高考数学总复习练习:86分项练1集合与常用逻辑用语文
- 格式:docx
- 大小:64.87 KB
- 文档页数:5
专题一集合与常用逻辑用语01 集合的概念题型一判断元素与集合的关系题型二根据元素与集合的关系求参数题型三利用集合互异性求参数题型四集合的描述方法题型五元素个数的求解及参数问题02 集合间的基本关系题型一判断集合的子集(真子集)个数题型二判断两个集合的包含关系及参数问题题型三两个集合相等求参数题型四空集性质及应用题型五根据集合相等关系进行计算03 集合的基本运算题型一根据交集结果求集合或参数题型一根据交集结果求集合或参数题型三根据补集结果求集合或参数题型四交并补混合运算确定集合或参数题型五容斥原理的应用题型六集合新定义04 充分条件与必要条件题型一根据充分不必要条件求参数题型二根据必要不充分条件求参数题型三根据充要条件求参数题型四充要条件的证明05 全称量词与存在量词题型一根据全称命题的真假求参数题型二根据特称(存在性)命题的真假求参数题型三含有一个量词的命题的否定的应用专题1 集合的概念题型一 判断元素与集合的关系 1.下面有四个语句: ①集合N *中最小的数是0; ②-a ∉N ,则a ∈N ;③a ∈N ,b ∈N ,则a +b 的最小值是2; ④x 2+1=2x 的解集中含有两个元素. 其中说法正确的个数是( ) A .0 B .1 C .2 D .3【答案】A【解析】因为N *是不含0的自然数,所以①错误; 取a =2,则-2∉N ,2 ∉N ,所以②错误;对于③,当a =b =0时,a +b 取得最小值是0,而不是2,所以③错误; 对于④,解集中只含有元素1,故④错误. 故选:A2.下列四个命题:①{0}是空集;②若a ∈N ,则-a ∉N ;③集合{x ∈R |x 2-2x +1=0}含有两个元素;④集合6|x Q N x ⎧⎫∈∈⎨⎬⎩⎭是有限集.其中正确命题的个数是( )A .1B .2C .3D .0【答案】D【解析】①{0}是含有一个元素0的集合,不是空集,所以①不正确; ②当a =0时,0∈N ,所以②不正确;③因为由x 2-2x +1=0,得x 1=x 2=1,所以{x ∈R |x 2-2x +1=0}={1},所以③不正确; ④当x 为正整数的倒数时,6x ∈N ,所以6|x Q N x ⎧⎫∈∈⎨⎬⎩⎭是无限集,所以④不正确.故选:D3.在整数集Z 中,被5除所得余数为k 的所有整数组成一个“类”,记为[]k ,即[]{}5k n k n Z =+∈,0,1,2,3,4k =,给出如下四个结论:①[]20111∈;②[]33-∈;③若整数,a b 属于同一“类”,则[]0a b -∈;④若[]0a b -∈,则整数,a b 属于同一“类”.其中,正确结论的个数是( ). A .1 B .2C .3D .4【答案】C【解析】对于①,201154021÷=⋅⋅⋅,[]20111∴∈,①正确;对于②,352-=-+,即3-被5除余2,[]33∴-∉,②错误; 对于③,设15a n k =+,25b n k =+,()125a b n n ∴-=-,能被5整除,[]0a b ∴-∈,③正确;对于④,设5a b n -=,n Z ∈,即5a n b =+,n Z ∈, 不妨令5b m k =+,m Z ∈,0,1,2,3,4k =,则()555a n m k m n k =++=++,m Z ∈,n Z ∈,0,1,2,3,4k =,,a b ∴属于同一“类”, ④正确; 综上所述:正确结论的个数为3个. 故选:C .4.已知集合{10}A x x =,23a =+,则a 与集合A 的关系是( ) A .a A ∈ B .a A ∉ C .a A = D .{}a A ∈【答案】A【解析】解:{|10}A x x =,23224a =+<+=,10a <,a A ∴∈,故选:A .5.下列三个命题:①集合N 中最小的数是1;②a N -∉,则a N ∈;③a N ∈,N b ∈,则+a b 的最小值是2.其中正确命题的个数是( ) A .0 B .1 C .2 D .3【答案】A【解析】①N 表示自然数集,最小的数为0,①错误; ②若32a N -=-∉,则32a N =∉,②错误;③若0a =,1b =,则1a b +=,③错误. ∴正确命题的个数为0个故选:A6.用符号“∈”或“∉”填空:(1)0________N *,5________Z ;(2)23________{x |x <11},32________{x |x >4};(3)(-1,1)________{y |y =x 2},(-1,1)________{(x ,y )|y =x 2}.【答案】∉ ∉ ∉ ∈ ∉ ∈ 【解析】(1)*0N ∉ 5∉Z ;(2)22(23)(11)>,2311∴>,∴23{|11}∉<x x ; 22(32)4>,即324>,∴32{|4}∈>x x ;(3)(-1,1)为点,{y |y =x 2}中元素为数,故(-1,1) ∉{y |y =x 2}. 又∵(-1)2=1,∴(-1,1)∈{(x ,y )|y =x 2}. 故答案为:∉;∉;∉;∈;∉;∈ 题型二 根据元素与集合的关系求参数1.若由a 2,2019a 组成的集合M 中有两个元素,则a 的取值可以是( ) A .0 B .2019 C .1 D .0或2019【答案】C【解析】若集合M 中有两个元素,则a 2≠2 019a .即a ≠0且a ≠2 019. 故选:C.2.若集合2{|320}A x R ax x =∈-+=中只有一个元素,则(a = )A .92B .98C .0D .0或98【答案】D【解析】解:集合2{|320}A x R ax x =∈-+=中只有一个元素, 当0a =时,可得23x =,集合A 只有一个元素为:23.当0a ≠时:方程2320ax x -+=只有一个解:即980a ∆=-=, 可得:98a =. 故选:D .3.已知集合A 是由a ﹣2,2a 2+5a ,12三个元素组成的,且﹣3∈A ,求a =________. 【答案】32-【解析】解:由﹣3∈A ,可得﹣3=a ﹣2,或﹣3=2a 2+5a , 由﹣3=a ﹣2,解得a =﹣1,经过验证a =﹣1不满足条件,舍去.由﹣3=2a 2+5a ,解得a =﹣1或32-,经过验证:a =﹣1不满足条件,舍去.∴a =32-.故答案为:﹣32.4.已知集合A 是由0,m ,m 2-3m +2三个元素组成的集合,且2∈A ,则实数m 的值为________. 【答案】3 【解析】∵2{0,,32}A m m m =-+,且2A ∈,∴2m =或2322m m -+=,即2m =或0m =或3m =,当2m =时,与元素的互异性相矛盾,舍去;当0m =时,与元素的互异性相矛盾,舍去;当3m =时,{}032A =,,满足题意,∴3m =,故答案是3. 5.已知集合2{|320}A x ax x =-+=,其中a 为常数,且a R ∈. (1)若A 中至少有一个元素,求a 的取值范围; (2)若A 中至多有一个元素,求a 的取值范围. 【答案】(1)89≤a ;(2)89≤a 或0=a 【解析】解:(1)0a =,由320x -+=,解得23x =,满足题意,因此0a =. 0a ≠时,A 中至少有一个元素,∴980a ∆=-,解得89≤a ,0a ≠. 综上可得:a 的取值范围是89≤a . (2)0a =,由320x -+=,解得23x =,满足题意,因此0a =. 0a ≠时,A 中至多有一个元素,∴980a ∆=-,解得89≤a . 综上可得:a 的取值范围是89≤a 或0=a . 题型三 利用集合互异性求参数1.含有三个实数的集合既可表示为{,,0}bb a,也可表示为{,,1}a a b +,则+a b 的值为____. 【答案】0【解析】由题意{,,0}{,,1}b b a a b a=+,可得0a ≠,根据集合相等和元素的互异性,可得0a b +=且1b =,解得1,1a b =-=, 此时集合{,,0}{1,1,0},{,,1}{1,1,0}b b a a b a=-+=- 所以0a b +=. 故答案为0.2.已知集合22{2,(1),33}A a a a =+++,且1A ∈,则实数a 的值为________. 【答案】1-或0【解析】若()211,a +=则0a =或2,a =- 当0a =时,{}2,1,3A =,符合元素的互异性; 当2a =-时,{}2,1,1A =,不符合元素的互异性,舍去 若2a 3a 31,++=则1a =-或2,a =-当1a =-时,{}2,0,1A =,符合元素的互异性; 当2a =-时,{}2,1,1A =,不符合元素的互异性,舍去; 故答案为:1-或0.3.已知集合{}2411A a a a =+++,,{}2|0B x x px q =++=,若1A ∈.(1)求实数a 的值;(2)如果集合A 是集合B 的列举表示法,求实数p q ,的值. 【答案】(1)4a =-;(2)23p q ==-,.【解析】解:(1)∵1A ∈,∴2411a a ++=或者11a += 得4a =-或0a =,验证当0a = 时,集合{}11A =,,集合内两个元素相同,故舍去0a = ∴4a =-(2)由上4a =-得{}13A =-,,故集合B 中,方程20x px q ++=的两根为1、-3. 由一元二次方程根与系数的关系,得[1(3)]21(3)3p q =-+-==⨯-=-,.4.已知{}20,1,1a a a ∈--,求a 的值.【答案】1a =-【解析】由已知条件得:若a =0,则集合为{0,﹣1,﹣1},不满足集合元素的互异性,∴a ≠0; 若a ﹣1=0,a =1,则集合为{1,0,0},显然a ≠1;若a 2﹣1=0则a =±1,由上面知a =1不符合条件;a =﹣1时,集合为{﹣1,﹣2,0}; ∴a =﹣1.5.含有三个实数元素的集合既可表示成,,1b a a ⎧⎫⎨⎬⎩⎭,又可表示成2{,,0}a a b +,求20172018a b +的值. 【答案】-1【解析】由题意得,,1b a a ⎧⎫⎨⎬⎩⎭与2{,,0}a a b +表示同一个集合,所以0ba=且0a ≠,1a ≠,即0b =,则有{,0,1}a 与2{,,0}a a 表示同一个集合,所以21a =,解得1a =-,所以()2017201720182018101a b +=-+=-,故答案为:1-题型四 集合的描述方法 1.给出下列说法:①集合{}3x x x ∈=N 用列举法表示为{}1,0,1-;②实数集可以表示为{|x x 为实数}或{}R ;③方程组3,1x y x y +=⎧⎨-=-⎩的解组成的集合为{}1,2x y ==.其中不正确的有______.(把所有不正确说法的序号都填上) 【答案】①②③【解析】①由3x x =,即()210x x -=,得0x =或1x =或1x =-.因为1-∉N ,所以集合{}3x xx ∈=N 用列举法表示为{}0,1.②实数集正确的表示为{|x x 为实数}或R .③方程组3,1x y x y +=⎧⎨-=-⎩的解组成的集合正确的表示应为(){}1,2或()1,,2x x y y ⎧⎫=⎧⎪⎪⎨⎨⎬=⎩⎪⎪⎩⎭.故①②③均不正确. 2.定义集合运算(){}|,,AB z z xy x y x A y B ==+∈∈,集合{}{}0,1,2,3A B ==,则集合A B 所有元素之和为________【答案】18【解析】当0,2,0==∴=x y z 当1,2,6==∴=x y z 当0,3,0==∴=x y z 当1,3,12==∴=x y z 和为0+6+12=18 故答案为:183.设数集A 由实数构成,且满足:若x A ∈(1x ≠且0x ≠),则11A x∈- . (1)若2A ∈,试证明集合A 中有元素1-,12; (2)判断集合A 中至少有几个元素,并说明理由; (3)若集合A 中的元素个数不超过8,所有元素的和为143,且集合A 中有一个元素的平方等于所有元素的积,求集合A .【答案】(1)证明见解析;(2)至少有3个元素.理由见解析(3)112,2,1,,3,223A ⎧⎫=--⎨⎬⎩⎭【解析】(1)由题意,因为2A ∈,可得1112A =-∈-. 因为1A -∈,则()11112A =-∈-.所以集合A 中有元素1-,12. (2)由题意,可知若x A ∈(1x ≠且0x ≠), 则11A x ∈-,1x A x -∈,且11x x ≠-,111x x x -≠-,1x x x-≠, 故集合A 中至少有3个元素.(3)由集合A 中的元素个数不超过8,所以由(2)知A 中有6个元素. 设1111,,,,,11x m A x m x x m m --⎧⎫=⎨⎬--⎩⎭,m x ≠,1x ≠且0x ≠,1m ≠且0m ≠, 因为集合A 中所有元素的积为1,不妨设21x =,或2111x ⎛⎫= ⎪-⎝⎭,或211x x -⎛⎫= ⎪⎝⎭.当21x =时,1x =(舍去)或1x =-;若1x =-,则1,22A ∈.∵集合A 中所有元素的和为143,∴1111421213m m m m -+-+++=-, ∴3261960m m m -++=,即()32261860m m m m ----=, 即()()23620m m m ---=,即()()()321320m m m -+-=,∴12m =-或3或23,∴112,2,1,,3,223A ⎧⎫=--⎨⎬⎩⎭.当2111x ⎛⎫= ⎪-⎝⎭或211x x -⎛⎫= ⎪⎝⎭时,同理可得112,2,1,,3,223A ⎧⎫=--⎨⎬⎩⎭. 综上,112,2,1,,3,223A ⎧⎫=--⎨⎬⎩⎭.题型五 元素个数的求解及参数问题1.用()d A 表示集合A 中的元素个数,若集合()(){}2210A x x ax x ax =--+=,{}0,1B =,且()()1d A d B -=.设实数a 的所有可能取值构成集合M ,则()d M =( ) A .3 B .2C .1D .4【答案】A【解析】由题意,()()1d A d B -=,()2d B =,可得()d A 的值为1或3,若()1d A =,则20x ax -=仅有一根,必为0,此时a =0,则22110x ax x -+=+=无根,符合题意若()3d A =,若20x ax -=仅有一根,必为0,此时a =0,则22110x ax x -+=+=无根,不合题意,故20x ax -=有二根,一根是0,另一根是a ,所以210x ax -+=必仅有一根,所以2Δ40a =-=,解得2a =±,此时210x ax -+=的根为1或1-,符合题意,综上,实数a 的所有可能取值构成集合{0,2,2}M =-,故()3d M =. 故选:A .2.已知集合{}2,,M m m a b a b Q ==+∈,则下列四个元素中属于M 的元素的个数是( )①12π+;②1162+;③122+;④2323-++A .4B .3C .2D .1【答案】C【解析】①当212a b π+=+时,可得1,a b π==,这与,a b Q ∈矛盾, ②()211623232+=+=+232a b ∴+=+ ,可得3,1a b == ,都是有理数,所以正确,③122212222-==-+,2212a b ∴+=-,可得11,2a b ==-,都是有理数,所以正确,④()22323426-++=+=而()2222222a b a b ab +=++ ,,a b Q ∈,()22a b ∴+是无理数,2323∴-++不是集合M 中的元素,只有②③是集合M 的元素. 故选:C3.已知集合{}22(,)|1,,A x y x y x y Z =+≤∈,{}(,)|2,2,,B x y x y x y Z =≤≤∈,定义集合{}12121122(,)|(,),(,)A B x x y y x y A x y B ⊕=++∈∈,则A B ⊕中元素的个数为A .77B .49C .45D .30【答案】C 【解析】因为集合,所以集合中有5个元素(即5个点),即图中圆中的整点,集合中有25个元素(即25个点):即图中正方形中的整点,集合的元素可看作正方形中的整点(除去四个顶点),即个.4.选择适当的方法表示下列集合: (1)被5除余1的正整数组成的集合;(2)由直线y =-x +4上的横坐标和纵坐标都是自然数的点组成的集合; (3)方程(x 2-9)x =0的实数解组成的集合; (4)三角形的全体组成的集合.【答案】(1){x|x=5k+1,k ∈N };(2){(x ,y )|y =-x +4,x ∈N ,y ∈N };(3){-3,0,3};(4){x|x 是三角形}或{三角形}. 【解析】(1){|51,}x x k k N =+∈; (2){(,)|4,,}x y y x x N y N =-+∈∈;(3)2(9)00x x x -=⇒=或3x =±,解集为{3,0,3}-, (4){|x x 是三角形}或写成{三角形}. 5.设A 是由一些实数构成的集合,若a ∈A,则11a- ∈A ,且1∉A , (1)若3∈A ,求A .(2)证明:若a ∈A ,则11A a-∈.【答案】(1)123,,23A ⎧⎫=-⎨⎬⎩⎭;(2)证明见解析.【解析】(1)因为3∈A , 所以11132A =-∈-, 所以12131()2A =∈--, 所以13213A=∈-,所以123,,23A ⎧⎫=-⎨⎬⎩⎭.(2)因为a ∈A , 所以11A a∈-, 所以1111111a Aa aa-==-∈---.专题2 集合间的基本关系题型一 判断集合的子集(真子集)个数1.设全集{}2250,Q x x x x N =-≤∈,且P Q ⊆,则满足条件的集合P 的个数是( )A .3B .4C .7D .8【答案】D【解析】由不等式2250x x -≤,解得502x ≤≤,即{}{}2250,0,1,2Q x x x x N =-≤∈= 又由P Q ⊆,可得满足条件的集合P 的个数为328=. 故选:D2.已知集合{}220|A x mx x m =-+=仅有两个子集,则实数m 的取值构成的集合为( )A .{}1,1-B .{}1,0,1-C .{}0,1D .∅【答案】B【解析】由集合A 仅有两个子集 可知集合A 仅有一个元素.当0m =时,可得方程的解为0x =,此时集合{}0A =,满足集合A 仅有两个子集当0m ≠时,方程220mx x m -+=有两个相等的实数根,则()22240m ∆=--=,解得1m =或1m =-,代入可解得集合{}1A =或{}1A =-.满足集合A 仅有两个子集综上可知, m 的取值构成的集合为{}1,0,1- 故选:B3.非空集合P 满足下列两个条件:(1)P ⊊{1,2,3,4,5},(2)若元素a ∈P ,则6﹣a ∈P ,则集合P 个数是__. 【答案】6【解析】根据条件:若元素a ∈P ,则6﹣a ∈P ,将集合{1,2,3,4,5}的元素分成三组:3、1和5、2和4. 因为P ⊊{1,2,3,4,5}, 当P 中元素只有一个时,P ={3};当P 中元素只有二个时,P ={1,5}或{2,4}; 当P 中元素只有三个时,P ={3,1,5}或{3,2,4}; 当P 中元素只有四个时,P ={2,4,1,5};当P 中元素有五个时,P ={3,2,4,1,5}不满足题意;综上所述得:则集合P 个数是:6. 故答案为:6.4.定义集合运算:{}|,,⊗==-∈∈A B z z x y x A y B ,若集合{}0,1A =,{}2,3B =,则集合A B ⊗的真子集的个数为_____.【答案】7【解析】由题知:{}3,2,1⊗=---A B 所以集合A B ⊗的真子集个数为3217-=. 