高中数学竞赛专题讲座---复数
- 格式:doc
- 大小:753.50 KB
- 文档页数:7
复 数专题一 复数与数列复数数列的题目主要体现对复数运算的规律性的把握.例1 设数列 ,,,,21n z z z 是首项为48,公比为)26(41i +的等比复数列. (1)求4z .(2)将这个数列中的实数项,不改变原来的次序,从首项开始,排成 ,,,,21n a a a ,试求3a . (3)求无穷级数 ++++n a a a 21的和. 解:(1))6sin 6(cos 21)26(41ππi i r +=+=.i r z 2124834==. (2)使r 为实数的最小自然数是6,数列 ,,,,21n a a a 是首项为48,公比为6r 的等比数列.所以433=a . (3)这个级数是公比816-==r 的无穷等比级数,从而和3128)81(148=--=. 例2 今定义复数列 ,,,,21n a a a 如下,n n ka a a i a i a +=+=+=+1121,31,1()2≥n ,k 为正的常数.问复数n a 的辐角的正切与哪一个值最接近?(当∞→n 时)分析:寻求n a 的一般式,再注意取极限的方法以及相关讨论.解:1+n a 的辐角记作θ,212111)1(a k k k a ka a a n n n n --+++++=+= .(1)当1=k 时,i n n a a n a n )31()1(211+-+=+-=+,所以)(131tan ∞→→+-=n nn θ. (2)当1≠k 时,211111)1(a k kk a a n n n --++--=k k k k k n n n ---++--=-13)13(1111 ∴)()10(1)1(13313)13(1tan 1∞→⎪⎩⎪⎨⎧<<>+-→---+=-n k k k k k k k nn n θ. 例3 (1)设在复数列 ,,,,10n z z z 之间有如下关系:),3,2,1)((11 =-=--+n z z z z n n n n α,其中)1(≠αα是常复数.当1,010==z z 时,试将n z 的值用α表示.(2)若(1)中的i 31+=α,求在圆10||=z (z 是复数)的内部总共含有n z 的个数.解:(1)αα=-=-)(0112z z z z ,21223)(αα=-=-z z z z (1)211)(----=-=-n n n n n z z z z αα于是,从1≠α得,αα--=11nn z .(2))3sin 3(cos231ππαi i +=+=,所以)3sin 3(cos 2ππαn i n n n +=,要使n z 在圆10||=z 的内部,它的充分必要条件是10,z <,∴100||2<n z .即100<⋅n n z z ,而)23cos 21(3121n n n n n z z +-=⋅+π,∴100)23cos21(3121<+-+n n n π.又n n n 2123cos 21+-+π221)21(221n n n -=+->+, 能适合300)21(2<-n 的n 只是4,3,2,1,0.在逐个验证这五个点确信都在圆10||=z 的内部,故符合条件的点共有5个.例4 设平面上有点 ,,10P P ,如图所示,其中,线段 ,,,21100P P P P OP ,的长成首项为1,公比为r 的等比数列.(1)若10<<r ,则当∞→n 时,n P 与哪一点无限接近?(2)将(1)中的极限点用Q 表示.若固定21=r 而θ变动时,点Q 所描述的是怎样的曲线?解:(1))sin (cos θθωi r +=,此时,若将表示点n P 的复数记作n z ,则有nn n z z ω=--1,其中1-z 就是原点O .于是)1(11112≠--=++++=+ωωωωωωn nn z .|1||1||||11|11ωωωω-=-=--++n n n r z , 因此,若10<<r ,令∞→n ,则0|11|→--ωn z ,n z 所表示的点与ω-11所表示的点最靠近. (2)ω-=11z ,则有z z 1-=ω,21=r 固定,θ做变动,点ω总在以原点为圆心的圆周上.但因21||=ω,故有2|1|||=-z z .于是当点ω在以原点为中心,21为半径的圆上,点ω-11相应的在以点34为圆心,32为半径的圆上. 例5 设在复平面上:(1)原点为O ,表示复数Z 的点为A ,点B 由||||OA k AB =,OA AB , 的交角为θ所确定。
专题四 三角 平面向量 复数一 能力培养1,数形结合思想 2,换元法 3,配方法 4,运算能力 5,反思能力 二 问题探讨问题1设向量(cos ,sin )a αα= ,(cos ,sin )b ββ=,求证:sin()sin cos cos sin αβαβαβ+=+.问题2设()f x a b =⋅,其中向量(2cos ,1)a x =,(cos 2)b x x =,x R ∈(I)若()1f x =且[,]33x ππ∈-,求x ; (II)若函数2sin 2y x =的图象 按向量(,)()2c m n m π=<平移后得到函数()y f x =的图象,求实数,m n 的值.问题3(1)当4x π≤,函数2()cos sin f x x x =+的最大值是 ,最小值是 .(2)函数32cos sin cos y x x x =+-的最大值是 .(3)当函数22sin 2sin cos 3cos y x x x x =++取得最小值时,x 的集合是 . (4)函数sin (0)cos 1xy x x π=<<+的值域是 .问题4已知ABC ∆中,,,a b c 分别是角,,A B C 的对边,且4,5a b c =+=,tan tan A B +=tan tan )A B -,求角A.三 习题探讨 选择题1在复平面内,复数12ω=-对应的向量为OA ,复数2ω对应的向量为OB ,那么向量AB对应的复数是A,1 B,1- D,2已知α是第二象限角,其终边上一点P(x ),且cos 4x α=,则sin α=D, 3函数2sin(3)4y x π=-图象的两条相邻对称轴之间的距离是A,3πB,23π C,π D,43π4已知向量(2,0)OB = ,向量(2,2)OC = ,向量)CA αα=,则向量 OA 与向量OB的夹角的取值范围是A,[0,]4πB,5[,]412ππ C,5[,]122ππ D,5[,]1212ππ5已知(,2)a λ=,(3,5)b =-,且a 与b 的夹角为钝角,则λ的取值范围是 A,103λ>B,103λ≥ C,103λ< D,103λ≤ 6若x 是三角形的最小内角,则函数sin cos sin cos y x x x x =++的值域是A,[1,)-+∞ B,[- C, D,1]2填空题7已知sin sin 1αβ⋅=,则cos()αβ+= .8复数13z i =+,21z i =-,则12z z z =⋅在复平面内的对应点位于第 象限. 9若tan 2α=,则224sin 3sin cos 5cos αααα--= .10与向量1)a =-和b =的夹角相等,的向量c = . 11在复数集C 内,方程22(5)60x i x --+=的解为 .12若[,]1212ππθ∈-,求函数cos()sin 24y πθθ=++的最小值,并求相应的θ的值.13设函数11()22x x f x ---=-,x R ∈,若当02πθ≤≤时,2(cos 2sin )f m θθ++(22)0f m --<恒成立,求实数m 的取值范围.14设5arg 4z π=,且22z R z -∈,复数ω满足1ω=,求z ω-的最大值与最小值勤.15已知向量33(cos ,sin )22a x x = ,(cos ,sin )22x x b =- ,且[0,]2x π∈(I)求a b ⋅ 及a b + ; (II)求函数()4f x a b a b =⋅-+的最小值.16设平面向量1)a =- ,1(,22b = .若存在实数(0)m m ≠和角((,))22ππθθ∈-, 使向量2(tan 3)c a b =+- ,tan d ma b θ=-+ ,且c d ⊥ .(I)求函数()m f θ=的关系式; (II)令tan t θ=,求函数()m g t =的极值.问题1证明:由cos cos sin sin a b αβαβ⋅=+,且cos()cos()a b a b αβαβ⋅=⋅-=-得cos()αβ-=cos cos sin sin αβαβ+ ① 在①中以2πα-代换α得cos[()]2παβ-+=cos()cos sin()sin 22ππαβαβ-+-.即sin()αβ+=sin cos cos sin αβαβ+.温馨提示:向量是一种很好用的工具.运用好它,可简捷地解决一些三角,平几,立几,解几等问题.问题2解:(I)可得2()2cos 212sin(2)6f x x x x π==++由12sin(2)6x π++=1得sin(2)62x π+=-又33x ππ-≤≤,得52266x πππ-≤+≤,有26x π+=3π-,解得4x π=-. (II)函数2sin 2y x =的图象按向量(,)c m n =平移后得到函数2sin 2()y n x m -=-, 即()y f x =的图象.也就是1y -=2sin 2()12x π+的图象.而2m π<,有12m π=-,1n =.问题3解:(1)22151sin sin (sin )24y x x x =-+=--+而4x π≤,有sin 22x -≤≤,当1sin 2x =,即6x π=时,max 54y =;当sin 2x =-,即4x π=-时,min 322y =-.(2)32cos (1cos )cos y x x x =+--,令cos t x =,则11t -≤≤,有321y t t t =--+,得'2321y t t =--令'0y =,有11t =,213t =-①当113t -≤<-时,'0y >,y 为增函数;②当113t -<<时,'0y <,y 为减函数. 32111()()()1333y =-----+极大=3227,而y =x=111110--+=,于是y 的最大值是3227.(3) 22cos 1sin 2sin 2cos 22)24y x x x x x π=++=++=++当2242x k πππ+=-,即38x k ππ=-时,min 2y =(4)可得cos 2sin y x y x +=,有sin cos 2x y x y -=)2x y ψ+=,有sin()1x ψ+=≤,得y ≤≤,又0y >,于是有y的值域是.问题4解:由已知得tan tan 1tan tan A BA B+=-⋅即tan()A B +=又000180A B <+<得0120A B +=,060C =.又4,5,a b c =+=得5,b c =-由余弦定理2216(5)8(5)60c c c cos =+---. 得72c =,32b =. 由正弦定理得0742sin sin 60A =,有sin 7A =. 又a c b >>,得A 为最大角.又01sin sin 302B =<=,有030B <,于是090B C +<.所以得A π=-. 习题:1得2122ω=--,11()()2222AB OB OA i =-=----+= ,选D.2 OP =又cos x α==,得x =舍去),有cos 4α=-,sin 4α==,选A.3它的对称轴为:342x k πππ-=+,即34k x ππ=+,有(1)[]()34343k k πππππ++-+=,选A.4(数形结合)由)CA αα=,知点A 在以C (2,2)为圆心(如图),过原点O 作圆C 的切线'OA ,'A 为切点,由OC ='A C =知'6AOC π∠=,有'4612AOB πππ∠=-=,过点O 作另一切线''OA ,''A 为切点,则''54612A OB πππ∠=+=,选D.5由310a b λ⋅=-+ ,a b ⋅= 设a 与b 的夹角为θ,则0090180θ<<, 有1cos 0θ-<<,即10-<<,得225603203100λλλ⎧+->⎨-+<⎩,有103λ>,选A.6由03x π<≤,令sin cos ),4t x x x π=+=+而74412x πππ<+≤,得1t <≤.又212sin cos t x x =+,得21sin cos 2t x x -=,得2211(1)122t y t t -=+=+-,有2111022y -+<≤=,选D. 7显然sin 0α≠且sin 0β≠,有1sin sin αβ=, 当0sin 1β<≤时,11sin β≥,有sin 1α≥,于是sin 1α=,得sin 1β=,则cos cos 0αβ== 得到cos()cos cos sin sin 1αβαβαβ+=-=-, 当1sin 0β-≤<时,同理可得cos()1αβ+=-.8 12(3)(1)24z z z i i i =⋅=++=+,它对应的点位于第一象限.9由tan 2α=,得sin 2cos αα=,有22sin 4cos αα=,即221cos 4cos αα-=. 则21cos 5α=,原式=222216cos 6cos 5cos 5cos 1αααα--==.10设(,)c x y =,则1)(,)a c x y y ⋅=-⋅=-,(,)b c x y x ⋅=⋅=.设c 与a ,b 的夹角分别为,αβ,则cos a c a c α⋅==⋅,cos b c b c β⋅==⋅由αβ=,y -=x +①;由c ,得222x y +=.②由①,②得, 111212x y ⎧=⎪⎪⎨⎪=⎪⎩,221212x y ⎧=-⎪⎪⎨⎪=-⎪⎩,于是11()22c =或11(,)22-- 11设x a bi =+,,a b R ∈,代入原方程整理得22(2256)(45)0a b a b ab a b i --+-++-=有2222560450a b a b ab a b ⎧--+-=⎨+-=⎩,解得11a b =⎧⎨=⎩或3232a b ⎧=⎪⎪⎨⎪=-⎪⎩,所以1x i =+或3322x i =-.12解:cos()sin 2cos()cos(2)442y πππθθθθ=++=+-+22c o s ()c o s ()144ππθθ=-++++ 令cos()4t πθ=+,得2219212()48y t t t =-++=--+ 由1212ππθ-≤≤,得643πππθ≤+≤,有1cos()242πθ≤+≤,122t ≤≤于是当2t =,即cos()42πθ+=,得12πθ=-时,min 122y =-. 13解:由1()1()22()x x f x f x ------=-=-,知()f x 是奇函数,而'11'11()2ln 22ln 2(1)2ln 22ln 20x x x x f x x ------=---=+>得()f x 在R 上为增函数,则有2cos 2sin 22m m θθ+<+,令sin t θ=有 22(21)0t mt m -++>,[0,1]t ∈恒成立.①将①转化为:22(1)(1)m t t ->-+,[0,1]t ∈ (1)当1t =时,m R ∈;(2)当01t ≤<时,22()2[(1)]1m h t t t >=--+-,由函数2()g x x x=+在(0,1]上递减,知 当0t =时,min ()1h t =-,于是得12m >-. 综(1),(2)所述,知12m >-.14解:设(,)z a bi a b R =+∈,由5arg 4z π=得0b a =<,得222222(1)2(1)(1)(1)z a i a a iz a i a----++-==+ 由22z R z-∈,得210a -=,从而1z i =--, 设,z ω在复平面上的对应点分别为,W Z ,由条件知W 为复平面单位圆上的点,z ω-的几何意义为单位圆上的点W 到点Z 的距离,所以z ω-的最小值为1OZ OA -=;最大值为1OZ OA +=.15解(I)33cos cos sin (sin )cos 22222x xa b x x x ⋅=+-= ,33(cos cos ,sin sin )2222x xa b x x +=+- ,得2cos a b x +== 2cos2x =([0,]2x π∈).(II)22()cos 28cos 2cos 8cos 12(cos 2)9f x x x x x x =-=--=-- 当且仅当cos 1x =时,min ()7f x =-.16解:(I)由c d ⊥ ,1102a b ⋅== ,得2[(tan 3)][tan ]c d a b ma b θθ⋅=+-⋅-+ =223(tan 3tan )0ma b θθ-+-= ,即223(tan 3tan )m a b θθ=- ,得31(tan 3tan )()422m ππθθθ=--<<.(II)由tan t θ=,得31()(3),4m g t t t t R ==-∈求导得''23()(1)4m g t t ==-,令'()0g t =,得11t =-,21t =当(,1)t ∈-∞-,'()0g t >,()g t 为增函数;当(1,1)t ∈-时,'()0g t <,()g t 为减函数; 当(1,)t ∈+∞时,'()0g t >,()g t 为增函数. 所以当1t =-,即4πθ=-时,()m g t =有极大值12;当1t =,即4πθ=时,()m g t =有极小 值12-.。
第八讲 复数知识、方法、技能I .复数的四种表示形式代数形式:∈+=b a bi a z ,(R )几何形式:复平面上的点Z (b a ,)或由原点出发的向量OZ .三角形式:∈≥+=0,0),sin (cos r i r z θθR .指数形式:θi re z =.复数的以上几种形式,沟通了代数、三角、几何等学科间的联系,使人们应用复数解决相关问题成为现实.II .复数的运算法则加、减法:;)()()()(i d b c a di c bi a ±+±=+±+乘法:;)()())((i ad bc bd ac di c bi a ++-=++)];sin()[cos()sin (cos )sin (cos 212121222111θθθθθθθθ+++=+⋅+i r r i r i r 除法:).0(2222≠++-+++=++di c i d c ad bc d c bd ac bi c bi a )].sin()[cos()sin (cos )sin (cos 212121222111θθθθθθθθ-+-=++i r r i r i r乘方:∈+=+n n i n r i r n n )(sin (cos )]sin (cos [θθθθN );开方:复数n i r 的)sin (cos θθ+次方根是).1,,1,0)(2sin 2(cos -=+++n k n k i n k r n πθπθIII .复数的模与共轭复数复数的模的性质 ①|;)Im(|||,)Re(|||z z z z ≥≥②|;|||||||2121n n z z z z z z ⋅=⋅ ③);0(||||||22121≠=z z z z z ④12121|,|||||||z z z z z 与复数+≤-、2z 对应的向量1OZ 、2OZ 反向时取等号; ⑤||||||||2121n n z z z z z z +++≤+++ ,与复数n z z z ,,,21 对应的向量 n OZ OZ OZ ,,21 同时取等号.共轭复数的性质①22||||z z ==⋅; ②)Im(2),Re(2z z z z z z =-=+; ③z z = ④2121z z z z ±=±; ⑤1121z z z z ⋅=⋅; ⑥);0()(22121≠=z z z z z⑦z 是实数的充要条件是z z z ,=是纯虚的充要条件是).0(≠-=z z zⅣ.复数解题的常用方法与思想(1)两个复数相等的充要条件是它们的实部、虚部对应相等,或者它们的模与辐角主 值相等(辐角相差2π的整数倍). 利用复数相等的充要条件,可以把复数问题转化为实数问题,从而获得解决问题的一种途径.(2)复数的模也是将复数问题实数化的有效方法之一.善于利用模的性质,是模运算中的一个突出方面.赛 题 精 讲例1:设m 、n 为非零实数,i 为虚单位,∈z C ,则方程n mi z ni z =-++||||①与m mi z ni z -=--+||||②如图I —1—8—1,在同一复平面内的图形(F 1、F 2是焦点)是( )【思路分析】可根据复平面内点的轨迹的定义;也可根据m 、n 的取值讨论进行求解.【略解】由复平面内点的轨迹的定义,得方程①在复平面上表示以点mi ni ,-为焦点的椭圆,0,0<->n n 故.这表明,至少有一焦点在下半虚轴上,可见(A )不真.又由方程①,椭圆的长轴之长为n ,∴|F 1F 2|<n ,而图(C )中有|OF 1|=n ,可见(C )不真.又因椭圆与双曲线共焦点,必有椭圆的长轴长大于双曲线的实轴长,即.||||m n >图I —1—8—1故在图(B )与(D )中,均有F 1 : -ni ,F 2 : mi ,且0<m . 由方程②,双曲线上的点应满足,到F 2点的距离小于该点到F 1点的距离.答案:(B )【别解】仿上得n >0.(1)若.0,0>>m n 这时,在坐标平面上,F 1(0,-n ),F 2(0,m ),只可能为图象(C ),但与|F 1F 2|<长轴n ,而|OF 1|=n 矛盾.(2)若),0(),,0(,.0,021m F n F m n -<>这时均在y 轴的下半轴下,故只能为图象(B )与(D ).又因椭圆与双曲线共焦点,必有椭圆的长轴长大于双曲线的实轴长,即|n |>|m |. 故在(B )与(D )中,均有F 1 : -ni ;F 2 : mi ,且m <0. 由方程②,双曲线上的点应满足到F 2点的距离小于该点到F 1点的距离.答案:(B )【评述】(1)本题涉及的知识点:复数的几何意义,复平面上的曲线与方程,椭圆,双曲线,共焦点的椭圆与双曲线,讨论法.(2)本题属于读图题型. 两种解法均为基本方法:解法中前者为定义法;后者为分类讨论法.例2:若z z z C z 则,3)4arg(,65)4arg(,22ππ=+=-∈的值是 . 【思路分析】本题可由已知条件入手求出复数z 的模,继而求出复数;也可由几何意义入手来求复数z. 【略解】令),65sin 65(cos 412ππρi z +=- ① ),3sin 3(cos 422ππρi z +=+ ② )0,0(21>>ρρ①—②得 ),2123()2321(81212ρρρρ-++=i ⎪⎪⎩⎪⎪⎨⎧=+=-∴,82321,021231212ρρρρ 解得,34,412==ρρ代入后, ①+②得 ),31(422i z +-=).31()3sin 3(cos 2i i z +±=+±=∴ππ 【别解】如图I —1—8—2,2z OD =.过D 作与实轴平行的直线AB ,取AD=BD=4,)31()3sin 3(cos 2),32sin 32(cos 4,322,4||||||,.2.3,65.4,4222i i z i z xOB BOD xOB xOD OD DB AD AOB Rt BOA xOB xOA z OB z OA +±=+±=∴+=∴=∠=∠+∠=∠===∆=∠=∠=∠+=-=ππππππππ中在从而则 【评述】本题的两种解法中,前者应用了复数的三角形式;后者应用了复数的几何意义,数形结合,形象直观.例3:x 的二次方程1212,0z m z x z x 中=+++、2z 、m 均是复数,且i z z 20164221+=-.设这个方程的两个根为α、β,且满足72||=-βα.求|m |的最大值和最小值.【解法1】根据韦达定理有⎩⎨⎧+=-=+.,21m z z αββα ,444)()(22122m z z --=-+=-αββαβα .7|)54(|,7|)4(41|.28|)4(4|||2212212=+-=--∴=--=-∴i m z z m z z m 即βα这表明复数m 在以A (4,5)为圆心,以7为半径的圆周上如图I —1—8—3所示. ,74154||22<=+=OA 故原点O 在⊙A 之内. 连接OA ,延长交⊙A 于两点B 与C ,则|OB|=|OA|+|AB|=||741m 为+最大值.|OC|=|CA|-|AO|=7-||41m 为最小值.∴|m |的最大值是||,741m +的最小值是7-41.【解法2】同解法1,得 ,7|)54(|=+-i m ∈+=y x yi x m ,(令R ).图I —1—8—3⎩⎨⎧+=+=.5sin 7,4cos 7ααy x 则 ααsin 70cos 5690||222++=+=∴y x m ),sin(411490)sin 415cos 414(411490ϕααα++=++= 其中.414sin =ϕ ∴ |m |的最大值=,417411490+=+ |m |的最小值=.417411490-=+【解法3】根据韦达定理,有⎩⎨⎧+=-=+.21m z z αββαm z z 444)()(22122--=-+=-αββαβα, ∴ .28|)2016(4||)4(4|||2212=+-=--=-i m z z m βα|54||)54(||)54()54(|||.7|)54(|i i m i i m m i m +++-≤+++-=∴=+-即 .417+= 等号成立的充要条件是)54()54(i i m ++-与的辐角主值相差π,即||,)415414)(417(),415414(7)54(m i m i i m 时所以当++-=+-=+-取最小值.417- 【评述】三种解法,各有千秋. 解法1运用数形结合法,揭示复数m 的几何意义,直观清晰;解法2则活用三角知识,把ααsin 70cos 56+化为角“ϕα+”的正弦;解法3运用不等式中等号成立的条件获得答案;三种解法从不同侧面刻面了本题的内在结构特征. 例4:若∈+++==t t t i t t z z M ,11|{R ,2|{},0,1==≠-≠z z N t t∈+t t i t )],cos(arccos )n [cos(arcsi R ,N M t 则},1||≤中元素的个数为 ( )A .0B .1C .2D .4 解法同本章一的练习第4题.例5:设复数则满足,33||,3||||,2121121=-=+=z z z z z z z =+|)()(|log 2000212000212z z z z .【思路分析】应先设法求出20002120001)()(z z z z +的值.【评述】由题设知).(||||||29,||||||92121222122121212221221z z z z z z z z z z z z z z z z +-+=-=+++=+=因为.9||||,9,3||,3||2121212121=+-=+==z z z z z z z z z z 并且故 ).sin (cos 9),sin (cos 92121θθθθi z z i z z -=+=则设 .232199.21cos ,cos 189221212121i z z z z z z z z +-===-==+=-ωωωθθ这里或者于是得由 .4000|)()(|log ,9)()(,92000212000212200020002120002121=+-=+=z z z z z z z z z z 故可得时当ω当时2219ω=z z ,可得同样结果,故答案4000.【评述】此题属填空题中的难题,故解题时应仔细.例6:设复平面上单位圆内接正20边形的20个顶点所对应的复数依次为,,,,2021z z z 则复数1995201995219951,,,z z z 所对应的不同的点的个数是( )A .4B .5C .10D .20【思路分析】如题设可知,应设120=k z .故解题中应注意分解因式.【解法1】因为我们只关心不同的点的个数,所以不失一般性可设120=k z .由160=k z ,有.,,1,1),)()(1)(1(10151515151515151560i z i z z z i z i z z z z k k k k k k k k k -==-==∴+-+-=-= 【答案】A. 【解法2】由),)()(1)(1(10,155552020i z i z z z z z k k k k k k +-+-=-==则可知5k z 只有4个取值,而15k z =(5k z )3的取值不会增加,则B 、C 、D 均应排除,故应选A.【评述】上述两个解法均为基本方法.思维的起点是不失一般性设120=k z ,于是可用直接法(解法1)和排除法(解法2).。
