系统建模通过SimElectronics可以象装配物理系统一样对系统进行建模。
在模型中的符号是兼容的和方便使用的,可以使用物理连接将他们连到一起。
SimElectron ics使用了物理网络的方法,以及非因果关系搭建模型:对应的光电二极管、晶体管和电机等物理设备的部件(块)由传送电力的物理连接(线缆)连在一起。
这种方法描述系统的物理结构比构建和使用方程式来描述系统更好。
在更类似实际情况的模型中,SimElectronics自动地构建不同的微分算法方程(DAE)描述系统的行为。
这些方程可以集成到其他的Simulink模型中,直接对DAE进行求解。
SimElectronics库提供了超过55个电子和机电组件的模型,包括电机和运算放大器,可以通过组合它们来描述组件。
在SimElectronics中的模块支持两种不同的工作流——直接从数据仓中拖出来设置参数值,或者直接导入SPICE 电路和设备模型到SimElectronics中(目前仅限双极晶体管、JFET、基本二极管、电源和被动式SPICE组件)。
《机电系统建模与仿真》课程教学大纲课程编号:081169111课程名称:机电系统建模与仿真英文名称:Modeling and Simulation of Mechatronic System课程类型:专业方向课课程要求:选修学时学分:24/1.5 (讲课学时:20实验学时:0上机学时:4)适用专业:机械设计制造及其自动化一、课程性质与任务本课程是机械设计制造及其自动化专业的一门专业方向课,也可作为其它专业的选修课。
其任务是阐明机电•体化系统建模的基本原理和方法。
通过对本课程的学习,初步掌握机电系统的各种仿真方法,使学生能够熟练应用仿真技术分析机电系统,为今后从事机电系统的分析、设计打下基础。
二、课程与其他课程的联系本课程以先修课程高等数学、大学物理、工程力学、机械原理、机械设计、电工技术基础、理论力学、液压与气压传动为基础。
学习本课程前,学生应对机械传动、机电传动及控制工程等有所了解。
三、课程教学目标1.了解机电一体化系统设计的技术路线的发展历程与未来趋势,理解仿真在机电系统设计中的作用。
掌握机电系统常用的计算机仿真软件,并能将该方法应用于系统的分析之中。
(支撑毕业要求2.1,2.3);2.学习机械传动系统动力学模型的有关知识,掌握传动机构的仿真分析方法。
针对传动机构的机械参数对系统性能的影响,具有建立机械运动系统数学模型的能力,并对系统数学模型进行正确的分析和解答(支撑毕业要求2.2,7.1);3.掌握机构运动学模型的建立方法,能够根据系统数学模型的仿真,学习系统机构动力学动态性能关系等方面的知识,将本专业基础理论和基本原理综合运用于机械工程问题的分析之中。
(支撑毕业要求2.1、2.2、6.1 );4.学习基于传递函数的伺服控制系统设计方法,掌握PID控制系统设计系统的仿真分析方法,并能够在设计过程中,考虑社会、健康、安全以及环境等多种制约因素,并阐明非线性环节对伺服系统性能的影响。
(支撑毕业要求2.1、6.2);5.学习实时仿真的概念,掌握物理仿真、采样系统仿真的概念和方法。