故答案为:7题型二 判断两个集合的包含关系及参数问题 1.已知集合2|10Ax x ,则下列式子表示正确的有( )①1A ∈;②{}1A -∈;③A ∅⊆;④{}1,1A -⊆. A .1个 B .2个C .3个D .4个【答案】C【解析】因为2{|10}A x x =-=,{1A ∴=-,1}, 对于①,1A ∈显然正确;对于②,{1}A -∈,是集合与集合之间的关系,显然用∈不对; 对于③,A ∅⊆,根据空集是任何集合的子集知正确; 对于④,{1,1}A -⊆.根据子集的定义知正确. 故选:C .2.已知集合{2,3,1}A =-,集合2{3,}B m =.若B A ⊆,则实数m 的取值集合为( ) A .{1} B .{}3C .{1,1}-D .{3,3}【答案】C【解析】因为B A ⊆,所以21m =,得1m =±, 所以实数m 的取值集合为{1,1}-. 故选:C3.若集合A ={x |2<x <3},B ={x |(x ﹣3a )(x ﹣a )<0},且A ⊆B ,则实数a 的取值范围是( ) A .1<a <2 B .1≤a ≤2C .1<a <3D .1≤a ≤3【答案】B【解析】∵A ={x |2<x <3},B ={x |(x ﹣3a )(x ﹣a )<0},且A ⊆B , ∴a >0,则B ={x |a <x <3a },∴233a a ≤⎧⎨≥⎩,解得1≤a ≤2,故选:B.4.已知集合{}25A x x =-≤≤,{121}B x m xm =+<<-,若B A ⊆,则实数m 的取值范围是____. 【答案】3m ≤【解析】依题意得:当B =∅时,121m m +≥-,即2m ≤.当B ≠∅时,12112215m m m m +<-⎧⎪+≥-⎨⎪-≤⎩,解得23m <≤.综上,3m ≤.5.写出下列每组中集合之间的关系: (1)A ={x |-3≤x <5},B ={x |-1<x <2}.(2)A ={x |x =2n -1,n ∈N *},B ={x |x =2n +1,n ∈N *}.(3)A ={x |x 是平行四边形},B ={x |x 是菱形},C ={x |x 是四边形},D ={x |x 是正方形}. (4)A ={x |-1≤x <3,x ∈Z },B ={x |x =y ,y ∈A }. 【答案】(1)BA ;(2)BA ;(3)DB AC ;(4)B A . 【解析】(1)将两个集合在数轴上表示出来,如图所示,显然有BA ;(2)当n ∈N *时,由x =2n -1知x =1,3,5,7,9,…. 由x =2n +1知x =3,5,7,9,….故A ={1,3,5,7,9,…},B ={3,5,7,9,…},因此B A ;(3)由图形的特点可画出Venn 图,如图所示,从而可得DB AC ;(4)依题意可得:A ={-1,0,1,2},B ={0,1,2},所以B A .6.已知集合{}13A x x =<<,集合{}21B x m x m =<<-. (1)当1m =-时,求A B ; (2)若A B ⊆,求实数m 的取值范围; (3)若A B =∅,求实数m 的取值范围.【答案】(1){}23A B x x ⋃=-<<;(2)2m ≤-;(3)0m ≥. 【解析】(1)当1m =-时,{}22B x x =-<<,则{}23A B x x ⋃=-<<;(2)由A B ⊆知122113m m m m ->⎧⎪≤⎨⎪-≥⎩,解得2m ≤-,即m 的取值范围是(],2-∞-;(3)由A B =∅得①若21m m ,即13m ≥时,B =∅符合题意;②若21m m ,即13m <时,需1311m m ⎧<⎪⎨⎪-≤⎩或1323m m ⎧<⎪⎨⎪≥⎩. 得103m ≤<或m ∈∅,即103m ≤<.综上知0m ≥题型三 两个集合相等求参数1.已知a R ∈,b R ∈,若集合{}2,,1,,0b a a a b a ⎧⎫=+⎨⎬⎩⎭,则20192019a b +的值为( )A .2-B .1-C .1D .2【答案】B【解析】因为{}2,,1,,0b a a a b a ⎧⎫=+⎨⎬⎩⎭,所以201b a a a b a ⎧=⎪⎪=+⎨⎪=⎪⎩,解得01b a =⎧⎨=⎩或01b a =⎧⎨=-⎩,当1a =时,不满足集合元素的互异性, 故1a =-,0b =,()2019201920192019101a b +=-+=-,故选:B.2.设a 、b R ∈,集合{}1,,0,,b a b a b a ⎧⎫+=⎨⎬⎩⎭,则b a -=__________.【答案】2 【解析】{}1,,0,,b a b a b a ⎧⎫+=⎨⎬⎩⎭,由于b a -有意义,则0a ≠,则有0a b +=,所以,1ba -=-.根据题意有10b a b ba a ⎧⎪=⎪+=⎨⎪⎪=⎩,解得11a b =-⎧⎨=⎩,因此,()112b a -=--=.故答案为2.3.已知{}2,,2,4,59∈=-+a x R A x x ,{}23,B x ax a =++,{}2(1)3,1C x a x =++-.求:(1)使2B ∈,BA 的 ,a x 的值;(2)使B C =的 ,a x 的值.【答案】(1)2x =,23a =-或=3x ,74=-a ;(2)1x =-,6=-a 或=3x ,2a =-【解析】(1)因为2B ∈,所以22++=x ax a 又因为BA ,所以259=3-+x x ,解得2x =或=3x当2x =时,422++=a a ,解得23a =-当=3x 时,932++=a a ,解得74=-a所以,2x =,23a =-或=3x ,74=-a ;(2)B C =,221(1)33x ax a x a x ⎧++=∴⎨++-=⎩,解得16x a =-⎧⎨=-⎩或32x a =⎧⎨=-⎩ 所以,1x =-,6=-a 或=3x ,2a =-. 4.由a ,ba,1组成的集合中有3个元素,该集合与由2a ,a+b ,0组成的集合是同一个集合,求20202020a b +的值. 【答案】1【解析】由题意可得集合,,1b a a ⎧⎫⎨⎬⎩⎭和集合{}2,,0a a b +为相等集合,则由集合中元素的特点和相等集合的概念可得20110b a a a ba a a ⎧=⎪⎪=+⎪⎨=⎪⎪≠⎪≠⎩联立解得:10a b =-⎧⎨=⎩,所以202020202020(1)01a b +=-+=.5.已知集合,,1b A a a ⎧⎫=⎨⎬⎩⎭,{}2,,0B a a b =+,若A B =,求20182019a b +的值.【答案】1【解析】解:因为集合,,1b A a a ⎧⎫=⎨⎬⎩⎭,{}2,,0B a a b =+,要使ba有意义,则0a ≠又A B =,由集合相等的充要条件及集合中元素的互异性可得2110a a b a ⎧⎪=⎪≠⎨⎪⎪=⎩,即10a b =-⎧⎨=⎩,即 20182019a b +=20182019(1)01-+=, 故20182019a b +=1.题型四 空集性质及应用1.已知集合{}2|320,A x ax x a =∈-+=∈R R .(1)若集合A 是空集,求a 的取值范围;(2)若集合A 中只有一个元素,求a 的值,并把这个集合A 写出来. 【答案】(1)9,8⎛⎫+∞ ⎪⎝⎭(2)0a =,23A ⎧⎫=⎨⎬⎩⎭或98a =,43A ⎧⎫=⎨⎬⎩⎭【解析】解析(1)要使集合A 为空集,则方程2320ax x -+=无实数根, 当0a =时,得23x =不满足题意;则有0980a a ≠⎧⎨∆=-<⎩解得98a >.故a 的取值范围是9,8⎛⎫+∞ ⎪⎝⎭.(2)当0a =时,方程为320x -+=,解得23x =为一个解满足题意,此时23A ⎧⎫=⎨⎬⎩⎭; 当0a ≠时,方程为一元二次方程,此时集合A 中只有一个元素的条件是980a ∆=-=,解得98a =,此时43x =,则得43A ⎧⎫=⎨⎬⎩⎭. 综上可得:0a =时,23A ⎧⎫=⎨⎬⎩⎭;98a =时,43A ⎧⎫=⎨⎬⎩⎭.2.已知集合A ={x |ax 2+2x +1=0,a ∈R },(1)若A 只有一个元素,试求a 的值,并求出这个元素; (2)若A 是空集,求a 的取值范围;(3)若A 中至多有一个元素,求a 的取值范围. 【答案】(1)详见解析;(2)1a >;(3)0a =或1a ≥【解析】(1)若A 中只有一个元素,则方程ax 2+2x +1=0有且只有一个实根, 当a =0时,方程为一元一次方程,满足条件,此时x =-12, 当a ≠0,此时△=4-4a =0,解得:a =1,此时x =-1, (2)若A 是空集, 则方程ax 2+2x +1=0无解,此时△=4-4a <0,解得:a >1. (3)若A 中至多只有一个元素, 则A 为空集,或有且只有一个元素,由(1),(2)得满足条件的a 的取值范围是:a =0或a ≥1. 题型五 根据集合相等关系进行计算1.设,R a b ∈,集合{1,,}0,,b a b a b a ⎧⎫+=⎨⎬⎩⎭,则b a -等于( )A .1-B .1C .2-D .2【答案】D【解析】两个集合相等,则集合中的元素相同,0a ≠ ,所以0a b +=,则1ba=-,那么1b =,和1a =-, 所以2b a -=. 故选:D2.已知集合{}13A x =,,,{}21B x =-,. (1)若集合{}14M y =,,,A M =,求x y +的值; (2)是否存在实数x ,使得B A ⊆?若存在,求出x 的值;若不存在,请说明理由. 【答案】(1)19x y +=;(2)不存在实数x ,见解析 【解析】(1)由题可知4,3,x y ⎧=⎪⎨=⎪⎩所以16,3,x y =⎧⎨=⎩所以19x y +=.(2)假设存在实数x 使得B A ⊆, 则23x -=或2x x -=.若23x -=,则1x =-,此时x 没有意义,舍去. 若2x x -=,则()()222x x-=,化简得2540x x -+=,解得1x =或4x =(舍),当1x =时,不符合集合中元素的互异性,舍去. 故不存在实数x ,使得B A ⊆. 3.已知关于x 的方程322126x x a x -+-=-与2136x a x a+--=有相同的解集,求a 的值及方程的解集.【答案】1a =,方程的解集为{1} 【解析】解:方程322126x x a x -+-=-化为63(32)62x x x a --=--, 整理,得13152x a =-,解得15213ax -=.方程2136x a x a+--=化为2(2)()6x a x a +--=, 整理,得336x a =-+,解得2x a =-+. 由题意,得152213aa -=-+,解得1a =,所以1x =. 综上,1a =,方程的解集为{1}. 4.已知关于x 的方程442313a x x ++=-的解集为A ,关于x 的方程340x a --=的解集为B ,若A B =,求a 的值. 【答案】1a =-【解析】解:由方程442313a x x ++=-,解得4413a x +=+,即4413a A +⎧⎫=+⎨⎬⎩⎭, 由方程340x a --=,解得43a x +=,即43a B +⎧⎫=⎨⎬⎩⎭.又A B =,所以444133a a +++=,解得1a =-. 5.若{0,1,2}{1,||,1}a a a a -=--+,求a 的值. 【答案】1a =或1a =-.【解析】由题意知,()1当10a -=时,1a =,此时{0,1,2}{0,1,2}-=-符合题意;()2当11a -=-时,0a =,此时{0,1,0}-不符合集合中元素的互异性,(舍去); ()3当12a a -=时,1a =-,此时{0,1,2}{2,1,0}--=--,符合题意;综上可知,1a =或1a =-.专题3 集合的基本运算题型一 根据交集结果求集合或参数1.设全集U =R ,已知集合{|3A x x =<或9}x ,集合{|}B x x a =,若()U A B ⋂≠∅,则a 的取值范围为( ) A .3a > B .3a C .9a < D .9a【答案】C【解析】因为全集U =R ,集合{|3A x x =<或9}x , 所以{|39}UA x x =<,又因为()U A B ⋂≠∅,{|}B x x a =9a ∴<.故选:C2.已知集合A ={x |2<x <4},B ={x |a <x <3a }.若A ∩B ={x |3<x <4},则a 的值为_______.【答案】3【解析】由A ={x |2<x <4},A ∩B ={x |3<x <4}, 如图,可知a =3,此时B ={x |3<x <9},即a =3为所求. 答案:33.已知全集U =R ,A ={x |2≤x <7},B ={x |x 2﹣10x +9<0},C ={x |a <x <a +1}. (1)求A B ,()U A B ;(2)如果A C ⋂=∅,求实数a 的取值范围.【答案】(1){}|19A B x x =<<,(){|12U A B x x =<<或}79x ≤<;(2){|1a a ≤或}7a ≥.【解析】(1){}|27A x x =≤<,{}|19B x x =<<, 所以{}|19A B x x =<<,{|2UA x x =<或}7x ≥,(){|12UA B x x =<<或}79x ≤<。
高考数学复习考点知识与题型专题讲解训练专题01集合与常用逻辑用语考点1 集合的含义与表示1.(2021·江苏高三模拟)已知集合(){},2,,A x y x y x Z y Z =+≤∈∈,则A 中元素的个数为( ) A .9 B .10C .12D .13【答案】D【解析】由题意可知,集合A 中的元素有:()2,0-、()1,1--、()1,0-、()1,1-、()0,2-、()0,1-、()0,0、()0,1、()0,2、()1,1-、()1,0、()1,1、()2,0,共13个.故选:D.2.(2021·江西高三模拟)已知集合{}2|210,A x ax x a =++=∈R 只有一个元素,则a 的取值集合为( ) A .{1} B .{0} C .{0,1,1}- D .{0,1}【答案】D【解析】①当0a =时,1{}2A =-,此时满足条件;②当0a ≠时,A 中只有一个元素的话,440a ∆=-=,解得1a =,综上,a 的取值集合为{0,1}.故选:D . 考点2 集合间的基本关系3.(2021·西安市经开第一中学高三模拟)集合{1A x x =<-或3}x ≥,{}10B x ax =+≤若B A ⊆,则实数a 的取值范围是( )A .1,13⎡⎫-⎪⎢⎣⎭B .1,13⎡⎤-⎢⎥⎣⎦C .()[),10,-∞-⋃+∞D .()1,00,13⎡⎫-⋃⎪⎢⎣⎭【答案】A 【解析】B A ⊆,∴①当B =∅时,即10ax +无解,此时0a =,满足题意.②当B ≠∅时,即10ax +有解,当0a >时,可得1xa-, 要使B A ⊆,则需要011a a>⎧⎪⎨-<-⎪⎩,解得01a <<.当0a <时,可得1xa-, 要使B A ⊆,则需要013a a <⎧⎪⎨-⎪⎩,解得103a -<,综上,实数a 的取值范围是1,13⎡⎫-⎪⎢⎣⎭.故选:A .4.(2021·四川石室中学高三一模)已知集合x y z xyz M m m x y z xyz ⎧⎪==+++⎨⎪⎩∣,x 、y 、z 为非零实数} ,则M 的子集个数是( ) A .2 B .3 C .4 D .8【答案】D【解析】因为集合x y z xyz M m m x y z xyz ⎧⎪==+++⎨⎪⎩∣,x 、y 、z 为非零实数} ,所以当,,x y z 都是正数时,4m =;当,,x y z 都是负数时,4m =-;当,,x y z 中有一个是正数,另两个是负数时,0m =, 当,,x y z 中有两个是正数,另一个是负数时,0m =,所以集合M 中的元素是3个,所以M 的子集个数是8,故选D. 考点3 集合的基本运算 角度1:交集运算5.(2021·四川高三三模(文))设集合A ={x |1≤x ≤3},B ={x |24x x --<0},则A ∩B =( )A .{x |2<x ≤3}B .{x |2≤x ≤3}C .{x |1≤x <4}D .{x |1<x <4}【答案】A【解析】∵A ={x |1≤x ≤3},B ={x |2<x <4},∴A ∩B ={x |2<x ≤3}.故选:A .6.(2021·浙江瑞安中学高三模拟)已知集合{}31A x Z x =∈-<<,{}2,B y y x x A ==∈,则A B 的元素个数为( )A .1B .2C .3D .4【答案】B【解析】因为{}{}2,1,031A x Z x =-∈--=<<所以{}{}4,2,02,=B y y x x A =--=∈, 所以{}=2,0A B -,所以A B 的元素个数为2个.故选B. 角度2:并集运算7.(2021·陕西高三模拟)已知集合{}21,M x x k k Z ==+∈,集合{}43,N y y k k Z ==+∈,则M N ⋃=( )A .{}62,x x k k Z =+∈B .{}42,x x k k Z =+∈C .{}21,x x k k Z =+∈D .∅【答案】C【解析】因为集合{}21,M x x k k ==+∈Z ,集合{}(){}43,2211,N y y k k y y k k ==+∈==++∈Z Z ,因为x ∈N 时,x M ∈成立,所以{}21,M N x x k k ⋃==+∈Z .故选:C.8.(2021·天津高三二模)已知集合{|42}M x x =-<<,2{|60}N x x x =--=,则M N ⋂=___________.【答案】{}2-【解析】因为集合{|42}M x x =-<<,{}2{|60}2,3N x x x =--==-,所以M N ⋂= {}2-角度3:补集运算9.(2021·四川高三零模(文))设全集{}*|9U x x =∈<N ,集合{}3,4,5,6A =,则U A ( )A .{}1,2,3,8B .{}1,2,7,8C .{}0,1,2,7D .{}0,1,2,7,8【答案】B【解析】因为{}{}*91,2,3,4|,5,6,7,8U x x =∈<=N ,{}3,4,5,6A =,所以{}1,2,7,8U A =.故选:B .10.(2021·江苏省江浦高级中学高三月考)已知集合{}1U x x =>,{}2A x x =>,则UA________.【答案】{}12x x <≤【解析】{}1U x x =>,{}2A x x =>,∴12U A x x ,角度4:交、并、补混合运算11.(2021·辽宁高三二模)已知U =R ,{}2M x x =≤,{}11N x x =-≤≤,则UM N =( )A .{1x x <-或}12x <≤B .{}12x x <≤C .{1x x ≤-或}12x ≤≤D .{}12x x ≤≤【答案】A【解析】因为{1U N x x =<-或1}x >,所以{1U M C N x x ⋂=<-或12}x <≤.故选:A.12.(2021·山东烟台市·烟台二中高三三模)已知集合{}13A x x =<<,{}2B x x =<,则RAB =( )A .{}12x x <<B .{}23x x <<C .{}23x x ≤<D .{}3x x >【答案】C 【解析】{}13A x x =<<,{}2B x x =<,{}R 2B x x ∴=≥,{}R 23A B x x ∴⋂=≤<.故选:C.13.【多选】(2021·重庆高三三模)已知全集U 的两个非空真子集A ,B 满足()U A B B =,则下列关系一定正确的是( ) A .A B =∅ B .A B B = C .A B U ⋃= D .