第十五章 复数 一、基础知识1.复数的定义:设i 为方程x 2=-1的根,i 称为虚数单位,由i 与实数进行加、减、乘、除等运算。
便产生形如a+bi (a,b ∈R )的数,称为复数。
所有复数构成的集合称复数集。
通常用C 来表示。
2.复数的几种形式。
对任意复数z=a+bi (a,b ∈R ),a 称实部记作Re(z),b 称虚部记作Im(z). z=ai 称为代数形式,它由实部、虚部两部分构成;若将(a,b)作为坐标平面内点的坐标,那么z 与坐标平面唯一一个点相对应,从而可以建立复数集与坐标平面内所有的点构成的集合之间的一一映射。
因此复数可以用点来表示,表示复数的平面称为复平面,x 轴称为实轴,y 轴去掉原点称为虚轴,点称为复数的几何形式;如果将(a,b)作为向量的坐标,复数z 又对应唯一一个向量。
因此坐标平面内的向量也是复数的一种表示形式,称为向量形式;另外设z 对应复平面内的点Z ,见图15-1,连接OZ ,设∠xOZ=θ,|OZ|=r ,则a=rcos θ,b=rsin θ,所以z=r(cos θ+isin θ),这种形式叫做三角形式。
若z=r(cos θ+isin θ),则θ称为z 的辐角。
若0≤θ<2π,则θ称为z 的辐角主值,记作θ=Arg(z). r 称为z 的模,也记作|z|,由勾股定理知|z|=22b a +.如果用e i θ表示cos θ+isin θ,则z=re i θ,称为复数的指数形式。
3.共轭与模,若z=a+bi ,(a,b ∈R ),则=z a-bi 称为z 的共轭复数。
模与共轭的性质有:(1)2121z z z z ±=±;(2)2121z z z z ⋅=⋅;(3)2||z z z =⋅;(4)2121z z z z =⎪⎪⎭⎫⎝⎛;(5)||||||2121z z z z ⋅=⋅;(6)||||||2121z z z z =;(7)||z 1|-|z 2||≤|z 1±z 2|≤|z 1|+|z 2|;(8)|z 1+z 2|2+|z 1-z 2|2=2|z 1|2+2|z 2|2;(9)若|z|=1,则zz 1=。
1. 命题“所有实数的平方都是正数”的否定 (A )所有实数的平方都不是正数 (B )有的实数的平方是正数(C )至少有一个实数的平方不是正数 (D )至少有一个实数的平方是正数2. 集合{11}P x x =-<{1},Q x x a =-≤且P Q ⋂=∅,则实数a 取值范围为A. 3a ≥B. 1a ≤-.C. 1a ≤-或 3a ≥D. 13a -≤≤ 3. 若,,R αβ∈ 则90αβ+=是sin sin 1αβ+>的A. 充分而不必要条件B. 必要而不充分条件C. 充要条件D. 既不充分也不必要条件4. 已知全集U R =,集合112xN x ⎧⎫⎪⎪⎛⎫=≤⎨⎬ ⎪⎝⎭⎪⎪⎩⎭,{}2680M x x x =-+≤,图中阴影部分所表示的集合为 (A ){}0x x ≤(B ){}24x x ≤≤ (C ){}024x x x <≤≥或 (D ){}024x x x ≤<>或 5. 已知集合{}23100A x x x =--≤,{}121B x m x m =+≤≤-,当A B =∅ 时,实数m 的取值范围是(A) 24m << (B) 24m m <>或(C) 142m -<< (D) 142m m <->或6. 已知函数[](),0,1f x ax b x =+∈,“20a b +>”是“()0f x >恒成立”的(A) 充分不必要条件 (B) 必要不充分条件(C) 充要条件 (D) 既不充分也不必要条件7. 已知{}11,10,,lg ,10A B y y x x A ⎧⎫===∈⎨⎬⎩⎭, 则A B = .8. 设集合{}1,3,5,7,9A =,{}2,4,6,18B =,{},C a b a A b B =+∈∈,则集合C 中所有的元素之和为 . 9. 设AB 是两个非空的有限集,全集U A B = 且U 中含有m 个元素,若()()U U C A C B 中含有n 个元素,则A B 中含有元素的个数为 . 10. 设{}2A x x a =-<,{}2230B x x x =--<,若B A ⊆,则实数a 的取值范围是 . 11.设{}20122013log log A x x x =<,{}2B x x ax a x =-+< 且A B ⊆,则a 的取值范围是 . 12设{}0,1,2,3A =,{}2,2B x x A x A =-∈-∉,则集合B 的所有元素之和为 .13. 已知复数z 满足2z z i +=+,那么z = .14. 已知复数z 满足1z =,则21z z -+的最大值为 .15. 已知i 是虚数单位,2342013i i i i i+++++= .16. i 是虚数单位,23420131z i i i i i=++++++ ,复数z 的共轭复数记为z ,则z z = . 17. 已知复数(,,z x yi x y R i =+∈为虚数单位),且28z i =,则z =( ) (A) 22z i =+ (B) 22z i =--(C) 22,z i =-+或22z i =- (D) 22,z i =+或22z i =--UNM高中数学竞赛试题汇编一《集合与简易逻辑》《复数》讲义。
高中数学竞赛复数解法
一、基本概念
1. 复数的定义:复数是一类有虚数单位i(i^2=-1)的数,由实数部分和虚数部分组成,可以写成a+bi(a、b为实数);
2. 共轭复数:如果z=a+bi(a、b为实数),则z的共轭复数为z*=a-bi;
3. 复数的模:复数z=a+bi的模为|z|=√(a^2+b^2);
4. 复数的幅角:复数z=a+bi的幅角为tanθ=b/a(a≠0);
二、运算技巧
1. 加减法:(a±bi)+(c±di)=(a+c)±(b+d)i;
2. 乘法:(a±bi)(c±di)=(ac-bd)±(ad+bc)i;
3. 除法:若z1=a+bi,z2=c+di(c≠0),则z1/z2=(ac+bd)/(c^2+d^2)±(bc-ad)/(c^2+d^2)i;
4. 幂次:幂次可以按照分解平方和公式(a+bi)^2=a^2-b^2+2abi 求解;
三、解题技巧
1. 计算复数的模和幅角:在求复数的模和幅角时,采用简单的数学计算手段可以节省大量的时间;
2. 按照运算法则:解决复数的问题,要按照复数的运算法则(加减乘除法),熟练掌握,灵活运用;
3. 变量代换:在复数问题中,往往可以将解变量代入原方程,做判断,简化计算量;
4. 提取公因数:在复数的运算过程中,可以通过提取公因数,简化计算量。
【高中数学竞赛专题大全】竞赛专题12 复数 (50题竞赛真题强化训练)一、填空题1.(2021·全国·高三竞赛)已知z 为复数,且关于x 的方程2484i 30x zx -++=有实数根,则z 的最小值为__________. 【答案】1 【解析】 【详解】解析: x 为实数根,若0x =,则4i 30+=,矛盾;故0x ≠,故2431i 82x z x x +=+,于是我们可以得1z ==≥,当且仅当x =1. 故答案为:1.2.(2018·辽宁·高三竞赛)设a 、b均为实数,复数11)i z b =-+与2z 2bi =+的模长相等,且12z z 为纯虚数,则a +b=_____.1 【解析】 【详解】由题设知121z z =,且1122z z z z =为纯虚数,故12z i z =±.因此1,2.b b ⎧-=-⎪=或1,2.b b ⎧-=-⎪=-解得a b ==或a b ==1a b +=.13.(2020·江苏·高三竞赛)已知复数z 满足1z =,则22413iz z z -+--的最大值为__________.【答案】3 【解析】 【详解】 解析:由题意可得222224(1)3(1)3i 13i 13i 13i 13iz z z z z z z z -+-+--===-+------,则()13i 13i z z -+=--表示复平面上点Z 到()1,3-的距离.如图所示,()1,3C -,由此可得13ZC ≤≤.故22413iz z z -+--的最大值为3.故答案为:3.4.(2018·山东·高三竞赛)若复数z 满足132i 22z z -+--=z 的最小值为______. 【答案】1 【解析】 【详解】设()1,0A ,()3,2B ,22AB =z 的轨迹为线段AB . 因此min z 为原点O 到A 的距离,即min 1z OA ==.5.(2019·甘肃·高三竞赛)在复平面内,复数123,,z z z 对应的点分别为123,,Z Z Z .若12122,0z z OZ OZ ==⋅=,1232z z z +-=,则3z 的取值范围是______.【答案】[]0,4【解析】 【详解】因为12120z z OZ OZ ==⋅=,所以12+2z z =,因为123+2z z z -=,所以12312332|+|+||||=|||2|z z z z z z z =-≥--, 从而332||22,0|| 4.z z -≤-≤≤≤6.(2018·福建·高三竞赛)设复数z 满足i 2z -=,则z z -的最大值为______.(i 为虚数单位,z 为复数z 的共轭复数) 【答案】6 【解析】 【详解】设()i ,z x y x y R =+∈,则i z x y =-,()()i i 2i z z x y x y y -=+--=,2z z y -=, 由i 2z -=,知()i i 2x y +-=,()2214x y +-=.所以()214y -≤,13y -≤≤.所以26z z y -=≤.当且仅当3y =,即3i z =时,等号成立.故z z -的最大值为6.7.(2018·全国·高三竞赛)已知定义在复数集上的函数()()24f z i z pz q =+++(p 、q 为复数).若()1f 与()f i 均为实数,则p q +的最小值为__________.【解析】 【详解】设p a bi =+,()q c di a b c d R =+∈、、、.由()()()141f a c b d i =+++++,()()()41f i b c a d i =--++-++为实数 知1a d =-,1b d =--.则p q +==故当0c d ==(即1a =,1b =-)时,p q +8.(2021·全国·高三竞赛)设复平面上单位圆内接正20边形的20个顶点所对应的复数依次为1220,,,z z z ,则复数1995199519951220,,,z z z 所对应的不同的点的个数是_______________.【答案】4 【解析】 【详解】 因为()39919955z z =,故考虑1250525,,,z z z 的不同个数.由201k z =,则()()()()2055550111k k k k k z z z z i z i =-=-+-+,可知5k z 只有4个取值,而()3155k k z z =的取值不会增加,故应为4个不同的点的个数. 故答案为:4.9.(2021·全国·高三竞赛)设1()1iz F z iz +=-,其中i 为虚数单位,z C ∈.设011,(),3n n z i z F z n N +=+=∈,则2020z 的实部为___________.【答案】137【解析】 【详解】i 1i ()i 1i z z F z z z +-==-+,故()()()ii 1i 1i1i ()i i 1i 1i 1i iz z z z F F z z z z z ---+-++===-+---++,故()()1ii 1()1i i 1z z F F F z z z z +--==++-, 故()()2020002191i i316i 1i i 31z F z F z +-====+++,从而实部为137.故答案为:137. 10.(2021·全国·高三竞赛)设复数1z 、2z 、3z 满足1232z z z ===,则122331123z z z z z z z z z ++=++___________.【答案】2 【解析】 【详解】解析:1231231213112312312313123111124t z z z z z z z z z z z z z z z z z z z z z z z z z z z z ⎛⎫++ ⎪++++⎝⎭==⋅⋅=++++++.故答案为:2.11.(2021·浙江·高三竞赛)复数1z ,2z 满足123z z ==,12z z -=()()10101221z z z z +=______.【答案】203 【解析】 【分析】 【详解】如图所示,设12,z z 在复平面内对应的点分别为12,Z Z ,由已知得12123,OZ OZ Z Z ==-=由余弦定理得向量12,OZ OZ 所成的角为2π3, 不妨设()12223cos sin ,3cos sin 33z i z i ππθθθθ⎛⎫⎛⎫⎛⎫=+=+++ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,()()()12223cos sin ,3cos sin 33z i z i ππθθθθ⎛⎫⎛⎫⎛⎫=-+-=--+-- ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭, 12229cos sin 33z z i ππ⎛⎫⎛⎫⎛⎫=-+- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,1222 9cos sin 33z z i ππ⎛⎫=+ ⎪⎝⎭, ()10201220203cos sin 33z z i ππ⎛⎫⎛⎫⎛⎫=-+- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,()1020122020 3cos sin33z z i ππ⎛⎫=+ ⎪⎝⎭, ()()1010202020121220232cos32cos 333z z z z ππ+=⨯⨯=⨯⨯=, ()()10102012123z z z z +=.故答案为:203.12.(2021·浙江·高二竞赛)设复数i z x y =+的实虚部x ,y 所形成的点(),x y 在椭圆221916x y +=上.若1i i z z ---为实数,则复数z =______. 315i +或315i . 【解析】 【分析】 【详解】 由1i 11i (1)i z z x y --=--+-,所以1y =,则315x =所以315i z =或315i z =. 故答案为:315i z =+或315i z =+. 13.(2021·全国·高三竞赛)已知1,1z z z∈+=C ,则z 的取值范围为___________. 5151z -+≤≤【解析】 【分析】 【详解】 设()i z rer θ+=∈R ,则:221sin cos 1cos sin i z r ir z r r θθθθ=+=+-+222211cos sin r r r r θθ⎛⎫⎛⎫=++- ⎪ ⎪⎝⎭⎝⎭2212cos2r r θ=++. 故22112cos23r r θ+=-≤2r ≤≤r ≤≤.故答案为:⎣⎦. 14.(2021·全国·高三竞赛)已知复数z =(i 虚数单位),则()22222212121212111z z z zz z ⎛⎫+++⋅+++= ⎪⎝⎭______________. 【答案】36 【解析】 【分析】 【详解】由已知||1,||1,k kz z z k +===∈N ,故1k k z z=,再结合1212z z z z +=+,及2||zz z =,知所求式子为22221212z z z+++.又4i z e π==,是8次单位根.当1,3,5,7(mod8)k ≡时,21(mod8)k ≡. 当2,6(mod8)k ≡时,24(mod8)k ≡. 当4,8(mod8)k ≡时,28(mod8)k ≡, 所以222221212482633|6|36z z z z z z z +++=++==.故答案为:36.15.(2021·全国·高三竞赛)已知复数a 、b 、c 满足2222221,1,i,a ab b b bc c c ca a ⎧++=⎪++=-⎨⎪++=⎩则ab bc ca ++=_________. 【答案】i 【解析】 【分析】 【详解】由题意有333333,,i()a b a b b c c b c a c a -=--=--=-,三式相加有1i 1i 22b c a ++=+,代入第一个式中有2233ii i 1222a ac c +⎛⎫-++= ⎪⎝⎭, 与22i a ac c ++=联立,即有a 、c 均不为0且1(1i)c a a=--, 故有42i(1i)i 0a a --+=,所以21a =或i . 当1a =时,有i,0c b ==,此时原式为i . 当1a =-时,有i,0c b =-=,此时原式为i .当2i a =时,有2i 0c c +=,又0c ≠,所以21(1i)ii a c a a---=-==,得1a =,矛盾.综上所述,原式仅有i 一个值. 故答案为:i.16.(2021·全国·高三竞赛)若复数1234z z z z 、、、满足条件12233441241,1,z z z z z z z z z z +=+=-+∈R ,则()()1324z z z z -+=______.【答案】0 【解析】 【分析】 【详解】对34411z z z z +=-取共轭,34411z z z z +=-. 再与12231z z z z +=相加,并结合24z z +∈R 得: ()()()()32412413240z z z z z z z z zz =+++=++.若240z z +=,则所求式为0.否则,130z z +=.则13z z =-,从而13z z =-.代入条件二,得()3441z z z -=-. 即3444112i Im z z z z ==⋅-. 故3z 是纯虚数,有13130z z z z -=+=. 从而,所求式也为0. 故答案为:0.17.(2021·全国·高三竞赛)若复数z 满足20202019143340z iz iz ------=,则34(34)i i zz -⎛⎫++ ⎪⎝⎭的取值范围为________. 【答案】[]10,10- 【解析】 【分析】 【详解】2020201912020143i 3i 40(43i )43i z z z z z z --------=⇔-=+()2020143i 43i z z z -⇔-=+2019(43i)z z =+. 设(,)z a bi a b R =+∈,则:2222|43||43||(43)3||4(43)|iz z i b ai a b i --+=+--++2222(43)916(43)b a a b =++--+()()2227171||a b z =--=-.若||1z >,则22|43i ||43i ||43i ||43i |0z z z z ->+⇒--+>,而()271||0z -<矛盾.同理||1z <,亦不可能,所以1z =.设cos isin ,34i 5(cos isin )z ααββ=++=+,则:34i 34i (34i)(34i)z z z z -+⎛⎫++=++ ⎪⎝⎭5[cos()isin()]5cos()isin()βαβαβαβα=+++++++10cos()βα=+,所求取值范围是[]10,10-. 故答案为:[]10,10-.18.(2021·全国·高三竞赛)若非零复数x 、y 满足220x xy y ++=,则20052005()()x y x y x y+++的值是________. 【答案】1 【解析】 【分析】 【详解】2()10x xy y ++=得12x y ω==-或12x y ω==-. (1)当12x y ω==-时, 原式20052005200520051111()()()()11111y x x y ωω=+=+++++20052005200520051111()()()ωωωω=-+=-+-11()()1ωωωω=-+=-+=.(2)当12x y ω==-时,同理可得原式1=. 故答案为:1.19.(2020·全国·高三竞赛)设z 为复数.若2z z i--为实数(i 为虚数单位),则|3|z +的最小值为______.【解析】 【分析】设(,)z a bi a b =+∈R ,由已知条件计算出a b 、的数量关系,然后运用不等式求解出结果; 【详解】设(,)z a bi a b =+∈R ,由条件知22222(2)i (2)(1)22Im Im 0i (1)i (1)(1)z a b a b ab a b z a b a b a b ⎛⎫--+---++-⎛⎫==== ⎪ ⎪-+-+-+-⎝⎭⎝⎭, 故22a b +=.从而3||(3)2|5z a b +=≥++=,即|3|z +≥.当2,2a b =-=时,|3|z +【点睛】关键点点睛:解答本题的关键是紧扣已知条件,计算出满足条件的数量关系,继而可以求出结果.20.(2019·浙江·高三竞赛)设12,z z 为复数,且满足1125,2z z i z ==+(其中i 为虚数单位),则12z z -取值为____________.【解析】 【详解】由15z =,设15(cos isin )z αα=+,由122i z z =+得2(2i)(cos isin )z αα=-+,于是,12|(3)(cos isin )|z z i αα-=++21.(2019·贵州·高三竞赛)已知方程5250x x -+=的五个根分别为12345,,,,x x x x x ,f (x )=x 2+1,则()51k k f x ==∏____________ .【答案】37 【解析】 【详解】设52()5g x x x =-+,则()51()k k g x x x ==-∏.又f (x )=x 2+1=(x -i )(x +i ),所以()()()555111i i kkk k k k f x xx ====-⋅+∏∏∏()()g i g i =⋅-()5252i i 5(i)(i)5⎡⎤=-+⋅---+⎣⎦(6)(6)37i i =+-=.故答案为:37.22.(2019·四川·高三竞赛)满足(a +bi )6=a -bi (其中a ,b ∈R ,i 2=-1)的有序数组(a ,b )的组数是_____ . 【答案】8 【解析】 【详解】令z =a +bi ,则6z z =,从而6||||||z z z ==.于是||0z =或者||1z =.当||0z =时,z =0,即a =b =0,显然(0,0)符合条件; 当||1z =时,由6z z =知72||1z z z z =⋅==,注意到z 7=1有7个复数解.即有7个有序实数对(a ,b )符合条件. 综上可知,符合条件的有序实数对(a ,b )的对数是8. 故答案为:8.23.(2019·福建·高三竞赛)已知复数()1212,,z z z z z ≠满足22122z z ==--,且124z z z z -=-=,则||z =____________ .【答案】【解析】 【详解】先求复数2--的平方根.设2()2(,)x yi x y +=--∈,则()222i 2x y xy -+=--.故有2222x y xy ⎧-=-⎪⎨=-⎪⎩,解得111x y =⎧⎪⎨=⎪⎩221x y =-⎧⎪⎨=⎪⎩.由2212122z z z z ==--≠,知12,z z为复数2--的两个平方根.由对称性,不妨设1211z z ==-.于是,1212124,4z z z z z z z z -=-=-=-=,复数12,,z z z 对应的点12,,Z Z Z 构成边长为4的正三角形.又复数12,z z 对应的点12,Z Z 关于原点O 对称,所以OZ 为△ZZ 1Z 2的高,故||||z OZ ==故答案为:24.(2019·山东·高三竞赛)已知虚数z 满足1w z z =+为实数,且112,1z w u z--<<=+,那么2u ω-的最小值是______ .【答案】1【解析】 【详解】设z =x +yi (x ,y ∈R ),易知221x y +=, 则222222(1)31(1)1y w u x x x x -=+=++-++, 当x =0时等号成立. 故答案为:1.25.(2019·重庆·高三竞赛)已知复数123,,z z z 使得12z z 为纯虚数,121z z ==,1231z z z ++=,则3z 的最小值是_______ .1 【解析】 【详解】设123z z z z =++,则||1z =,由已知11220z z z z ⎛⎫+= ⎪⎝⎭, 所以12210z z z z +=.所以()2121212()z z z z z z +=++11221212z z z z z z z z =+++2=.所以12z z +=. 所以312z z z z =+-12||z z z+-1.当1231,i,i)z z z ===+时,最小值能取到. 1.26.(2019·上海·高三竞赛)若复数z满足||4z z +=,则||zi +的最大值为________. 【解析】 【详解】由复数的几何意义知,z 在复平面上对应的曲线是椭圆:2214x y +=.设2cos isin ,02z θθθπ=+<,则222211616|i |4cos (sin 1)3sin 333z θθθ⎛⎫+=++=--+ ⎪⎝⎭,所以43||3z i +,当1sin 3θ=,即421i 33z =+时等号成立,故最大值为433. 故答案为:433. 27.(2019·江苏·高三竞赛)在复平面中,复数3-i 、2-2i 、1+5i 分别对应点A 、B 、C ,则△ABC 的面积是________ .【答案】4 【解析】 【详解】如图所示,△ABC 的面积为:ABC CDEF ABE BFC ADC S S S S S =---△△△△,即△ABC 的面积是17276422⨯---=.故答案为:4.28.(2018·河南·高三竞赛)已知i 为虚数单位,则在)103i的展开式中,所有奇数项的和是______. 【答案】512 【解析】 【详解】 易知)103i的展开式中,所有奇数项的和是复数的实部.又)()()1010101013133i2i 2i 22⎡⎤⎛⎫⎛⎫=--=--⎢⎥ ⎪ ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦()1310245123i 2⎛⎫=-⨯-=- ⎪ ⎪⎝⎭.故填512.29.(2018·全国·高三竞赛)设复数1sin 2z i α=+,()21cos z i R αα=+⋅∈.则2121213z iz f z iz -+=-的最小值为__________. 【答案】2 【解析】 【详解】令12z iz t -==,则t ⎡∈⎣且此时有()222212sin cos 310sin212z iz t ααα+=-+=-=-. 故2212121312z iz t f z iz t-++==≥-当1t =,即()4k k Z παπ=-∈时,f 的最小值为2.30.(2019·全国·高三竞赛)设方程()10101310x x +-=的10个复根分别为1210,,,x x x ⋅⋅⋅.则112255111x x x x x x ++⋅⋅⋅+=______. 【答案】850 【解析】 【详解】 设cossin1010i ππε=+.则101ε=-.由于方程()10101310x x +-=的10个复根分别为1210,,,x x x ⋅⋅⋅,不妨设其为1x 、2x 、3x 、4x 、5x 、1x 、2x 、3x 、4x 、5x .由()1010131x x -=-,知()211311,2,,5k k k x x k ε--==⋅⋅⋅.于是,21113k kx ε-=-. 故()()5212111122551111313k k k x x x x x x εε---=++⋅⋅⋅+=--∑ ()52121117013k k k εε---=⎡⎤=-+⎣⎦∑ ()52121185013850k k k εε---==-+=∑. 31.(2019·全国·高三竞赛)若n 为大于1的正整数,则2462coscos cos cos n n n n nππππ+++⋅⋅⋅+=______. 【答案】0 【解析】 【详解】2112cos Re 0k i nn n k k k e n ππ====∑∑. 