()U B A A =【答案】CD【解析】令{}1,2,3,4U =,{}2,3,4A =,{}1,2B =,满足()U A B B =,但A B ⋂≠∅,A B B ≠,故A ,B 均不正确; 由()U A B B =,知UA B ⊆,∴()()UU AA AB =⊆,∴A B U ⋃=,由UA B ⊆,知UB A ⊆,∴()U B A A =,故C ,D 均正确.故选CD.14.(2021·江苏高三模拟)某单位周一、周二、周三开车上班的职工人数分别是14,10,8.若这三天中至少有一天开车上班的职工人数是20,则这三天都开车上班的职工人数至多是________. 【答案】6【解析】如图所示,(a +b +c +x )表示周一开车上班的人数,(b +d +e +x )表示周二开车上班人数,(c +e +f +x )表示周三开车上班人数,x 表示三天都开车上班的人数,则有:1410820a b c x b d e x c e f x a b c d e f x +++=⎧⎪+++=⎪⎨+++=⎪⎪++++++=⎩,即22233220a b c d e f x a b c d e f x ++++++=⎧⎨++++++=⎩,即212b c e x +++=,当0b c e ===时,x 的最大值为6, 即三天都开车上班的职工人数至多是6. 角度5:利用集合的运算求参数15.(2021·江西高三模拟)已知集合{|23},{|9}A x x B x m x m =-<<=<<+,若A B φ⋂≠,则实数m 的取值范围是_______. 【答案】{|113}m m -<<【解析】由题意,集合{|23},{|9}A x x B x m x m =-<<=<<+,若A B ⋂=∅时,则有92m +≤-或3m ≥,解得11m ≤-或3m ≥,所以当A B ⋂≠∅时,实数m 的取值范围为{|113}m m -<<.16.(2021·山东高三模拟)集合{}{}240,1,,2,.A a B a =-=-若{}2,1,0,4,16A B ⋃=--,则a =( ) A .±1 B .2± C .3± D .4±【答案】B【解析】由{}2,1,0,4,16A B ⋃=--知,24416a a ⎧=⎨=⎩,解得2a =±故选:B考点4 集合中的新定义17.(2021·黑龙江哈师大附中高三三模(理))设全集{}1,2,3,4,5,6U =,且U 的子集可表示由0,1组成的6位字符串,如:{}2,4表示的是自左向右的第2个字符为1,第4个字符为1,其余字符均为0的6位字符串010100,并规定,空集表示的字符串为000000;对于任意两集合A ,B ,我们定义集合运算{A B x x A -=∈且}x B ∉,()()A B A B B A *=-⋃-.若{}2,3,4,5A =,{}3,5,6B =,则A B *表示的6位字符串是( ) A .101010 B .011001C .010101D .000111【答案】C【解析】由题意可得若{}2,3,4,5A =,{}3,5,6B =,则{}2,4,6A B *=, 所以此集合的第2个字符为1,第4个字符为1,第6个字符为1, 其余字符均为0,即A B *表示的6位字符串是010101.故选C18.【多选】(2021·开原市第二高级中学高三三模)满足{}1234,,,M a a a a ⊆,且{}{}12312,,,Ma a a a a =的集合M 可能是( )A .{}12,a aB .{}123,,a a aC .{}124,,a a aD .{}1234,,,a a a a【答案】AC 【解析】∵{}{}12312,,,Ma a a a a =,∴集合M 一定含有元素12,a a ,一定不含有3a ,∴12{,}M a a =或124{,,}M a a a =.故选AC .19.(2021·江苏省宜兴中学高三模拟)设A 是整数集的一个非空子集,对于k A ∈,若1k A -∉且1k A +∉,则k 是A 的一个“孤立元”,给定{}1,2,3,4,5,6,7,8,9S =,由S 的3个元素构成的所有集合中,不含“孤立元”的集合共有_________个. 【答案】7【解析】由集合的新定义知,没有与之相邻的元素是“孤立元”,集合S 不含“孤立元”, 则集合S 中的三个数必须连在一起,所以符合题意的集合是{}1,2,3,{}2,3,4,{}3,4,5,{}4,5,6,{}5,6,7,{}6,7,8,{}7,8,9,共7个.考点5 全称量词与特称量词20.“0[2,)x ∃∈+∞,20log 1x <”的否定是( ) A .[2,)x ∀∈+∞,2log 1x ≥ B .(,2)x ∀∈-∞,2log 1x > C .0(,2)x ∃∈-∞,20log 1x ≥ D .[2,)x ∃∈+∞,2log 1x ≤【答案】A【解析】“0[2,)x ∃∈+∞,20log 1x <”是特称命题,特称命题的否定是全称命题, 所以“0[2,)x ∃∈+∞,20log 1x <”的否定是“[2,)x ∀∈+∞,2log 1x ≥”.故选:A21.(2021·黑龙江大庆中学高三期末)命题“0x ∀>,总有()11xx e +>”的否定是( )A .0x ∀>,总有()11xx e +≤ B .0x ∀≤,总有()11xx e +≤C .00x ∃≤,使得()0011xx e +≤D .00x ∃>,使得()0011xx e +≤【答案】D【解析】由全称命题的否定可知,命题“0x ∀>,总有()11xx e +>”的否定是“00x ∃>,使得()0011xx e +≤”.故选D.考点6 充分条件、必要条件的判断22.(2021·南京师范大学附属扬子中学高三模拟)设乙的充分不必要条件是甲,乙是丙的充要条件,丁是丙的必要不充分条件,那么甲是丁的( )条件 A .充分不必要 B .必要不充分 C .充要 D .既不充分又不必要【答案】A【解析】甲是乙的充分不必要条件,即甲⇒乙,乙⇒甲, 乙是丙的充要条件,即乙⇔丙,丁是丙的必要非充分条件,即丙⇒丁,丁⇒丙,所以甲⇒丁,丁⇒甲,即甲是丁的充分不必要条件,故选:A .23.(2021·宁波中学高三模拟)△ABC 中,“△ABC 是钝角三角形”是“AB AC BC +<”的( )A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件【答案】B【解析】在△ABC 中,若∠A 为锐角,如图画出平行四边形ABCD ∴AB AC AD +=易知AD BC >∴“△ABC 是钝角三角形”不一定能推出“AB AC BC +<”; 在△ABC 中,A B C ,,三点不共线, ∵AB AC BC +<∴AB AC AC AB +<-∴22AB AC AC AB +<-∴0AB AC ⋅<∴∠A 为钝角∴△ABC 为钝角三角形 ∴“AB AC BC +<”能推出“△ABC 是钝角三角形”故“△ABC 是钝角三角”是“AB AC BC +<”的必要不充分条件,故选:B. 考点7 充分条件、必要条件的应用24.(2021·内蒙古高三二模(理))设计如下图的四个电路图,则能表示“开关A 闭合”是“灯泡B 亮”的必要不充分条件的一个电路图是( )A .B .C .D .【答案】C【解析】选项A :“开关A 闭合”是“灯泡B 亮”的充分不必要条件; 选项B :“开关A 闭合”是“灯泡B 亮”的充要条件; 选项C :“开关A 闭合”是“灯泡B 亮”的必要不充分条件;选项D :“开关A 闭合”是“灯泡B 亮”的既不充分也不必要条件.故选:C.25.(2021·山东高三其他模拟)已知p :x a ≥,q :23x a +<,且p 是q 的必要不充分条件,则实数a 的取值范围是( )A .(]1-∞-,B .()1-∞-,C .[)1+∞,D .()1+∞,【答案】A【解析】因为q :23x a +<,所以:2323q a x a --<<-+, 记{}|2323A x a x a =--<<-+;:p x a ≥,记为{}|B x x a =≥.因为p 是q 的必要不充分条件,所以A B ,所以23a a ≤--,解得1a ≤-.故选:A .26.(2021·河北衡水中学高三模拟)若不等式()21x a -<成立的充分不必要条件是12x <<,则实数a 的取值范围是________. 【答案】[]1,2【解析】由()21x a -<得11a x a -<<+,因为12x <<是不等式()21x a -<成立的充分不必要条件, ∴满足1112a a -≤⎧⎨+≥⎩且等号不能同时取得,即21a a ≤⎧⎨≥⎩,解得12a ≤≤. 考点8 根据命题的真假求参数的取值范围11 / 11 27.(2021·涡阳县育萃高级中学高三月考(文))若命题“0x R ∃∈,200220x mx m +++<”为假命题,则m 的取值范围是( )A .12m -≤≤B .12m -<<C .1m ≤-或2m ≥D .1m <-或2m >【答案】A【解析】若命题“0x R ∃∈,200220x mx m +++<”为假命题, 则命题“x R ∀∈,2220x mx m +++≥”为真命题,即判别式()2=4420m m ∆-+≤,即()()210m m -+≤,解得12m -≤≤.故选:A.28.(2021·广东石门中学高三其他模拟)若“2[4,6],10x x ax ∃∈-->”为假命题,则实数a 的取值范围为___________. 【答案】356a ≥ 【解析】因为“2[4,6],10x x ax ∃∈-->”为假命题,所以[]24,6,10x x ax ∀∈--≤恒成立, 即1x a x -≤在[]4,6恒成立,所以max 1a x x ⎛⎫≥- ⎪⎝⎭且[]4,6x ∈, 又因为()1f x x x=-在[]4,6上是增函数,所以()()max 1356666f x f ==-=,所以356a ≥.。
2020年高考文科数学专题一集合与常用逻辑用语集合概念及其基本理论,是近代数学最基本的内容之一,集合的语言、思想、观点渗透于中学数学内容的各个分支.有关常用逻辑用语的常识与原理始终贯穿于数学的分析、推理与计算之中,学习关于逻辑的有关知识,可以使我们对数学的有关概念理解更透彻,表达更准确.关注本专题内容在其他各专题中的应用是学习这一专题内容时要注意的.§1-1 集合【知识要点】1.集合中的元素具有确定性、互异性、无序性.2.集合常用的两种表示方法:列举法和描述法,另外还有大写字母表示法,图示法(韦恩图),一些数集也可以用区间的形式表示.3.两类不同的关系:(1)从属关系——元素与集合间的关系;(2)包含关系——两个集合间的关系(相等是包含关系的特殊情况).4.集合的三种运算:交集、并集、补集.【复习要求】1.对于给定的集合能认识它表示什么集合.在中学常见的集合有两类:数集和点集.2.能正确区分和表示元素与集合,集合与集合两类不同的关系.3.掌握集合的交、并、补运算.能使用韦恩图表达集合的关系及运算.4.把集合作为工具正确地表示函数的定义域、值域、方程与不等式的解集等.【例题分析】例1 给出下列六个关系:(1)0∈N*(2)0∉{-1,1} (3)∅∈{0}(4)∅∉{0} (5){0}∈{0,1} (6){0}⊆{0}其中正确的关系是______.【答案】(2)(4)(6)【评析】1.熟悉集合的常用符号:不含任何元素的集合叫做空集,记作∅;N表示自然数集;N+或N*表示正整数集;Z表示整数集;Q表示有理数集;R表示实数集.2.明确元素与集合的关系及符号表示:如果a是集合A的元素,记作:a∈A;如果a 不是集合A的元素,记作:a∉A.3.明确集合与集合的关系及符号表示:如果集合A中任意一个元素都是集合B的元素,那么集合A叫做集合B的子集.记作:A⊆B或B⊇A.如果集合A是集合B的子集,且B中至少有一个元素不属于A,那么,集合A叫做集合B的真子集.A B或B A.4.子集的性质:①任何集合都是它本身的子集:A⊆A;②空集是任何集合的子集:∅⊆A;提示:空集是任何非空集合的真子集.③传递性:如果A⊆B,B⊆C,则A⊆C;如果A B,B C,则A C.例2已知全集U={小于10的正整数},其子集A,B满足条件(U A)∩(U B)={1,9},A∩B={2},B∩(U A)={4,6,8}.求集合A,B.【答案】A={2,3,5,7},B={2,4,6,8}.【解析】根据已知条件,得到如图1-1所示的韦恩图,图1-1于是,韦恩图中的阴影部分应填数字3,5,7.故A={2,3,5,7},B={2,4,6,8}.【评析】1、明确集合之间的运算对于两个给定的集合A、B,由既属于A又属于B的所有元素构成的集合叫做A、B的交集.记作:A∩B.对于两个给定的集合A、B,把它们所有的元素并在一起构成的集合叫做A、B的并集.记作:A∪B.如果集合A是全集U的一个子集,由U中不属于A的所有元素构成的集合叫做A在U 中的补集.记作U A.2、集合的交、并、补运算事实上是较为复杂的“且”、“或”、“非”的逻辑关系运算,而韦恩图可以将这种复杂的逻辑关系直观化,是解决集合运算问题的一个很好的工具,要习惯使用它解决问题,要有意识的利用它解决问题.例3 设集合M ={x |-1≤x <2},N ={x |x <a }.若M ∩N =∅,则实数a 的取值范围是______.【答案】(-∞,-1].【评析】本题可以通过数轴进行分析,要特别注意当a 变化时是否能够取到区间端点的值.象韦恩图一样,数轴同样是解决集合运算问题的一个非常好的工具.例4 设a ,b ∈R ,集合},,0{},,1{b aba b a =+,则b -a =______. 【答案】2【解析】因为},,0{},,1{b a b a b a =+,所以a +b =0或a =0(舍去,否则ab没有意义), 所以,a +b =0,ab=-1,所以-1∈{1,a +b ,a },a =-1, 结合a +b =0,b =1,所以b -a =2.练习1-1一、选择题1.给出下列关系:①R ∈21;②2∉Q ;③|-3|∉N *;④Q ∈-|3|.其中正确命题的个数是( ) (A)1(B)2(C)3(D)42.下列各式中,A 与B 表示同一集合的是( ) (A)A ={(1,2)},B ={(2,1)} (B)A ={1,2},B ={2,1}(C )A ={0},B =∅(D)A ={y |y =x 2+1},B ={x |y =x 2+1}3.已知M ={(x ,y )|x >0且y >0},N ={(x ,y )|xy >0},则M ,N 的关系是( ) (A)M N(B)N M(C)M =N(D)M ∩N =∅4.已知全集U =N ,集合A ={x |x =2n ,n ∈N },B ={x |x =4n ,n ∈N },则下式中正确的关系是( ) (A)U =A ∪B (B)U =(U A )∪B(C)U =A ∪(U B )(D)U =(U A )∪(U B )二、填空题5.已知集合A={x|x<-1或2≤x<3},B={x|-2≤x<4},则A∪B=______.6.设M={1,2},N={1,2,3},P={c|c=a+b,a∈M,b∈N},则集合P中元素的个数为______.7.设全集U=R,A={x|x≤-3或x≥2},B={x|-1<x<5},则(U A)∩B=______. 8.设集合S={a0,a1,a2,a3},在S上定义运算⊕为:a i⊕a j=a k,其中k为i+j被4除的余数,i,j=0,1,2,3.则a2⊕a3=______;满足关系式(x⊕x)⊕a2=a0的x(x∈S)的个数为______.三、解答题9.设集合A={1,2},B={1,2,3},C={2,3,4},求(A∩B)∪C.10.设全集U={小于10的自然数},集合A,B满足A∩B={2},(U A)∩B={4,6,8},(A)∩(U B)={1,9},求集合A和B.U11.已知集合A={x|-2≤x≤4},B={x|x>a},①A∩B≠∅,求实数a的取值范围;②A∩B≠A,求实数a的取值范围;③A∩B≠∅,且A∩B≠A,求实数a的取值范围.§1-2 常用逻辑用语【知识要点】1.命题是可以判断真假的语句.2.逻辑联结词有“或”“且”“非”.不含逻辑联结词的命题叫简单命题,由简单命题和逻辑联结词构成的命题叫做复合命题.可以利用真值表判断复合命题的真假.3.命题的四种形式原命题:若p则q.逆命题:若q则p.否命题:若⌝p,则⌝q.逆否命题:若⌝q,则⌝p.注意区别“命题的否定”与“否命题”这两个不同的概念.原命题与逆否命题、逆命题与否命题是等价关系.4.充要条件如果p⇒q,则p叫做q的充分条件,q叫做p的必要条件.如果p⇒q且q⇒p,即q⇔p则p叫做q的充要条件,同时,q也叫做p的充要条件.5.全称量词与存在量词【复习要求】1.理解命题的概念.了解“若p,则q”形式的命题的逆命题、否命题与逆否命题,会分析四种命题的相互关系.理解必要条件、充分条件与充要条件的意义.2.了解逻辑联结词“或”、“且”、“非”的含义.3.理解全称量词与存在量词的意义.能正确地对含有一个量词的命题进行否定.【例题分析】例 1 分别写出由下列命题构成的“p∨q”“p∧q”“⌝p”形式的复合命题,并判断它们的真假.(1)p:0∈N,q:1∉N;(2)p:平行四边形的对角线相等,q:平行四边形的对角线相互平分.【解析】(1)p∨q:0∈N,或1∉N;p∧q:0∈N,且1∉N;⌝p:0∉N.因为p真,q假,所以p∨q为真,p∧q为假,⌝p为假.(2)p∨q:平行四边形的对角线相等或相互平分.p∧q:平行四边形的对角线相等且相互平分.⌝p:存在平行四边形对角线不相等.因为p假,q真,所以p∨q为真,p∧q为假,⌝p为真.【评析】判断复合命题的真假可以借助真值表.例2 分别写出下列命题的逆命题、否命题和逆否命题,并判断其真假.(1)若a2+b2=0,则ab=0;(2)若A∩B=A,则A B.【解析】(1)逆命题:若ab=0,则a2+b2=0;是假命题.否命题:若a2+b2≠0,则ab≠0;是假命题.逆否命题:若ab≠0,则a2+b2≠0;是真命题.(2)逆命题:若A B,则A∩B=A;是真命题.否命题:若A∩B≠A,则A不是B的真子集;是真命题.逆否命题:若A不是B的真子集,则A∩B≠A.是假命题.【评析】原命题与逆否命题互为逆否命题,同真同假;逆命题与逆否命题也是互为逆否命题.例3 指出下列语句中,p是q的什么条件,q是p的什么条件.(1)p:(x-2)(x-3)=0;q:x=2;(2)p:a≥2;q:a≠0.【解析】由定义知,若p⇒q且q p,则p是q的充分不必要条件;若p q且q⇒p,则p是q的必要不充分条件;若p⇒q且q⇒p,p与q互为充要条件.于是可得(1)中p是q的必要不充分条件;q是p的充分不必要条件.(2)中p是q的充分不必要条件;q是p的必要不充分条件.【评析】判断充分条件和必要条件,首先要搞清楚哪个是条件哪个是结论,剩下的问题就是判断p与q之间谁能推出谁了.例4设集合M={x|x>2},N={x|x<3},那么“x∈M或x∈N”是“x∈M∩N”的( )(A)充分非必要条件(B)必要非充分条件(C)充要条件(D)非充分条件也非必要条件【答案】B【解析】条件p:x∈M或x∈N,即为x∈R;条件q:x∈M∩N,即为{x∈R|2<x<3}.又R{x∈R|2<x<3},且{x∈R|2<x<3}⊆R,所以p是q的必要非充分条件,选B.【评析】当条件p和q以集合的形式表现时,可用下面的方法判断充分性与必要性:设满足条件p的元素构成集合A,满足条件q的元素构成集合B,若A⊆B且B A,则p是q 的充分非必要条件;若A B且B⊆A,则p是q的必要非充分条件;若A=B,则p与q互为充要条件.例5命题“对任意的x∈R,x3-x2+1≤0”的否定是( )(A)不存在x∈R,x3-x2+1≤0,(B)存在x∈R,x3-x2+1≤0(C)存在x∈R,x3-x2+1>0(D)对任意的x∈R,x3-x2+1>0【答案】C【分析】这是一个全称命题,它的否定是一个特称命题.其否定为“存在x∈R,x3-x2+1>0.”答:选C.【评析】注意全(特)称命题的否定是将全称量词改为存在量词(或将存在量词改为全称量词),并把结论否定.练习1-2一、选择题1.下列四个命题中的真命题为( )(A)∃x∈Z,1<4x<3(B)∃x∈Z,3x-1=0(C)∀x∈R,x2-1=0(D)∀x∈R,x2+2x+2>02.如果“p或q”与“非p”都是真命题,那么( )(A)q一定是真命题(B)q不一定是真命题(C)p不一定是假命题(D)p与q的真假相同3.已知a为正数,则“a>b”是“b为负数”的( )(A)充分不必要条件(B)必要不充分条件(C)充要条件(D)既不充分也不必要条件4.“A是B的子集”可以用下列数学语言表达:“若对任意的x∈A⇒x∈B,则称A⊆B”.那么“A 不是B 的子集”可用数学语言表达为( ) (A)若∀x ∈A 但x ∉B ,则称A 不是B 的子集 (B)若∃x ∈A 但x ∉B ,则称A 不是B 的子集 (C)若∃x ∉A 但x ∈B ,则称A 不是B 的子集 (D)若∀x ∉A 但x ∈B ,则称A 不是B 的子集 二、填空题5.“⌝p 是真命题”是“p ∨q 是假命题的”__________________条件. 6.命题“若x <-1,则|x |>1”的逆否命题为_________. 7.已知集合A ,B 是全集U 的子集,则“A ⊆B ”是“U B⊆U A ”的______条件.8.设A 、B 为两个集合,下列四个命题: ①A B ⇔对任意x ∈A ,有x ∉B ②A B ⇔A ∩B =∅③AB ⇔AB④AB ⇔存在x ∈A ,使得x ∉B其中真命题的序号是______.(把符合要求的命题序号都填上) 三、解答题9.判断下列命题是全称命题还是特称命题并判断其真假: (1)指数函数都是单调函数;(2)至少有一个整数,它既能被2整除又能被5整除; (3)∃x ∈{x |x ∈Z },log 2x >0; (4).041,2≥+-∈∀x x x R10.已知实数a ,b ∈R .试写出命题:“a 2+b 2=0,则ab =0”的逆命题,否命题,逆否命题,并判断四个命题的真假,说明判断的理由.习题11.命题“若x 是正数,则x =|x |”的否命题是( ) (A)若x 是正数,则x ≠|x | (B)若x 不是正数,则x =|x | (C)若x 是负数,则x ≠|x |(D)若x 不是正数,则x ≠|x |2.若集合M 、N 、P 是全集U 的子集,则图中阴影部分表示的集合是( )(A)(M ∩N )∪P (B)(M ∩N )∩P (C)(M ∩N )∪(U P )(D)(M ∩N )∩(U P )3.“81=a ”是“对任意的正数12,≥+xa x x ”的( ) (A)充分不必要条件 (B)必要不充分条件 (C)充要条件(D)既不充分也不必要条件4.已知集合P ={1,4,9,16,25,…},若定义运算“&”满足:“若a ∈P ,b ∈P ,则a &b ∈P ”,则运算“&”可以是( ) (A)加法(B)减法(C)乘法(D)除法5.已知a ,b ,c 满足c <b <a ,且ac <0,那么下列选项中不一定...成立的是( ) (A)ab >ac (B)c (b -a )<0 (C)cb 2<ab 2 (D)ac (a -c )<0二、填空题6.若全集U ={0,1,2,3}且U A ={2},则集合A =______.7.命题“∃x ∈A ,但x ∉A ∪B ”的否定是____________.8.已知A ={-2,-1,0,1},B ={y |y =|x |,x ∈A },则B =____________. 9.已知集合A ={x |x 2-3x +2<0},B ={x |x <a },若A B ,则实数a 的取值范围是____________.10.设a ,b 是两个实数,给出下列条件:①a +b >1;②a +b =2;③a +b >2; ④a 2+b 2>2;⑤ab >1,其中能推出“a ,b 中至少有一个大于1”的条件是______.(写出所有正确条件的序号)11.解不等式.21<x12.若0<a <b 且a +b =1.(1)求b 的取值范围;(2)试判断b 与a 2+b 2的大小.13.设a ≠b ,解关于x 的不等式:a 2x +b 2(1-x )≥[ax +b (1-x )]2.14.设数集A 满足条件:①A ⊆R ;②0∉A 且1∉A ;③若a ∈A ,则.11A a∈- (1)若2∈A ,则A 中至少有多少个元素; (2)证明:A 中不可能只有一个元素.专题01 集合与常用逻辑用语参考答案练习1-1一、选择题1.B 2.B 3.A 4.C提示:4.集合A表示非负偶数集,集合B表示能被4整除的自然数集,所以{正奇数}(U B),从而U=A∪(U B).二、填空题5.{x|x<4} 6.4个7.{x|-1<x<2} 8.a1;2个(x为a1或a3).三、解答题9.(A∩B)∪C={1,2,3,4}10.分析:画如图所示的韦恩图:得A={0,2,3,5,7},B={2,4,6,8}.11.答:①a<4;②a≥-2;③-2≤a<4提示:画数轴分析,注意a可否取到“临界值”.练习1-2一、选择题1.D 2.A 3.B 4.B二、填空题5.必要不充分条件6.若|x|≤1,则x≥-1 7.充要条件8.④提示:8.因为A B,即对任意x∈A,有x∈B.根据逻辑知识知,A B,即为④.另外,也可以通过文氏图来判断.三、解答题9.答:(1)全称命题,真命题.(2)特称命题,真命题.(3)特称命题,真命题;(4)全称命题,真命题.10.略解:答:逆命题:若ab=0,则a2+b2=0;是假命题;例如a=0,b=1否命题:若a2+b2≠0,则ab≠0;是假命题;例如a=0,b=1逆否命题:若ab ≠0,则a 2+b 2≠0;是真命题;因为若a 2+b 2=0,则a =b =0,所以ab =0,即原命题是真命题,所以其逆否命题为真命题.习题1一、选择题1.D 2.D 3.A 4.C 5.C提示:5.A 正确.B 不正确.D .正确.当b ≠0时,C 正确;当b =0时,C 不正确,∴C 不一定成立.二、填空题6.{0,1,3} 7.∀x ∈A ,x ∈A ∪B 8.{0,1,2} 9.{a |a ≥2} 10.③. 提示:10、均可用举反例的方式说明①②④⑤不正确.对于③:若a 、b 均小于等于1.即,a ≤1,b ≤1,则a +b ≤2,与a +b >2矛盾,所以③正确.三、解答题11.解:不等式21<x 即,021,021<-<-x x x 所以012>-xx ,此不等式等价于x (2x -1)>0,解得x <0或21>x , 所以,原不等式的解集为{x |x <0或21>x }. 12.解:(1)由a +b =1得a =1-b ,因为0<a <b ,所以1-b >0且1-b <b ,所以.121<<b (2)a 2+b 2-b =(1-b )2+b 2-b =2b 2-3b +1=⋅--81)43(22b 因为121<<b ,所以,081)43(22<--b 即a 2+b 2<b .13.解:原不等式化为(a 2-b 2)x +b 2≥(a -b )2x 2+2b (a -b )x +b 2,移项整理,得(a -b )2(x 2-x )≤0.因为a ≠b ,故(a -b )2>0,所以x 2-x ≤0.故不等式的解集为{x |0≤x ≤1}.14.解:(1)若2∈A ,则.22111,21)1(11,1211A A A ∈=-∴∈=--∴∈-=- ∴A 中至少有-1,21,2三个元素. (2)假设A 中只有一个元素,设这个元素为a ,由已知A a∈-11,则a a -=11.即a 2-a +1=0,此方程无解,这与A 中有一个元素a 矛盾,所以A 中不可能只有一个元素.。
专题01 集合与常用逻辑用语1.【2019年全国Ⅰ卷】已知集合2|42{|60}{},M x x N x x x =-<<=--<,则M N =( ) A.}{43x x -<< B.}42{x x -<<- C.}{22x x -<< D.}{23x x << 2.【2019年高考全国Ⅱ卷】设集合A ={x |x 2–5x +6>0},B ={x |x –1<0},则A ∩B =( )A .(–∞,1)B .(–2,1)C .(–3,–1)D .(3,+∞)3.【2019年高考全国Ⅲ卷】已知集合2{1,0,1,2},{|1}A B x x =-=≤,则AB =( ) A .{}1,0,1- B .{}0,1C .{}1,1-D .{}0,1,2 4.【2018年理新课标I 卷】已知集合,则( ) A. B. C. D.5.【2018年理数全国卷II 】已知集合,则中元素的个数为( )A. 9B. 8C. 5D. 46.【2017课标II ,理】设集合{}1,2,4A =,{}240x x x m B =-+=.若{}1A B =,则B =( )A.{}1,3-B.{}1,0C.{}1,3D.{}1,57.【2017课标3,理1】已知集合A ={}22(,)1x y x y +=│,B ={}(,)x y y x =│,则A B 中元素的个数为( )A .3B .2C .1D .0 8.已知集合{(,)|2,,}A x y x y x y =+≤∈N ,则A 中元素的个数为( )A .1B .5C .6D .无数个 9.已知集合{|1}A x x =<,{|31}x B x =<,则( )A .{}1AB x x => B .A B =RC .{|0}A B x x =<D .A B =∅10.设集合{|12,}A x x x =-≤≤∈N ,集合{2,3}B =,则B A 等于( )A .{1,0,1,2,3}-B .{0,1,2,3}C .}3,2,1{D .{2}11.已知集合{0,1,2}A =,{,2}B a =,若B A ⊆,则a = ( )A .0B .0或1C .2D .0或1或212.已知集合{}2230,A x x x =+-≤{}2B =<,则A B =( ) A .{}31x x -≤≤ B .{}01x x ≤≤ C .{}31x x -≤<D .{}10x x -≤≤13.已知集合{|A x y =,2{|log 1}B x x =≤,则A B =( )A.1{|}3x x ≤≤-B.{|01}x x <≤ C .{|32}-≤≤x x D .{|2}x x ≤14.设集合{|A x y ==,{|2,x B y y ==3}x ≤,则集合B A C R )(=( ) A .}3|{<x xB .{|3}x x ≤C .{|03}x x <<D .{|03}x x <≤ 15.设集合,,则( ) A. B. C. D. 16.设集合,,则的子集个数为( )A. 4B. 8C. 16D. 3217.设集合,,若,则( ) A. B. C. D. 18.【2017江苏,1】已知集合{1,2}A =,2{,3}B a a =+,若{1}A B =则实数a 的值为 .19.(2016年山东高考)设集合 则=( )(A ) (B )(C ) (D ) 20.已知集合{}{}213,4,P x x Q x x =∈≤≤=∈≥R R 则)(Q C P R =( )A .[2,3]B .( -2,3 ]C .[1,2)D .(,2][1,)-∞-⋃+∞21.(2016年四川高考)设集合{|22}A x x =-≤≤,Z 为整数集,则AZ 中元素的个数是( ) A.3 B.4 C.5 D.622.(2016年天津高考)已知集合{1,2,3,4},{|32},A B y y x x A ===-∈,则A B =( ) (A ){1} (B ){4} (C ){1,3}(D ){1,4} 23.(2016年全国I )设集合2{|430}A x x x =-+< ,{|230}B x x =->,则A B = ( )(A )3(3,)2-- (B )3(3,)2- (C )3(1,)2 (D )3(,3)224.(2016年全国II )已知集合,,则( ) (A ) (B ) (C ) (D ) 25.(2016年全国III 高考)设集合S = , 则T S =( )A.[2,3]B.(- ,2] [3,+)C. [3,+)D.(0,2] [3,+)2{|2,},{|10},x A y y x B x x ==∈=-<R A B (1,1)-(0,1)(1,)-+∞(0,)+∞{1,}A =2,3{|(1)(2)0,}B x x x x =+-<∈Z A B ={1}{12},{0123},,,{10123}-,,,,{}{}|(2)(3)0,|0S x x x T x x =--≥=>∞U ∞∞U ∞26.命题“2000,10x x x ∃∈++<R ”的否定为 ( )A .2000,10x x x ∃∈++≥RB .2000,10x x x ∃∈++≤RC .2000,10x x x ∀∈++≥RD .2000,10x x x ∀∉++≥R27.【2015高考新课标1,理3】设命题p :2,2n n N n ∃∈>,则p ⌝为( )(A )2,2n n N n ∀∈> (B )2,2n n N n ∃∈≤(C )2,2n n N n ∀∈≤ (D )2,=2n n N n ∃∈28.(2016年浙江高考) 命题“*x n ∀∈∃∈,R N ,使得2x n ≥”的否定形式是( ) A .*x n ∀∈∃∈,R N ,使得2n x < B .*x n ∀∈∀∈,R N ,使得2n x <C .*x n ∃∈∃∈,R N ,使得2n x <D .*x n ∃∈∀∈,R N ,使得2n x <29.已知命题;命题:,,则下列命题为真命题的是( ) A. B. C. D. 30.【2017山东,理3】已知命题p:;命题q :若a >b ,则,下列命题为真命题的是( )(A ) ∧p q (B )⌝∧p q (C ) ⌝∧p q (D )⌝⌝∧p q31.【2017课标II 】甲、乙、丙、丁四位同学一起去向老师询问成语竞赛的成绩。
专题一集合与常用逻辑用语备考篇【考情探究】课标解读考情分析备考指导主题内容一、集合的概念与运算1.理解集合的含义,能用自然语言、图形语言、集合语言(列举法或描述法)表示集合.2.理解集合之间的包含关系,能识别给定集合的子集,在具体问题中了解全集与空集的含义.3.理解两个集合的并集与交集的含义,并会求它们的交集与并集;理解给定一个集合的子集的补集含义,会求给定子集的补集;会用韦恩(Venn)图表示集合间的基本关系及运算.1.考查内容:从近五年高考看,本专题重点考查集合的交、并、补运算,所给的数集既有连续型(如2020新高考Ⅰ卷第1题直接给出了两个连续型集合,求它们的并集,而2020课标Ⅰ卷理数第1题则是先求出一元一次、一元二次不等式的解集,后给定了集合交集来求参数的值)、又有离散型的数集(如2020课标Ⅱ卷文数第1题与2020天津卷第1题);对充分条件、必要条件的考查常与其他知识结合(如2020北京卷的第9题以三角函数中的诱导公式为背景考查了充分、必要条件的推理判断);全(特)称命题的考查相对较少.2.本专题是历年必考的内容,在选择题、填空题中出现较多,多以给定的集合或不等式的解集为载体,以集合1.对于给定的集合,首先应明确集合的表示方法,对于描述法表述的集合,要明确集合的元素是什么(是数集、点集等),明确集合是不等式的解集,是函数的定义域还是值域,把握集合中元素的属性是重点.2.了解命题及其逆命题、否命题与逆否命题;通过对概念的理解,会分析四种命题的关系,会写出一个命题的其他三个命题,并判断其真假.能用逻辑联结词正确地表达相关的数学命题.3.对于充分、必要条件的判断问题,必须明确题目中的条件与结论分别是什么,它们之间的互推关系是怎样的,要加强这方面的训练.4.关于全称命题与特称二、常用逻辑用语1.理解必要条件、充分条件与充要条件的意义.2.理解全称量词与存在量词的意义.3.能正确地对含有一个量词的命题进行否定.语言和符号语言为表现形式,考查集合的交、并、补运算;也会与解不等式、函数的定义域、值域相结合进行考查.3.对于充分、必要条件的判断,含有一个量词的命题的否定可以与每一专题内容相关联,全称命题及特称命题是重要的数学语言,高考考题充分体现了逻辑推理的核心素养.命题,一般考查命题的否定.对含有一个量词的命题进行真假判断,要学会用特值检验.【真题探秘】命题立意已知给定的两个连续型的数集,求它们的并集.解题指导1.进行集合运算时,首先看集合是否最简,能化简先化简,再运算.2.注意数形结合思想的应用(1)离散型数集或抽象集合间的运算,常借助Venn图求解. (2)连续型数集的运算,常借助数轴求解,运用数轴时要特别注意端点是实心还是空心.拓展延伸1.集合中的元素的三个特征,特别是无序性和互异性在解题时经常用到,解题后要进行检验,要重视符号语言与文字语言之间的相互转化.2.对连续数集间的运算,借助数轴的直观性,进行合理转化;对已知连续数集间的关系,求其中参数的取值范围时,要注意等号能否取到.3.空集是任何集合的子集,是任何非空集合的真子集,关注对空集的讨论,防止漏解.4.解题时注意区分两大关系:一是元素与集合的从属关系:二是集合与集合的包含关系.5.Venn图图示法和数轴图示法是进行集合交、并、补运算的常用方法.[教师专用题组]1.真题多维细目表考题涉分题型难度考点考向解题方法核心素养2020新高考Ⅰ,1 5单项选择题易集合的运算集合的并集运算数轴法数学运算2020新高考Ⅱ,1 5单项选择题易集合的运算集合的并集运算定义法数学运算2020课标Ⅰ理,2 5选择题易集合的运算解不等式、集合的交集运算定义法数学运算2020课标Ⅰ文,1 5选择题易集合的运算解不等式、集合的交集运算定义法数学运算2020北京,1 4选择题易集合的运算集合的交集运算定义法数学运算2020天津,1 5选择题易集合的运算集合的交、补集运算定义法数学运算2020天津,2 5选择题易充分、必要条件解不等式、充分、必要条件的判断定义法逻辑推理2020北京,9 4选择题难充分、必要条件诱导公式、角的终边位置与角大小关系、充分、必要条件的判断定义法逻辑推理风格.2.2020年新高考考查内容主要体现在以下方面:①新高考Ⅰ卷第1题,新高考Ⅱ卷第1题直接给出了两个集合求它们的并集或交集,课标Ⅰ卷理数则是需要求出一元一次、一元二次不等式的解集,同时通过它们的交集确定参数的值,北京卷与新高考Ⅰ卷相近,直接求两个给定集合的交集;②2020年新高考Ⅰ卷第5题以学生参加体育锻炼为背景考查了利用韦恩(Venn)图求两个集合交集中元素所占总体的比例问题,体现了集合的应用价值;③2020年北京卷第9题以三角函数中的诱导公式为背景考查了充分、必要条件的判断.3.在备考时还要适当关注求集合的补集运算,对含有一个量词的命题的真假判断,集合与充分、必要条件相结合的命题方式,在不同背景下抽象出数学本质的方法等.应强化在知识的形成过程、知识的迁移中渗透学科素养.§1.1 集合 基础篇 【基础集训】考点一 集合及其关系1.若用列举法表示集合A ={(x ,x )|{2x +x =6x -x =3},则下列表示正确的是 ( )A.A ={x =3,y =0}B.A ={(3,0)}C.A ={3,0}D.A ={(0,3)} 答案 B2.