32.(2018·全国·高三竞赛)已知复数123,,z z z 满足121,1z z ≤≤,()312122z z z z z -+≤-.则3z 的最大值是______.【解析】 【详解】注意到3122z z z -+ ()312122z z z z z ≤-+≤-.则312122z z z z z ≤++- ≤=.当()2113121,z i z z z z z =±⋅==+时,3z .33.(2019·全国·高三竞赛)在复平面上,复数1z 对应的点在联结1和i 两点的线段上运动,复数2z 对应的点在以原点为圆心、1为半径的圆上运动.则复数12z z +对应的点所在区域的面积为______.【答案】π 【解析】 【详解】设()11z t i t =+-(01t ≤≤),2cos sin z i θθ=+. 则()12cos 1sin z z x yi t i t θθ+=+=++-+.故()()2211x t y t ⎡⎤-+--=⎣⎦为圆心在1y x =-上的一组圆,该区域面积为π. 34.(2018·广西·高三竞赛)设a 、b 为正整数,且()()22b ia i i i-++=-.则a b +=______. 【答案】8. 【解析】 【详解】由题意得()()()()2222212212552455b b a a b a b a +-⎛⎫⎛⎫-++=+⇒+-= ⎪ ⎪⎝⎭⎝⎭. 又因为5b a +与5b a -为奇偶性相同的整数,所以,512,52b a b a +=⎧⎨-=⎩或56,5 4.b a b a +=⎧⎨-=⎩ 解得1a =,7b =. 故8a b +=.35.(2019·全国·高三竞赛)化简12arcsin 23=______.【答案】π4【解析】 【详解】令11z =,22i z =,则有()2121211arg arg arg 22z z z z +=()()1arg 42i 2⎡⎤=-+⎣⎦ ()13πarg 18i 24=-=.从而,122πarcsin13π3arg arg 224z z -+==,故12πarcsin 234=. 36.(2019·全国·高三竞赛)复数列01,,z z ⋅⋅⋅满足01z =,1nn niz z z +=.若20111z =,则0z 可以有_________种取值. 【答案】20112 【解析】 【详解】显然,对任意的非负整数n 均有1n z =.设[)()0,2n i n o z e θθπ=∈.则12122n n ni i n n i ee e πθθθπθθ+⎛⎫+ ⎪⎝⎭+-=⇒=+1022222n n n πππθθθ+⎛⎫⎛⎫⇒+=+=⋅⋅⋅=+ ⎪ ⎪⎝⎭⎝⎭. 由20111z =,得()20112k k Z θπ=∈,即201102222k ππθπ⎛⎫+=+ ⎪⎝⎭. 由[)00,2θπ∈,得2010201022252k ππππ≤+<⨯20112011200920092152125244k k -⨯-⇒≤<⇒≤<⨯.因此,满足条件的n z 共有2009200920115222⨯-=(个). 故答案为2011237.(2019·全国·高三竞赛)设复数123,2)z i z i z i θθ=-=++.则12z z z z -+-的最小值是________.【答案】2+ 【解析】 【详解】()1212122z z z z z z z z z z -+-≥---=-=+ 其等号成立的条件是()()12arg z z arg z z -=-,=2sin θθ=,即()601,150sin θθ-︒==︒.因此12z z z z -+-的最小值是2+38.(2021·全国·高三竞赛)若e 为自然对数的底,则满足11z z e z -=+,且100z <的复数z 的个数为________. 【答案】32 【解析】 【分析】 【详解】记i 为虚数单位.设z 是一个满足题意的复数,且i(,)z x y x y =+∈R 首先,容易直接验证0,1,1z ≠-.由ii ·z x y x y x e ee e e +===,知1||||1z x z e e z -==+. 若0x <,则1||11x z e z -=<+. 但22|1||1|(1)(1)(1)(1)2()40z z z z z z z z x --+=---++=-+=->,则1||11z z ->+,矛盾. 若0x >,则1||11x z e z -=>+. 但22|1||1|(1)(1)(1)(1)2()40z z z z z z z z x --+=---++=-+=-<, 则1||11z z -<+,矛盾. 故只能有0x =,于是,()i 0z y y =≠.注意到z 满足题意当且仅当z -满足题意,故不妨设0y >,下求满足i1i1iy y e y -+=+的正实数y的个数.由以上讨论,知iy e 与1i1iy y -++在复平面中所对应的点都在单位圆上,故y 应使两者的辐角主值相等.当y 从0连续递增变动到+∞时,1i y -+的辐角主值从π连续递减变到(),1i 2y π++的辐角主值从0连续递增变到()2π-故1i1i y y -++的辐角主值从π连续递减变到0+另一方面,对于n N ∈,考察i y e 在())2,22y n n ππ∈+⎡⎣时的变化情况.当y 从2n π连续递增变动到()21n π+时,i y e 的辐角主值从0连续递增变到π;当y 从()()21n π++连续递增变动到()()22n π-+时,i y e 的辐角主值从π+连续递增变到()2π-.由以上分析,知对每个i1i,1iy y n N e y -+=+∈在()2,21n n ππ+⎡⎤⎣⎦上恰有一个解,在()()()21,22n n ππ++上无解.那么,注意到0100y <<,且3110032ππ<<.故i1i,1iy y n N e y -+=+∈在()0,100上有16个解,故答案为32. 故答案为:32.39.(2019·上海·高三竞赛)设a 是实数,关于z 的方程(z 2-2z +5)(z 2+2az +1)=0有4个互不相等的根,它们在复平面上对应的4个点共圆,则实数a 的取值范围是________. 【答案】{a |-1<a <1}∪{-3} 【解析】 【详解】由z 2-2z +5=0,得1212i,12i z z =+=-.因为z 2+2az +1=0有两个不同的根,所以△=4(a 2-1)≠0,故a ≠±1.若△=4(a 2-1)<0,即-1<a <1时,3,4z a =-因为1234,,,z z z z 在复平面上对应的点构成等腰梯形或者矩形,此时四点共圆,所以,11a -<<满足条件.若△=4(a 2-1)>0,即|a |>1时, 3.4z a =-当z 1、z 2对应的点在以34,z z 对应的点为直径的圆周上时,四点共圆,此圆方程为22343422z z z z x y +-⎛⎫⎛⎫-+= ⎪ ⎪⎝⎭⎝⎭, 整理得()2234340x z z x z z y -+++=,即x 2+2ax +1+y 2=0,将点(1,±2)代入得a =-3. 综上所述,满足条件的实数a 的取值范围是{a |-1<a <1}∪{-3}. 故答案为:{a |-1<a <1}∪{-3}. 二、解答题40.(2021·全国·高三竞赛)设,[0,2)a θπ∈∈R ,复数123cos isin ,sin i cos ,(1i)z z z a θθθθ=+=+=-.求所有的(,)a θ,使得1z 、2z 、3z 依次成等比数列.【答案】答案见解析 【解析】 【详解】因为2132z z z =,所以:()()2(1)cos isin sin icos a i θθθθ-+=+,整理得:()()22cos sin sin cos i sin cos 2isin cos a a θθθθθθθθ++-=-+,所以(cos sin )(cos sin )(sin cos ),(sin cos )2sin cos .a a θθθθθθθθθθ+=+-⎧⎨-=⎩(1)3cos sin 04πθθθ+=⇒=或74π,34πθ=时,代入得2a =-74πθ=时,代入得a = (2)若cos sin 0θθ+≠,则有:22(sin cos )2sin cos tan 4tan 10θθθθθθ-=⇒-+=,故tan 2θ=θ的值为12π或512π或1312π或1712π,对于的a 分别为、 故所有的(,)a θ为:53131771212412124ππππππ⎛⎫⎛⎫⎛⎫⎪⎪⎪ ⎪⎪⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭.41.(2021·全国·高三竞赛)设点Z 是单位圆221x y +=上的动点,复数W 是复数Z 的函数:21(1)W Z =+,试求点W 的轨迹.【答案】214y x =-+. 【解析】 【分析】 【详解】因为1Z =,所以设cos isin ,12cos cos isin 222Z Z θθθθθ⎛⎫=++=+ ⎪⎝⎭.令i W x y =+,则:22211i (1)4coscos isin 222x y Z θθθ+==+⎛⎫+ ⎪⎝⎭2211(cos isin )4cos(cos isin )4cos22θθθθθθ==-+.所以2cos 4cos2x θθ=①,2sin 4cos2y θθ=-②.②÷①得tan yxθ=-③. 由②得22sin cos122tan 224cos 2y θθθθ=-=-. 所以tan22y θ=-,代入③得222tan42141tan 2y y x y θθ--==--. 所以轨迹方程为:214y x =-+. 42.(2021·全国·高三竞赛)已知z C ∈,存在唯一的a ∈C ,使得322(2)(13)0z a z a z a a +-+-+-=,求2420201z z z ++++.【答案】0 【解析】 【分析】 【详解】由322(2)(13)0z a z a z a a +-+-+-=,得()22323120a a z z z z z -+++++=,得()()22231210a a z z z z z -+++++=.所以()2()210a z a z z ⎡⎤--++=⎣⎦.由a 的值唯一,故221z z z =++,即210z z ++=,所以()2(1)10z z z -++=,即31z =,所以 ()()2420202462016111z z z z z z z ++++=+++++()()26201611z z z z =+++++0=.43.(2021·全国·高三竞赛)求证:存在非零复数c 与实数d ,使得对于一切模长为1的复数12z z ⎛⎫≠- ⎪ ⎪⎝⎭均有221111c d z z z z --=++++ 【答案】证明见解析 【解析】 【分析】 【详解】对于满足1z =的复数z .设()cos sin 02z t i t t π=+≤<.则不难计算得21cos sin 12cos 1t i tz z t -=+++.设22cos 11Re Im 12s 1121in ,cos cos x y t tt t z z z z -====++++++,则,si cos n 1212x y t t x x-==--. 由22cos sin 1t t +=,得2211212x y x x -⎛⎫⎛⎫+= ⎪ ⎪--⎝⎭⎝⎭,即2229313x y ⎛⎫--= ⎪⎝⎭ ①①即211z z ++在复平面中对应的点的轨迹方程.可以看到,此轨迹是双曲线,其焦点为4(0,0),,03⎛⎫⎪⎝⎭.由双曲线的定义,知取42,33c d ==满足题意.44.(2021·全国·高三竞赛)若关于z 的整系数方程320z pz qz r +++=的三个复数根在复平面内恰好成为一个等腰直角三角形的三个顶点,求这个等腰直角三角形的面积的最小值.【答案】1 【解析】 【分析】 【详解】设该等腰直角三角形斜边中点对应的复数为1z ,直角顶点对应的复数为()1220z z z +≠, 则另外两个顶点对应的复数分别为12z z i +和12z z i -,依题意有: 32121212()()()z pz qz r z z z z z z i z z z i +++=-----+,化简得223223111221112223,32,z x z p z z z z q z z z z z z r +=-++=+++=-,所以3222221223,489z z q p Z z z pq r Z =-+=-∈∈.进而122z z Q +∈,与123z z p Z +=-∈联立就有2z Q ∈.再由22223x q p Z =-∈知2z Z ∈,于是21z ≥,所以等腰直角三角形的面积最小为1.另一方面,3210z x z +++=的三个复数根恰是面积为1的等腰直角三角形的顶点. 45.(2021·全国·高三竞赛)已知实数0,a b C >∈.若方程32310x ax bx +++=的三个复数根的正三角形,求a b 、的值.【答案】a =b =【解析】 【分析】 【详解】设方程三根为123z z z 、、,正三角形中心对应的复数为z ,则有1233z z z z a ++==-. 进一步可设2123,,z a z z a z z a z ωω''=-+=-+=-+.其中12ω=-是三次单位根.由Vieta 定理知:()()22223221223313113b z z z z z z a az z a ωωωωωωω''=++=-++++++++=. 因此方程是实系数三次方程,必有实根,不妨设1z ∈R . 由1z a a +=且0不是方程的根知12z a =-.进一步地,2,31i 2z a =-.由312321z z z a =-=-得a =进一步地,23b a ==46.(2019·全国·高三竞赛)123z z z 、、为多项式()3P z z az b =++的三个根,满足222123250z z z ++=,且复平面上的三点123z z z 、、恰构成一个直角三角形.求该直角三形的斜边的长度.【答案】【解析】 【详解】由韦达定理得123123003z z z z z z ++++=⇒= ⇒以123z z z 、、两为顶点的三角形的重心为原点.不妨设1213,z z x z z y -=-=为两条直角边.由于顶点与重心的距离等于该顶点所对应的中线长的23,2222214419499y z x x y ⎛⎫=+=+ ⎪⎝⎭故. 类似地,2222224149499x z y x y ⎛⎫=+=+ ⎪⎝⎭. 22222341194499x y z x y ⎛⎫=+=+ ⎪⎝⎭. 则222123z z z ++=222266222509933x y x y +=+==47.(2019·全国·高三竞赛)设a 、b 、c 是正实数,22λ-<<.证明:()()()2221a b c ab bc ca λ≥+++-++.【答案】见解析 【解析】 【详解】注意到,()()22222244a ab b a b a b λλλ-+-+=++-.于是,可构造复数))1z a b a b i =++-,))2z b c b c i =+-,))3z c a c a i =+-. 易得()()()2221223311z z z z z z a b c ab bc ca λ++=+++-++.故要证不等式的左边122331122331122331z z z z z z z z z z z z z z z z z z =++=++≥++ ()()()()()()22222211a b c ab bc ca a b c ab bc ca λλ=+++-++≥+++-++.48.(2021·全国·高三竞赛)设122020,,,z z z 和122020,,,w w w 为两组复数,满足:202020202211i i i i z w ==>∑∑.求证:存在数组()122020,,,εεε(其中{1,1}i ε∈-),使得2020202011i ii ii i zwεε==>∑∑.【答案】证明见解析 【解析】 【分析】 【详解】 用()()1212,,,,,,nn f εεεεεε∑表示对所有数组()12,,,n εεε的求和,下面用数学归纳证明如下的等式:()12221122,,,12n nnn n ii z z z zεεεεεε=+++=∑∑ ①(1)当1n =时,①式显然成立; 当2n =时,()()()()()()222212121212121211221222z z z z z z z z z z z z z z z z z z ++-=+++--=+=+,即①式成立.(2)假设n k =时,①式成立,则1n k =+时,我们有()1212112211,,,k k k z z z εεεεεε+++⋅⋅⋅+++∑()()12221122111221,,,k k k k k k k z z z z z z z z εεεεεεεεε++⋅⋅⋅=++++++++-∑()()122211221,,2kk k k z z z z εεεεεε+⋅⋅⋅⋅=++++∑1221111222k k k k i n i i i z z z +++==⎛⎫⎛⎫=+= ⎪ ⎪⎝⎭⎝⎭∑∑,即1n k =+时①式成立. 由(1)(2)可得:()12221122,,,12,n nnn n i i z z z z n εεεεεε+⋅⋅⋅=+++=∈∑∑N .回到原题,由202020202211i ii i z w==>∑∑,可得2020202022202020201122iii i zw==>∑∑,即()()12202012202022112220202020112220202020,,,,,,z z z w w w εεεεεεεεεεεε⋅⋅⋅⋅⋅⋅+++>+++∑∑,所以存在数组()122020,,εεε(其中{1,1}i ε∈-,使得222020202011i ii ii i zwεε==>∑∑,即2020202011i ii ii i zwεε==>∑∑.49.(2019·全国·高三竞赛)设复数数列{zn }满足:11z =,且对任意正整数n ,均有2211420n n n n z z z z ++++=.证明:对任意正整数m ,均有122m z z z +++<【答案】证明见解析 【解析】 【分析】很明显,复数列恒不为零,且)1N n n z n z ++∈.据此结合递推关系分类讨论m 为偶数和m 为奇数两种情况即可证得题中的结论. 【详解】由于11z =,且对任意正整数n ,均有2211420n n n n z z z z ++++=,故()0n z n +≠∈N .由条件得()2114210n n n n z z n z z +++⎛⎫⎛⎫++=∈ ⎪ ⎪⎝⎭⎝⎭N ,解得)1N n n z n z ++=∈. 因此1112n n nn z z z z ++===,故()1111122n n n z z n +--=⋅=∈N ①进而有)111112n n n n n n z z z z n z +++-+=⋅+=∈N ② 当m 为偶数时,设m =2s (s ∈N +).利用②可得 122121smk k k z z z zz -=++++∑2121kk k z z ∞-=<+∑1k ∞==当m 为奇数时,设m =2s +1(s ∈N ).由①、②可知2121221112s k k s k s k s z z z ∞∞+-=+=+===+∑∑, 故12212211smk k s k z zz z z z -+=⎛⎫+++++ ⎪⎝⎭∑2121k kk z z ∞-=<+=∑. 综上结论获证. 【点睛】本题主要考查复数列的递推关系,复数的运算法则,放缩法证明不等式等知识,意在考查学生的转化能力和计算求解能力.50.(2021·全国·高三竞赛)设{}n a 、{}n x 是无穷复数数列,满足对任意正整数n ,关于x 的方程210n n x a x a +-+=的两个复根恰为n x 、1n x +(当两根相等时1n n x x +=).若数列{}n x 恒为常数,证明: (1)2n x ≤;(2)数列{}n a 恒为常数.【答案】(1)证明见解析;(2)证明见解析. 【解析】 【分析】(1)根据题意和韦达定理可得()211n n n x x x ++=-,取模得211n n n x x x ++=-,若0n x =,结论2n x ≤显然成立,否则,由于数列{}n x 恒为常数,则11n x -=,即结论也成立;(2)由(1)和题意知,数列{}n x 恒为常数,则n x 只有互为共轭的两种取值,不妨设为ε和ε,依据题意即可证明. 【详解】由题意和韦达定理得,111,.n n n n n n x x a x x a ++++=⎧⎨=⎩ 则1112n n n n n x x a x x ++++==+,即()21111n n n n n n x x x x x x ++++=-=-. ① (1)由①取模得211n n n x x x ++=-,若0n x =,结论2n x ≤显然成立; 否则,由于数列{}n x 恒为常数,则11n x -=,即有112n n x x ≤-+=.(2)由(1)知,对任意的,11n n x +∈-=N ,又数列{}n x 恒为常数,因此n x 只有互为共轭的两种取值ε和ε.若存在n +∈N ,使得1n n x x +=,不妨设1n n x x ε+==,则22{,}n x εεεε+=-∈.若2n x ε+=,则220εε-=,即0ε=或2;若2n x ε+=,则2εεε=+∈R ,且|1|1ε-=.因此,要么ε∈R ,要么{}n x 呈ε、ε周期.故显然1n n n a x x +=+是常数,即证数列{}n a 恒为常数. 【点睛】 关键点点睛:本题主要考查数列不等式的证明,解题关键在于利用韦达定理得出()211n n n x x x ++=-,再取模,对0n x =这种特殊情形和一般情形11n x -=讨论即可证明结论成立;(2)本题主要考查常数列的证明,解题关键在于n x 的取值情况和1n n x x ε+==的假设,由(1)和题意知,数列{}n x 恒为常数,则n x 只有互为共轭的两种取值,不妨记为ε和ε,若存在n +∈N ,使得1n n x x +=,不妨设1n n x x ε+==,则22{,}n x εεεε+=-∈,对2n x +分类讨论即可证明.【高中数学竞赛专题大全】竞赛专题12 复数(50题竞赛真题强化训练)一、填空题 1.(2021·全国·高三竞赛)已知z 为复数,且关于x 的方程2484i 30x zx -++=有实数根,则z 的最小值为__________.2.(2018·辽宁·高三竞赛)设a 、b均为实数,复数11)i z b =-+与2z 2bi =+的模长相等,且12z z 为纯虚数,则a +b=_____.3.(2020·江苏·高三竞赛)已知复数z 满足1z =的最大值为__________.4.(2018·山东·高三竞赛)若复数z满足132i z z -+--=z 的最小值为______. 5.(2019·甘肃·高三竞赛)在复平面内,复数123,,z z z 对应的点分别为123,,Z Z Z.若12120z z OZ OZ ==⋅=,1232z z z +-=,则3z 的取值范围是______.6.(2018·福建·高三竞赛)设复数z 满足i 2z -=,则z z -的最大值为______.(i 为虚数单位,z 为复数z 的共轭复数)7.(2018·全国·高三竞赛)已知定义在复数集上的函数()()24f z i z pz q =+++(p 、q 为复数).若()1f 与()f i 均为实数,则p q +的最小值为__________.8.(2021·全国·高三竞赛)设复平面上单位圆内接正20边形的20个顶点所对应的复数依次为1220,,,z z z ,则复数1995199519951220,,,z z z 所对应的不同的点的个数是_______________.9.(2021·全国·高三竞赛)设1()1iz F z iz +=-,其中i 为虚数单位,z C ∈.设011,(),3n n z i z F z n N +=+=∈,则2020z 的实部为___________.10.(2021·全国·高三竞赛)设复数1z 、2z 、3z 满足1232z z z ===,则122331123z z z z z z z z z ++=++___________.11.(2021·浙江·高三竞赛)复数1z ,2z 满足123z z ==,12z z -=()()10101221z z z z +=______.12.(2021·浙江·高二竞赛)设复数i z x y =+的实虚部x ,y 所形成的点(),x y 在椭圆221916x y +=上.若1i i z z ---为实数,则复数z =______.13.(2021·全国·高三竞赛)已知1,1z z z∈+=C ,则z 的取值范围为___________. 14.(2021·全国·高三竞赛)已知复数z =(i 虚数单位),则()22222212121212111z z z zz z ⎛⎫+++⋅+++= ⎪⎝⎭______________. 15.(2021·全国·高三竞赛)已知复数a 、b 、c 满足2222221,1,i,a ab b b bc c c ca a ⎧++=⎪++=-⎨⎪++=⎩则ab bc ca ++=_________. 16.(2021·全国·高三竞赛)若复数1234z z z z 、、、满足条件12233441241,1,z z z z z z z z z z +=+=-+∈R ,则()()1324z z z z -+=______.17.(2021·全国·高三竞赛)若复数z 满足20202019143340z iz iz ------=,则34(34)i i zz -⎛⎫++ ⎪⎝⎭的取值范围为________.18.(2021·全国·高三竞赛)若非零复数x 、y 满足220x xy y ++=,则20052005()()x y x y x y+++的值是________.19.(2020·全国·高三竞赛)设z 为复数.若2z z i--为实数(i 为虚数单位),则|3|z +的最小值为______.20.(2019·浙江·高三竞赛)设12,z z 为复数,且满足1125,2z z i z ==+(其中i 为虚数单位),则12z z -取值为____________.21.(2019·贵州·高三竞赛)已知方程5250x x -+=的五个根分别为12345,,,,x x x x x ,f (x )=x 2+1,则()51k k f x ==∏____________ .22.(2019·四川·高三竞赛)满足(a +bi )6=a -bi (其中a ,b ∈R ,i 2=-1)的有序数组(a ,b )的组数是_____ .23.(2019·福建·高三竞赛)已知复数()1212,,z z z z z ≠满足22122z z ==--,且124z z z z -=-=,则||z =____________ .24.(2019·山东·高三竞赛)已知虚数z 满足1w z z =+为实数,且112,1z w u z--<<=+,那么2u ω-的最小值是______ .25.(2019·重庆·高三竞赛)已知复数123,,z z z 使得12z z 为纯虚数,121z z ==,1231z z z ++=,则3z 的最小值是_______ .26.(2019·上海·高三竞赛)若复数z 满足|3||3|4z z -++=,则||z i +的最大值为________. 27.(2019·江苏·高三竞赛)在复平面中,复数3-i 、2-2i 、1+5i 分别对应点A 、B 、C ,则△ABC 的面积是________ .28.(2018·河南·高三竞赛)已知i 为虚数单位,则在)103i的展开式中,所有奇数项的和是______.29.(2018·全国·高三竞赛)设复数1sin 2z i α=+,()21cos z i R αα=+⋅∈.则2121213z iz f z iz -+=-的最小值为__________.30.(2019·全国·高三竞赛)设方程()10101310x x +-=的10个复根分别为1210,,,x x x ⋅⋅⋅.则112255111x x x x x x ++⋅⋅⋅+=______. 31.(2019·全国·高三竞赛)若n 为大于1的正整数,则2462coscos cos cos n n n n nππππ+++⋅⋅⋅+=______. 32.(2018·全国·高三竞赛)已知复数123,,z z z 满足121,1z z ≤≤,()312122z z z z z -+≤-.则3z 的最大值是______.33.(2019·全国·高三竞赛)在复平面上,复数1z 对应的点在联结1和i 两点的线段上运动,复数2z 对应的点在以原点为圆心、1为半径的圆上运动.则复数12z z +对应的点所在区域的面积为______.34.(2018·广西·高三竞赛)设a 、b 为正整数,且()()22b ia i i i-++=-.则a b +=______. 35.(2019·全国·高三竞赛)化简12arcsin 23=______.36.(2019·全国·高三竞赛)复数列01,,z z ⋅⋅⋅满足01z =,1nn niz z z +=.若20111z =,则0z 可以有_________种取值.37.(2019·全国·高三竞赛)设复数123,2)z i z i z i θθ=-=++.则12z z z z -+-的最小值是________.38.(2021·全国·高三竞赛)若e 为自然对数的底,则满足11z z e z -=+,且100z <的复数z 的个数为________.39.(2019·上海·高三竞赛)设a 是实数,关于z 的方程(z 2-2z +5)(z 2+2az +1)=0有4个互不相等的根,它们在复平面上对应的4个点共圆,则实数a 的取值范围是________. 二、解答题40.(2021·全国·高三竞赛)设,[0,2)a θπ∈∈R ,复数123cos isin ,sin i cos ,(1i)z z z a θθθθ=+=+=-.求所有的(,)a θ,使得1z 、2z 、3z 依次成等比数列.41.(2021·全国·高三竞赛)设点Z 是单位圆221x y +=上的动点,复数W 是复数Z 的函数:21(1)W Z =+,试求点W 的轨迹.42.(2021·全国·高三竞赛)已知z C ∈,存在唯一的a ∈C ,使得322(2)(13)0z a z a z a a +-+-+-=,求2420201z z z ++++.43.(2021·全国·高三竞赛)求证:存在非零复数c 与实数d ,使得对于一切模长为1的复数12z z ⎛⎫≠- ⎪ ⎪⎝⎭均有221111c d z z z z --=++++ 44.(2021·全国·高三竞赛)若关于z 的整系数方程320z pz qz r +++=的三个复数根在复平面内恰好成为一个等腰直角三角形的三个顶点,求这个等腰直角三角形的面积的最小值. 45.(2021·全国·高三竞赛)已知实数0,a b C >∈.若方程32310x ax bx +++=的三个复数根的正三角形,求a b 、的值.46.(2019·全国·高三竞赛)123z z z 、、为多项式()3P z z az b =++的三个根,满足222123250z z z ++=,且复平面上的三点123z z z 、、恰构成一个直角三角形.求该直角三形的斜边的长度.。
第十五章 复数 一、基础知识1.复数的定义:设i 为方程x 2=-1的根,i 称为虚数单位,由i 与实数进行加、减、乘、除等运算.便产生形如a+bi (a,b ∈R )的数,称为复数.所有复数构成的集合称复数集.通常用C 来表示. 2.复数的几种形式.对任意复数z=a+bi (a,b ∈R ),a 称实部记作Re(z),b 称虚部记作Im(z). z=ai 称为代数形式,它由实部、虚部两部分构成;若将(a,b)作为坐标平面内点的坐标,那么z 与坐标平面唯一一个点相对应,从而可以建立复数集与坐标平面内所有的点构成的集合之间的一一映射.因此复数可以用点来表示,表示复数的平面称为复平面,x 轴称为实轴,y 轴去掉原点称为虚轴,点称为复数的几何形式;如果将(a,b)作为向量的坐标,复数z 又对应唯一一个向量.因此坐标平面内的向量也是复数的一种表示形式,称为向量形式;另外设z 对应复平面内的点Z,见图15-1,连接OZ,设∠xOZ=θ,|OZ|=r,则a=rcos θ,b=rsin θ,所以z=r(cos θ+isin θ),这种形式叫做三角形式.若z=r(cos θ+isin θ),则θ称为z 的辐角.若0≤θ<2π,则θ称为z 的辐角主值,记作θ=Arg(z). r 称为z 的模,也记作|z|,由勾股定理知|z|=22b a +.如果用e i θ表示cos θ+isin θ,则z=re i θ,称为复数的指数形式.3.共轭与模,若z=a+bi,(a,b ∈R ),则=z a-bi 称为z 的共轭复数.模与共轭的性质有:(1)2121z z z z ±=±;(2)2121z z z z ⋅=⋅;(3)2||z z z =⋅;(4)2121z z zz =⎪⎪⎭⎫ ⎝⎛;(5)||||||2121z z z z ⋅=⋅;(6)||||||2121z z z z =;(7)||z 1|-|z 2||≤|z 1±z 2|≤|z 1|+|z 2|;(8)|z 1+z 2|2+|z 1-z 2|2=2|z 1|2+2|z 2|2;(9)若|z|=1,则zz 1=. 4.复数的运算法则:(1)按代数形式运算加、减、乘、除运算法则与实数范围内一致,运算结果可以通过乘以共轭复数将分母分为实数;(2)按向量形式,加、减法满足平行四边形和三角形法则;(3)按三角形式,若z 1=r 1(cos θ1+isin θ1), z 2=r 2(cos θ2+isin θ2),则z 1••z 2=r 1r 2[cos(θ1+θ2)+isin(θ1+θ2)];若21212,0r r z z z =≠[cos(θ1-θ2)+isin(θ1-θ2)],用指数形式记为z 1z 2=r 1r 2ei(θ1+θ2),.)(212121θθ-=i e r r z z 5.棣莫弗定理:[r(cos θ+isin θ)]n=r n(cosn θ+isinn θ). 6.开方:若=n w r(cos θ+isin θ),则)2sin2(cosnk i nk r w n πθπθ+++=,k=0,1,2,…,n-1.7.单位根:若w n=1,则称w 为1的一个n 次单位根,简称单位根,记Z 1=ni n ππ2sin 2cos +,则全部单位根可表示为1,1Z ,1121,,-n Z Z .单位根的基本性质有(这里记k k Z Z 1=,k=1,2,…,n-1):(1)对任意整数k,若k=nq+r,q ∈Z,0≤r ≤n-1,有Z nq+r =Z r ;(2)对任意整数m,当n ≥2时,有mn m m Z Z Z 1211-++++ =⎩⎨⎧,|,,|,0m n n m n 当当特别1+Z 1+Z 2+…+Z n-1=0;(3)x n-1+x n-2+…+x+1=(x-Z 1)(x-Z 2)…(x-Z n-1)=(x-Z 1)(x-21Z )…(x-11-n Z ).8.复数相等的充要条件:(1)两个复数实部和虚部分别对应相等;(2)两个复数的模和辐角主值分别相等.9.复数z 是实数的充要条件是z=z ;z 是纯虚数的充要条件是:z+z =0(且z ≠0). 10.代数基本定理:在复数范围内,一元n 次方程至少有一个根.11.实系数方程虚根成对定理:实系数一元n 次方程的虚根成对出现,即若z=a+bi(b ≠0)是方程的一个根,则z =a-bi 也是一个根.12.若a,b,c ∈R,a ≠0,则关于x 的方程ax 2+bx+c=0,当Δ=b 2-4ac<0时方程的根为.22,1aib x ∆-±-=二、方法与例题 1.模的应用.例1 求证:当n ∈N +时,方程(z+1)2n +(z-1)2n=0只有纯虚根.例2 设f(z)=z 2+az+b,a,b 为复数,对一切|z|=1,有|f(z)|=1,求a,b 的值.2.复数相等.例3 设λ∈R ,若二次方程(1-i)x 2+(λ+i)x+1+λi=0有两个虚根,求λ满足的充要条件.3.三角形式的应用.例4 设n ≤2000,n ∈N,且存在θ满足(sin θ+icos θ)n=sinn θ+icosn θ,那么这样的n 有多少个?4.二项式定理的应用.例5 计算:(1)100100410021000100C C C C +-+- ;(2)99100510031001100C C C C --+-5.复数乘法的几何意义.例6 以定长线段BC 为一边任作ΔABC,分别以AB,AC 为腰,B,C 为直角顶点向外作等腰直角ΔABM 、等腰直角ΔACN.求证:MN 的中点为定点.例7 设A,B,C,D 为平面上任意四点,求证:AB •AD+BC •AD ≥AC •BD.6.复数与轨迹.例8 ΔABC 的顶点A 表示的复数为3i,底边BC 在实轴上滑动,且|BC|=2,求ΔABC 的外心轨迹.7.复数与三角.例9 已知cos α+cos β+cos γ=sin α+sin β+sin γ=0,求证:cos2α+cos2β+cos2γ=0.例10 求和:S=cos200+2cos400+…+18cos18×200.8.复数与多项式.例11 已知f(z)=c 0z n +c 1z n-1+…+c n-1z+c n 是n 次复系数多项式(c 0≠0). 求证:一定存在一个复数z 0,|z 0|≤1,并且|f(z 0)|≥|c 0|+|c n |.9.单位根的应用.例12 证明:自⊙O 上任意一点p 到正多边形A 1A 2…A n 各个顶点的距离的平方和为定值.10.复数与几何.例13 如图15-2所示,在四边形ABCD 内存在一点P,使得ΔPAB,ΔPCD 都是以P 为直角顶点的等腰直角三角形.求证:必存在另一点Q,使得ΔQBC,ΔQDA 也都是以Q 为直角顶点的等腰直角三角形.例14 平面上给定ΔA 1A 2A 3及点p 0,定义A s =A s-3,s ≥4,构造点列p 0,p 1,p 2,…,使得p k+1为绕中心A k+1顺时针旋转1200时p k 所到达的位置,k=0,1,2,…,若p 1986=p 0.证明:ΔA 1A 2A 3为等边三角形.三、基础训练题1.满足(2x 2+5x+2)+(y 2-y-2)i=0的有序实数对(x,y)有__________组. 2.若z ∈C 且z2=8+6i,且z3-16z-z100=__________. 3.复数z 满足|z|=5,且(3+4i)•z 是纯虚数,则 z __________.4.已知iz 312+-=,则1+z+z 2+…+z1992=__________.5.设复数z 使得21++z z 的一个辐角的绝对值为6π,则z 辐角主值的取值范围是__________. 6.设z,w,λ∈C,|λ|≠1,则关于z 的方程z -Λz=w 的解为z=__________.7.设0<x<1,则2arctan=+-+-+2211arcsin 11x x x x __________. 8.若α,β是方程ax 2+bx+c=0(a,b,c ∈R )的两个虚根且R ∈βα2,则=βα__________. 9.若a,b,c ∈C,则a 2+b 2>c 2是a 2+b 2-c 2>0成立的__________条件.10.已知关于x 的实系数方程x 2-2x+2=0和x 2+2mx+1=0的四个不同的根在复平面上对应的点共圆,则m 取值的集合是__________.11.二次方程ax 2+x+1=0的两根的模都小于2,求实数a 的取值范围.12.复平面上定点Z 0,动点Z 1对应的复数分别为z 0,z 1,其中z 0≠0,且满足方程|z 1-z 0|=|z 1|,①另一个动点Z 对应的复数z 满足z 1•z=-1,②求点Z 的轨迹,并指出它在复平面上的形状和位置.13.N 个复数z 1,z 2,…,z n 成等比数列,其中|z 1|≠1,公比为q,|q|=1且q ≠±1,复数w 1,w 2,…,w n 满足条件:w k =z k +kz 1+h,其中k=1,2,…,n,h 为已知实数,求证:复平面内表示w 1,w 2,…,w n 的点p 1,p 2,…,p n 都在一个焦距为4的椭圆上. 四、高考水平训练题1.复数z 和cos θ+isin θ对应的点关于直线|iz+1|=|z+i|对称,则z=__________. 2.设复数z 满足z+|z|=2+i,那么z=__________.3.有一个人在草原上漫步,开始时从O 出发,向东行走,每走1千米后,便向左转6π角度,他走过n 千米后,首次回到原出发点,则n=__________.4.若12102)1()31()34(i i i z -+--=,则|z|=__________.5.若a k ≥0,k=1,2,…,n,并规定a n+1=a 1,使不等式∑∑==++≥+-nk k nk k k k k a aa a a 112112λ恒成立的实数λ的最大值为__________.6.已知点P 为椭圆15922=+y x 上任意一点,以OP 为边逆时针作正方形OPQR,则动点R 的轨迹方程为__________.7.已知P 为直线x-y+1=0上的动点,以OP 为边作正ΔOPQ(O,P,Q 按顺时针方向排列).则点Q 的轨迹方程为__________.8.已知z ∈C,则命题“z 是纯虚数”是命题“R zz ∈-221”的__________条件. 9.若n ∈N,且n ≥3,则方程z n+1+z n-1=0的模为1的虚根的个数为__________. 10.设(x2006+x2008+3)2007=a 0+a 1x+a 2x 2+…+a n x n,则2222543210a aa a a a --++-+…+a 3k -=++-++n k k a a a 222313__________. 11.设复数z 1,z 2满足z1•0212=++z A z A z ,其中A ≠0,A ∈C.证明: (1)|z 1+A|•|z 2+A|=|A|2; (2).2121Az Az A z A z ++=++12.若z ∈C,且|z|=1,u=z 4-z 3-3z 2i-z+1.求|u|的最大值和最小值,并求取得最大值、最小值时的复数z.13.给定实数a,b,c,已知复数z 1,z 2,z 3满足⎪⎩⎪⎨⎧=++===,1,1||||||133221321z z z z z zz z z 求|az 1+bz 2+cz 3|的值.三、联赛一试水平训练题1.已知复数z 满足.1|12|=+zz 则z 的辐角主值的取值范围是__________. 2.设复数z=cos θ+isin θ(0≤θ≤π),复数z,(1+i)z,2z 在复平面上对应的三个点分别是P,Q,R,当P,Q,R 不共线时,以PQ,PR 为两边的平行四边形第四个顶点为S,则S 到原点距离的最大值为__________.3.设复平面上单位圆内接正20边形的20个顶点所对应的复数依次为z 1,z 2,…,z 20,则复数1995201995219951,,,z z z 所对应的不同点的个数是__________.4.已知复数z 满足|z|=1,则|z+iz+1|的最小值为__________. 5.设i w 2321+-=,z 1=w-z,z 2=w+z,z 1,z 2对应复平面上的点A,B,点O 为原点,∠AOB=900,|AO|=|BO|,则ΔOAB 面积是__________. 6.设5sin5cosππi w +=,则(x-w)(x-w 3)(x-w 7)(x-w 9)的展开式为__________.7.已知(i +3)m =(1+i)n(m,n ∈N +),则mn 的最小值是__________.8.复平面上,非零复数z1,z2在以i 为圆心,1为半径的圆上,1z •z 2的实部为零,z 1的辐角主值为6π,则z 2=__________. 9.当n ∈N,且1≤n ≤100时,n i ]1)23[(7++的值中有实数__________个. 10.已知复数z 1,z 2满足2112z z z z =,且31π=Argz ,62π=Argz ,π873=Argz ,则321z z z Arg+的值是__________. 11.集合A={z|z 18=1},B={w|w 48=1},C={zw|z ∈A,w ∈B},问:集合C 中有多少个不同的元素? 12.证明:如果复数A 的模为1,那么方程A ixix n=-+)11(的所有根都是不相等的实根(n ∈N +). 13.对于适合|z|≤1的每一个复数z,要使0<|αz+β|<2总能成立,试问:复数α,β应满足什么条件?六、联赛二试水平训练题1.设非零复数a 1,a 2,a 3,a 4,a 5满足⎪⎪⎩⎪⎪⎨⎧=++++=++++===,)(41543215432145342312S a a a a a a a a a a a a a a a a a a 其中S 为实数且|S|≤2,求证:复数a 1,a 2,a 3,a 4,a 5在复平面上所对应的点位于同一圆周上. 2.求证:)2(2)1(sin 2sinsin1≥=-⋅⋅⋅-n nn n n nn πππ. 3.已知p(z)=z n+c 1z n-1+c 2z n-2+…+c n 是复变量z 的实系数多项式,且|p(i)|<1,求证:存在实数a,b,使得p(a+bi)=0且(a 2+b 2+1)2<4b 2+1.4.运用复数证明:任给8个非零实数a 1,a 2,…,a 8,证明六个数a 1a 3+a 2a 4, a 1a 5+a 2a 6, a 1a 7+a 2a 8, a 3a 5+a 4a 6, a 3a 7+a 4a 8,a 5a 7+a 6a 8中至少有一个是非负数.5.已知复数z 满足11z 10+10iz 9+10iz-11=0,求证:|z|=1. 6.设z 1,z 2,z 3为复数,求证:|z 1|+|z 2|+|z 3|+|z 1+z 2+z 3|≥|z 1+z 2|+|z 2+z 3|+|z 3+z 1|.。
Y.P .M 数学竞赛讲座 1竞赛中的复数问题复数不仅具有自身知识体系的丰富性,而且还与代数、三角、几何之间存在内在的紧密联系.复数的演绎独具特色,饶于技巧,复数是竞赛数学的内容之一.一、知识结构1.概念与运算:⑴表达形式:①代数式:z=a+bi(a,b ∈R);②三角式:z=r(cos θ+isin θ)(r ≥0,θ∈R);③指数式:z=re i θ(r ≥0,θ∈R);④欧拉公式:e i θ=cos θ+isin θ,θ∈R.⑵共轭与模:①21z z ±=21z z ±;21z z ⋅=21z z ⋅;)(21z z =21z z;②||z 1|-|z 2||≤|z 1+z 2|≤|z 1|+|z 2|;|z 1z 2|=|z 1||z 2|;|21z z |= ||||21z z ;③z z =|z|2=|z |2;④z=z ⇔z ∈R;|z|=|Re(z)|⇔z ∈R. ⑶运算法则:①乘法:r 1(cos θ1+isin θ2)r 2(cos θ2+isin θ2)=r 1r 2(cos(θ1+θ2)+isin(θ1+θ2));②除法:)sin (cos )sin (cos 222121θθθθi r i r ++=21r r (cos(θ1-θ2)+isin(θ1-θ2));③乘方:[r(cos θ+isin θ)]n =r n (cosn θ+isinn θ);④开方:z n =r(cos θ+isin θ)⇔z =n r (cosnk πθ2++isinnk πθ2+)(k=0,1,2…,n-1).2.辐角与三角:⑴辐角性质:①定义:若z=r(cos θ+isin θ)(r ≥0,θ∈R),则θ称为复数z 的辐角,记为Argz;特别地,当θ∈[0,2π)时,则θ称为复数z 的辐角主值,记为argz;②运算:Argz 1+Argz 2=Arg(z 1z 2);Argz 1-Argz 2=Arg(21z z )=Arg(z 12z );nArgz= Argz n ;③性质:若z=cos θ+isin θ,则1+z=2cos2θ(cos 2θ+isin 2θ);1-z=-2sin 2θ(cos 2θ+isin 2θ). ⑵单位根:①定义:方程x n =1的n 个根叫做n 次单位根,分别记为ωk (k=0,1,2,…,n-1);ωk =(cosn k π2+isin nk π2)(k=0, 1,2…,n-1);②性质:ω0=1;ωk =ω1k ;ωk ωj =ωk+j ;单位根的积仍是单位根;n 次单位根的全部为:1,ω1,ω12,…,ω1n-1;③1+ω1+ω12+…+ω1n-1=0,(x-1)(x-ω1)(x-ω12)…(x-ω1n-1)=x n -1.⑶基本结论:①实系数n 次方程的虚根α与其共轭复数α成对出现;②若|z 1|=|z 2|=…=|z n |,且z 1+z 2+…+z n =0,则z 1,z 2, …,z n 对应的点是正n 边形的顶点,且正n 边形的中心在坐标原点;③若复数z 1,z 2对应的点分别为Z 1,Z 2,且z 1=z 0z 2,则∠Z 1OZ 2=argz 0,或argz 0-π.3.复数与几何:⑴基本原理:①点的对应:复数z=x+yi 与点Z(x,y)成一一对应;②向量对应:复数z=x+yi 与向量OZ =(x,y)成一一对应;③距离公式:复数z 1,z 2对应的点分别为Z 1,Z 2,则|Z 1Z 2|=|z 1-z 2|;④旋转公式:复数z 1,z 2对应的点分别为Z 1,Z 2,向量21z z 绕点Z 1逆时针旋转θ角,再伸长r(r>0)倍,则所得向量z z 1中的Z 对应的复数z=z 1+r(z 2-z 1)(cos θ+isin θ).⑵线性结论:①定比分点:若复数z,z 1,z 2对应的点分别为Z,Z 1,Z 2,点Z 分有向线段21z z 的比为λ(λ≠-1),则z=λλ++121z z ;②三点共线:若复数z,z 1,z 2对应的点分别为Z,Z 1,Z 2,则三点Z,Z 1,Z 2共线的充要条件是:Z=λZ 1+(1-λ)Z 2;③平行条件:若复数z 1,z 2,z 3,z 4对应的点分别为Z 1,Z 2,Z 3,Z 4,则Z 1Z 2∥Z 3Z 4的充要条件是:z 1-z 2=λ(z 3-z 4);④垂直条件:若复数z 1,z 2,z 3,z 4对应的点分别为Z 1,Z 2,Z 3,Z 4,则Z 1Z 2⊥Z 3Z 4的充要条件是:z 1-z 2=λ(z 3-z 4)i.2 Y.P .M 数学竞赛讲座⑶几何结论:①三角形面积:若复数z 1,z 2,z 3对应的点分别为Z 1,Z 2,Z 3,则△Z 1Z 2Z 3的面积=21×复数(z 13z +z 21z +z 32z )的虚部;②三角形形状:若复数z 1,z 2,z 3对应的点分别为Z 1,Z 2,Z 3,则△Z 1Z 2Z 3为正三角形的充要条件是:z 12+z 22+z 32=z 1z 2+z 2z 3+z 3z 1;或z 1+ωz 2+ω2z 3=0;③三角形相似:若复数z 1,z 2,z 3对应的点分别为Z 1,Z 2,Z 3,复数w 1,w 2,w 3对应的点分别为W 1,W 2,W 3,则△Z 1Z 2Z 3∽△W 1W 2W 3的充要条件是:1312z z z z --=1312w w ww --;④四点共圆:若复数z 1,z 2,z 3,z 4对应的点分别为Z 1,Z 2,Z 3,Z 4,则四点Z 1, Z 2,Z 3,Z 4共圆的充要条件是:1413z z z z --:2423z z z z --∈R. 二、典型问题1.复数概念[例1]:(2006年全国高中数学联赛试题)若对一切θ∈R,复数z=(a+cos θ)+(2a-sin θ)i 的模不超过2,则实数a 的取值范围为 .[解析]:[类题]:1.①(2010全国高中数学联赛黑龙江初赛试题)已知复数z 1=m+2i,z 2=3-4i,若21z z 为实数,则实数m 的值为 . ②(2011年全国高中数学联赛湖南初赛试题)已知复数z 1满足(z 1-2)(1+i)=1-i,复数z 2的虚部为2,则z 1z 2为实数的条件是z 2= .2.(1999年全国高中数学联赛河南初赛试题)若3131-+z z 为纯虚数,则|z|= . 3.(2011年全国高中数学联赛浙江初赛试题)如果复数(a+2i)(1+i)的模为4,则实数a 的值为 .4.(1994年全国高中数学联赛试题)给出下列两个命题:①设a,b,c 都是复数,如果a 2+b 2>c 2,则a 2+b 2-c 2>0;②设a,b,c 都是复数,如果a 2+b 2-c 2>0,则a 2+b 2>c 2.那么下述说法正确的是( )(A)命题①正确,命题②也正确 (B)命题①正确,命题②错误 (C)命题①错误,命题②也错误 (D)命题①错误,命题②正确 5.(2010年全国高中数学联赛浙江初赛试题)设z 是虚数,w=z+z1,且-1<w<2,则z 的实部取值范围为 . 2.代数形式[例2]:(1995年全国高中数学联赛试题)设α,β为一对共轭复数,若|α-β|=23,且2βα为实数,则|α|= . [解析]: [类题]:1.①(2011年全国高中数学联赛江苏初赛试题)复数(1+i)4+(1-i)4= .②(2005年全国高中数学联赛上海初赛试题)计算:!!!!i i i i 100210+⋅⋅⋅+++= .2.(1996年第七届“希望杯”全国数学邀请赛(高二)试题)已知i 2=-1,在集合{s|s=1+i+i 2+i 3+…+i n,n ∈N}中包含的元素是 .3.(2007年全国高中数学联赛上海初赛试题)复数数列{a n }满足a 1=0,a n =a n-12+i(n ≥2,i 为虚数单位,则它的前2007项的和= .4.(2000年湖南高中数学夏令营试题)设复数数列{z n }满足z 1=i,z n+1=-z n 2-i,则|z 2000|=5.(1991年全国高中数学联赛上海初赛试题)使复数z=ix x x x i x x --++cos )tan sin cos 2(2sin sin 2成为实数的所有x 构成的集合是 .Y.P .M 数学竞赛讲座 3 3.三角形式[例3]:(1999年全国高中数学联赛试题)给定实数a,b,c,已知复数z 1,z 2,z 3满足:⎪⎩⎪⎨⎧=++===11||||||133221321z z z z z z z z z ,求|az 1+bz 2+cz 3|的值.[解析]: [类题]:1.(1992年全国高中数学联赛上海初赛试题)设A 、B 、C 为△ABC 的三内角,则复数Ai A C i C B i B 2sin 2cos 1)2sin 2cos 1)(2sin 2cos 1(-+++++的虚部是 .2.(1992年湖南高中数学夏令营试题)已知复数z 1,z 2满足|z 1|=|z 2|=1,z 1-z 2=cos150+isin150,则21z z = . 3.(2000年全国高中数学联赛河北初赛试题)设|z 1|=|z 2|=a(a ≠0),且z 1+z 2=m+mi,其中m 为非零实数.则z 13z 23的值是 . 4.(1985年全国高中数学联赛上海初赛试题)设|z|=1,则|z 2-z+2|的最小值为 .5.(2006年全国高中数学联赛辽宁初赛试题)已知复数集合D,复数z ∈D 当且仅当存在模为1的复数z 1,使得|z-2005-2006i| =|z 14+1-2z 12|.则D 中实部和虚部都为整数的复数的个数是 .4.共轭运算[例4]:(2001年全国高中数学联赛试题)若复数z 1,z 2满足|z 1|=2,|z 2|=3,3z 1-2z 2=23-i,则z 1z 2= .[解析]: [类题]:1.(1986年全国高中数学联赛试题)为z 为复数,M={z|(z-1)2=|z-1|2},那么( )(A)M={纯虚数} (B)M={实数} (C){实数}⊂M ⊂{复数} (D)M={复数} 2.(1985年全国高中数学联赛试题)设z,w,λ为复数,|λ|≠1关于z 的方程z -λz=w 下面有四个结论:①z=2||1λλ-+ww 是这个方程的解;②这个方程只有一个解;③这个方程有两个解;④这个方程有无穷多解.则( )(A)只有①和②是正确的 (B)只有①和③是正确的 (C)只有①和④是正确的 (D)以上(A)、(B)、(C)都不正确 3.(2006年全国高中数学联赛甘肃初赛试题)如果复数z 1,z 2满足|z 1|=|z 2|,且z 1-z 2=2-i,则||2121z z z z 的值为 . 4.(1996年湖南高中数学夏令营试题)z 1,z 2是已知的两个任复数,复数z 满足z ≠0,z+z 2≠0,z z 1+z 2z +z 12z =0,则 arg21z z z z ++= . 5.(1991年全国高中数学联赛试题)设复数z 1,z 2满足|z 1|=|z 1+z 2|=3,|z 1-z 2|=33,则log 3|(z 12z )2000+(1z z 2)2000|= .5.