若集合M ={x ||x |≤1},N ={y |y =x 2,|x |≤1},则 ( ) A.M =N B.M ⊆N C.M ∩N =⌀ D.N ⫋M 答案 D3.已知集合A ={x ∈R|x 2+x -6=0},B ={x ∈R|ax -1=0},若B ⊆A ,则实数a 的值为 ( ) A.13或-12B.-13或12C.13或-12或0 D.-13或12或0答案 D4.已知含有三个实数的集合既可表示成{x ,x x,1},又可表示成{a 2,a +b ,0},则a 2021+b 2021等于 . 答案 -1考点二 集合的基本运算5.已知集合M ={x |-1<x <3},N ={x |-2<x <1},则M ∩N = ( )A .(-2,1)B .(-1,1)C .(1,3)D .(-2,3) 答案 B6.已知全集U =R,A ={x |x ≤0},B ={x |x ≥1},则集合∁U (A ∪B )=( ) A.{x |x ≥0} B.{x |x ≤1}C.{x|0≤x≤1}D.{x|0<x<1}答案 D7.已知集合A={x|x2-2x-3>0},B={x|lg(x+1)≤1},则(∁R A)∩B= ()A.{x|-1≤x<3}B.{x|-1≤x≤9}C.{x|-1<x≤3}D.{x|-1<x<9}答案 C8.全集U={x|x<10,x∈N*},A⊆U,B⊆U,(∁U B)∩A={1,9},A∩B={3},(∁U A)∩(∁U B)={4,6,7},则A∪B=.答案{1,2,3,5,8,9}[教师专用题组]【基础集训】考点一集合及其关系1.(2018广东茂名化州二模,1)设集合A={-1,0,1},B={x|x>0,x∈A},则B= ()A.{-1,0}B.{-1}C.{0,1}D.{1}答案D由题意可知,集合B由集合A中为正数的元素组成,因为集合A={-1,0,1},所以B={1}.2.设集合A={y|y=x2+2x+5,x∈R},有下列说法:①1∉A;②4∈A;③(0,5)∈A.其中正确的说法个数是()A.0B.1C.2D.3答案C易知A={y|y≥4},所以①②都是正确的;(0,5)是点,而集合A中元素是数,所以③是错误的.故选C.3.(2020陕西西安中学第一次月考,1)已知集合A={x|x≥-1},则正确的是 ()A.0⊆AB.{0}∈AC.⌀∈AD.{0}⊆A答案D对于A,0∈A,故A错误;对于B,{0}⊆A,故B错误;对于C,空集⌀是任何集合的子集,即⌀⊆A,故C错误;对于D,由于集合{0}是集合A的子集,故D正确.故选D.4.(2019辽宁沈阳质量检测三,2)已知集合A={(x,y)|x+y≤2,x,y∈N},则A中元素的个数为()A.1B.5C.6D.无数个答案C由题意得A={(0,0),(0,1),(0,2),(1,0),(1,1),(2,0)},所以A中元素的个数为6.故选C.5.(2020广西桂林十八中8月月考,1)已知集合A={1,a},B={1,2,3},那么 ()A.若a=3,则B⊆AB.若a=3,则A⫋BC.若A⊆B,则a=2D.若A⊆B,则a=3答案B当a=3时,A={1,3},又因为B={1,2,3},所以A⫋B.若A⊆B,则a=2或3.故选B. 6.(2019辽宁师大附中月考,2)已知集合A={0,1},B={x|x⊆A},则下列集合A与B的关系中正确的是()A.A⊆BB.A⫋BC.B⫋AD.A∈B答案D因为x⊆A,所以B={⌀,{0},{1},{0,1}},则集合A={0,1}是集合B中的一个元素,所以A∈B,故选D.,x≠0},集合B={x|x2-4 7.(2020安徽江淮十校第一次联考,1)已知集合A={x|x=x+1x≤0},若A∩B=P,则集合P的子集个数为()A.2B.4C.8D.16答案B A={y|y≤-2或y≥2},B={-2≤x≤2},则P=A∩B={-2,2},所以P的子集个数为4,故选B.8.(2019广东六校9月联考,2)已知集合A={-1,1},B={x|ax+1=0},若B⊆A,则实数a的所有可能取值的集合为()A.{-1}B.{1}C.{-1,1}D.{-1,0,1}答案D因为B⊆A,所以当B=⌀,即a=0时满足条件;},又知B⊆A,当B≠⌀时,a≠0,∴B={x|x=-1x∈A,∴a=±1.∴-1x综上可得实数a的所有可能取值集合为{-1,0,1},故选D.易错警示由于空集是任何集合的子集,又是任何非空集合的真子集,所以遇到“A⊆B或A⫋B且B≠⌀”时,一定要注意讨论A=⌀和A≠⌀两种情况,A=⌀的情况易被忽略,从而导致失分.9.(2019河南豫南九校第一次联考,13)已知集合A={1,2,3},B={1,m},若3-m∈A,则非零实数m的值是.答案 2解析若3-m=1,则m=2,符合题意;若3-m=2,则m=1,此时集合B中的元素不满足互异性,故m≠1;若3-m=3,则m=0,不符合题意.故答案为2.考点二集合的基本运算1.(2019金丽衢十二校高三第一次联考,1)若集合A=(-∞,5),B=[3,+∞),则(∁R A)∪(∁R B)=()A.RB.⌀C.[3,5)D.(-∞,3)∪[5,+∞)答案D∁R A=[5,+∞),∁R B=(-∞,3),所以(∁R A)∪(∁R B)=(-∞,3)∪[5,+∞).2.(2019河南中原联盟9月联考,1)已知集合A={x|(x-1)·(x-2)>0},B={x|y=√2x-1},则A ∩B= ()A.[12,1)∪(2,+∞) B.[12,1)C.(12,1)∪(2,+∞) D.R答案A因为集合A={x|(x-1)(x-2)>0}={x|x<1或x>2},B={x|y=√2x-1}={x|x≥12},所以A∩B=[12,1)∪(2,+∞),故选A.3.(2018河北石家庄3月质检,1)设集合A={x|-1<x≤2},B={x|x<0},则下列结论正确的是()A.(∁R A)∩B={x|x<-1}B.A∩B={x|-1<x<0}C.A∪(∁R B)={x|x≥0}D.A∪B={x|x<0}答案B∵A={x|-1<x≤2},B={x|x<0},∴∁R A={x|x≤-1或x>2},∁R B={x|x≥0}.对于选项A,(∁R A)∩B={x|x≤-1},故A错误;对于选项B,A∩B={x|-1<x<0},故B正确;对于选项C,A∪(∁R B)={x|x>-1},故C错误;对于选项D,A∪B={x|x≤2},故D错误.故选B.名师点拨 对于集合的交、并、补运算,利用数轴求解能减少失误.4.(2020山东夏季高考模拟,1)设集合A ={(x ,y )|x +y =2},B ={(x ,y )|y =x 2},则A ∩B = ( ) A.{(1,1)} B.{(-2,4)} C.{(1,1),(-2,4)} D.⌀ 答案 C 本题主要考查集合的含义及集合的运算. 联立{x +x =2,x =x 2,消y 可得x 2+x -2=0,∴x =1或-2, ∴方程组的解为{x =1,x =1或{x =-2,x =4,从而A ∩B ={(1,1),(-2,4)},故选C .5.(2019山东济南外国语学校10月月考,1)已知R 为实数集,集合A ={x |(x +1)2(x -1)x>0},B ={x |(x +1)(x -12)>0},则图中阴影部分表示的集合为 ( )A.{-1}∪[0,1]B.[0,12]C.[-1,12]D.{-1}∪[0,12] 答案 D ∵(x +1)2(x -1)x>0,∴x ≠-1且x (x -1)>0,∴x <-1或-1<x <0或x >1,∴A ={x |x <-1或-1<x <0或x >1}. ∵(x +1)(x -12)>0,∴x >12或x <-1,∴B ={x |x >12或x <-1}.∴A ∪B ={x |x <-1或-1<x <0或x >12}.故图中阴影部分表示的集合为∁R (A ∪B )={-1}∪{x |0≤x ≤12},即{-1}∪[0,12].故选D .综合篇 【综合集训】考法一 集合间基本关系的求解方法1.(2021届江苏扬州二中期初检测,2)已知集合A ={x |x 2+x =0,x ∈R},则满足A ∪B ={0,-1,1}的集合B 的个数是( )A.4B.3C.2D.1 答案 A2.(2020山东滨州6月三模)已知集合M ={x |x =4n +1,n ∈Z},N ={x |x =2n +1,n ∈Z},则 ( ) A.M ⫋N B.N ⫋M C.M ∈N D.N ∈M 答案 A3.(2019辽宁沈阳二中9月月考,14)设集合A={x|2a+1≤x≤3a-5},B={x|3≤x≤22}.若A⊆(A∩B),则实数a的取值范围为.答案(-∞,9]考法二集合运算问题的求解方法}, 4.(2021届河南郑州一中开学测试,1)已知全集U=R,集合A={x|y=lg(1-x)},B={x|x=√x 则(∁U A)∩B= ()A.(1,+∞)B.(0,1)C.(0,+∞)D.[1,+∞)答案 D5.(2020浙江超级全能生第一次联考,1)记全集U=R,集合A={x|x2-4≥0},集合B={x|2x≥2},则(∁U A)∩B= ()A.[2,+∞)B.⌀C.[1,2)D.(1,2)答案 C6.(2021届湖湘名校教育联合体入学考,1)设全集U=A∪B={x|-1≤x<3},A∩(∁U B)={x|2<x<3},则集合B= ()A.{x|-1≤x<2}B.{x|-1≤x≤2}C.{x|2<x<3}D.{x|2≤x<3}答案 B7.(2020山东德州6月二模,1)若全集U={1,2,3,4,5,6},M={1,3,4},N={2,3,4},则集合(∁U M)∪(∁U N)等于()A.{5,6}B.{1,5,6}C.{2,5,6}D.{1,2,5,6}答案 D8.(2021届重庆育才中学入学考试,1)已知集合A={x|0<x<4,x∈Z},集合B={y|y=m2,m∈A},则A∩B= ()A.{1}B.{1,2,3}C.{1,4,9}D.⌀答案 A[教师专用题组]【综合集训】考法一集合间基本关系的解题方法1.已知集合M={1,m},N={n,log2n},若M=N,则(m-n)2015=.答案-1或0解析 因为M =N ,所以{1,m }={n ,log 2n }. 当n =1时,log 2n =0,则m =0,所以(m -n )2015=-1; 当log 2n =1时,n =2,则m =2,所以(m -n )2015=0.故(m -n )2015=-1或0.2.已知集合A ={x |x =2x +13,x ∈Z },B =,则集合A 、B 的关系为 . 答案 A =B 解析 A =,B ={x |x =13(2x +3),x ∈Z }.∵{x |x =2n +1,n ∈Z}={x |x =2n +3,n ∈Z},∴A =B.故答案为A =B.3.设集合A ={-2},B ={x |ax +1=0,a ∈R},若A ∩B =B ,则a 的值为 . 答案 0或12解析 ∵A ∩B =B ,∴B ⊆A. ∵A ={-2}≠⌀,∴B =⌀或B ≠⌀.当B =⌀时,方程ax +1=0无解,此时a =0,满足B ⊆A. 当B ≠⌀时,a ≠0,则B ={-1x }, ∴-1x∈A ,即-1x=-2,解得a =12.综上,a =0或a =12.4.已知集合A ={x |x <-1或x >4},B ={x |2a ≤x ≤a +3}.若B ⊆A ,则实数a 的取值范围为 .答案 (-∞,-4)∪(2,+∞)解析 ①当B =⌀时,只需2a >a +3,即a >3; ②当B ≠⌀时,根据题意作出如图所示的数轴.可得{x +3≥2x ,x +3<-1或{x +3≥2x ,2x >4, 解得a <-4或2<a ≤3.综上可得,实数a的取值范围为(-∞,-4)∪(2,+∞).考法二集合运算问题的求解方法1.(2017北京东城二模,1)已知全集U是实数集R.如图所示的韦恩图表示集合M={x|x>2}与N={x|1<x<3}的关系,那么阴影部分所表示的集合为()A.{x|x<2}B.{x|1<x<2}C.{x|x>3}D.{x|x≤1}答案D由题中韦恩图知阴影部分表示的集合是∁U(M∪N).∵M∪N={x|x>1},∴∁U(M∪N)={x|x≤1}.2.(2017安徽淮北第二次模拟,2)已知全集U=R,集合M={x|x+2a≥0},N={x|log2(x-1)<1},若集合M∩(∁U N)={x|x=1或x≥3},则()A.a=12B.a≤12C.a=-12D.a≥12答案C∵log2(x-1)<1,∴x-1>0且x-1<2,即1<x<3,则N={x|1<x<3},∵U=R,∴∁U N={x|x≤1或x≥3},又∵M={x|x+2a≥0}={x|x≥-2a},M∩(∁U N)={x|x=1或x≥3},∴-2a=1,解得a=-12.故选C.3.设U=R,集合A={x|x2+3x+2=0},B={x|x2+(m+1)x+m=0},若(∁U A)∩B=⌀,则m=.答案1或2解析A={-2,-1},由(∁U A)∩B=⌀,得B⊆A,∵方程x2+(m+1)x+m=0的判别式Δ=(m+1)2-4m=(m-1)2≥0,∴B≠⌀.∴B={-1}或B={-2}或B={-1,-2}.①若B={-1},则m=1;②若B={-2},则-(m+1)=(-2)+(-2)=-4,且m=(-2)×(-2)=4,这两式不能同时成立,∴B≠{-2};③若B={-1,-2},则-(m+1)=(-1)+(-2)=-3,且m=(-1)×(-2)=2,由这两式得m=2.经检验,m=1和m=2符合条件.∴m=1或2.11。
专题一集合与常用逻辑用语(必刷1~60题)考点1:集合与元素(1)集合元素的三个特征:确定性、互异性、无序性.(2)元素与集合的关系是属于或不属于关系,用符号∈或∉表示.(3)集合的表示法:列举法、描述法、V enn 图法.(4)常见数集的记法集合自然数集正整数集整数集有理数集实数集符号NN +(或N *)ZQR(5)集合的分类若按元素的个数分类,可分为有限集、无限集、空集;若按元素的属性分类,可分为点集、数集等.特别注意空集是一个特殊而又重要的集合,如果一个集合不包含任何元素,这个集合就叫做空集,空集用符号“∅”表示,规定:空集是任何集合的子集,是任何非空集合的真子集.解题时切勿忽视空集的情形.考点2:集合间的基本关系关系自然语言符号语言V enn 图子集集合A 中所有元素都在集合B 中(即若x ∈A ,则x ∈B )A ⊆B (或B ⊇A )真子集集合A 是集合B 的子集,且集合B 中至少有一个元素不在集合A 中A (B (或B (A )集合相等集合A ,B 中元素完全相同或集合A ,B 互为子集A =B(1)、子集与真子集的区别与联系:一个集合的真子集一定是其子集,而其子集不一定是其真子集.(2)、若有限集A 中有n 个元素,则集合A 的子集个数为2n ,真子集的个数为2n -1.【必刷1】设全集{1,2,3,4,5}U =,集合M 满足{1,3}U M =ð,则()A .2M∈B .3M∈C .4M∉D .5M∉【必刷2】已知集合(){}223A x y xy x Z y Z =+≤∈∈,,,,则A 中元素的个数为()A .9B .8C .5D .4【必刷3】已知集合{}22(,)1A x y x y =+=,{}(,)B x y y x ==,则A B 中元素的个数为()A .3B .2C .1D .0【必刷4】已知集合{}0,1,2A =,{}32B x x =-<<,则A B 子集的个数为()A .3B .4C .7D .8【必刷5】已知集合(){}2,A x y y x ==,(){,B x y y ==,则A B 的真子集个数为()A .1个B .2个C .3个D .4个【必刷6】已知集合{}15A x x =-<<,{}Z 18B x x =∈<<,则A B 的子集个数为()A .4B .6C .8D .9【必刷7】已知集合}{{}2|23,9,,A x Z x B x x M A B =∈-<≤=<=⋂则M 的子集的个数为()A .16B .7C .4D .3【必刷8】已知集合A ={(x ,y )|x 2+y 2=1},B ={(x ,y )|y =x +1},则集合A ∩B 中元素的个数为()A .0B .1C .2D .3【必刷9】设集合{}1,0,1,2A =-,{}2230B x x x =+-<,则A B 的子集个数为()A .2B .4C .8D .16【必刷10】设集合{}22A x x =≤,Z 为整数集,则集合A ⋂Z 子集的个数是()A .3B .6C .7D .8【必刷11】已知集合{}2,0,1M =-,{}220N x x ax =+-=,若N M ⊆,则实数a =()A .2B .1C .0D .-1【必刷12】集合{}22log 2x Z x ∈≤的子集个数为()A .4B .8C .16D .32【必刷13】已知集合{2,0,2}A =-,π1sin ,4B y y x x A ⎧⎫==+∈⎨⎬⎩⎭,则集合A B 的真子集的个数是()A .7B .31C .16D .15【必刷14】已知集合{}1,2,3,4,5,6A =,6,1B xx A x ⎧⎫=∈∈⎨⎬-⎩⎭N ,则集合B 的子集的个数是()A .3B .4C .8D .16【必刷15】已知集合{}21,S s s n n Z ==+∈,{}3T x x =<,则S T 的真子集的个数是()A .1B .2C .3D .4【必刷16】已知集合22{(,)|1}A x y x y =+=,集合{(,)|||1}B x y y x ==-,则集合A B 的真子集的个数为()A .3B .4C .7D .8【必刷17】若集合{}1,2,3,4,5U =,{}13,5A =,,{}3,4,5B =,则图中阴影部分表示的集合的子集个数为()A .3B .4C .7D .8考点3:集合的运算如果一个集合包含了我们所要研究的各个集合的全部元素,这样的集合就称为全集,全集通常用字母U 表示;集合的并集集合的交集集合的补集图形符号A ∪B ={x |x ∈A ,或x ∈B }A ∩B ={x |x ∈A ,且x ∈B }∁U A ={x |x ∈U ,且x ∉A }【必刷18】若集合{4},{31}M x x N x x =<=≥∣∣,则M N = ()A .{}02x x ≤<B .123x x ⎧⎫≤<⎨⎬⎩⎭C .{}316x x ≤<D .1163x x ⎧⎫≤<⎨⎬⎩⎭【必刷19】集合{}{}2,4,6,8,10,16M N x x ==-<<,则M N = ()A .{2,4}B .{2,4,6}C .{2,4,6,8}D .{2,4,6,8,10}【必刷20】设集合{1,2,3,4,5,6},{1,3,6},{2,3,4}U A B ===,则()U A B = ð()A .{3}B .{1,6}C .{5,6}D .{1,3}【必刷21】已知集合{}23log 1,02x P x x Q xx -⎧⎫=>=≤⎨⎬+⎩⎭,则()P Q =R I ð()A .[2,2]-B .(2,2]-C .[0,2]D .(0,2]【必刷22】已知集合204x A xx ⎧⎫+=<⎨⎬-⎩⎭,{}0,1,2,3,4,5B =,则()R A B ⋂=ð()A .{}5B .{}4,5C .{}2,3,4D .{}0,1,2,3【必刷23】设集合{}2120A x x x =--≤,12416x B x ⎧⎫=<<⎨⎬⎩⎭,则A B 等于()A .(]3,4-B .[)3,2-C .(]4,4-D .[]3,4-【必刷24】若集合{}4A y y x ==-,{}3log 2B x x =≤,则A B = ()A .(]0,9B .