模的运算[例5]:(2011年全国高中数学联赛新疆初赛试题)复数z 1和z 2满足:|z 2|=4,4z 12-2z 1z 2+z 22=0,则|(z 1+1)2(z 1-2)|的最大值为 .[解析]: [类题]:1.(1983年全国高中数学联赛上海初赛试题)|)52)(32()35)(25)(23(2i i i i i --+++|= .2.(2011年全国高中数学联赛天津初赛试题)复数z 满足|z|(3z+2i)=2(iz −6),则|z|等于 .3.(2004年全国高中数学联赛吉林初赛试题)设{z n }是一个复数数列,定义z n =(1+i)(1+2i ) (1)ni ),则∑=+-nn n n z z 11||= .4.(2002年全国高中数学联赛湖南初赛试题)已知复数z 满足z z -z-z =3,且arg(z-1)=3π,则z= .4 Y.P .M 数学竞赛讲座5.(2008年全国高中数学联赛甘肃初赛试题)设z 是复数,且|z|=1,则u=|z 2-z+1|的最大值与最小值是 .6.乘方运算[例6]:(2007年全国高中数学联赛安徽初赛试题)设n ≥2007,且n 为使得a n =(22-+i 22+)n取实数值的最小正整数,则对应此n 的a n = .[解析]: [类题]:1.(1989年全国高中数学联赛上海初赛试题)计算:(21i -)1989= .2.①(2011年全国高中数学联赛山东初赛试题)已知z=(3-3i)n,若z 为实数,则最小的正整数n 的值为 . ②(1985年全国高中数学联赛上海初赛试题)设n 为使a n =(213++213-i)n取实数的最小自然数,则对应此n 的a n = .3.①(2003年全国高中数学联赛安徽初赛试题)设n 为不超过2003的正整数.如果有一个角θ使得(sin θ+icos θ)n=sinn θ+icosn θ成立,则这种n 的总个数为 .②(1988年全国高中数学联赛上海初赛试题)设m 、n 是自然数,且使(3+i)m=(1+i)n成立(其中i 是虚数单位),则乘积mn 的最小值是 .4.(2010年全国高中数学联赛山东初赛试题)已知z 为复数.若|z|=1,|z +i|=1,则当(z+i)n(n 为正整数)为实数时,|z+i|n的最小值为 .5.(1985年全国高中数学联赛上海初赛试题)[(23i +)8+1]n当n 取1,2,…,100时,可得 个不同的数值. 7.单位复数[例7]:(1991年全国高中数学联赛试题)设a,b,c 均为非零复数,且ba =cb =ac ,则cb ac b a +--+的值为 .[解析]: [类题]:1.①(1980年全国高中数学联赛上海初赛试题)设x 1,x 2是方程x 2-x+1=0的两个根,则x 11980+198021x = .②(2009年全国高中数学联赛湖北初赛试题)已知复数m 满足m+m 1=1,则m 2008+20091m= . 2.①(1990年全国高中数学联赛试题)设非零数复数x,y 满足x 2+xy+y 2=0,则代数式(y x x +)1990+(yx y +)1990的值是 . ②(2006年全国高中数学联赛甘肃初赛试题)设非零数相异复数x,y 满足x 2+xy+y 2=0,则代数式[2))((y x y x xy -+]2006(x2006+y2006)的值是 .3.(2011年全国高中数学联赛河南初赛试题)若z ∈C,且x 10=1,则1+x+x 2+x 3+…+x 2009+x 2010= .4.(1999年第十届“希望杯”全国数学邀请赛(高二)试题)已知复数z 满足:z 3=27,则z 5+3z 4+2242= . 5.(2008年全国高中数学联赛甘肃初赛试题)设(23+2x i)2008=f(x)+ig(x)(f(x),g(x)均为实系数多项式),则f(x)的系数之和是 .8.复数方程[例8]:(1994年全国高中数学联赛试题)x 的二次方程x 2+z 1x+z 2+m=0中,z 1,z 2,m 均是复数,且z 12-4z 2=16+20i,设这个方程的两个根α,β满足|α-β|=27,求|m|的最大值和最小值.[解析]:Y.P .M 数学竞赛讲座 5 [类题]:1.(1995年全国高中数学联赛上海初赛试题)若虚数z 使2z+z 1为实数,则2z+z1的取值范围是_____. 2.(1993年全国高中数学联赛试题)二次方程(1-i)x 2+(λ+i)x+(1+i λ)=0(i 为虚数单位,λ∈R)有两个虚根的充分必要条件是λ的取值范围为________.3.(1984年全国高中数学联赛上海初赛试题)方程z 4=z (z 为z 的共轭复数)的根为 .4.(2001年第十二届“希望杯”全国数学邀请赛(高二)试题)复数z 满足等式z+z |z|3=0,则z= .5.(2000年全国高中数学联赛试题)设ω=cos5π+isin5π,则以ω,ω3,ω7,ω9为根的方程是( )(A)x 4+x 3+x 2+x+1=0 (B)x 4-x 3+x 2-x+1=0 (C)x 4-x 3-x 2+x+1=0 (D)x 4+x 3+x 2-x -1=09.复数与点[例9]:(1998年全国高中数学联赛试题)设复数z=cos θ+isin θ(00≤θ≤1800),复数z,(1+i)z,2z 在复平面上对应的三个点分别是P,Q,R,当P,Q,R 不共线时,以线段PQ,PR 为两边的平行四边形的第四个顶点为S,则点S 到原点距离的最大值是 _.[解析]:[类题]:1.(1989年全国高中数学联赛试题)若A,B 是锐角△ABC 的两个内角,则复数z=(cosB-sinA)+i(sinB-cosA)在复平面内所对应的点位于( )(A)第一象限 (B)第二象限 (C)第三象限 (D)第四象限2.(2011年全国高中数学联赛安徽初赛试题)若点A,B 分别对应复数z,z -1,z ∉R,则直线AB 与x 轴的交点对应的复数为(用z 和z 表示).3.(2002年湖南高中数学夏令营试题)已知z 为复数,arg(z+3)=1350,则|3||6|1i z z -++取最大值时,z= .4.(1999年第十届“希望杯”全国数学邀请赛(高二)试题)在复平面内由i1,1-i ,(i-1)3对应的点构成的三角形的最大内角等于 .5.(2000年全国高中数学联赛河北初赛试题)如果复数z 满足|z|=1,A(-1,0),B(0,-1)是复平面上两点,那么函数f(z)= |(z+1)(z -i)|取最大值时,△ABZ 的形状是 .10.模的意义[例10]:(2002年全国高中数学联赛试题)已知复数z 1,z 2满足|z 1|=2,|z 2|=3,若它们所对应向量的夹角为600,则|2121z z z z -+|= . [解析]: [类题]:1.①(2007年全国高中数学联赛湖北初赛试题)设复数z 1=(2-a)+(1-b)i,z 2=(3+2a)+(2+3b)i,z 3=(3-a)+(3-2b)i,其中a,b ∈R,当|z 1|+|z 2|+|z 3|取得最小值时,3a+4b= .②(1993年全国高中数学联赛上海初赛试题)已知复数z 1,z 2满足|z 1|≥1,|z 2|≥23,则复数i 1993z 1+i 1995z 2+2z 1z 2的模长的最小值是 .2.(2010年全国高中数学联赛安徽初赛试题)设z 是复数,则|z-1|+|z-i|+|z+1|的最小值等于__________.3.(2011年全国高中数学联赛湖北初赛试题)设z 是模为2的复数,则|z-z1|的最大值与最小值的和为 . 4.(1999年全国高中数学联赛河北初赛试题)若复数z 满足|z+1+i|+|z-1-i|=22,记|z+i|的最大值和最小值分别为6 Y.P .M 数学竞赛讲座M,m,则mM= . 5.(1998年第九届“希望杯”全国数学邀请赛(高二)试题)已知复数z 的模为1,则函数|z 2+iz 2+1|的值域是 .11.幅角主值[例11]:(1998年全国高中数学联赛试题)已知复数z=1-sin θ+icos θ(2π<θ<π).求z 的共轭复数z 的辐角主值.[解析]: [类题]:1.(1984年全国高中数学联赛试题)集合S={z 2|argz=a,a ∈R}在复平面的图形是( )(A)射线argz=2a (B)射线argz=-2a (C)射线argz=-a (D)上述答案都不对 2.(1998年全国高中数学联赛湖南初赛试题)设z 是复数,z+2的幅角为3π,z-2的幅角为65π,则z= . 3.(1993年全国高中数学联赛试题)若z ∈C,arg(z 2-4)=65π,arg(z 2+4)=3π,则z 的值是________. 4.(1992年全国高中数学联赛试题)设z 1,z 2都是复数,且|z 1|=3,|z 2|=5|z 1+z 2|=7,则arg(12z z )3的值是______. 5.(1999年全国高中数学联赛试题)已知θ=arctan125,那么,复数z=i i ++2392sin 2cos θθ的辐角主值是_________.12.几何形状[例12]:(1995年全国高中数学联赛试题)设复平面上单位圆内接正20边形的20个顶点所对应的复数依次为z 1,z 2,…,z 20,则复数Z 11995,z 21995,…,z 201995所对应的不同的点的个数是 .[解析]: [类题]:1.(2007年全国高中数学联赛浙江初赛试题)若在复平面上三个点A(0),B(z 0-z),C(z 0+z)构成以A 为直角顶点的等腰直 角三角形,其中z 0=-31+32i,则△ABC 的面积为 . 2.①(1992年全国高中数学联赛试题)设复数z 1,z 2在复平面上对应的点分别为A,B,且|z 1|=4,4z 12-2z 1z 2+z 22=0,O 为坐标原点,则△OAB 的面积为 .②(1997年全国高中数学联赛上海初赛试题)设复数z 1、z 2满足z 1z 2=1,z 13+z 23=0,且z 1+z 2≠0.z 1、z 2在复平面内的对应点为Z 1、Z 2,O 为原点,则△Z 1OZ 2的面积是_____.3.(1996年全国高中数学联赛试题)复平面上,非零复数z 1,z 2在以i 为圆心,1为半径的圆上,1z z 2的实部为零,z 1的辐角主值为6π,则z 2=_______.4.(2007年全国高中数学联赛广西初赛试题)已知关于x 的实系数方程x 2-2x+2=0和x 2+2mx+1=0的四个不同的根在复平面上对应的点共圆,则m 的取值范围是 .5.(1997年全国高中数学联赛试题)设非零复数a 1,a 2,a 3,a 4,a 5满足⎪⎪⎩⎪⎪⎨⎧=++++==++++===Sa a a a a a a a a a a a a a a a a a )11111(4543215432145342312,其中S 为实数,且|S|≤2.求证:复数a 1,a 2,a 3,a 4,a 5在复平面上所对应的点位于同一圆周上.Y.P .M 数学竞赛讲座 7 13.解折综合[例13]:(2003年全国高中数学联赛试题)设A,B,C 分别是复数Z 0=ai,Z 1=21+bi,Z 2=1+ci(其中a,b,c 都是实数)对应的不共线的三点,证明:曲线Z =Z 0cos 4t+2Z 1cos 2tsin 2t+Z 2sin 4t(t ∈R )与∆ABC 中平行于AC 的中位线只有一个公共点,并求出此点.[解析]:[类题]:1.(1993年全国高中数学联赛试题)设m,n 为非零复数,i 为虚数单位,z ∈C,则方程|z+ni|+|z -mi|=n 与|z+ni|-|z -mi| -m 在同一复平面内的图形(F 1,F 2为焦点)是( )xx(B) (C) (D) 2.(1989年全国高中数学联赛试题)若M={z|z=t t +1+i tt+1,t ∈R,t ≠-1,t ≠0},N={z|z=2[cos(arcsint)+icos(arccost)],t ∈R,|t|≤1},则M ∩N 中元素的个数为( )(A)0 (B)1 (C)2 (D)43.(1988年全国高中数学联赛试题)复平面上动点z 1的轨迹方程为|z 1-z 0|=|z 1|,z 0为定点,z 0≠0,另一个动点z 满足z 1z=-1,求点z 的轨迹,指出它在复平面上的形状和位置.4.①(2001年第十二届“希望杯”全国数学邀请赛(高二)试题)已知复数z,w 满足:|z-1-i|-|z|=2,|w+3i|=1,则|z –w|的最小值= .②(1992年全国高中数学联赛上海初赛试题)x 、y 是实数.z 1=x+11+yi,z 2=x-11+yi(i 为虚数单位),|z 1|+|z 2|=12,令u=|5x −6y −30|,则u 的最大值是_____,u 的最小值是_____.5.(1996年全国高中数学联赛上海初赛试题)已知满足条件|z 2|+|z 2−1|=7的复数z 在复平面内的所对应的点的集合是一条二次曲线,则该二次曲线的离心率e=_____.14.复数应用[例14]:(2001年全国高中数学联赛试题)若(1+x+x 2)1000的展开式为a 0+a 1x+a 2x 2+…+a 2000x 2000,则a 0+a 3+a 6+a 9+…+a 1998的值为 .[解析]: [类题]:1.(2010年全国高中数学联赛甘肃初赛试题)已知sin α+sin β=51,cos α+cos β=31,则)(2sin )(2cos 1)(2sin )cos(21βαβαβαβα+++++++-= .2.(2007年湖北数学奥林匹克夏令营试题)求值:tan700-010cos 1= .3.(2007年全国高中数学联赛广西初赛试题)化简arccot2+arctan 31= . 4.(2012年复旦自主招生试题)arctan 31+arctan 51+arctan 71+arctan 81= .Y.P .M 数学竞赛讲座 1竞赛中的复数问题复数不仅具有自身知识体系的丰富性,而且还与代数、三角、几何之间存在内在的紧密联系.复数的演绎独具特色,饶于技巧,复数是竞赛数学的内容之一.一、知识结构1.概念与运算:⑴表达形式:①代数式:z=a+bi(a,b ∈R);②三角式:z=r(cos θ+isin θ)(r ≥0,θ∈R);③指数式:z=re i θ(r ≥0,θ∈R);④欧拉公式:e i θ=cos θ+isin θ,θ∈R.⑵共轭与模:①21z z ±=21z z ±;21z z ⋅=21z z ⋅;)(21z z =21z z;②||z 1|-|z 2||≤|z 1+z 2|≤|z 1|+|z 2|;|z 1z 2|=|z 1||z 2|;|21z z |= ||||21z z ;③z z =|z|2=|z |2;④z=z ⇔z ∈R;|z|=|Re(z)|⇔z ∈R. ⑶运算法则:①乘法:r 1(cos θ1+isin θ2)r 2(cos θ2+isin θ2)=r 1r 2(cos(θ1+θ2)+isin(θ1+θ2));②除法:)sin (cos )sin (cos 222121θθθθi r i r ++=21r r (cos(θ1-θ2)+isin(θ1-θ2));③乘方:[r(cos θ+isin θ)]n =r n (cosn θ+isinn θ);④开方:z n =r(cos θ+isin θ)⇔z =n r (cosnk πθ2++isinnk πθ2+)(k=0,1,2…,n-1).2.辐角与三角:⑴辐角性质:①定义:若z=r(cos θ+isin θ)(r ≥0,θ∈R),则θ称为复数z 的辐角,记为Argz;特别地,当θ∈[0,2π)时,则θ称为复数z 的辐角主值,记为argz;②运算:Argz 1+Argz 2=Arg(z 1z 2);Argz 1-Argz 2=Arg(21z z )=Arg(z 12z );nArgz= Argz n ;③性质:若z=cos θ+isin θ,则1+z=2cos2θ(cos 2θ+isin 2θ);1-z=-2sin 2θ(cos 2θ+isin 2θ). ⑵单位根:①定义:方程x n =1的n 个根叫做n 次单位根,分别记为ωk (k=0,1,2,…,n-1);ωk =(cosn k π2+isin nk π2)(k=0, 1,2…,n-1);②性质:ω0=1;ωk =ω1k ;ωk ωj =ωk+j ;单位根的积仍是单位根;n 次单位根的全部为:1,ω1,ω12,…,ω1n-1;③1+ω1+ω12+…+ω1n-1=0,(x-1)(x-ω1)(x-ω12)…(x-ω1n-1)=x n -1.⑶基本结论:①实系数n 次方程的虚根α与其共轭复数α成对出现;②若|z 1|=|z 2|=…=|z n |,且z 1+z 2+…+z n =0,则z 1,z 2, …,z n 对应的点是正n 边形的顶点,且正n 边形的中心在坐标原点;③若复数z 1,z 2对应的点分别为Z 1,Z 2,且z 1=z 0z 2,则∠Z 1OZ 2=argz 0,或argz 0-π.3.复数与几何:⑴基本原理:①点的对应:复数z=x+yi 与点Z(x,y)成一一对应;②向量对应:复数z=x+yi 与向量OZ =(x,y)成一一对应;③距离公式:复数z 1,z 2对应的点分别为Z 1,Z 2,则|Z 1Z 2|=|z 1-z 2|;④旋转公式:复数z 1,z 2对应的点分别为Z 1,Z 2,向量21z z 绕点Z 1逆时针旋转θ角,再伸长r(r>0)倍,则所得向量z z 1中的Z 对应的复数z=z 1+r(z 2-z 1)(cos θ+isin θ).⑵线性结论:①定比分点:若复数z,z 1,z 2对应的点分别为Z,Z 1,Z 2,点Z 分有向线段21z z 的比为λ(λ≠-1),则z=λλ++121z z ;②三点共线:若复数z,z 1,z 2对应的点分别为Z,Z 1,Z 2,则三点Z,Z 1,Z 2共线的充要条件是:Z=λZ 1+(1-λ)Z 2;③平行条件:若复数z 1,z 2,z 3,z 4对应的点分别为Z 1,Z 2,Z 3,Z 4,则Z 1Z 2∥Z 3Z 4的充要条件是:z 1-z 2=λ(z 3-z 4);④垂直条件:若复数z 1,z 2,z 3,z 4对应的点分别为Z 1,Z 2,Z 3,Z 4,则Z 1Z 2⊥Z 3Z 4的充要条件是:z 1-z 2=λ(z 3-z 4)i.2 Y.P .M 数学竞赛讲座⑶几何结论:①三角形面积:若复数z 1,z 2,z 3对应的点分别为Z 1,Z 2,Z 3,则△Z 1Z 2Z 3的面积=21×复数(z 13z +z 21z +z 32z )的虚部;②三角形形状:若复数z 1,z 2,z 3对应的点分别为Z 1,Z 2,Z 3,则△Z 1Z 2Z 3为正三角形的充要条件是:z 12+z 22+z 32=z 1z 2+z 2z 3+z 3z 1;或z 1+ωz 2+ω2z 3=0;③三角形相似:若复数z 1,z 2,z 3对应的点分别为Z 1,Z 2,Z 3,复数w 1,w 2,w 3对应的点分别为W 1,W 2,W 3,则△Z 1Z 2Z 3∽△W 1W 2W 3的充要条件是:1312z z z z --=1312w w ww --;④四点共圆:若复数z 1,z 2,z 3,z 4对应的点分别为Z 1,Z 2,Z 3,Z 4,则四点Z 1, Z 2,Z 3,Z 4共圆的充要条件是:1413z z z z --:2423z z z z --∈R. 二、典型问题1.复数概念[例1]:(2006年全国高中数学联赛试题)若对一切θ∈R,复数z=(a+cos θ)+(2a-sin θ)i 的模不超过2,则实数a 的取值范围为 .[解析]:|z|≤2⇔(a+cos θ)2+(2a-sin θ)2≤4⇔2acos θ-4asin θ≤3-5a 2⇔-25asin(θ+φ)≤3-5a 2⇔25|a|≤3-5a 2⇔(5|a|-1)(5|a|+3)≤0⇔a ∈[-55,55]. [类题]:1.①(2010全国高中数学联赛黑龙江初赛试题)已知复数z 1=m+2i,z 2=3-4i,若21z z 为实数,则实数m 的值为 . ②(2011年全国高中数学联赛湖南初赛试题)已知复数z 1满足(z 1-2)(1+i)=1-i,复数z 2的虚部为2,则z 1z 2为实数的条件是z 2= .2.(1999年全国高中数学联赛河南初赛试题)若3131-+z z 为纯虚数,则|z|= . 3.(2011年全国高中数学联赛浙江初赛试题)如果复数(a+2i)(1+i)的模为4,则实数a 的值为 .4.(1994年全国高中数学联赛试题)给出下列两个命题:①设a,b,c 都是复数,如果a 2+b 2>c 2,则a 2+b 2-c 2>0;②设a,b,c 都是复数,如果a 2+b 2-c 2>0,则a 2+b 2>c 2.那么下述说法正确的是( )(A)命题①正确,命题②也正确 (B)命题①正确,命题②错误 (C)命题①错误,命题②也错误 (D)命题①错误,命题②正确 5.(2010年全国高中数学联赛浙江初赛试题)设z 是虚数,w=z+z1,且-1<w<2,则z 的实部取值范围为 . 解:设z=a+bi ⇒w=a+bi+22ba bi a +-=a+22ba a ++(b-22ba b +)i.由-1<w<2⇒w 为实数⇒b-22ba b +=0⇒b=0,或a 2+b 2=1.当b=0时,a ≠0,w=a+a 1⇒|w|≥2,不符合-1<w<2;当a 2+b 2=1时,w=2a,由-1<w<2⇒-21<a<1. 2.代数形式[例2]:(1995年全国高中数学联赛试题)设α,β为一对共轭复数,若|α-β|=23,且2βα为实数,则|α|= . [解析]:设α=a+bi(a,b ∈R)⇒β=a-bi ⇒αβ=a 2+b 2∈R,α-β=2bi,|α-β|=23⇒|b|=3,2βα=23)(αβα为实数⇒α3=(a+bi)3=(a 3-3ab 2)+(3a 2b-b 3)i 为实数⇒3a 2b-b 3=0⇒|a|=1⇒|α|=2.[类题]:1.①(2011年全国高中数学联赛江苏初赛试题)复数(1+i)4+(1-i)4= .②(2005年全国高中数学联赛上海初赛试题)计算:!!!!i i i i 100210+⋅⋅⋅+++= . Y.P .M 数学竞赛讲座 32.(1996年第七届“希望杯”全国数学邀请赛(高二)试题)已知i 2=-1,在集合{s|s=1+i+i 2+i 3+…+i n,n ∈N}中包含的元素是 .3.(2007年全国高中数学联赛上海初赛试题)复数数列{a n }满足a 1=0,a n =a n-12+i(n ≥2,i 为虚数单位,则它的前2007项的和= .4.(2000年湖南高中数学夏令营试题)设复数数列{z n }满足z 1=i,z n+1=-z n 2-i,则|z 2000|=5.(1991年全国高中数学联赛上海初赛试题)使复数z=ix x x x i x x --++cos )tan sin cos 2(2sin sin 2成为实数的所有x 构成的集合是 .解:复数z=ix x x x i x x --++cos )tan sin cos 2(2sin sin 2为实数⇔[sinx+sin2x+i(2cos 2xsinx-tanx)](cosx+i)为实数⇔sinx+sin2x+(2cos 2xsinx-tanx)cosx=0⇔sin2x+cos 2xsin2x=0⇔sin2x=0⇔sinx=0(cosx ≠0)⇔x=k π.3.三角形式[例3]:(1999年全国高中数学联赛试题)给定实数a,b,c,已知复数z 1,z 2,z 3满足:⎪⎩⎪⎨⎧=++===11||||||133221321z z z z z z z z z ,求|az 1+bz 2+cz 3|的值.[解析]:由|z 1|=|z 2|=|z 3|=1,可设z 1=cos α+isin α,z 2=cos β+isin β,z 3=cos γ+isin γ⇒21z z +32z z+13z z =cos(α-β)+ isin(α-β)+cos(β-γ)+isin(β-γ)+cos(γ-α)+isin(γ-α)=1⇒sin(α-β)+sin(β-γ)+sin(γ-α)=0⇒ 2sin2γα-cos22βγα-+-2sin2γα-cos2γα-=0⇒sin2γα-sin2αβ-sin2βγ-=0.当sin2αβ-=0时,β=2k π+α⇒z 1=z 2,由21z z +32z z +13z z =1⇒31z z+13z z =0⇒(13z z )2+1=0⇒13z z =±i ⇒|az 1+bz 2+cz 3|=|(a+b ±ic)z 1|=22)(c b a ++;同理可得:当sin2βγ-=0时,|az 1+bz 2+cz 3|=22)(a c b ++;当sin2γα-=0时,|az 1+bz 2+cz 3|=22)(b c a ++.[类题]:1.(1992年全国高中数学联赛上海初赛试题)设A 、B 、C 为△ABC 的三内角,则复数Ai A C i C B i B 2sin 2cos 1)2sin 2cos 1)(2sin 2cos 1(-+++++的虚部是 . 解:A i A C i CB i B 2sin 2cos 1)2sin 2cos 1)(2sin 2cos 1(-+++++=)sin (cos cos 2)sin (cos cos 2)sin (cos cos 2A i A AC i C C B i B B ++⋅+=2A C B cos cos cos Ai A C B i C B sin cos )sin()cos(-+++=2A CB cos cos cos [(cos(A+B+C)+isin(A+B+C))=-2ACB cos cos cos ,虚部是0.2.(1992年湖南高中数学夏令营试题)已知复数z 1,z 2满足|z 1|=|z 2|=1,z 1-z 2=cos150+isin150,则21z z = . 解:设z 1=cos α+isin α,z 2=cos β+isin β⇒z 1-z 2=(cos α-cos β)+(sin α-sin β)i=cos150+isin150⇒cos α-cos β=cos150,sin α-sin β=sin150⇒(cos α-cos β)2+(sin α-sin β)2=1⇒cos(α-β)=21,sin α-sin β=±23⇒21z z=cos(α-β)+isin(α-β)=21±23i. 3.(2000年全国高中数学联赛河北初赛试题)设|z 1|=|z 2|=a(a ≠0),且z 1+z 2=m+mi,其中m 为非零实数.则z 13z 23的值是 . 解:设z 1=acos α+aisin α,z 2=acos β+aisin β,由z 1+z 2=m+mi ⇒a(cos α+cos β)=m,a(sin α+sin β)=m ⇒cos α+cos β=4 Y.P .M 数学竞赛讲座sin α+sin β⇒2cos2βα+cos2βα-=2sin2βα+cos2βα-⇒cos2βα+=sin2βα+⇒tan2βα+=1⇒α+β=2π⇒z 1z 2=a 2[cos(α+β)+isin(α+β)]=a 2i ⇒z 13z 23=(z 1z 2)3=-a 6i.4.(1985年全国高中数学联赛上海初赛试题)设|z|=1,则|z 2-z+2|的最小值为 .解:设z=cos θ+isin θ⇒|z 2-z+2|=|cos2θ+isin2θ-cos θ-isin θ+2|=|cos2θ-cos θ+2+(sin2θ-sin θ)i|=θθ2cos 4cos 66+-=87)83(cos 82+-θ≥414. 5.(2006年全国高中数学联赛辽宁初赛试题)已知复数集合D,复数z ∈D 当且仅当存在模为1的复数z 1,使得|z-2005-2006i| =|z 14+1-2z 12|.则D 中实部和虚部都为整数的复数的个数是 .解:设z 1=cos θ+isin θ⇒|z 14+1-2z 12|=|(z 12-1)2|=|z 12-1|2=|cos2θ-1+isin2θ|2=(cos2θ-1)2+sin 22θ=2-2cos2θ≤4⇒|z-2005-2006i|≤4,设z=x+yi ⇒(x-2005)2+(y-2006)2≤16⇔x 2+y 2≤16共有49个解.4.共轭运算[例4]:(2001年全国高中数学联赛试题)若复数z 1,z 2满足|z 1|=2,|z 2|=3,3z 1-2z 2=23-i,则z 1z 2= .[解析]:|z 1|=2,|z 2|=3⇒z 11z =4,z 22z =9⇒23-i=3z 1-2z 2=31z 1z 22z -21z 2z 11z =61z 1z 2(22z -31z )=-61z 1z 2(31z -22z )= -61z 1z 2(23+i)⇒z 1z 2=-1330+1372i.[类题]:1.(1986年全国高中数学联赛试题)为z 为复数,M={z|(z-1)2=|z-1|2},那么( )(A)M={纯虚数} (B)M={实数} (C){实数}⊂M ⊂{复数} (D)M={复数}解:(z-1)2=|z-1|2⇔(z-1)2=(z-1)(z -1)⇔z=1,或z=z ⇔M={实数}.2.(1985年全国高中数学联赛试题)设z,w,λ为复数,|λ|≠1关于z 的方程z -λz=w 下面有四个结论:①z=2||1λλ-+ww 是这个方程的解;②这个方程只有一个解;③这个方程有两个解;④这个方程有无穷多解.则( )(A)只有①和②是正确的 (B)只有①和③是正确的 (C)只有①和④是正确的 (D)以上(A)、(B)、(C)都不正确 解:z -λz=w ⇒z-λz =w ⇒z-λ(λz+w)=w ⇒(1-λλ)z=λw+w ⇒z=2||1λλ-+ww .故选(A). 3.(2006年全国高中数学联赛甘肃初赛试题)如果复数z 1,z 2满足|z 1|=|z 2|,且z 1-z 2=2-i,则||2121z z z z 的值为 . 解:设|z 1|=|z 2|=a ⇒z 11z =z 22z =a 2⇒a 2(2-i)=z 1z 22z -z 2z 11z =-z 1z 2(1z -2z )=-z 1z 2(2+i)⇒||2121z z z z =221az z =i i ++-22=543i +-. 4.(1996年湖南高中数学夏令营试题)z 1,z 2是已知的两个任复数,复数z 满足z ≠0,z+z 2≠0,z z 1+z 2z +z 12z =0,则 arg21z z z z ++= . 解:z z 1+z 2z +z 12z =0⇒z z 1+(z+z 1)2z =0⇒z z 1z 2+(z+z 1)2z z 2=0;z z 1+z 2z +z 12z =0⇒z 1z +z z 2+1z z 2=0⇒z z 2+(z+z 2)1z =0⇒z z 1z 2+(z+z 2)1z z 1=0⇒(z+z 1)2z z 2=(z+z 2)1z z 1⇒21z z z z ++=2211z z zz =正实数⇒arg 21z z z z ++=0. 5.(1991年全国高中数学联赛试题)设复数z 1,z 2满足|z 1|=|z 1+z 2|=3,|z 1-z 2|=33,则log 3|(z 12z )2000+(1z z 2)2000|= . 解:9=|z 1|2=z 11z ,9=|z 1+z 2|2=(z 1+z 2)(1z +2z )=z 11z +z 22z +z 21z +z 12z ;27=|z 1-z 2|2=(z 1-z 2)(1z -2z )=z 11z +z 22z -(z 21z +z 12z )⇒z 11z +z 22z =18⇒z 22z =9⇒|z 2|=3⇒|z 21z |=|z 12z |=9,z 21z +z 12z =-9,设z 12z =9(cos θ+isin θ)⇒z 21z =9(cos θ-isin θ)⇒cos θ=-21⇒sin θ=±23⇒z 12z =9ω,或ω2⇒log 3|(z 12z )2000+(1z z 2)2000|=log 3|(9ω)2000+(9ω2)2000|= Y.P .M 数学竞赛讲座 5log 3|92000(ω+ω2)|=4000.5.模的运算[例5]:(2011年全国高中数学联赛新疆初赛试题)复数z 1和z 2满足:|z 2|=4,4z 12-2z 1z 2+z 22=0,则|(z 1+1)2(z 1-2)|的最大值为 .[解析]: 由4z 12-2z 1z 2+z 22=0⇒3z 12+(z 1-z 2)2=0⇒(z 1-z 2)2=-3z 12⇒z 1-z 2=±3z 1i ⇒z 2=(1±3i)z 1⇒|z 2|=2|z 1|⇒|z 1|=2,设z 1=2(cos α+isin α)⇒|(z 1+1)2(z 1-2)|=|(z 1+1)2||(z 1-2)|=[(2cos α+1)2+(2sin α)2]22)sin 2()2cos 2(αα+-=)cos 88()cos 45(2αα-+≤36(cos α=41). [类题]:1.(1983年全国高中数学联赛上海初赛试题)|)52)(32()35)(25)(23(2i i i i i --+++|= .2.(2011年全国高中数学联赛天津初赛试题)复数z 满足|z|(3z+2i)=2(iz −6),则|z|等于 .解:设|z|=r(r>0)⇒z=i r ri 23212+-+⇒r 2=|z|2=|i r ri 23212+-+|2=22|23||212|i r ri +-+=49414422++r r ⇒r 4=16⇒r=2. 3.(2004年全国高中数学联赛吉林初赛试题)设{z n }是一个复数数列,定义z n =(1+i)(1+2i ) (1)ni ),则∑=+-nn n n z z 11||= .解:|z n -z n+1|=1.4.(2002年全国高中数学联赛湖南初赛试题)已知复数z 满足z z -z-z =3,且arg(z-1)=3π,则z= .解:z z -z-z =3⇒(z-1)(z -1)=4⇒|z-1|=2⇒z-1=2(cos3π+isin3π).5.(2008年全国高中数学联赛甘肃初赛试题)设z 是复数,且|z|=1,则u=|z 2-z+1|的最大值与最小值是 . 解:u=|z 2-z+1|=|z 2-z+z z |=|z(z+z -1)|=|z+z -1|.设z=x+yi,则|x|≤1⇒u=|z+z -1|=|2x-1|∈[0,3].6.乘方运算[例6]:(2007年全国高中数学联赛安徽初赛试题)设n ≥2007,且n 为使得a n =(22-+i 22+)n取实数值的最小正整数,则对应此n 的a n = .[解析]:令tan θ=2222-+(0<θ<2π)⇒tan 2θ=2222-+=3+22⇒tan θ=2+1⇒tan2θ=-1⇒2θ=43π⇒θ=83π⇒ a n =[r(cos83π+isin 83π)]n =r n(cosn 83π+isinn 83π)取实数值,其中r=2⇒sinn 83π=0⇒n 83π=k π⇒3n=8k ⇒n=8m,满足此条件且n ≥2007的最小正整数n 为2008,此时a n =a 2008=22008cos753π=-22008.[类题]:1.(1989年全国高中数学联赛上海初赛试题)计算:(21i -)1989= .2.①(2011年全国高中数学联赛山东初赛试题)已知z=(3-3i)n,若z 为实数,则最小的正整数n 的值为 . 解:令tan θ=-33=-3⇒θ=35π⇒3-3i=23(cos35π+isin 35π)⇒z=(3-3i)n =[23(cos 35π+isin 35π)]n= (23)n[cos(35πn)+isin(35πn)]为实数⇔sin(35πn)=0⇔35πn=k π⇔k=35n⇒最小的正整数n 的值为3. ②(1985年全国高中数学联赛上海初赛试题)设n 为使a n =(213++213-i)n取实数的最小自然数,则对应此n 的 6 Y.P .M 数学竞赛讲座a n = .3.①(2003年全国高中数学联赛安徽初赛试题)设n 为不超过2003的正整数.如果有一个角θ使得(sin θ+icos θ)n=sinn θ+icosn θ成立,则这种n 的总个数为 .解:(sin θ+icos θ)n=[i(cos θ-isin θ)]n=i n[cos(-θ)+isin(-θ)]n=i n[cos(-n θ)+isin(-n θ)]=i n[cos(n θ)-isin(nθ)]=i n-1(sinn θ+icosn θ)⇒i n-1=1⇒n-1=4k ⇒n=4k+1(n ≤2003)⇒k ≤500⇒(k=0)这种n 的总个数为501.②(1988年全国高中数学联赛上海初赛试题)设m 、n 是自然数,且使(3+i)m=(1+i)n成立(其中i 是虚数单位),则乘积mn 的最小值是 .4.(2010年全国高中数学联赛山东初赛试题)已知z 为复数.若|z|=1,|z +i|=1,则当(z+i)n(n 为正整数)为实数时,|z+i|n的最小值为 .解:由|z|=1⇒z z =1,|z +i|=1⇒(z +i)(z-i)=1⇒(z -z)i=1⇒z-z =i ⇒z=±23+21i ⇒z+i=±23+23i=±3(21± 23i)⇒(z+i)n=(±3)n(21±23i)n,其中w=21±23i 是方程w 2-w+1=0的根⇒w 3=-1⇒n=3时,|z+i|n的最小值为33.5.(1985年全国高中数学联赛上海初赛试题)[(23i +)8+1]n当n 取1,2,…,100时,可得 个不同的数值. 解:[(23i +)8+1]n =[(-i)8(231i +-)8+1]n =[(-i ω)8+1]n =(ω2+1)n =(-ω)n,可得6个不同的数值. 7.单位复数[例7]:(1991年全国高中数学联赛试题)设a,b,c 均为非零复数,且ba =cb =ac ,则cb ac b a +--+的值为 .[解析]:设ba =cb =ac =x ⇒a=xb,b=xc,c=xa ⇒abc=x 3abc ⇒x 3=1⇒x=1,x=ω,x=ω2(三次方程有三个根)=0⇒cb a cb a +--+= 1122+--+x x x x =1,或ω,或ω2.[类题]:1.①(1980年全国高中数学联赛上海初赛试题)设x 1,x 2是方程x 2-x+1=0的两个根,则x 11980+198021x = .解:x i 6=1⇒x 11980=1,198021x =1⇒x 11980+198021x =2;②(2009年全国高中数学联赛湖北初赛试题)已知复数m 满足m+m 1=1,则m 2008+20091m= . 解:m+m 1=1⇒m 2-m+1=0⇒(m+1)(m 2-m+1)=0⇒m 3=-1⇒m 6=1⇒m 2008=m 4=-m,m 2009=m 5=m 1⇒m 2008+20091m=-m+m=0. 2.①(1990年全国高中数学联赛试题)设非零数复数x,y 满足x 2+xy+y 2=0,则代数式(y x x +)1990+(yx y +)1990的值是 . 解:x 2+xy+y 2=0⇒(y x )2+y x +1=0.令y x =ω⇒ω2+ω+1=0⇒ω3=1⇒(y x x +)1990+(y x y +)1990=19901990)1(ωω++1990)1(1ω+= 19902)(ωω-+19902)(1ω-=21ωω+=-1. ②(2006年全国高中数学联赛甘肃初赛试题)设非零数相异复数x,y 满足x 2+xy+y 2=0,则代数式[2))((y x y x xy -+]2006(x2006+y2006)的值是 .Y.P .M 数学竞赛讲座 73.(2011年全国高中数学联赛河南初赛试题)若z ∈C,且x 10=1,则1+x+x 2+x 3+…+x 2009+x 2010= .解:若z ∈R,由x 10=1⇒x=±1.当x=1时,1+x+x 2+x 3+…+x2009+x2010=2011;当x=-1时,1+x+x 2+x 3+…+x 2009+x2010=1;若z ≠±1,由x 10=1⇒(x 2-1)(x 8+x 6+x 4+x 2+1)=0⇒x 8+x 6+x 4+x 2+1=0⇒x 9+x 7+x 5+x 3+x=0⇒1+x+x 2+x 3+…+x 10=0⇒1+x+x 2+x 3+…+x2009+x 2010=1.4.(1999年第十届“希望杯”全国数学邀请赛(高二)试题)已知复数z 满足:z 3=27,则z 5+3z 4+2242= . 5.(2008年全国高中数学联赛甘肃初赛试题)设(23+2x i)2008=f(x)+ig(x)(f(x),g(x)均为实系数多项式),则f(x)的系数之和是 . 解:(23+2x i)2008=f(x)+ig(x)⇒f(1)+ig(1)=(23+21i)2008=(-i)2008(-21+23i)2008=ω2008=ω=-21+23i ⇒f(1)=-21. 8.复数方程[例8]:(1994年全国高中数学联赛试题)x 的二次方程x 2+z 1x+z 2+m=0中,z 1,z 2,m 均是复数,且z 12-4z 2=16+20i,设这个方程的两个根α,β满足|α-β|=27,求|m|的最大值和最小值.[解析]:由韦达定理知α+β=-z 1,αβ=z 2+m ⇒28=|α-β|2=|(α-β)2|=|(α+β)2-4αβ|=|z 12-4z 2-4m|=|16+20i-4m|⇒|m-(4+5i)|=7⇒m 在以A(4,5)为圆心,7为半圆的圆上⇒|m|≥7-|OA|=7-41;|m|≤7+|OA|=7+41.[类题]:1.(1995年全国高中数学联赛上海初赛试题)若虚数z 使2z+z 1为实数,则2z+z1的取值范围是_____. 2.(1993年全国高中数学联赛试题)二次方程(1-i)x 2+(λ+i)x+(1+i λ)=0(i 为虚数单位,λ∈R)有两个虚根的充分必要条件是λ的取值范围为________.解:设方程有实根x 0,则(x 02+λx 0+1)+(-x 02+x 0+λ)i=0⇒⎪⎩⎪⎨⎧=++-=++001020020λλx x x x ⇒(x 0+1)(λ+1)=0⇒x 0=-1⇒λ=2;λ=-1⇒x 02-x 0+1=0无实根,综上,λ=2;所以,有两个虚根的充分必要条件是λ的取值范围为λ≠2.3.(1984年全国高中数学联赛上海初赛试题)方程z 4=z (z 为z 的共轭复数)的根为 .解:z 4=z ⇒|z|4=|z |⇒|z|=0,1⇒z=0,z 5=z z ⇒z 5=1⇒z=cos52πk +isin 52πk (k=0,1,2,3,4) 4.(2001年第十二届“希望杯”全国数学邀请赛(高二)试题)复数z 满足等式z+z |z|3=0,则z= .解:由z+z |z|3=0⇒z=-z |z|3⇒|z|=|-z |z|3|⇒|z|=|z |||z|3⇒|z|=|z|4⇒|z|=0,1;当|z|=0时,由z+z |z|3=0⇒z=0;当|z|=1时,由z+z |z|3=0⇒z+z =0⇒z 是纯虚数⇒z=±i. 5.(2000年全国高中数学联赛试题)设ω=cos5π+isin5π,则以ω,ω3,ω7,ω9为根的方程是( )(A)x 4+x 3+x 2+x+1=0 (B)x 4-x 3+x 2-x+1=0 (C)x 4-x 3-x 2+x+1=0 (D)x 4+x 3+x 2-x -1=0 解:ω=cos5π+isin5π=cos102π+isin102π⇒ω,ω2,…,ω10是1的10个10次方根⇒(x-ω)(x-ω2)…(x-ω10)=x 10-1;又因ω2,ω4,ω6,ω8,ω10是1的5个5次方根⇒(x-ω2)(x-ω4)…(x-ω10)=x 5-1;两式相除得:(x-ω)(x-ω3)…(x-ω9)=x 5+1,其中ω5=cos π+isin π=-1⇒x-ω5=x+1⇒(x-ω)(x-ω3)(x-ω7)(x-ω9)=115++x x =x 4-x 3+x 2-x+1.选(B). 9.复数与点[例9]:(1998年全国高中数学联赛试题)设复数z=cos θ+isin θ(00≤θ≤1800),复数z,(1+i)z,2z 在复平面上对应的三个点分别是P,Q,R,当P,Q,R 不共线时,以线段PQ,PR 为两边的平行四边形的第四个顶点为S,则点S 到原点距离的最大值是 _.[解析]:设点S 对应的复数为ω,由PQSR 为平行四边形⇒ω+z=(1+i)z+2z⇒ω=zi+2z ⇒|ω|2=(zi+2z )(-z i+2z)=5z z +2i(z 2-z 2)=5-4sin2θ≤9,当θ=43π时,等号成立⇒点S 到原点距离的最大值是3. 8 Y.P .M 数学竞赛讲座 [类题]:1.(1989年全国高中数学联赛试题)若A,B 是锐角△ABC 的两个内角,则复数z=(cosB-sinA)+i(sinB-cosA)在复平面内所对应的点位于( )(A)第一象限 (B)第二象限 (C)第三象限 (D)第四象限2.(2011年全国高中数学联赛安徽初赛试题)若点A,B 分别对应复数z,z -1,z ∉R,则直线AB 与x 轴的交点对应的复数为(用z 和z 表示). 解:设A(a,b)⇒B(22b a a +,-22b a b +)⇒直线AB:y-b=)1()1(2222-+++b a a b a b (x-a),令y=0⇒x=1222++b a a =1++z z z z .3.(2002年湖南高中数学夏令营试题)已知z 为复数,arg(z+3)=1350,则|3||6|1i z z -++取最大值时,z= .解:|3||6|1i z z -++取最大值⇒|z+6|+|x-3i|取最小值⇒z 在线段x-2y+6=0(-6≤x ≤0)上;arg(z+3)=1350⇒z+3在射线y=-x(x ≤0)上⇒z 在射线y=-x-3(x ≤-3)上⇒z=-4+i.4.(1999年第十届“希望杯”全国数学邀请赛(高二)试题)在复平面内由i1,1-i ,(i-1)3对应的点构成的三角形的最大内角等于 .5.(2000年全国高中数学联赛河北初赛试题)如果复数z 满足|z|=1,A(-1,0),B(0,-1)是复平面上两点,那么函数f(z)= |(z+1)(z -i)|取最大值时,△ABZ 的形状是 .解:设z=cos θ+isin θ⇒f(z)=|(z+1)(z -i)|=|[(1+cos θ)+isin θ][cos θ-(1+sin θ)i]|=|(1+cos θ)+isin θ||cos θ -(1+sin θ)i|=θcos 22+θsin 22+=2)sin 1)(cos 1(θθ++,为等腰三角形.10.模的意义[例10]:(2002年全国高中数学联赛试题)已知复数z 1,z 2满足|z 1|=2,|z 2|=3,若它们所对应向量的夹角为600,则|2121z z z z -+|= . [解析]:设z 1,z 2,z 1+z 2对应的点分别为A,B,C,则四边形OACB 是平行四边形,且∠AOB=600⇒|z 1-z 2|=|AB|=7;|z 1+z 2|=|OC|=19⇒|2121z z z z -+|=7133.[类题]:1.①(2007年全国高中数学联赛湖北初赛试题)设复数z 1=(2-a)+(1-b)i,z 2=(3+2a)+(2+3b)i,z 3=(3-a)+(3-2b)i,其中a,b ∈R,当|z 1|+|z 2|+|z 3|取得最小值时,3a+4b= .解:易求得z 1+z 2+z 3=8+6i,于是|z 1|+|z 2|+|z 3|≥|z 1+z 2+z 3|=|8+6i|=10,|z 1|+|z 2|+|z 3|取得最小值,当且仅当(2-a):(1-b)= (3+2a):(2+3b)=(3-a):(3-2b)=8:6(四向量同向),解得a=37,b=45,所以3a+4b=12. ②(1993年全国高中数学联赛上海初赛试题)已知复数z 1,z 2满足|z 1|≥1,|z 2|≥23,则复数i 1993z 1+i 1995z 2+2z 1z 2的模长的最小值是 . 解:i1993=i,i 1995=-i,|i 1993z 1+i1995z 2+2z 1z 2|=|i(z 1-z 2)+2z 1z 2|≥2|z 1z 2|-|z 1-z 2|≥3-(1+23)=21.。
高中数学竞赛复数法解决平面几何近年来,高中数学竞赛中,复数法在解决平面几何问题中发挥着重要的作用。
复数法作为一种独特的解题方法,通过将平面上的点和向量用复数表达,不仅简化了计算过程,而且能够直观地理解几何性质,极大地提高了解题效率和准确性。
本文将介绍复数法在高中数学竞赛中解决平面几何问题的具体应用。
一、利用复数表示平面上的几何图形在复数法中,我们可以将平面上的点用复数表示。
假设平面上有一个点A(x1,y1),那么我们可以用复数z1=x1+iy1来表示它。
同理,另一个点B(x2,y2)可以用复数z2=x2+iy2表示。
通过这种方式,我们可以将平面上的任意点都用复数表示出来,从而在解决几何问题时可以直接利用复数的性质进行运算。
二、利用复数表示向量及其性质在平面几何中,向量是一个非常重要的概念。
利用复数法,我们可以将向量也用复数表示。
假设平面上有一个向量AB,我们可以用复数z表示,其中z=z2-z1。
这样,通过相减操作,我们可以得到向量的复数表示。
利用复数表示向量后,我们可以方便地进行向量运算,如向量的加法、减法、数量乘法等,从而简化计算过程。
三、利用复数解决平面几何问题利用复数法解决平面几何问题的关键是要灵活运用复数的性质和运算规则。
例如,在解决线段的中点问题时,我们可以利用复数的加法和数量乘法运算轻松得出线段的中点坐标。
同样,在解决直线的垂直平分线问题时,我们可以利用向量复数表示和向量垂直的性质推导出垂直平分线的方程。
此外,利用复数法还可以解决三角形的性质问题。
例如,在解决等边三角形的外接圆问题时,我们可以利用复数表示三角形的顶点,通过求解复数的模长和距离的关系得出外接圆的半径。
这种方法不仅简洁高效,而且可以避免繁琐的计算过程。
四、复数法解决平面几何问题的优点与传统的解题方法相比,复数法在解决平面几何问题时具有以下优点:(1)简化计算:通过利用复数的性质,可以通过简单的加减乘除运算得到所需的几何性质或结果,避免繁琐的计算过程。
高中数学竞赛与强基计划试题专题:复数一、单选题1.(2019·全国·高三竞赛)在复平面上,满足122z z i z ---=的点Z 的轨迹是().A .圆B .椭圆C .一段圆弧D .双曲线2.(2020·北京·高三强基计划)设a ,b ,c ,d 是方程43223450x x x x ++++=的4个复根,则11112222a b c d a b c d ----+++=++++()A .43-B .23-C .23D .前三个答案都不对3.(2020·北京·高三校考强基计划)已知复数12,z z 在复平面内对应的点为12,Z Z ,O 为坐标原点.若22111221,520z z z z z =-+=,则12 OZ Z 的面积为()A .1BC .2D.4.(2020·北京·高三强基计划)已知复数z满足112z =,则232020,,,,z z z z 中不同的数有()A .4个B .6个C .2019个D .以上答案都不正确二、多选题5.(2020·北京·高三校考强基计划)设复数z 满足|37i |3z -=,令21221iz z z z -+=-+,则1z 的()A .最大值为83B .最大值为73C .最小值为43D .最小值为236.(2020·北京·高三校考强基计划)已知()1010551()2f z z z z z --=+++,则()A .()0f z =存在实数解B .()0f z =共有20个不同的复数解C .()0f z =的复数解的模长都等于1D .()0f z =存在模长大于1的复数解7.(武汉·高三统考强基计划)设12z z ,)AB .没有最小值C .最大值为2D .没有最大值8.(2020·湖北武汉·高三统考强基计划)设复数z 的实部和虚部都是整数,则()A .2z z -的实部都能被2整除B .3z z -的实部都能被3整除C .4z z -的实部都能被4整除D .5z z -的实部都能被5整除三、填空题9.(2018·辽宁·高三竞赛)设a 、b均为实数,复数11)i z b =-+与2z 2bi =-+的模长相等,且12z z 为纯虚数,则a +b=_____.10.(2019·全国·高三竞赛)已知虚数1z 、2z满足12z z -=,2110z z q ++=,2220z z q ++=.则实数q =______.11.(2022·广西·高二统考竞赛)若复数z 满足i =1+i zz z -,则z 的虚部为______.12.(2019全国高三竞赛)复平面上动点cos sin 23,,,cos sin cos sin 4Z k k R Z θθπθθπθθθθ-⎛⎫⎛⎫∈≠+∈ ⎪⎪++⎝⎭⎝⎭的轨迹方程为______.13.(2020·江苏·高三竞赛)已知复数z 满足1z =的最大值为__________.14.(2019·全国·高三竞赛)设()20102010201012kkk k k k f x x a x i b x ==⎛⎫=+=+ ⎪ ⎪⎝⎭∑∑,其中,,0,1,,2010k k a b R k ∈= 、.则()670330k k k a b =+=∑____________.15.(2019·全国·高三竞赛)设k 是复数,关于x 的一元二次方程2102x kx +-=的两个复数根为12x x 、.若3122x x k +=,则k =_____.16.(2021·浙江·高二竞赛)设复数i z x y =+的实虚部x ,y 所形成的点(),x y 在椭圆221916x y +=上.若1i i z z ---为实数,则复数z =______.17.(2022·福建·高二统考竞赛)已知复数1z 、2z 在复平面上对应的点分别为A 、B ,且12z =,221122240z z z z -+=,O 为坐标原点,则△OAB 的周长为___________.18.(2019·全国·高三竞赛)已知正实数a b 、满足()22253a b b +=>,复数u v w 、、满足,3w a bi u w v =+-=,若1v =,那么,当u 的辐角主值最小时,uw的值为______.19.(2019·全国·高三竞赛)复数列01,,z z ⋅⋅⋅满足01z =,1nn niz z z +=.若20111z =,则0z 可以有_______种取值.20.(2021·浙江·高三竞赛)复数1z ,2z 满足123z z ==,12z z -=()()10101221z z z z +=______.21.(2021·全国·高三竞赛)设复数1z 、2z 、3z 满足1232z z z ===,则122331123z z z z z z z z z ++=++___________.22.(2021·北京·高三强基计划)已知复数z 满足1111011110111,z z z z z z z ---=+-=+-,则满足条件的z 有_________个.23.(2021·全国·高三竞赛)已知实数x 、y满足151,411,4x y x y ⎫+=⎪+⎭⎫-=-⎪+⎭,则x =__________.四、解答题24.(2018·全国·高三竞赛)已知()()cos cos cos sin sin sin cos sin x y z x y za x y z x y z ++++==++++求()()()cos cos cos y z z x x y +++++的值.25.(2019·全国·高三竞赛)已知a 、b 、c 是互不相等的复数,满足0abc ≠,a b b c c aa b b c c a+++==---.求证:200720072007a b c ==.26.(2019·全国·高三竞赛)设21i =-.证明:112cot cotn k k i n n ππ-=⎛⎫-+ ⎪⎝⎭∏为纯虚数.27.(2021·全国·高三竞赛)设,[0,2)a θπ∈∈R ,复数123cos isin ,sin i cos ,(1i)z z z a θθθθ=+=+=-.求所有的(,)a θ,使得1z 、2z 、3z 依次成等比数列.28.(2019·全国·高三竞赛)设{}1,2,,X p =,其中p 为质数.对X 的一个子集A ,如果A 中所有元素的和(空集的元素和规定为0)为p 的倍数,则称A 是X 的一个“倍子集”.试求X 的所有倍子集的个数S .29.(2021·全国·高三竞赛)设122020,,,z z z 和122020,,,w w w 为两组复数,满足:202020202211i ii i z w==>∑∑.求证:存在数组()122020,,,εεε (其中{1,1}i ε∈-),使得2020202011i iiii i zwεε==>∑∑.30.(2021·全国·高三竞赛)设{}n a 、{}n x 是无穷复数数列,满足对任意正整数n ,关于x 的方程210n n x a x a +-+=的两个复根恰为n x 、1n x +(当两根相等时1n n x x +=).