[)4,9C .[]4,6D .[]0,9【必刷25】已知集合(){}0.2log 20A x x =->,{}24B x x =≤,则A B ⋃=()A .[]22-,B .(]2,1-C .[)2,3-D .∅【必刷26】已知全集{1,2,3,4,5,6,7,8,9}U =,{1,3,5,8,9}A =,{2,3,4,6}B =,则()U A B = ð()A .{2,4}B .{2,4,6}C .{1,3,5,7}D .{3}【必刷27】已知集合{}12M x x =-≤≤,{}ln N x y x ==,则M N = ()A .[]1,2-B .(]1,2-C .(]0,2D .()[),12,-∞-⋃+∞【必刷28】已知集合{}{}Z 33,2e xA x xB y y =∈-<<==-,则A B = ()A .{2,1,0,1,2}--B .(,2)-∞C .{2,1,0,1}--D .(3,2)-【必刷29】若全集{}0,1,2,3,4,5U =,集合{}0,1,2A =,{}1,2,3B =,则()U A B = ð()A .{}0,1,2B .{}1,2,3C .{}0D .{}0,1,2,4,5【必刷30】设集合{}{}11,124x M x x N x =-≤≤=<<∣∣,则M N = ()A .{10}xx -≤<∣B .{01}xx <≤∣C .{12}xx ≤<∣D .{12}xx -≤<∣【必刷31】如图,全集U =R ,集合{}1,0,2,3,6A =-,集合{}2,3,5,7B =,则阴影部分表示集合()A .{}1,0,5,7-B .{}1,0,2,3,5,6,7-C .{}2,3D .{}1,0,5,6,7-【必刷32】设集合{}2|log ,4A y y x x ==>,{}2|320B x x x =-+<,则()A B =R U ð()A .(1,2)B .(1,2]C .(,2]-∞D .(,2)-∞【必刷33】已知全集{}0,1,2,3,4,5,6U =,集合{}0,2,4,5A =,集合{}2,3,4,6B =,用如图所示的阴影部分表示的集合为()A .{2,4}B .{0,3,5,6}C .{0,2,3,4,5,6}D .{1,2,4}【必刷34】已知集合{}2A x x =<,(){}2ln 3B x y x x==-,则A B ⋃=()A .()0,2B .()0,3C .()2,3D .()2,3-【必刷35】若集合{}{}21,0,1,2A x Z x B =∈-<<=,则A B ⋃=()A .(2,1)-B .{1,0}-C .(2,1]{2}-⋃D .{1,0,1,2}-【必刷36】已知集合{}234|0A x x x =--=,{}2|B x a x a =<<,若A B =∅ ,则实数a 的取值范围是()A .(],1-∞-B .[)4,+∞C .()(),12,4-∞-⋃D .[][)1,24,-⋃+∞【必刷37】已知集合(){}22240,(1)2101x A xB x x a x a a x ⎧⎫-==-+++<⎨⎬+⎩⎭,若A B =∅ ,则实数a 的取值范围是()A .()2,+∞B .{}()12,∞⋃+C .{}[)12,+∞U D .[)2,+∞【必刷38】设{}28120A x x x =-+=,{}10B x ax =-=,若A B B = ,则实数a 的值不可以是()A .0B .16C .12D .2【必刷39】已知集合{}23A x x =∈<Z ,32B x a x a ⎧⎫=<<+⎨⎬⎩⎭,若A B 有2个元素,则实数a 的取值范围是()A .3,12⎛⎫-- ⎪⎝⎭B .3,02⎛⎫- ⎪⎝⎭C .()3,01,2⎛⎫-⋃+∞ ⎪⎝⎭D .31,1,022⎛⎫⎛⎫--⋃- ⎪ ⎪⎝⎭⎝⎭【必刷40】已知集合{}21,Z A x x n n ==+∈,{}2B =<,则A B = ()A .{}1,3B .{}1,3,5,7C .{}3,5,7D .{}3,5,7,9考点4.四种命题及其相互关系(1)四种命题间的相互关系(2)四种命题的真假关系①两个命题互为逆否命题,它们具有相同的真假性;考点5.全称量词和存在量词(1)全称量词有:所有的,任意一个,任给,用符号“∀”表示;存在量词有:存在一个,至少有一个,有些,用符号“∃”表示.(2)含有全称量词的命题,叫做全称命题.“对M 中任意一个x ,有p (x )成立”用符号简记为:∀x ∈M ,p (x ).(3)含有存在量词的命题,叫做特称命题.“存在M 中元素x 0,使p (x 0)成立”用符号简记为:∃x 0∈M ,p (x 0).【必刷41】下列四个命题中真命题的个数是()①“x =1”是“2320x x -+=”的充分不必要条件;②命题“R x ∀∈,sin 1x ≤”的否定是“R x ∃∈,sin 1x >”;③命题p :[)1,x ∀∈+∞,lg 0x ≥,命题q :R x ∃∈,210x x ++<,则p q ∧为真命题;④“若2ϕπ=,则()sin 2y x ϕ=+为偶函数”的否命题为真命题.A .0B .1C .2D .3【必刷42】下列命题正确的是()A .命题“若2320x x -+=,则2x =”的否命题为“若2320x x -+=,则2x ≠”B .若给定命题:R p x ∃∈,210x x +-<,则:R p x ⌝∀∈,210x x +->C .已知:12p x -<<,()12:2log 210x q x +++<,则p 是q 的充分必要条件D .若p q ∨为假命题,则p ,q 都为假命题【必刷43】下列说法错误的是()A .命题“x R ∀∈,cos 1≤x ”的否定是“0x R ∃∈,0cos 1x >”B .在△ABC 中,sin sin A B ≥是A B ≥的充要条件C .若a ,b ,R c ∈,则“20ax bx c ++≥”的充要条件是“0a >,且240b ac -≤”D .“若1sin 2α≠,则6πα≠”是真命题【必刷44】命题“若220x y +=,则0x y ==”的否命题为()A .若220x y +=,则0x ≠且0y ≠B .若220x y +=,则0x ≠或0y ≠C .若220x y +≠,则0x ≠且0y ≠D .若220x y +≠,则0x ≠或0y ≠【必刷45】下列说法正确的是()A .若2000:,2310p x R x x ∃∈++>,则2:,2310p x R x x ⌝∀∈++<B .“(0)0f =”是“函数()f x 是奇函数”的充要条件C .(0,)∀∈+∞x ,都有22x x >D .在ABC 中,若A B >,则sin sin A B >【必刷46】已知下列命题:①x ∀∈R ,210x x ++>;②“2a >”是“5a >”的充分不必要条件;③已知p 、q 为两个命题,若“p q ∨”为假命题,则“p q ⌝∧⌝”为真命题;④若x 、y ∈R 且2x y +>,则x 、y 至少有一个大于1.其中真命题的个数为()A .4B .3C .2D .1【必刷47】设命题0:p x R ∃∈,2010x +=,则命题p 的否定为()A .x R ∀∉,210x +=B .x R ∀∈,210x +≠C .0x R ∃∉,2010x +=D .0x R ∃∈,2010x +≠【必刷48】命题“x R ∀∈,sin x x >”的否定是()A .0x R ∃∈,00sin x x <B .0x R ∃∉,00sin x x ≤C .x R ∀∈,sin x x≤D .0x R ∃∈,00sin x x ≤【必刷49】命题“π,02x ⎛⎫∀∈- ⎪⎝⎭,tan x x >”的否定是()A .,02x π⎛⎫∀∈- ⎪⎝⎭,tan x x≤B .,02x π⎛⎫∀∈- ⎪⎝⎭,tan x x<C .,02x π⎛⎫∃∈- ⎪⎝⎭,tan x x≤D .,02x π⎛⎫∃∈- ⎪⎝⎭,tan x x<【必刷50】下列命题正确的是()A .命题“若2320x x -+=,则2x =”的否命题为“2320x x -+=,则2x ≠”B .若给定命题p :x ∃∈R ,210x x +-<,则p ⌝:x ∀∈R ,210x x +->C .若p q ∧为假命题,则p ,q 都为假命题D .“1x <”是“2320x x -+>”的充分不必要条件考点6:充分条件、必要条件与充要条件的概念若p ⇒q ,则p 是q 的充分条件,q 是p 的必要条件p 是q 的充分不必要条件p ⇒q 且q ⇏p p 是q 的必要不充分条件p ⇏q 且q ⇒p p 是q 的充要条件p ⇔q p 是q 的既不充分也不必要条件p ⇏q 且q ⇏p【必刷51】若x ,y 为实数,则“11x y<”是“22log log x y >”的()A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件【必刷52】在ABC 中,“sin 2sin 2A B =”是“A B =”的()A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分又不必要条件【必刷53】下列四个命题中正确的是()A .若函数()y f x =的定义域为[]1,1-,则()1y f x =+的定义域为[]0,2B .若正三角形ABC 的边长为2,则2AB BC ⋅=C .已知函数()()2log 11f x x =+-,则函数()y f x =的零点为()1,0D .“αβ=”是“tan tan αβ=”的既不充分也不必要条件【必刷54】不等式1133x⎛⎫> ⎪⎝⎭成立是不等式21x <成立的()A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件【必刷55】设x ∈R ,则“|1|4x -<”是“502x x -<-”的()A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件【必刷56】已知条件:p 直线210x y +-=与直线()2110a x a y ++-=平行,条件:q 1a =,则p 是q 的()A .充要条件B .充分不必要条件C .必要不充分条件D .既不充分也不必要条件【必刷57】已知命题2:log 1p x >,命题2:20q x x ->,则p 是q 的()A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件【必刷58】设a 、b都是非零向量,下列四个条件中,使a a b b = 成立的充分条件是()A .a b =r r 且a b∥B .a b=-r r C .a b∥D .2a b= 【必刷59】已知向量a 和b ,则“||||a b a b ⋅=⋅ ”是“a b =”的()A .充要条件B .充分不必要条件C .必要不充分条件D .既不充分也不必要条件【必刷60】设实数0x >,则“2log 1x <”成立的一个必要不充分条件是()A .122x <<B .12x <<C .1x <D .2x <专题一集合与常用逻辑用语(必刷1~60题)考点1:集合与元素(1)集合元素的三个特征:确定性、互异性、无序性.(2)元素与集合的关系是属于或不属于关系,用符号∈或∉表示.(3)集合的表示法:列举法、描述法、V enn 图法.(4)常见数集的记法集合自然数集正整数集整数集有理数集实数集符号NN +(或N *)ZQR(5)集合的分类若按元素的个数分类,可分为有限集、无限集、空集;若按元素的属性分类,可分为点集、数集等.特别注意空集是一个特殊而又重要的集合,如果一个集合不包含任何元素,这个集合就叫做空集,空集用符号“∅”表示,规定:空集是任何集合的子集,是任何非空集合的真子集.解题时切勿忽视空集的情形.考点2:集合间的基本关系关系自然语言符号语言V enn 图子集集合A 中所有元素都在集合B 中(即若x ∈A ,则x ∈B )A ⊆B (或B ⊇A )真子集集合A 是集合B 的子集,且集合B 中至少有一个元素不在集合A 中A (B (或B (A )集合相等集合A ,B 中元素完全相同或集合A ,B 互为子集A =B(1)、子集与真子集的区别与联系:一个集合的真子集一定是其子集,而其子集不一定是其真子集.(2)、若有限集A 中有n 个元素,则集合A 的子集个数为2n ,真子集的个数为2n -1.【必刷1】设全集{1,2,3,4,5}U =,集合M 满足{1,3}U M =ð,则()A .2M ∈B .3M∈C .4M∉D .5M∉【答案】A【解析】先写出集合M ,然后逐项验证即可;【详解】由题知{2,4,5}M =,对比选项知,A 正确,BCD 错误,故选:A【必刷2】已知集合(){}223A x y xy x Z y Z =+≤∈∈,,,,则A 中元素的个数为()A .9B .8C .5D .4【答案】A【解析】根据枚举法,确定圆及其内部整点个数.【详解】223x y +≤ ,23,x ∴≤x Z ∈ ,1,0,1x ∴=-当1x =-时,1,0,1y =-;当0x =时,1,0,1y =-;当1x =时,1,0,1y =-;所以共有9个,故选:A.【必刷3】已知集合{}22(,)1A x y x y =+=,{}(,)B x y y x ==,则A B 中元素的个数为()A .3B .2C .1D .0【答案】B【解析】集合中的元素为点集,由题意可知,集合A 表示以()0,0为圆心,1为半径的单位圆上所有点组成的集合,集合B 表示直线y x =上所有的点组成的集合,又圆221x y +=与直线y x =相交于两点⎝⎭,⎛ ⎝⎭,则A B 中有2个元素.故选B.【必刷4】已知集合{}0,1,2A =,{}32B x x =-<<,则A B 子集的个数为()A .3B .4C .7D .8【答案】B【解析】先求得A B ,然后求得A B 子集的个数.【详解】{}0,1A B = ,所以A B 子集的个数为224=个.故选:B【必刷5】已知集合(){}2,A x y y x ==,(){,B x y y ==,则A B 的真子集个数为()A .1个B .2个C .3个D .4个【答案】C【解析】解方程组可求得A B ,根据A B 元素个数可求得真子集个数.【详解】由2y xy ⎧=⎪⎨=⎪⎩00x y =⎧⎨=⎩或11x y =⎧⎨=⎩,()(){}0,0,1,1A B ∴= ,即A B 有2个元素,A B ∴ 的真子集个数为2213-=个.故选:C.【必刷6】已知集合{}15A x x =-<<,{}Z 18B x x =∈<<,则A B 的子集个数为()A .4B .6C .8D .9【答案】C【解析】根据集合交集的定义,结合子集的个数公式进行求解即可.【详解】因为{}15A x x =-<<,{}Z 18B x x =∈<<,所以{}2,3,4A B = ,因此A B 中有三个元素,所以A B 的子集个数为328=,故选:C【必刷7】已知集合}{{}2|23,9,,A x Z x B x x M A B =∈-<≤=<=⋂则M 的子集的个数为()A .16B .7C .4D .3【答案】A【解析】化简,A B ,进而根据交集的定义,计算A B ,然后利用子集的概念即可求解.【详解】因为{}{}{}293310123B x |x x |x ,A ,,,,,=<=-<<=-所以{}1012M A B ,,,,==- 所以M 的子集共有42=16(个).故选:A【必刷8】已知集合A ={(x ,y )|x 2+y 2=1},B ={(x ,y )|y =x +1},则集合A ∩B 中元素的个数为()A .0B .1C .2D .3【解析】联立=+12+2=1可得=0=1或=−1=0,故集合A ∩B 中元素的个数为2,故选:C .【必刷9】设集合{}1,0,1,2A =-,{}2230B x x x =+-<,则A B 的子集个数为()A .2B .4C .8D .16【答案】B【解析】求出集合B ,可求得集合A B ,确定集合A B 的元素个数,利用集合子集个数公式可求得结果.【详解】因为{}{}223031B x x x x x =+-<=-<<,所以,{}1,0A B ⋂=-,则集合A B 的元素个数为2,因此,A B 的子集个数为224=.故选:B.【必刷10】设集合{}22A x x =≤,Z 为整数集,则集合A ⋂Z 子集的个数是()A .3B .6C .7D .8【答案】D【解析】解不等式求得A ,然后求得A ⋂Z ,进而求得正确答案.【详解】222x x ≤⇒≤,所以A ⎡=⎣,所以{}1,0,1A ⋂=-Z ,所以A ⋂Z 子集的个数是328=.故选:D【必刷11】已知集合{}2,0,1M =-,{}220N x x ax =+-=,若N M ⊆,则实数a =()A .2B .1C .0D .-1【答案】B【解析】对于集合N ,元素x 对应的是一元二次方程的解,根据判别式得出必有两个不相等的实数根,又根据韦达定理以及N M ⊆,可确定出其中的元素,进而求解.【详解】对于集合N ,因为280a ∆=+>,所以N 中有两个元素,且乘积为-2,又因为N M ⊆,所以{}2,1N =-,所以211a -=-+=-.即a =1.故选:B.【必刷12】集合{}22log 2x Z x ∈≤的子集个数为()A .4B .8C .16D .32【答案】C【解析】求出集合A 后可得其子集的个数.【详解】{}{}2224|log 2|2,1,1,20x x Z x x Z x ⎧⎫⎧≤⎪⎪∈≤=∈=--⎨⎨⎬≠⎪⎪⎩⎩⎭,故该集合的子集的个数为:4216=.故选:C.【必刷13】已知集合{2,0,2}A =-,π1sin ,4B y y x x A ⎧⎫==+∈⎨⎬⎩⎭,则集合A B 的真子集的个数是()A .7B .31C .16D .15【答案】D【解析】先求得集合B ,然后求得A B ,从而求得A B 的真子集的个数.【详解】{0,1,2}B = ,{2,0,1,2}A B ∴⋃=-,A B 的真子集的个数为42115-=个.故选:D【必刷14】已知集合{}1,2,3,4,5,6A =,6,1B xx A x ⎧⎫=∈∈⎨⎬-⎩⎭N ,则集合B 的子集的个数是()A .3B .4C .8D .16【答案】C【解析】先求出集合B ,再根据子集的定义即可求解.【详解】依题意{}2,3,4B =,所以集合B 的子集的个数为328=,故选:C.【必刷15】已知集合{}21,S s s n n Z ==+∈,{}3T x x =<,则S T 的真子集的个数是()A .1B .2C .3D .4【答案】C【解析】先求出集合T ,然后根据交集的定义求出S T ,最后根据真子集的定义求出真子集的个数.【详解】∵{}21,S s s n n Z ==+∈,{}33T x x =-<<,∴{}1,1S T =- ,∴S T 的真子集个数为2213-=,故选:C .【必刷16】已知集合22{(,)|1}A x y x y =+=,集合{(,)|||1}B x y y x ==-,则集合A B 的真子集的个数为()A .3B .4C .7D .8【答案】C【解析】利用数形结合法得到圆与直线的交点个数,得到集合A B 的元素个数求解.【详解】如图所示:,集合A B 有3个元素,所以集合A B 的真子集的个数为7,故选:C【必刷17】若集合{}1,2,3,4,5U =,{}13,5A =,,{}3,4,5B =,则图中阴影部分表示的集合的子集个数为()A .3B .4C .7D .8【答案】D【解析】根据题意求得阴影部分表示的集合,结合集合子集的概念及运算,即可求解.