若数列{}n x 恒为常数,证明:(1)2n x ≤;(2)数列{}n a 恒为常数.高中数学竞赛与强基计划试题专题:复数答案一、单选题1.(2019·全国·高三竞赛)在复平面上,满足122z z i z ---=的点Z 的轨迹是().A .圆B .椭圆C .一段圆弧D .双曲线【答案】C【详解】设()0,0A 、()1,0B 、()1,2C ,z 对应的点为Z .由122z z i z -+--=,可得···ZB AC ZC AB ZA BC +=.由托勒密逆定理知,Z 的轨迹为ABC ∆外接圆上不含点A 的那一段BC .2.(2020·北京·高三强基计划)设a ,b ,c ,d 是方程43223450x x x x ++++=的4个复根,则11112222a b c d a b c d ----+++=++++()A .43-B .23-C .23D .前三个答案都不对【答案】A【分析】利用换元法将原方程转化为高次方程,再结合高次方程的韦达定理可求代数式的值.【详解】法1:设12a a a -'=+,则211a a a +''=--,类似的,定义,,b c d ''',则,,,a b c d ''''是方程43221212121234501111x x x x x x x x ++++⎛⎫⎛⎫⎛⎫⎛⎫-+-+-+-+= ⎪ ⎪ ⎪ ⎪----⎝⎭⎝⎭⎝⎭⎝⎭,即432234(21)2(21)(1)3(21)(1)4(21)(1)5(1)0x x x x x x x x +-+-++--+-+-=的4个复根,方程左侧中4x 的系数为161612859-+-+=,3x 的系数为3112432C 2(8C 2)3(84)4(231)5412--+⨯+-+--⨯+-⨯=根据韦达定理,有12493a b c d '++-'='+=-'.法2:题中代数式也即1111432222a b c d ⎛⎫-+++ ⎪++++⎝⎭,因此2,2,2,2a b c d ++++是关于x 的方程432(2)2(2)3(2)4(2)50x x x x -+-+-+-+=,即4326151690x x x x -+-+=的4个复根,故1111,,,2222a b c d ++++为方程23416151690x x x x -+-+=的4个复根,从而11111622229a b c d +++=++++,原式为1644393-⨯=-.3.(2020·北京·高三校考强基计划)已知复数12,z z 在复平面内对应的点为12,Z Z ,O 为坐标原点.若22111221,520z z z z z =-+=,则12 OZ Z 的面积为()A .1BC .2D .【答案】A【分析】利用复数乘法的几何意义可求12 OZ Z 的面积.【详解】根据题意,有1212i z z z =-⋅±,故()2112i z z ±=⋅,故2z 可看出由1z故121121OZ Z S =⨯=△4.(2020·北京·高三强基计划)已知复数z 满足112z =,则232020,,,,z z z z 中不同的数有()A .4个B .6个C .2019个D .以上答案都不正确【答案】B【分析】根据复数的三角形式可求61z =,从而可判断出不同的数的个数.【详解】根据题意,有61cos isin 1233z z ππ⎛⎫⎛⎫==-+-⇒= ⎪ ⎪⎝⎭⎝⎭,于是232020,,,,z z z z 中有6个不同的数.二、多选题5.(2020·北京·高三校考强基计划)设复数z 满足|37i |3z -=,令21221iz z z z -+=-+,则1z 的()A .最大值为83B .最大值为73C .最小值为43D .最小值为23【答案】AD【分析】利用复数差的几何意义可求1z 的最值【详解】根据题意,有7i 13z -=,且1(1i)z z =-+,于是1z 为以点70,3⎛⎫⎪⎝⎭为圆心,1为半径的圆上的点到点(1,1)的距离,其取值范围是551,133⎡⎤-+⎢⎥⎣⎦,因此1z 的最小值为23,最大值为83.6.(2020·北京·高三校考强基计划)已知()1010551()2f z z z z z --=+++,则()A .()0f z =存在实数解B .()0f z =共有20个不同的复数解C .()0f z =的复数解的模长都等于1D .()0f z =存在模长大于1的复数解【答案】BC设55z z t -+=,利用换元法可求得52t z =,从而可判断()0f z =的20个复数解的模都是1.【详解】设55z z t -+=,则()101055211222z z z z t t --+++=+-,于是1()04f z t -=⇒=,这两个t 的取值都在区间(2,2)-内.故55z z t -+=有解52t z =,因此()0f z =有20个不同的复数解.当t =5||1z =,因此()0f z =的复数解的模长都等于1.综上所述,选项BC 正确.7.(2020武汉高三统考强基计划)设12z z ,是非零复数,它们的实部和虚部都是非负实数,)AB .没有最小值C .最大值为2D .没有最大值【答案】AD【分析】在复平面内(O 为坐标原点),设复数2121,,z z z z +对应的点分别为,,,A B C AOB θ∠=,利用复数的几何意义及向量的加法和平面向量数量积,然后结合已知条件及均值不等式即可.【详解】解:在复平面内(O 为坐标原点),设复数2121,,z z z z +对应的点分别为,,,A B C AOB θ∠=,因为12z z ,是非零复数,它们的实部和虚部都是非负实数,所以0,2π⎡⎤θ∈⎢⎣⎦,从而有0cos 1θ≤≤),===又由均值不等式有2OA OB OB OA+≥ ,当且仅当OA OB =时等号成立,,当且仅当OA OB = ,且2πθ=(比如12i z z ==1,)时等号成立.8.(2020·湖北武汉·高三统考强基计划)设复数z 的实部和虚部都是整数,则()A .2z z -的实部都能被2整除B .3z z -的实部都能被3整除C .4z z -的实部都能被4整除D .5z z -的实部都能被5整除【答案】BD【分析】设z a bi =+分别计算出2345,,,z z z z 代入化简即可.【详解】设z a bi =+则2222z a b abi=-+()3322333z a ab a b b i =-+-()442243364z a a b b a b ab i=-++-()553244235105510z a a b ab a b a b b i=-++-+因为()()()2222212z z a a b ab b i a a b ab b i-=--+-=--+-()1a a -可以被2整除,当b 为奇数时()21a a b --不能被2整除,故排除A.因为()3322333z z a a ab a b b b i -=--+--,由费马小定理得3a a -能被3整除,故B 对.4z z -的实部为42246a a b b a -+-,当,a b 为奇数时42246a a b b a -+-也为奇数,故不能被4整除,C 排除.5z z -的实部为5324105a a a b ab --+,由费马小定理5a a -能被5整除,故5324105a a a b ab --+能被5整除,故D 对.三、填空题9.(2018·辽宁·高三竞赛)设a 、b均为实数,复数11)i z b =-+与2z 2bi =-+的模长相等,且12z z 为纯虚数,则a +b=_____.1【详解】由题设知121z z =,且1122z z z z =为纯虚数,故12z i z =±.因此1,2.b b ⎧-=-⎪=-或1,2.b b ⎧-=-⎪=-解得12a b ==或12a b +==,故1a b +±.10.(2019·全国·高三竞赛)已知虚数1z 、2z满足12z z -=,2110z z q ++=,2220z z q ++=.则实数q =______.【答案】1【详解】由12z z -=,知12z z ≠.又由方程解的定义知,1z 、2z 是二次方程20x x q ++=的两个虚根,则有140q ∆=-<.解方程得1,2z =于是,12z z -=.解得1q =.11.(2022·广西·高二统考竞赛)若复数z 满足i =1+i zz z -,则z 的虚部为______.【答案】0或1【详解】设z a b =+i,则z a b =-i.设()()()i i i i 1i a b a b a b +---=+,22i 1i a b b a ⇒+--=+,21,0a b b ⇒=--=,0b ⇒=或1,12.(2019·全国·高三竞赛)复平面上动点cos sin 23,,,cos sin cos sin 4Z k k R Z θθπθθπθθθθ-⎛⎫⎛⎫∈≠+∈ ⎪⎪++⎝⎭⎝⎭的轨迹方程为______.【答案】2212y x -=【详解】注意到221sin24,1sin21sin2x y θθθ-==++,则2212y x -=.13.(2020·江苏·高三竞赛)已知复数z 满足1z =的最大值为__________.【答案】3【详解】解析:由题意可得22221z ===-,则()11z z -=-表示复平面上点Z到(1,的距离.如图所示,(1,C ,由此可得13ZC ≤≤的最大值为3.14.(2019·全国·高三竞赛)设()201020102010kkk k k k f x x a x i b x ==⎛⎫==+ ⎪ ⎪⎝⎭∑∑,其中,,0,1,,2010k k a b R k ∈= 、.则()670330k k k a b =+=∑____________.【答案】100423-⨯【详解】注意到()20102010201033320101xxx i i k kk f x x e e x Cx e--=⎛⎫⎛⎫=+=+⋅ ⎪ ⎪⎝⎭⎝⎭∑,所以670300k k b ==∑,且20102010201020102670210041004333663001110132333j i i i i i kk j a f e e e e e πππππ⋅--==⎡⎤⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎢⎥⎢⎥==++++=+=-⨯ ⎪ ⎪ ⎪ ⎪ ⎪⎢⎥⎢⎥⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦⎣⎦∑∑.15.(2019·全国·高三竞赛)设k 是复数,关于x 的一元二次方程2102x kx +-=的两个复数根为12x x 、.若3122x x k +=,则k =_____.【答案】0或32i 或32i-【详解】因为222102x kx +-=,所以,32222102x kx x +-=.从而,3222212x kx x =-+221122k kx x ⎛⎫=--++ ⎪⎝⎭22122k k x ⎛⎫=+- ⎪⎝⎭.代入3122x x k +=,得()21221x k x k k++-=()22222230k k x k kx k ⇒-+=⇒-=0k ⇒=或232x k=(当0k ≠时).当0k ≠时,把232x k=代入222102x kx +-=,得29310422k +-=.解得32k i =±.综上所述,0k =或32i ±.16.(2021·浙江·高二竞赛)设复数i z x y =+的实虚部x ,y 所形成的点(),x y 在椭圆221916x y+=上.若1i i z z ---为实数,则复数z =______.i或i +.【详解】由1i 11i (1)i z z x y --=--+-,所以1y =,则4x =±,所以i z或i z =.17.(2022·福建·高二统考竞赛)已知复数1z 、2z 在复平面上对应的点分别为A 、B ,且12z =,221122240z z z z -+=,O 为坐标原点,则△OAB 的周长为___________.【答案】【详解】由221122240z z z z -+=,得21122240z zz z ⎛⎫-⋅+= ⎪⎝⎭,所以12=1z z ±,所以()12=1z z,()122=1=2z z z ±,又12z =,所以21z =,()12222=1==z z z z --,所以△OAB的周长为18.(2019·全国·高三竞赛)已知正实数a b 、满足()22253a b b +=>,复数u v w 、、满足,3w a bi u w v =+-=,若1v =,那么,当u 的辐角主值最小时,uw的值为______.【答案】16122525i -【详解】由1v =,知33u w v -==,于是,在复平面上,u 对应的点P 在以w 对应的点M 为圆心、3为半径的圆C 上,当u 的辐角主值最小时,OP 与圆C 相切,而5OM =,3PM =,则4OP =,于是,54w u =,而wu 的辐角主值POM θ=∠,又4cos 5θ=,3sin 5θ=,于是,543314554w i i u ⎛⎫=+=+ ⎪⎝⎭,因此,16122525u i w =-.19.(2019·全国·高三竞赛)复数列01,,z z ⋅⋅⋅满足01z =,1nn niz z z +=.若20111z =,则0z 可以有_______种取值.【答案】20112【详解】显然,对任意的非负整数n 均有1n z =.设[)()0,2n i n o z e θθπ=∈.则12122n n ni i n n i ee e πθθθπθθ+⎛⎫+ ⎪⎝⎭+-=⇒=+1022222n n n πππθθθ+⎛⎫⎛⎫⇒+=+=⋅⋅⋅=+ ⎪ ⎪⎝⎭⎝⎭.由20111z =,得()20112k k Z θπ=∈,即201102222k ππθπ⎛⎫+=+ ⎪⎝⎭.由[)00,2θπ∈,得2010201022252k ππππ≤+<⨯20112011200920092152125244k k -⨯-⇒≤<⇒≤<⨯.因此,满足条件的n z 共有2009200920115222⨯-=(个).20.(2021·浙江·高三竞赛)复数1z ,2z 满足123z z ==,12z z -=()()10101221z z z z +=______.【答案】203【详解】如图所示,设12,z z 在复平面内对应的点分别为12,Z Z ,由已知得12123,OZ OZ Z Z ==-=由余弦定理得向量12,OZ OZ 所成的角为2π3,不妨设()12223cos sin ,3cos sin 33z i z i ππθθθθ⎛⎫⎛⎫⎛⎫=+=+++ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,()()()12223cos sin ,3cossin 33z i z i ππθθθθ⎛⎫⎛⎫⎛⎫=-+-=--+-- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,12229cos sin 33z z i ππ⎛⎫⎛⎫⎛⎫=-+- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,1222 9cos sin 33z i ππ⎛⎫=+ ⎪⎝⎭,()10201220203cos sin 33z z i ππ⎛⎫⎛⎫⎛⎫=-+- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,()1020122020 3cos sin 33z i ππ⎛⎫=+ ⎪⎝⎭,()()1010202020121220232cos 32cos 333z z z ππ+=⨯⨯=⨯⨯=,()()10102012123z z z z +=.21.(2021·全国·高三竞赛)设复数1z 、2z 、3z 满足1232z z z ===,则122331123z z z z z z z z z ++=++___________.【答案】2【详解】解析:1231231213112312312313123111124t z z z z z z z z z z z z z z z z z z z z z z z z z z z z ⎛⎫++ ⎪++++⎝⎭==⋅⋅=++++++.22.(2021·北京·高三强基计划)已知复数z 满足1111011110111,z z z z z z z ---=+-=+-,则满足条件的z 有_________个.【答案】1【分析】将题设中的方程化为()()1011(1)110z z z ---=,再根据10,11均与111互质可得满足条件的z 的个数.【详解】根据题意,有()()101101(1)(1)11z z z z z z ------=---,于是()()()10110(1)111z z z z ----=--,因此()()111010(1)1(1)1z z z z z --=--,从而()()1011(1)110z z z ---=,注意到10,11均与111互质,因此满足条件的z 只有1个,为1z =.23.(2021·全国·高三竞赛)已知实数x 、y满足151,411x y x y ⎫+=⎪+⎭⎫-=-⎪+⎭,则x =__________.【答案】116u v ==,则原方程组222222221514115311i 411u u v u v u v u v v u v ⎧⎛⎫+= ⎪⎪+⎝⎭-⎪⎛⎫⎛⎫⇔++-=⎨⎪++⎝⎭⎝⎭⎛⎫⎪-=- ⎪+⎝⎭⎩22i 1i u v u v z v v z -⇔++=+=+i z u v =+)1z ⇔=-(舍)或113,41616z x y +=⇒==.四、解答题24.(2018·全国·高三竞赛)已知()()cos cos cos sin sin sin cos sin x y z x y za x y z x y z ++++==++++求()()()cos cos cos y z z x x y +++++的值.【答案】0【详解】令S x y z =++.又cos sin ix e x i x =+,cos sin iy e y i y =+,cos sin iz e z i z =+.则()()()()cos cos cos sin sin sin cos sin ix iy iz e e e x y z i x y z a x y z ia x y z ++=+++++=+++++()i x y z iS ae ae ++==.同理,ix iy iz iS e e e ae ----++=.故()()()()()()()()i y z i z x i x y i S x i S y i S z iS ix iy iz iS iS iS iS ee e e e e e e e e e ae ae a+++--------++=++=++===则()()()()()()cos cos cos sin sin sin x y x z y z i x y x z y z a ⎡⎤⎡⎤+++++++++++=⎣⎦⎣⎦.所以,()()()cos cos cos x y x z y z a +++++=且()()()sin sin sin 0x y x z y z +++++=.25.(2019·全国·高三竞赛)已知a 、b 、c 是互不相等的复数,满足0abc ≠,a b b c c aa b b c c a+++==---.求证:200720072007a b c ==.【详解】由已知条件知,复数a 、b 、c 两两不等,且皆不为0.对题中比例式用合比、分比可得a b c b c a==.设1a b ck b c a===≠,则c ak =,2b ak =,3a ak =.但0a ≠,故31k =(但1k ≠),有()2007200720072007cak a k ==︒()66920073669200732007a k a k a ⨯===.同理,20072007ba =.因此,200720072007ab c ==.26.(2019·全国·高三竞赛)设21i =-.证明:112cot cot n k k i n n ππ-=⎛⎫-+ ⎪⎝⎭∏为纯虚数.【详解】首先证明:若21i =-,则()()11cot2n n n k k i x x i x i n nπ-=⎛⎫⎡⎤-=--+ ⎪⎣⎦⎝⎭∏①令()()()2n ni P x x i x i n ⎡⎤=--+⎣⎦.则()P x 是一个1n -次多项式,其首项系数为()1112n n i C i C n⎡⎤--=⎣⎦.又当()cot11k x k n nπ=≤≤-时,()cot nnk x i i n π⎛⎫+=+ ⎪⎝⎭csc cos sin nnk k k i n n n πππ⎛⎫⎛⎫=+ ⎪ ⎪⎝⎭⎝⎭csc cos sin knn k i n n n πππ⎡⎤⎛⎫⎛⎫=+⎢⎥⎪ ⎪⎝⎭⎝⎭⎢⎥⎣⎦()csc 1nk k n π⎛⎫=- ⎪⎝⎭csc cos sin nnk k k i n n n πππ⎛⎫⎛⎫=- ⎪ ⎪⎝⎭⎝⎭()nx i =-.所以,cot0k P n π⎛⎫= ⎪⎝⎭.由因式定理得()11cot n k k P x x n π-=⎛⎫=- ⎪⎝⎭∏.在式①中令2cotx i nπ=+.则112cot cot n k k i n n ππ-=⎛⎫-+ ⎪⎝⎭∏2cot 2cot 22n ni i n n n ππ⎡⎤⎛⎫⎛⎫=-+⎢⎥ ⎪ ⎪⎝⎭⎝⎭⎢⎥⎣⎦12i cot cot i n n n n n n ππ-⎡⎤⎛⎫⎛⎫=-+⎢⎥⎪ ⎪⎝⎭⎝⎭⎢⎥⎣⎦12csc nn i n n π-⎛⎫= ⎪⎝⎭.cos cos sin n m i n n n πππ⎡⎤⎛⎫⎛⎫-+⎢⎥⎪ ⎪⎝⎭⎝⎭⎢⎥⎣⎦()12csc csc cos sin nnn i i n n n ππππ-⎡⎤⎛⎫⎛⎫=-+⎢⎥ ⎪ ⎪⎝⎭⎝⎭⎢⎥⎣⎦12csc cos 1nn n i n n n ππ-⎡⎤⎛⎫⎛⎫=+⎢⎥ ⎪⎪⎝⎭⎝⎭⎢⎥⎣⎦12cot csc nnn i n n n ππ-⎡⎤⎛⎫⎛⎫=+⎢⎥ ⎪ ⎝⎭⎝⎭⎢⎥⎣⎦.命题获证.27.(2021·全国·高三竞赛)设,[0,2)a θπ∈∈R ,复数123cos isin ,sin i cos ,(1i)z z z a θθθθ=+=+=-.求所有的(,)a θ,使得1z 、2z 、3z 依次成等比数列.【详解】因为2132z z z =,所以:()()2(1)cos i sin sin i cos a i θθθθ-+=+,整理得:()()22cos sin sin cos i sin cos 2isin cos a a θθθθθθθθ++-=-+,所以(cos sin )(cos sin )(sin cos ),(sin cos )2sin cos .a a θθθθθθθθθθ+=+-⎧⎨-=⎩(1)3cos sin 04πθθθ+=⇒=或74π,34πθ=时,代入得2a =-;74πθ=时,代入得a =(2)若cos sin 0θθ+≠,则有:22(sin cos )2sin cos tan 4tan 10θθθθθθ-=⇒-+=,故tan 2θ=θ的值为12π或512π或1312π或1712π,对于的a分别为2-2-,故所有的(,)a θ为:5313177,,,2122122421221224ππππππ⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫--- ⎪⎪⎪⎪⎪ ⎪⎪⎪⎪⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭.28.(2019·全国·高三竞赛)设{}1,2,,X p =,其中p 为质数.对X 的一个子集A ,如果A 中所有元素的和(空集的元素和规定为0)为p 的倍数,则称A 是X 的一个“倍子集”.试求X 的所有倍子集的个数S .【答案】()2,21222,.pp S p p p =⎧⎪=⎨+-⎪⎩;为奇质数【详解】当2p =时,{}1,2X =,此时,X 有2个倍子集:∅、{}2,所以,2S =.当2p >时,p 为奇质数,令()()()()22012111p mm f x x x x a a x a x a x=+++=++++ 考察{}1,2,,X p =的元素和为t 的所有子集的个数.当0t >时,它就是不定方程12r i i i t +++= 的正整数解()()1212,,,,r r r i i i i i i <<< 的个数,也就是()f x 的展开式中t x 的系数t a ;当0t =时,其和为t 的子集只有空集,子集的个数为01a =.所以,X 的所有倍子集的个数,就是()f x 的展开式中那些次数为p 的倍数的项的系数和,即02p p S a a a =+++.设22cossin i p pππω=+.当n 是p 的倍数时,()121p n n n p ωωω-++++= ;当n 不是p 的倍数时,有()()121101pn p n n n nωωωωω--++++==-.于是,由()2012mm f x a a x a x a x =++++ ,得()()()()211f f f f ωωω-++++ 2242012012012m mm m m a a a a a a a a a a a a ωωωωωω=++++++++++++++()()2111012p m p p m a a a a ωωω---+++++⋯+ ()02p p p a a a pS =+++= .又()()()()2111p f x x x x =+++ ,则()()()()211p f f f f ωωω-++++=p 112+()p k k f ω-=∑其中,()()()()2111k k k pkf ωωωω=+++ .注意到当1,2,,1k p =- 时,(),1k p =,所以,,2,,k k pk 是模p 的完系.而1pr t ωω+=,则2,,,k k pk ωωω 是2,,,p ωωω的一个排列.故()()()()2111k p f ωωωω=+++ ,1,2,,1k p =- .又()()()21p p x x x x ωωω-=--- ,而p 为奇数,取1x =-,得()()()21112pωωω+++= .故()()()()21112k pf ωωωω=+++= ,1,2,,1k p =- .则()()()()211p f f f f ωωω-++++ 1111=2()2222(1)p p k p p pk k f p ω--==+=+=+-∑∑比较两式的右边得()221ppS p =+-.故()1222pS p p=+-,2p >.综上,()p2,2122p 2,.p p S p =⎧⎪=⎨+-⎪⎩;为奇质数29.(2021·全国·高三竞赛)设122020,,,z z z 和122020,,,w w w 为两组复数,满足:202020202211i i i i z w ==>∑∑.求证:存在数组()122020,,,εεε (其中{1,1}i ε∈-),使得2020202011i iiii i zwεε==>∑∑.【详解】用()()1212,,,,,,n n f εεεεεε∑表示对所有数组()12,,,nεεε 的求和,下面用数学归纳证明如下的等式:()12221122,,,12n nn n n ii z z z z εεεεεε=+++=∑∑ ①(1)当1n =时,①式显然成立;当2n =时,()()()()()()222212121212121211221222z z z z z z z z z z z z z z z z z z ++-=+++--=+=+,即①式成立.(2)假设n k =时,①式成立,则1n k =+时,我们有()1212112211,,,k k k z z z εεεεεε+++⋅⋅⋅+++∑ ()()12221122111221,,,k k k k k k k z z z z z z z z εεεεεεεεε++⋅⋅⋅=++++++++-∑()()122211221,,2k k k k z z z z εεεεεε+⋅⋅⋅⋅=++++∑1221111222k k k k i n i i i z z z +++==⎛⎫⎛⎫=+= ⎪ ⎪⎝⎭⎝⎭∑∑,即1n k =+时①式成立.由(1)(2)可得:()12221122,,,12,n nnn n i i z z z z n εεεεεε+⋅⋅⋅=+++=∈∑∑N .回到原题,由202020202211i ii i z w==>∑∑,可得2020202022202020201122iii i zw==>∑∑,即()()12202012202022112220202020112220202020,,,,,,z z z w w w εεεεεεεεεεεε⋅⋅⋅⋅⋅⋅+++>+++∑∑,所以存在数组()122020,,εεε (其中{1,1}i ε∈-,使得222020202011i ii ii i zwεε==>∑∑,即2020202011i iiii i zwεε==>∑∑.30.(2021·全国·高三竞赛)设{}n a 、{}n x 是无穷复数数列,满足对任意正整数n ,关于x 的方程210n n x a x a +-+=的两个复根恰为n x 、1n x +(当两根相等时1n n x x +=).若数列{}n x 恒为常数,证明:(1)2n x ≤;(2)数列{}n a 恒为常数.【分析】(1)根据题意和韦达定理可得()211n n n x x x ++=-,取模得211n n n x x x ++=-,若0n x =,结论2n x ≤显然成立,否则,由于数列{}n x 恒为常数,则11n x -=,即结论也成立;(2)由(1)和题意知,数列{}n x 恒为常数,则n x 只有互为共轭的两种取值,不妨设为ε和ε,依据题意即可证明.【详解】由题意和韦达定理得,111,.n n n n n n x x a x x a ++++=⎧⎨=⎩则1112n n n n n x x a x x ++++==+,即()21111n n n n n n x x x x x x ++++=-=-.①(1)由①取模得211n n n x x x ++=-,若0n x =,结论2n x ≤显然成立;否则,由于数列{}n x 恒为常数,则11n x -=,即有112n n x x ≤-+=.(2)由(1)知,对任意的,11n n x +∈-=N ,又数列{}n x 恒为常数,因此n x 只有互为共轭的两种取值ε和ε.若存在n +∈N ,使得1n n x x +=,不妨设1n n x x ε+==,则22{,}n x εεεε+=-∈.若2n x ε+=,则220εε-=,即0ε=或2;若2n x ε+=,则2εεε=+∈R ,且|1|1ε-=.因此,要么ε∈R ,要么{}n x 呈ε、ε周期.故显然1n n n a x x +=+是常数,即证数列{}n a 恒为常数.【点睛】关键点点睛:本题主要考查数列不等式的证明,解题关键在于利用韦达定理得出()211n n n x x x ++=-,再取模,对0n x =这种特殊情形和一般情形11n x -=讨论即可证明结论成立;(2)本题主要考查常数列的证明,解题关键在于n x 的取值情况和1n n x x ε+==的假设,由(1)和题意知,数列{}n x 恒为常数,则n x 只有互为共轭的两种取值,不妨记为ε和ε,若存在n +∈N ,使得1n n x x +=,不妨设1n n x x ε+==,则22{,}n x εεεε+=-∈,对2n x +分类讨论即可证明.。
s n s n s r (cos θ + i sin θ ) r学习好资料 欢迎下载全国高中数学联赛金牌教练员讲座兰州一中数学组第八讲 复数知识、方法、技能I .复数的四种表示形式代数形式: z = a + bi(a, b ∈R )几何形式:复平面上的点 Z ( a, b )或由原点出发的向量 O Z .三角形式: z = r (cos θ + i sin θ ), r ≥ 0,0 ∈R.指数形式: z = re i θ .复数的以上几种形式,沟通了代数、三角、几何等学科间的联系,使人们应用复数解决 相关问题成为现实.II .复数的运算法则加、减法: (a + bi) ± (c + di) = (a ± c) + (b ± d )i; 乘法: (a + bi)(c + di) = (ac - bd ) + (bc + ad )i;除法: r ( c o θ + i s i θ ) ⋅ r ( c o θ+ i s i θ ) = r r [ c o θ ( + θ ) + i s i n θ( + θ ) ] ; 1 1 1 2 2 2 1 2 1 2 1 2a + bi ac + bd bc - ad= + i(c + di ≠ 0).c + bi c 2 +d 2 c 2 + d 2r (cos θ + i sin θ ) r 1 1 1 = 1 [cos(θ - θ ) + i sin(θ - θ )].1 2 1 2 2222乘方: [r (cos θ + i sin θ )]n = r n (cos n θ + i sin n θ )(n ∈ N );开方:复数 r (cos θ + i sin θ )的n 次方根是 n r (cos θ + 2k π + i sin θ + 2k π )(k = 0,1, , n - 1).nnIII .复数的模与共轭复数 复数的模的性质① | z |≥| Re( z ) |,| z |≥ Im(z) |;② | z ⋅ z z |=| z | ⋅ | z | | z |;12n12n③ | z1 |=z2| z |1 | z |2 学习好资料 欢迎下载( z ≠ 0); 2④ || z | - | z ||≤| z + z |, 与复数z 、 z 对应的向量 O Z 、 OZ 反向时取等号;1 2121212⑤ | z + z + + z |≤| z | + | z | + + | z | ,与复数 z , z , , z 对应的向量1 2n12n12nOZ , O Z , O Z 同时取等号.1 2n共轭复数的性质① z ⋅ z =| z |2 =| z |2 ;② z + z = 2 Re(z), z - z = 2 Im(z) ;③ z = z④ z ± z = z ± z ;1 212⑤ z ⋅ z = z ⋅ z ;1 211⑥ (z1 z2 ) =z1z2( z ≠ 0);2⑦z 是实数的充要条件是 z = z, z 是纯虚的充要条件是 z = - z ( z ≠ 0).Ⅳ.复数解题的常用方法与思想(1)两个复数相等的充要条件是它们的实部、虚部对应相等,或者它们的模与辐角主 值相等(辐角相差 2 π 的整数倍). 利用复数相等的充要条件,可以把复数问题转化为实数 问题,从而获得解决问题的一种途径.(2)复数的模也是将复数问题实数化的有效方法之一.善于利用模的性质,是模运算中 的一个突出方面.赛 题 精 讲例 1:设 m 、n 为非零实数,i 为虚单位, z ∈ C ,则方程 | z + ni | + | z - mi |= n ①与| z + ni | - | z - mi |= -m ②如图 I —1—8—1,在同一复平面内的图形(F 1、F 2 是焦点)是()( . , arg( z 2 + 4) = , 则z 的值是 .3 3图 I —1—8—1【思路分析】可根据复平面内点的轨迹的定义;也可根据 m 、n 的取值讨论进行求解. 【略解】由复平面内点的轨迹的定义,得方程①在复平面上表示以点 - ni, mi 为焦点的椭圆, n > 0, 故 - n < 0 .这表明,至少有一焦点在下半虚轴上,可见(A )不真.又由方程①,椭圆的长轴之长为 n ,∴|F 1F 2|<n ,而图(C )中有|OF 1|=n ,可见(C )不真.又因椭圆与双曲线共焦点,必有椭圆的长轴长大于双曲线的实轴长,即| n |>| m | .故在图(B )与(D )中,均有 F 1 : -ni ,F 2 : mi ,且 m < 0 . 由方程②,双曲线上的点应满足,到 F 2 点的距离小于该点到 F 1 点的距离.答案:(B )【别解】仿上得 n >0.(1)若 n > 0, m > 0. 这时,在坐标平面上, F 1(0,-n ),F 2(0,m ),只可能为图象(C ),但与|F 1F 2|<长轴 n ,而|OF 1|=n 矛盾.(2)若 n > 0, m < 0.这时, F (0,-n ), F (0, m ) 均在 y 轴的下半轴下,故只能为图象(B ) 1 2与(D ).又因椭圆与双曲线共焦点,必有椭圆的长轴长大于双曲线的实轴长,即|n |>|m |. 故在(B ) 与(D )中,均有 F 1 : -ni ;F 2 : mi ,且 m <0. 由方程②,双曲线上的点应满足到 F 2 点的距离 小于该点到 F 1 点的距离.答案:(B ) 【评述】 1)本题涉及的知识点:复数的几何意义,复平面上的曲线与方程,椭圆,双曲线,共焦点的椭圆与双曲线,讨论法. (2)本题属于读图题型 两种解法均为基本方法:解法中前者为定义法;后者为分类讨 论法.例 2:若 z ∈ C, arg( z 2- 4) =5π π 6 3【思路分析】本题可由已知条件入手求出复数 z 的模,继而求出复数;也可由几何意义入手来求复数 z.【略解】令 z 2- 4 = ρ (cos 1 5π 5π+ i sin ), ①6 6ππz 2+ 4 = ρ (cos+ i sin ), ②2( ρ > 0, ρ > 0)122 2 2 2 1∴⎨ 2 ⎪ 2 1⎪ 2 2 2 ⎨①—②得 8 = ( 1 ρ + 2 ⎧ 3 1⎪ ρ - ρ = 0, 2⎪ 1 ρ + 3 ρ = 8, 13 3 1ρ ) + i( ρ - ρ ),1 2解得 ρ = 4, ρ = 4 3, 代入后, 2 1①+②得 2 z 2 = 4(-1 + 3i),∴ z = ±2(cosπ π+ i sin ) = ±(1 + 3i). 3 3【别解】如图 I —1—8—2, OD = z 2 .过 D 作与实轴平行的直线 AB ,取 AD=BD=4,则OA = z 2 - 4, OB = z 2 + 4.∠xOA = 5π π, ∠xOB = .6 3从而∠BOA = π2.在Rt ∆AOB 中,| AD |=| DB |=| OD |= 4,2π ∠xOD = ∠xOB + ∠BOD = 2∠xOB = ,32π 2π ∴ z 2 = 4(cos+ i sin),3 3∴ z = ±2(cos ππ + i sin )3 3= ±(1 + 3i)【评述】本题的两种解法中,前者应用了复数的三角形式;后者应用了复数的几何意义,数形结合,形象直观.例 3:x 的二次方程 x 2 + z x + z + m = 0中, z 、 z 、m 均是复数,且 z 2 - 4 z = 16 + 20i .1 2121 2设这个方程的两个根为α 、 β ,且满足 | α - β |= 2 7 .求|m |的最大值和最小值. 【解法 1】根据韦达定理有⎧α + β = - z ,1⎩αβ = z 2 + m .图 I —1—8—34 1| || 41 cos α + 【解法 3】根据韦达定理,有 ⎨(α - β ) 2 = (α + β ) 2 - 4αβ = z 2 - 4 z - 4m ,1 2∴ α - β |2 =| 4m - ( z 2 - 4 z ) |= 28. 121∴ m - ( z 2 - 4 z ) |= 7, 2 即 | m - (4 + 5i) |= 7.这表明复数 m 在以 A (4,5)为圆心,以 7 为半径的圆周上如图 I —1—8—3 所示.OA |= 4 2 + 52 = 41 < 7, 故原点 O 在⊙A 之内. 连接 OA ,延长交⊙A 于两点 B 与C ,则|OB|=|OA|+|AB|= 41 + 7为 | m | 最大值.|OC|=|CA|-|AO|=7- 41为 | m | 最小值.∴|m |的最大值是 41 + 7,| m | 的最小值是 7- 41 .【解法 2】同解法 1,得 | m - (4 + 5i) |= 7,令m = x + yi( x , y ∈ R ).⎧x = 7 cos α + 4, 则⎨⎩ y = 7 sin α + 5.∴ | m |2 = x 2 + y 2 = 90 + 56 cos α + 70 sin α= 90 + 14 41( 4 541 sin α )= 90 + 14 41 s in(α + ϕ ),其中 sin ϕ = 4.41∴ |m |的最大值= 90 + 14 41 = 7 + 41,|m |的最小值= 90 + 14 41 = 7 - 41.⎧α + β = - z1 ⎩αβ = z2 + m .(α - β ) 2 = (α + β ) 2 - 4αβ = z 2 - 4 z - 4m ,1 2∴ | α - β |2 =| 4m - ( z 2 - 4 z ) |=| 4m - (16 + 20i) |= 28.12| .由 - 9 = z z + z z = 18cos θ , 得 cos θ = - .2这里ω = - + i.即 | m - (4 + 5i) |= 7.∴ m |=| m - (4 + 5i) + (4 + 5i) |≤| m - (4 + 5i) | + | 4 + 5i |= 7 + 41.等 号 成 立 的 充 要 条 件 是 m - (4 + 5i)与(4 + 5i) 的 辐 角 主 值 相 差 π , 即m - (4 + 5i) = -7(441 +5i), 所以当m = (-7 + 41)(441 41 +5i)时,| m | 取最小值 7 - 41.41【评述】三种解法,各有千秋. 解法 1 运用数形结合法,揭示复数 m 的几何意义,直观清晰;解法 2 则活用三角知识,把 56 cos α + 70sin α 化为角“α + ϕ ”的正弦;解法3 运用不等式中等号成立的条件获得答案;三种解法从不同侧面刻面了本题的内在结构特征例 4:若 M = {z | z = t 1 + t+ i , t ∈R , t ≠ -1, t ≠ 0}, N = {z | z = 21 + t t[cos(arcsin t ) + i cos(arccos t )], t ∈R , | t |≤ 1}, 则MN 中元素的个数为A .0B .1C .2D .4解法同本章一的练习第 4 题.例 5:设复数 z , z 满足 | z |=| z + z |= 3,| z - z |= 3 3, 则1 211212log | ( z z ) 2000 + ( z z ) 2000 |=.2 1 21 2【思路分析】应先设法求出 ( z z ) 2000 + ( z z ) 2000 的值. 1 1 2【评述】由题设知9 =| z + z |2 =| z |2 + | z |2 + z z + z z , 12121 21 229 =| z - z |2 =| z |2 + | z |2 -( z z + z z ).1 2121 21 2因为 | z |= 3, 故 | z |= 3, z z + z z = -9, 并且 | z z | + | z z |= 9.1 21 21 21 21 2设z z = 9(cos θ + i sin θ ),则z z = 9(cos θ - i sin θ ).1 2 1 211 2 1 2于是z z = 9ω或者z z = 9ω 2 1 21 21 32 2( )当z z=9ω时,可得(z z)2000+(z z)2000=-92000,121212故log|(z z)2000+(z z)2000|=4000.21212当z z=9ω2时,可得同样结果,故答案4000.12【评述】此题属填空题中的难题,故解题时应仔细.例6:设复平面上单位圆内接正20边形的20个顶点所对应的复数依次为z,z, ,z,则复1220数z1995,z1995, ,z1995所对应的不同的点的个数是()1220A.4B.5C.10D.20【思路分析】如题设可知,应设z20=1.故解题中应注意分解因式.k【解法1】因为我们只关心不同的点的个数,所以不失一般性可设z20=1.由z60=1,有k k 0=z60-1=(z15-1)(z15+1)(z15-i)(z15+i),k k k k k∴z15=1,z15=-1,z15=i,z15=-i.k k k k【答案】A.【解法2】由z20=1,则0=z20-1=(z5-1)(z5+1)(z5-i)(z5+i),k k k k k k可知z5只有4个取值,而z15=(z5)3的取值不会增加,则B、C、D均应排除,故应k k k选A.【评述】上述两个解法均为基本方法.思维的起点是不失一般性设z20=1,于是可用直接法k(解法1)和排除法(解法2).针对性训练题1.设x是模为1的复数,则函数f(x)=x2+1x2+3的最小值为()A.5B.1C.2D.32.若复数z满足关系|z+2|2+|z-4i|2=12,则z对应的复平面的点Z的轨迹是()A.圆B.椭圆C.双曲线D.直线3.已知复数z满足关系式|z-2|≤3,则复数z的辐角主值的范围是()A.[0,πB.[5π3,2π]3 ]D . [0, ] [ π5π π 5πC . [0, ] [,2π ],2π ]333 34.设复平面上单位圆内接正 20 边形的 20 个顶点所对应的复数依次为 z , z , , z , 则复数1 220z 1995 , z 1995 , , z 1995 所对应的不同的点的个数是1220( )A .4B .5C .10D .205.设 n=2001,则12n(1 - 3C 2 + 32 C 4 - 33 C 6 + + 31000 C 2000 ) = .n n n n6.若虚数 z 满足 z 3 = 8, 那么z 3 + z 2 + 2 z + 2 的值是.7.若关于 x 的方程 x 2 - 2ax + a 2 - 4a = 0 至少有一个模为 3 的根,则实数 a 的值是.8.给正方体的 8 个顶点染上 k 个红点, 8 - k 个蓝点(1 ≤ k < 8 ).凡两端为红色的棱记上数字 - 1 + 3i - 1 - 3i, 凡两端为蓝色的棱记上数字 , 凡两端异色的棱记上数字 1,这2 212 个数字之积的所有可取值为 .。
复 数专题一 复数与数列复数数列的题目主要体现对复数运算的规律性的把握.例1 设数列 ,,,,21n z z z 是首项为48,公比为)26(41i +的等比复数列. (1)求4z .(2)将这个数列中的实数项,不改变原来的次序,从首项开始,排成 ,,,,21n a a a ,试求3a . (3)求无穷级数 ++++n a a a 21的和. 解:(1))6sin 6(cos 21)26(41ππi i r +=+=.i r z 2124834==. (2)使r 为实数的最小自然数是6,数列 ,,,,21n a a a 是首项为48,公比为6r 的等比数列.所以433=a . (3)这个级数是公比816-==r 的无穷等比级数,从而和3128)81(148=--=. 例2 今定义复数列 ,,,,21n a a a 如下,n n ka a a i a i a +=+=+=+1121,31,1()2≥n ,k 为正的常数.问复数n a 的辐角的正切与哪一个值最接近?(当∞→n 时)分析:寻求n a 的一般式,再注意取极限的方法以及相关讨论.解:1+n a 的辐角记作θ,212111)1(a k k k a ka a a n n n n --+++++=+= .(1)当1=k 时,i n n a a n a n )31()1(211+-+=+-=+,所以)(131tan ∞→→+-=n nn θ. (2)当1≠k 时,211111)1(a k kk a a n n n --++--=k k k k k n n n ---++--=-13)13(1111 ∴)()10(1)1(13313)13(1tan 1∞→⎪⎩⎪⎨⎧<<>+-→---+=-n k k k k k k k nn n θ. 例3 (1)设在复数列 ,,,,10n z z z 之间有如下关系:),3,2,1)((11 =-=--+n z z z z n n n n α,其中)1(≠αα是常复数.当1,010==z z 时,试将n z 的值用α表示.(2)若(1)中的i 31+=α,求在圆10||=z (z 是复数)的内部总共含有n z 的个数.解:(1)αα=-=-)(0112z z z z ,21223)(αα=-=-z z z z (1)211)(----=-=-n n n n n z z z z αα于是,从1≠α得,αα--=11nn z .(2))3sin 3(cos231ππαi i +=+=,所以)3sin 3(cos 2ππαn i n n n +=,要使n z 在圆10||=z 的内部,它的充分必要条件是10,z <,∴100||2<n z .即100<⋅n n z z ,而)23cos 21(3121n n n n n z z +-=⋅+π,∴100)23cos21(3121<+-+n n n π.又n n n 2123cos 21+-+π221)21(221n n n -=+->+, 能适合300)21(2<-n 的n 只是4,3,2,1,0.在逐个验证这五个点确信都在圆10||=z 的内部,故符合条件的点共有5个.例4 设平面上有点 ,,10P P ,如图所示,其中,线段 ,,,21100P P P P OP ,的长成首项为1,公比为r 的等比数列.(1)若10<<r ,则当∞→n 时,n P 与哪一点无限接近?(2)将(1)中的极限点用Q 表示.若固定21=r 而θ变动时,点Q 所描述的是怎样的曲线?解:(1))sin (cos θθωi r +=,此时,若将表示点n P 的复数记作n z ,则有nn n z z ω=--1,其中1-z 就是原点O .于是)1(11112≠--=++++=+ωωωωωωn nn z .|1||1||||11|11ωωωω-=-=--++n n n r z , 因此,若10<<r ,令∞→n ,则0|11|→--ωn z ,n z 所表示的点与ω-11所表示的点最靠近. (2)ω-=11z ,则有z z 1-=ω,21=r 固定,θ做变动,点ω总在以原点为圆心的圆周上.但因21||=ω,故有2|1|||=-z z .于是当点ω在以原点为中心,21为半径的圆上,点ω-11相应的在以点34为圆心,32为半径的圆上. 例5 设在复平面上:(1)原点为O ,表示复数Z 的点为A ,点B 由||||OA k AB =,OA AB , 的交角为θ所确定。
试求 表示点B 的复数。
这里k 是实数。
(2)点列 ,,,,,210n A A A A 由下述方式确定:0A 取)0,0(,1A 取)0,1(,),3,2,1(1 =+n A n 由||2||11n n n n A A A A -+=,以及n n n n A A A A 11,-+的夹角θ所定义。
试求被表示为n A 复数n z 。
(3)若(2)中,2πθ=,且记12311-+++=n z z z S ,n z z z S 2422+++= ,将212iS S +化简。
解:(1)将表示B 的复数记作ω,则对有关系AB OC =的点C 表示为复数,就是z -ω,从而)sin (cos θθωi kz z +=-,所以z ik k ]sin )cos 1[(θθω++=。
(2)OQ A A OP A A n n n n ==+-11,所表示的点Q P ,,则用复数分别表示为n n n n z z z z --+-11,。
由θ=∠POQ ,推出n n z z -+12=)sin )(cos (1θθi z z n n +--,因此,数列}{1--n n z z 是首项为10101=-=-z z ,公比为)sin (cos 2θθi +的等比数列。
所以1--n n z z 11)sin (cos 2--+=n n i θθ(n 是正整数)。
所以)sin (cos 21)sin (cos 21θθθθi n i n z n n +-+-=。
(3)数列}{},{212k k z z -仍为等比数列,故可求得ni iS S =+212。
专题二 复数与几何1. 有关轨迹问题:例1 已知一圆B 及圆外一点A ,在圆上任取一点Q ,以AQ 为边按逆时针作正三角形AQP ,求点P 的轨迹.解:如图:建立复平面,设a AB =,圆B 半径为r .P 、Q 分别对应复数为1,z z则r a z =-1.令3sin 3cos 0ππi z +=, 3π=∠QAP ,∴01,01z z z z z z =⋅=故r a z z=-0,∴r z r az z ==-00.故点P 的轨迹是圆,圆心对应的复数 为0az ,即i a a 232+,半径为r . 例2 已知复数2121,,z z z z +在复平面上分别对应点A 、B 、C ,O 为复平面的原点.(1) 若i z 21231+=,向量OA 逆时针旋转︒90,模变为原来的2倍后与向量OC 重合,求2z ; (2)若)(22121z z z z +=-,试判断四边形OACB 的形状.解:向量OA 逆时针旋转︒90,模变为原来的2倍所得的向量对应的复数为i z 21⋅,而OC 对应的复数为21z z +,故21z z +=i z 21⋅.故=+-=)21(12i z z )21)(2123(i i +-+ 整理可得:i z 21322322-++-=. (2) )(22121z z z z +=-,OC BA ⊥.又 四边形OACB 为平行四边形,∴四边形OACB 为菱形.2. 复数的模与辐角求复数的辐角主值常有两种方法:(1) 利用复数的三角式,应用三角函数的知识求解.(2) 根据复数的几何意义,将问题转化为几何问题求解.例3 设复数z 满足1=z ,求复数2-z 的辐角主值的最大值与最小值。
解:1=z ∴可设)20(sin cos πθθθ<≤+=i z ,θθsin 2cos 2i z +-=-∴.设a z =-)2arg(,由于,1sin 1,02cos ≤≤-<-θθ故232ππ<<a . 令,2cos sin -==θθtga y 则可先求出y 的最值。
由,2cos sin ,sin 2cos y y y y -=-=-θθθθ得)(2)sin(12y tg y y =-=-+ϕϕθ其中,1)sin(≤-ϕθ ,212y y +≤-∴,即,3333,1422≤≤-+≤y y y 3333≤≤-∴tga ,故67)2arg(,65)2arg(max min ππ=-=-z z . 方法二:由1=z ,知z 对应的点Z 在单位圆122=+y x 上,设A (2,0),根据复数减法的几何意义,复数2-z 对应的向量是AZ .(如图),当射线AZ 是圆O 的切线时,2-z 对应的向量分别为21AZ AZ 和,其中Z 1,Z 2为切点.连接OZ 1,则11AZ OZ ⊥,可知1OAZ ∆为直角三角形.由2,11==OA OZ ,故67)2arg(,65)2arg(max min ππ=-=-z z 例4 设{}{},,1z 12 C z z z z A ∈≤⋂≤+=求A 中辐角主值最大的复数z .解:12≤+z 满足 的点在以)0,2(-为圆心,以1为半径的圆内(包括圆周),满足1≤z 的点在单位圆内,(包括圆周),A ∴对应如图两圆共同部分 .A ∴中辐角主值最大的复数P 点对应的复数i i z 222245sin 45cos--=+=ππ 例5 若c z z ∈21,,求证:21211z z z z ⋅-=-成立的充分必要条件是21z z 、中至少有一个是1.证:必要性:212211z z z z ⋅-=- ,2212211z z z z ⋅-=-∴,故有()()()()2121212111z z z z z z z z ⋅-⋅⋅-=-⋅-.根据互为共轭的复数间关系有:()())1)(1(21212121z z z z z z z z⋅-⋅-=--.化简整理得:212122111z z z z z z zz ⋅⋅+=⋅+⋅222122211z z z z ⋅+=+∴,()()0112221=--∴z z ,1z ∴、2z 至少有一个为1 。
充分性:以上过程均可逆。
∴ 结论成立。
常用到的与复数的模相关的结论:(1)22||||z z z z ==⋅ (2)||||||2121z z z z ⋅=⋅ )(||||N n z z nn ∈=⇒(3))0(||||||22121≠=z z z z z (4)||||||||||||212121z z z z z z +≤+≤-. (5))(|||||,|||bi a z z b z z a z +=≤≤-≤≤-,.||2||2||||2221221221z z z z z z +=-++例6 某草场上有宝.取宝法如下:该草场上原有一株橡树、一株松树、一个绞架.从绞架走到橡树,记住步数,向右拐︒90走同样多步打个桩.然后回到绞架那里,再走到松树,记住步数,向左拐︒90走同样多步,又打一个桩.在这两个桩正中挖掘,可以得宝。