【详解】由题意,集合{}13,5A =,,{}3,4,5B =,可得{}3,5A B = ,可得{}()1,2,4U A B = ð,即阴影部分表示的集合为{}1,2,4,所以阴影部分表示的集合的子集个数为328=.故选:D.考点3:集合的运算如果一个集合包含了我们所要研究的各个集合的全部元素,这样的集合就称为全集,全集通常用字母U 表示;集合的并集集合的交集集合的补集图形符号A ∪B ={x |x ∈A ,或x ∈B }A ∩B ={x |x ∈A ,且x ∈B }∁U A ={x |x ∈U ,且x ∉A }【必刷18】若集合{4},{31}M x x N x x =<=≥∣∣,则M N = ()A .{}02x x ≤<B .123x x ⎧⎫≤<⎨⎬⎩⎭C .{}316x x ≤<D .1163x x ⎧⎫≤<⎨⎬⎩⎭【答案】D【解析】求出集合,M N 后可求M N ⋂.【详解】1{16},{}3M xx N x x =≤<=≥∣0∣,故1163M N x x ⎧⎫=≤<⎨⎬⎩⎭,故选:D 【必刷19】集合{}{}2,4,6,8,10,16M N x x ==-<<,则M N = ()A .{2,4}B .{2,4,6}C .{2,4,6,8}D .{2,4,6,8,10}【答案】A【解析】根据集合的交集运算即可解出.【详解】因为{}2,4,6,8,10M =,{}|16N x x =-<<,所以{}2,4M N = .故选:A.【必刷20】设集合{1,2,3,4,5,6},{1,3,6},{2,3,4}U A B ===,则()U A B = ð()A .{3}B .{1,6}C .{5,6}D .{1,3}【答案】B【解析】根据交集、补集的定义可求()U A B ⋂ð.【详解】由题设可得{}U 1,5,6B =ð,故(){}U 1,6A B ⋂=ð,故选:B.【必刷21】已知集合{}23log 1,02x P x x Q xx -⎧⎫=>=≤⎨⎬+⎩⎭,则()P Q =R I ð()A .[2,2]-B .(2,2]-C .[0,2]D .(0,2]【答案】B【解析】利用对数不等式及分式不等式的解法求出集合,P Q ,结合集合的补集及交集的定义即可求解.【详解】由2log 1x >,得2x >,所以{}2,P x x =>{}R 2P x x =≤ð.由302x x -≤+,得23x -<≤,所以{}23x x Q =-<≤,所以(){}{}{}R 23222P Q x x x x x x -<=≤=≤-<≤ ð,故选:B.【必刷22】已知集合204x A xx ⎧⎫+=<⎨⎬-⎩⎭,{}0,1,2,3,4,5B =,则()R A B ⋂=ð()A .{}5B .{}4,5C .{}2,3,4D .{}0,1,2,3【答案】B【解析】首先化简集合A ,再根据补集的运算得到R A ð,再根据交集的运算即可得出答案.【详解】因为20(2,4)4x A xx ⎧⎫+=<=-⎨⎬-⎩⎭,所以{R |2A x x =≤-ð或}4x ≥,所以(){}R 4,5A B = ð,故选:B.【必刷23】设集合{}2120A x x x =--≤,12416x B x ⎧⎫=<<⎨⎬⎩⎭,则A B 等于()A .(]3,4-B .[)3,2-C .(]4,4-D .[]3,4-【答案】C【解析】先解出集合A 、B ,再求A B .【详解】由题意{}{}212034A x x x x x =--≤=-≤≤,{}1244216x B x x x ⎧⎫=<<=-<<⎨⎬⎩⎭,所以(]4,4A B =- .故选:C.【必刷24】若集合{A y y ==,{}3log 2B x x =≤,则A B = ()A .(]0,9B .[)4,9C .[]4,6D .[]0,9【答案】A【解析】先解出集合A 、B ,再求A B .【详解】因为{{}0A y y y y ==≥,{}{}3log 209B x x x x =≤=<≤,所以{}09A B x x ⋂=<≤.故选:A .【必刷25】已知集合(){}0.2log 20A x x =->,{}24B x x =≤,则A B ⋃=()A .[]22-,B .(]2,1-C .[)2,3-D .∅【答案】C【解析】解对数不等式确定集合A ,解二次不等式确定集合B ,然后由并集定义计算.【详解】由题意{|021}{|23}A x x x x =<-<=<<,{|22}B x x =-≤≤,所以{|23}[2,3)A B x x =-≤<=- .故选:C .【必刷26】已知全集{1,2,3,4,5,6,7,8,9}U =,{1,3,5,8,9}A =,{2,3,4,6}B =,则()U A B = ð()A .{2,4}B .{2,4,6}C .{1,3,5,7}D .{3}【答案】B【解析】应用集合的交补运算求()U A B I ð.【详解】由题设{2,4,6,7}U A =ð,又{2,3,4,6}B =,所以()={2,4,6}U A B = ð,故选:B【必刷27】已知集合{}12M x x =-≤≤,{}ln N x y x ==,则M N = ()A .[]1,2-B .(]1,2-C .(]0,2D .()[),12,-∞-⋃+∞【答案】C【解析】先化简集合N ,再去求M N ⋂即可解决【详解】{}{}ln 0N x y x x x ===>,则{}{}{}12002M N x x x x x x ⋂=-≤≤⋂>=<≤,故选:C【必刷28】已知集合{}{}Z 33,2e xA x xB y y =∈-<<==-,则A B = ()A .{2,1,0,1,2}--B .(,2)-∞C .{2,1,0,1}--D .(3,2)-【答案】C【解析】求出函数2e x y =-的值域,再利用交集的定义求解作答.【详解】因e 0x >,则22e x -<,即(,2)B =-∞,而{}Z 33A x x =∈-<<,所以{2,1,0,1}A B =-- .故选:C【必刷29】若全集{}0,1,2,3,4,5U =,集合{}0,1,2A =,{}1,2,3B =,则()U A B = ð()A .{}0,1,2B .{}1,2,3C .{}0D .{}0,1,2,4,5【答案】D【解析】先求解集合B 的补集,再利用并集运算即可求解.【详解】由题得{}0,4,5U B =ð,又{}0,1,2A =,所以(){}0,1,2,4,5U B A ⋃=ð,故选:D.【必刷30】设集合{}{}11,124x M x x N x =-≤≤=<<∣∣,则M N = ()A .{10}xx -≤<∣B .{01}x x <≤∣C .{12}x x ≤<∣D .{12}xx -≤<∣【答案】B【解析】解指数不等式得到{}02N x x =<<,进而求出交集.【详解】因为124x <<,所以02x <<,所以{}02N x x =<<,所以M N = {}01x x <≤,故选:B【必刷31】如图,全集U =R ,集合{}1,0,2,3,6A =-,集合{}2,3,5,7B =,则阴影部分表示集合()A .{}1,0,5,7-B .{}1,0,2,3,5,6,7-C .{}2,3D .{}1,0,5,6,7-【答案】D【解析】求出,A B A B ,阴影表示集合为()A B A B ð,由此能求出结果.【详解】矩形表示全集U =R ,集合{}1,0,2,3,6A =-,集合{}2,3,5,7B =,{}{}2,3,1,0,2,3,5,6,7A B A B ∴⋂=⋃=-,则阴影表示集合为(){}1,0,5,6,7A B A B ⋃⋂=-ð.故选:D.【必刷32】设集合{}2|log ,4A y y x x ==>,{}2|320B x x x =-+<,则()A B =R U ð()A .(1,2)B .(1,2]C .(,2]-∞D .(,2)-∞【答案】C【解析】利用对数函数的单调性求得集合A ,解一元二次不等式求得B ,即可根据集合的补集以及并集运算求得答案.【详解】由题意得{}2|log ,4{|2}A y y x x y x ==>=>,则{|2}A y y =≤R ð,而{}2|320{|12}B x x x x x =-+<=<<,故()(,2]A B =-∞R ðU ,故选:C.【必刷33】已知全集{}0,1,2,3,4,5,6U =,集合{}0,2,4,5A =,集合{}2,3,4,6B =,用如图所示的阴影部分表示的集合为()A .{2,4}B .{0,3,5,6}C .{0,2,3,4,5,6}D .{1,2,4}【答案】B【解析】根据文氏图求解即可.【详解】{2,4}A B ⋂=,{}0,2,3,4,5,6A B ⋃=,阴影部分为{}0,3,5,6.故选:B .【必刷34】已知集合{}2A x x =<,(){}2ln 3B x y x x==-,则A B ⋃=()A .()0,2B .()0,3C .()2,3D .()2,3-【答案】D【解析】解出集合A 、B ,利用并集的定义可求得结果.【详解】{}{}222A x x x x =<=-<<,(){}{}{{}22ln 33003B x y x xx x xx x ==-=->=<<.所以,()2,3A B =- .故选:D.【必刷35】若集合{}{}21,0,1,2A x Z x B =∈-<<=,则A B ⋃=()A .(2,1)-B .{1,0}-C .(2,1]{2}-⋃D .{1,0,1,2}-【答案】D【解析】根据已知条件求出集合A ,再利用并集的定义即可求解.【详解】由题意可知{}}{211,0A x Z x =∈-<<=-,又{}0,1,2B =,所以}{{}1,00,1,2{1,0,1,2}A B =-=- ,故选:D .【必刷36】已知集合{}234|0A x x x =--=,{}2|B x a x a =<<,若A B =∅ ,则实数a 的取值范围是()A .(],1-∞-B .[)4,+∞C .()(),12,4-∞-⋃D .[][)1,24,-⋃+∞【答案】D【解析】由题知{}1,4A =-,进而分B =∅和B ≠∅空集两种情况讨论求解即可.【详解】由题知{}{}2|3401,4A x x x =--==-,因为A B =∅ ,所以,当{}2|B x a x a =<<=∅时,2a a ≥,解得01a ≤≤,当{}2|B x a x a =<<≠∅时,2241a a a a ⎧≤⎪≥-⎨⎪>⎩或24a a a ≥⎧⎨>⎩,解得[)(][)1,01,24,a ∈-+∞ ,综上,实数a 的取值范围是[][)1,24,-⋃+∞.故选:D【必刷37】已知集合(){}22240,(1)2101x A xB x x a x a a x ⎧⎫-==-+++<⎨⎬+⎩⎭,若A B =∅ ,则实数a 的取值范围是()A .()2,+∞B .{}()12,∞⋃+C .{}[)12,+∞U D .[)2,+∞【答案】C【解析】先解出集合A ,考虑集合B 是否为空集,集合B 为空集时合题意,集合B 不为空集时利用24a或211a +- 解出a 的取值范围.【详解】由题意(]40141x A x x ⎧⎫-==-⎨⎬+⎩⎭, ,(){}()(){}2222(1)210210B x x a x a a x x a x a ⎡⎤=-+++<=--+<⎣⎦,当B =∅时,221a a =+,即1a =,符合题意;当B ≠∅,即1a ≠时,()22,1B a a =+,则有24a或211a +- ,即 2.a 综上,实数a 的取值范围为{}[)12,+∞U .故选:C.【必刷38】设{}28120A x x x =-+=,{}10B x ax =-=,若A B B = ,则实数a 的值不可以是()A .0B .16C .12D .2【答案】D【解析】根据题意可以得到B A ⊆,进而讨论0a =和0a ≠两种情况,最后得到答案.【详解】由题意,{}2,6A =,因为A B B = ,所以B A ⊆,若0a =,则B =∅,满足题意;若0a ≠,则1B a ⎧⎫=⎨⎬⎩⎭,因为B A ⊆,所以12a =或16a =,则12a =或16a =.综上:0a =或12a =或16a =.故选:D.【必刷39】已知集合{}23A x x =∈<Z ,32B x a x a ⎧⎫=<<+⎨⎬⎩⎭,若A B 有2个元素,则实数a 的取值范围是()A .3,12⎛⎫-- ⎪⎝⎭B .3,02⎛⎫- ⎪⎝⎭C .()3,01,2⎛⎫-⋃+∞ ⎪⎝⎭D .31,1,022⎛⎫⎛⎫--⋃- ⎪ ⎪⎝⎭⎝⎭【答案】D【解析】由题知{}1,0,1A =-,进而根据题意求解即可.【详解】因为{}{}231,0,1A x Z x =∈<=-,32B x a x a ⎧⎫=<<+⎨⎬⎩⎭,若A B 有2个元素,则13012a a <-⎧⎪⎨<+≤⎪⎩或10312a a -≤<⎧⎪⎨+>⎪⎩,解得312a -<<-或102a -<<,所以,实数a 的取值范围是31,122⎛⎫⎛⎫--⋃- ⎪ ⎪⎝⎭⎝⎭.故选:D .【必刷40】已知集合{}21,Z A x x n n ==+∈,{}2B =<,则A B = ()A .{}1,3B .{}1,3,5,7C .{}3,5,7D .{}3,5,7,9【答案】A【解析】先求出集合[)1,5B =,再根据集合的交集运算求得答案.【详解】由题意得[){2}1,5B x =<=,其中奇数有1,3,又{}21,Z A x x n n ==+∈,则{}1,3A B = ,故选:A .考点4.四种命题及其相互关系(1)四种命题间的相互关系(2)四种命题的真假关系①两个命题互为逆否命题,它们具有相同的真假性;考点5.全称量词和存在量词(1)全称量词有:所有的,任意一个,任给,用符号“∀”表示;存在量词有:存在一个,至少有一个,有些,用符号“∃”表示.(2)含有全称量词的命题,叫做全称命题.“对M 中任意一个x ,有p (x )成立”用符号简记为:∀x ∈M ,p (x ).(3)含有存在量词的命题,叫做特称命题.“存在M 中元素x 0,使p (x 0)成立”用符号简记为:∃x 0∈M ,p (x 0).【必刷41】下列四个命题中真命题的个数是()①“x =1”是“2320x x -+=”的充分不必要条件;②命题“R x ∀∈,sin 1x ≤”的否定是“R x ∃∈,sin 1x >”;③命题p :[)1,x ∀∈+∞,lg 0x ≥,命题q :R x ∃∈,210x x ++<,则p q ∧为真命题;④“若2ϕπ=,则()sin 2y x ϕ=+为偶函数”的否命题为真命题.A .0B .1C .2D .3【答案】C【解析】①由2320x x -+=解得1x =或2x =,根据充分、必要条件定义理解判断;②根据全称命题的否定判断;③根据题意可得命题p 为真命题,命题q 为假命题,则p q ∧为假命题;④先写出原命题的否命题,取特值2πϕ=-,代入判断.【详解】①2320x x -+=,则1x =或2x =“1x =”是“1x =或2x =”的充分不必要条件,①为真命题;②根据全称命题的否定判断可知②为真命题;③命题p :[)1,x ∀∈+∞,lg lg10x ≥=,命题p 为真命题,22131024x x x ⎛⎫++=++> ⎪⎝⎭,命题q 为假命题,则p q ∧为假命题,③为假命题;④“若2ϕπ=,则()sin 2y x ϕ=+为偶函数”的否命题为“若2πϕ≠,则()sin 2y x ϕ=+不是偶函数”若2πϕ=-,则sin 2cos 22y x x π⎛⎫=-=- ⎪⎝⎭为偶函数,④为假命题故选:C .【必刷42】下列命题正确的是()A .命题“若2320x x -+=,则2x =”的否命题为“若2320x x -+=,则2x ≠”B .若给定命题:R p x ∃∈,210x x +-<,则:R p x ⌝∀∈,210x x +->C .已知:12p x -<<,()12:2log 210x q x +++<,则p 是q 的充分必要条件D .若p q ∨为假命题,则p ,q 都为假命题【答案】D【解析】根据否命题,命题的否定,充分必要条件的定义,复合命题真假判断各选项.【详解】命题“若2320x x -+=,则2x =”的否命题为“若2320x x -+≠,则2x ≠”,A 错;命题:R p x ∃∈,210x x +-<的否定是R x ∀∈,210x x +-≥,B 错;易知函数12()2log (2)x f x x +=++在定义域内是增函数,()11f -=,(2)10f =,所以12x -<<时,()1212log 210x x +<++<满足()122log 210x x +++<,但()122log 210x x +++<时,22x -<<不满足12x -<<,因此题中应不充分不必要条件,C 错;p q ∨为假命题,则p ,q 都为假命题,若,p q 中有一个为真,则p q ∨为真命题,D 正确.故选:D .【必刷43】下列说法错误的是()A .命题“x R ∀∈,cos 1≤x ”的否定是“0x R ∃∈,0cos 1x >”B .在△ABC 中,sin sin A B ≥是A B ≥的充要条件C .若a ,b ,R c ∈,则“20ax bx c ++≥”的充要条件是“0a >,且240b ac -≤”D .“若1sin 2α≠,则6πα≠”是真命题【答案】C【解析】利用全称命题的否定可判断A ,由正弦定理和充要条件可判断B ,通过举特例可判断C ,通过特殊角的三角函数值可判断D .【详解】A.命题“x R ∀∈,cos 1≤x ”的否定是“0x R ∃∈,0cos 1x >”,正确;B.在△ABC 中,sin sin A B ≥,由正弦定理可得22a bR R≥(R 为外接圆半径),a b ≥,由大边对大角可得A B ≥;反之,A B ≥可得a b ≥,由正弦定理可得sin sin A B ≥,即为充要条件,故正确;C.当0,0a b c ==≥时满足20ax bx c ++≥,但是得不到“0a >,且240b ac -≤”,则不是充要条件,故错误;D.若1sin 2α≠,则6πα≠与6πα=则1sin 2α=的真假相同,故正确;故选:C【必刷44】命题“若220x y +=,则0x y ==”的否命题为()A .若220x y +=,则0x ≠且0y ≠B .若220x y +=,则0x ≠或0y ≠C .若220x y +≠,则0x ≠且0y ≠D .若220x y +≠,则0x ≠或0y ≠【答案】D【解析】同时否定条件和结论即可,注意x =0且y =0,的否定为0x ≠或0y ≠.【详解】命题“若220x y +=,则0x y ==”即为“若220x y +=,则0x =且0y =”所以否命题为:若220x y +≠,则0x ≠或0y ≠.故选:D【必刷45】下列说法正确的是()A .若2000:,2310p x R x x ∃∈++>,则2:,2310p x R x x ⌝∀∈++<B .“(0)0f =”是“函数()f x 是奇函数”的充要条件C .(0,)∀∈+∞x ,都有22x x >D .在ABC 中,若A B >,则sin sin A B >【答案】D【解析】根据存在量词命题的否定为全称量词命题判断A ,根据奇函数的定义判断B ,利用特殊值判断C ,根据三角形的性质及正弦定理判断D ;【详解】对于A :2000:,2310p x R x x ∃∈++>则2:,2310p x R x x ⌝∀∈++≤,故A 错误;对于B :由(0)0f =,得不到函数()f x 是奇函数,如2()f x x =满足(0)0f =,但是2()f x x =为偶函数,由函数()f x 是奇函数也不一定得到(0)0f =,如()1f x x=为奇函数,当时函数在0处无意义,故B 错误;对于C :当2x =时22x x =,故C 错误;对于D :因为A B >根据三角形中大角对大边,可得a b >,再由正弦定理可得sin sin A B >,故D 正确;故选:D【必刷46】已知下列命题:①x ∀∈R ,210x x ++>;②“2a >”是“5a >”的充分不必要条件;③已知p 、q 为两个命题,若“p q ∨”为假命题,则“p q ⌝∧⌝”为真命题;④若x 、y ∈R 且2x y +>,则x 、y 至少有一个大于1.其中真命题的个数为()A .4B .3C .2D .1【答案】B【解析】利用配方法可判断①的正误;利用集合的包含关系可判断②的正误;利用复合命题的真假可判断③的正误;利用反证法可判断④的正误.【详解】对于①,因为22131024x x x ⎛⎫++=++> ⎪⎝⎭,①对;对于②,因为{}2a a >({}5a a >,故“2a >”是“5a >”的必要不充分条件,②错;对于③,“p q ∨”为假命题,则p 、q 均为假命题,所以,p q ⌝∧⌝为真命题,③对;对于④,假设1x ≤且1y ≤,则2x y +≤,与2x y +>矛盾,假设不成立,④对.故选:B.【必刷47】设命题0:p x R ∃∈,2010x +=,则命题p 的否定为()A .x R ∀∉,210x +=B .x R ∀∈,210x +≠C .0x R ∃∉,2010x +=D .0x R ∃∈,2010x +≠【答案】B【解析】根据特称命题的否定是全称命题,即可得到答案.【详解】利用含有一个量词的命题的否定方法可知,特称命题0:p x R ∃∈,2010x +=的否定为:x R ∀∈,210x +≠.故选:B.【必刷48】命题“x R ∀∈,sin x x >”的否定是()A .0x R ∃∈,00sin x x <B .0x R ∃∉,00sin x x ≤C .x R ∀∈,sin x x ≤D .0x R ∃∈,00sin x x ≤【答案】D【解析】根据命题否定的定义即可求解.【详解】对于全称量词的否定是特称量词,并对结果求反,即000,sin x R x x ∃∈≤;故选:D.【必刷49】命题“π,02x ⎛⎫∀∈- ⎪⎝⎭,tan x x >”的否定是()A .,02x π⎛⎫∀∈- ⎪⎝⎭,tan x x≤B .,02x π⎛⎫∀∈- ⎪⎝⎭,tan x x<C .,02x π⎛⎫∃∈- ⎪⎝⎭,tan x x≤D .,02x π⎛⎫∃∈- ⎪⎝⎭,tan x x<【答案】C【解析】利用含有一个量词的命题的否定的定义求解.【详解】由全称命题的否定是存在量词命题,所以命题“,02x π⎛⎫∀∈- ⎪⎝⎭,tan x x >”的否定是“,02x π⎛⎫∃∈- ⎪⎝⎭,tan x x ≤”,故选:C .【必刷50】下列命题正确的是()A .命题“若2320x x -+=,则2x =”的否命题为“2320x x -+=,则2x ≠”B .若给定命题p :x ∃∈R ,210x x +-<,则p ⌝:x ∀∈R ,210x x +->C .若p q ∧为假命题,则p ,q 都为假命题D .“1x <”是“2320x x -+>”的充分不必要条件【答案】D【解析】A 选项直接否定条件和结论即可;B 选项存在一个量词的命题的否定,先否定量词,后否定结论;C 选项“且”命题是一假必假;D 选项,利用“小集合”是“大集合”的充分不必要条件作出判断.【详解】对于A ,命题“若2320x x -+=,则2x =”的否命题为“2320x x -+≠,则2x ≠”,A 错误;对于B ,命题p :x ∃∈R ,210x x +-<,则p ⌝:x ∀∈R ,210x x +-≥,B 错误;对于C ,若p q ∧为假命题,则p ,q 有一个假命题即可;C 错误;对于D , 2320x x -+>1x ∴<或2x >11x x ∴<⇒<或2x >,即“1x <”是“2320x x -+>”的充分不必要条件,D 正确.故选:D考点6:充分条件、必要条件与充要条件的概念若p ⇒q ,则p 是q 的充分条件,q 是p 的必要条件p 是q 的充分不必要条件p ⇒q 且q ⇏p p 是q 的必要不充分条件p ⇏q 且q ⇒p p 是q 的充要条件p ⇔q p 是q 的既不充分也不必要条件p ⇏q 且q ⇏p【必刷51】若x ,y 为实数,则“11x y<”是“22log log x y >”的()A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件【答案】B【解析】根据充分必要条件的定义及对数不等式即可求解;【详解】由题意可知当2,1x y =-=时,满足11x y<,但不满足22log log x y >;由22log log x y >,得0x y >>,满足11x y <,所以“11x y<”是“22log log x y >”的必要不充分条件,故选:B .【必刷52】在ABC 中,“sin 2sin 2A B =”是“A B =”的()A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分又不必要条件【答案】B【解析】根据给定条件,利用充分条件、必要条件的定义求解作答.【详解】在ABC 中,A B =,则22A B =,必有sin 2sin 2A B =,而,63A B ππ==,满足sin 2sin 2A B =,此时ABC 是直角三角形,不是等腰三角形,所以“sin 2sin 2A B =”是“A B =”的必要不充分条件.故选:B【必刷53】下列四个命题中正确的是()A .若函数()y f x =的定义域为[]1,1-,则()1y f x =+的定义域为[]0,2B .若正三角形ABC 的边长为2,则2AB BC ⋅=C .已知函数()()2log 11f x x =+-,则函数()y f x =的零点为()1,0D .“αβ=”是“tan tan αβ=”的既不充分也不必要条件【答案】D【解析】利用抽象函数的定义域可判断A 选项;利用平面向量数量积的定义可判断B 选项;利用函数零点的定义可判断C 选项;利用特殊值法结合充分条件、必要条件的定义可判断D 选项.【详解】对于A 选项,若函数()y f x =的定义域为[]1,1-,对于函数()1y f x =+,则有111x -≤+≤,解得20x -≤≤,即函数()1y f x =+的定义域为[]2,0-,A 错;对于B 选项,若正三角形ABC 的边长为2,则cos1202AB BC AB BC ⋅=⋅=-,B 错;对于C 选项,已知函数()()2log 11f x x =+-,令()0f x =,解得1x =,所以,函数()y f x =的零点为1,C 错;对于D 选项,若2παβ==,则tan α、tan β无意义,即“αβ=”⇒“tan tan αβ=”;若tan tan αβ=,可取4πα=,54πβ=,则αβ≠,即“αβ=”⇐/“tan tan αβ=”.因此,“αβ=”是“tan tan αβ=”的既不充分也不必要条件,D 对.故选:D.【必刷54】不等式1133x⎛⎫> ⎪⎝⎭成立是不等式21x <成立的()A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件【答案】B【解析】根据指数不等式和一元二次不等式的解法解出对应的不等式,结合必要不充分条件的概念即可得出结果.【详解】解不等式1133x⎛⎫> ⎪⎝⎭,得1x <,解不等式21x <,得11x -<<,。
2023年高考数学总复习第一章集合与常用逻辑用语第1节集合考试要求1.了解集合的含义,体会元素与集合的属于关系;能用自然语言、图形语言、集合语言(列举法或描述法)描述不同的具体问题;2.理解集合之间包含与相等的含义,能识别给定集合的子集;在具体情境中了解全集与空集的含义;3.理解两个集合的并集与交集的含义,会求两个简单集合的并集与交集;4.理解在给定集合中一个子集的补集的含义,会求给定子集的补集;5.能使用韦恩(Venn)图表达集合间的基本关系及集合的基本运算.1.元素与集合(1)集合中元素的三个特性:确定性、互异性、无序性.(2)元素与集合的关系是属于或不属于,表示符号分别为∈和∉.(3)集合的三种表示方法:列举法、描述法、图示法.2.集合间的基本关系表示关系文字语言符号语言集合间的基本关系相等集合A 与集合B 中的所有元素都相同A =B 子集A 中任意一个元素均为B 中的元素A ⊆B 真子集A 中任意一个元素均为B 中的元素,且B 中至少有一个元素不是A 中的元素A B空集空集是任何集合的子集,是任何非空集合的真子集3.集合的基本运算集合的并集集合的交集集合的补集符号表示A ∪BA ∩B若全集为U ,则集合A 的补集为∁U A图形表示集合{x|x∈A,或x∈B}{x|x∈A,且x∈B}{x|x∈U,且x∉A}表示4.集合的运算性质(1)A∩A=A,A∩=,A∩B=B∩A.(2)A∪A=A,A∪=A,A∪B=B∪A.(3)A∩(∁U A)=,A∪(∁U A)=U,∁U(∁U A)=A.1.若有限集A中有n个元素,则A的子集有2n个,真子集有2n-1个,非空子集有2n-1个,非空真子集有2n-2个.2.注意空集:空集是任何集合的子集,是非空集合的真子集.3.A⊆B⇔A∩B=A⇔A∪B=B⇔∁U A⊇∁U B.4.∁U(A∩B)=(∁U A)∪(∁U B),∁U(A∪B)=(∁U A)∩(∁U B).1.思考辨析(在括号内打“√”或“×”)(1)任何一个集合都至少有两个子集.()(2){x|y=x2+1}={y|y=x2+1}={(x,y)|y=x2+1}.()(3)若{x2,1}={0,1},则x=0,1.()(4)对于任意两个集合A,B,(A∩B)⊆(A∪B)恒成立.()2.若集合P={x∈N|x≤2023},a=22,则()A.a∈PB.{a}∈PC.{a}⊆PD.a∉P3.(2021·新高考Ⅰ卷)设集合A={x|-2<x<4},B={2,3,4,5},则A∩B=()A.{2}B.{2,3}C.{3,4}D.{2,3,4}4.(易错题)(2021·南昌调研)集合A={-1,2},B={x|ax-2=0},若B⊆A,则由实数a的取值组成的集合为()A.{-2}B.{1}C.{-2,1}D.{-2,1,0}5.(2021·西安五校联考)设全集U=R,A={x|y=2x-x2},B={y|y=2x,x∈R},则(∁U A)∩B=()A.{x|x<0}B.{x|0<x≤1}C.{x|1<x≤2}D.{x|x>2}6.(2021·全国乙卷)设集合S={s|s=2n+1,n∈Z},T={t|t=4n+1,n∈Z},则S∩T =()A. B.S C.T D.Z考点一集合的基本概念1.已知集合U={(x,y)|x2+y2≤1,x∈Z,y∈Z},则集合U中元素的个数为()A.3B.4C.5D.62.若集合A={a-3,2a-1,a2-4},且-3∈A,则实数a=________.3.(2022·武汉调研)用列举法表示集合A={x|x∈Z且86-x∈N}=________.4.设A是整数集的一个非空子集,对于k∈A,如果k-1∉A,且k+1∉A,那么称k是A的一个“孤立元”.给定S={1,2,3,4,5,6,7,8},由S的3个元素构成的所有集合中,不含“孤立元”的集合共有________个.考点二集合间的基本关系例1(1)已知集合A={-1,1},B={x|ax+1=0}.若B⊆A,则实数a的所有可能取值的集合为()A.{-1}B.{1}C.{-1,1}D.{-1,0,1}(2)已知集合A={x|-3≤x≤4},B={x|2m-1≤x≤m+1},且B⊆A,则实数m的取值范围是________.训练1(1)(2022·大连模拟)设集合A={1,a,b},B={a,a2,ab},若A=B,则a2022+b2023的值为()A.0B.1C.-2D.0或-1(2)已知集合A={x|log2(x-1)<1},B={x||x-a|<2},若A⊆B,则实数a的取值范围为()A.(1,3)B.[1,3]C.[1,+∞)D.(-∞,3]考点三集合的运算角度1集合的基本运算例2(1)(2021·全国乙卷)已知全集U={1,2,3,4,5},集合M={1,2},N={3,4},则∁U(M∪N)=()A.{5}B.{1,2}C.{3,4}D.{1,2,3,4}(2)(2021·西安测试)设全集U=R,M={x|y=ln(1-x)},N={x|2x(x-2)<1},那么图中阴影部分表示的集合为()A.{x|x≥1}B.{x|1≤x<2}C.{x|0<x≤1}D.{x|x≤1}角度2利用集合的运算求参数例3(1)(2021·日照检测)已知集合A={x∈Z|x2-4x-5<0},B={x|4x>2m},若A∩B 中有三个元素,则实数m的取值范围是()A.[3,6)B.[1,2)C.[2,4)D.(2,4](2)已知集合A ={x |x 2-4≤0},B ={x |2x +a ≤0},若A ∪B =B ,则实数a 的取值范围是()A.a <-2B.a ≤-2C.a >-4D.a ≤-4训练2(1)(2021·全国甲卷改编)设集合M ={x |0<x <4},N x |13≤x <aM ∩N =N ,则a 的取值范围为()A.a ≤13B.a >4C.a ≤4D.a >13(2)集合M ={x |2x 2-x -1<0},N ={x |2x +a >0},U =R .若M ∩(∁U N )=∅,则a 的取值范围是()A.(1,+∞)B.[1,+∞)C.(-∞,1)D.(-∞,1]Venn 图的应用用平面上封闭图形的内部代表集合,这种图称为Venn 图.集合中图形语言具有直观形象的特点,将集合问题图形化.利用Venn 图的直观性,可以深刻理解集合的有关概念,快速进行集合的运算.例1设全集U ={x |0<x <10,x ∈N +},若A ∩B ={3},A ∩(∁U B )={1,5,7},(∁U A )∩(∁U B )={9},则A =________,B =________.例2(2020·新高考海南卷)某中学的学生积极参加体育锻炼,其中有96%的学生喜欢足球或游泳,60%的学生喜欢足球,82%的学生喜欢游泳,则该中学既喜欢足球又喜欢游泳的学生数占该校学生总数的比例是()A.62%B.56%C.46%D.42%例3向100名学生调查对A,B两件事的看法,得到如下结果:赞成A的人数是全体的35,其余不赞成;赞成B的人数比赞成A的人数多3人,其余不赞成.另外,对A,B都不赞成的人数比对A,B都赞成的学生人数的13多1人,则对A,B都赞成的学生人数为________,对A,B都不赞成的学生人数为________.1.(2021·新高考Ⅱ卷)设集合U={1,2,3,4,5,6},A={1,3,6},B={2,3,4},则A∩(∁U B)=()A.{3}B.{1,6}C.{5,6}D.{1,3}2.(2021·郑州模拟)设集合A={x|3x-1<m},若1∈A且2∉A,则实数m的取值范围是()A.(2,5)B.[2,5)C.(2,5]D.[2,5]3.(2021·浙江卷)设集合A={x|x≥1},B={x|-1<x<2},则A∩B=()A.{x|x>-1}B.{x|x≥1}C.{x|-1<x<1}D.{x|1≤x<2}4.(2022·河南名校联考)已知集合A={a,a2,0},B={1,2},若A∩B={1},则实数a的值为()A.-1B.0C.1D.±15.已知集合A={x∈Z|y=log5(x+1)},B={x∈Z|x2-x-2<0},则()A.A∩B=AB.A∪B=BC.B AD.A B6.设集合A={(x,y)|x+y=1},B={(x,y)|x-y=3},则满足M⊆(A∩B)的集合M 的个数是()A.0B.1C.2D.37.(2022·太原模拟)已知集合M={x|(x-2)2≤1},N={y|y=x2-1},则(∁R M)∩N=()A.[-1,+∞)B.[-1,1]∪[3,+∞)C.[-1,1)∪(3,+∞)D.[-1,1]∪(3,+∞)8.设集合A ={x |(x +2)(x -3)≤0},B ={a },若A ∪B =A ,则a 的最大值为()A.-2B.2C.3D.49.(2021·合肥模拟)已知集合A ={-2,-1,0,1,2},集合B ={x ||x -1|≤2},则A ∩B =________.10.(2021·湖南雅礼中学检测)设集合A ={x |y =x -3},B ={x |1<x ≤9},则(∁R A )∩B =________.11.已知集合A ={x |y =lg(x -x 2)},B ={x |x 2-cx <0,c >0},若A ⊆B ,则实数c 的取值范围是________.12.已知集合A ={a ,b ,2},B ={2,b 2,2a },若A =B ,则a +b =________.13.若全集U ={-2,-1,0,1,2},A ={-2,2},B ={x |x 2-1=0},则图中阴影部分所表示的集合为()A.{-1,0,1}B.{-1,0}C.{-1,1}D.{0}14.(2020·浙江卷)设集合S ,T ,S ⊆N +,T ⊆N +,S ,T 中至少有2个元素,且S ,T 满足:①对于任意的x ,y ∈S ,若x ≠y ,则xy ∈T ;②对于任意的x ,y ∈T ,若x <y ,则y x ∈S .下列命题正确的是()A.若S 有4个元素,则S ∪T 有7个元素B.若S 有4个元素,则S ∪T 有6个元素C.若S 有3个元素,则S ∪T 有5个元素D.若S 有3个元素,则S ∪T 有4个元素15.已知集合A={x∈R||x+2|<3},集合B={x∈R|(x-m)(x-2)<0},且A∩B=(-1,n),则m=________,n=________.16.当两个集合有公共元素,且互不为对方的子集时,我们称这两个集合“相交”.对于集合M={x|ax2-1=0,a>0},N={-12,12,1},若M与N“相交”,则a=________.。
§1.1 集合的概念及运算考纲解读考点内容解读要求高考示例常考题型预测热度1.集合的含义与表示了解集合的含义,体会元素与集合的属于关系;能用自然语言、图形语言、集合语言(列举法或描述法)描述不同的具体问题Ⅰ2017课标全国Ⅰ,1;2017课标全国Ⅲ,1;2016某某,1选择题★★☆2.集合间的基本关系理解集合之间包含与相等的含义,能识别给定集合的子集;在具体情境中,了解全集与空集的含义Ⅱ2013某某,3 选择题★★☆3.集合间的基本运算理解两个集合的并集与交集的含义,会求两个简单集合的并集与交集;理解在给定集合中一个子集的补集的含义,会求给定子集的补集;能使用韦恩(Venn)图表达集合间的基本关系及集合的基本运算Ⅱ2017课标全国Ⅱ,1;2017,1;2016课标全国Ⅰ,1;2016课标全国Ⅱ,1;2016课标全国Ⅲ,1选择题★★★分析解读1.掌握集合的表示方法,能判断元素与集合的“属于”关系、集合与集合之间的包含关系.2.深刻理解、掌握集合的元素,子、交、并、补集的概念.熟练掌握集合的交、并、补的运算和性质.能用韦恩(Venn)图表示集合的关系及运算.3.本部分内容在高考试题中多以选择题或填空题的形式出现,以函数、不等式等知识为载体,以集合语言和符号语言表示为表现形式,考查数学思想方法.4.本节内容在高考中分值约为5分,属中低档题.命题探究五年高考考点一集合的含义与表示1.(2017课标全国Ⅲ,1,5分)已知集合A={1,2,3,4},B={2,4,6,8},则A∩B中元素的个数为()A.1 B.2 C.3 D.4答案B2.(2016某某,1,5分)已知集合A={1,2,3},B={y|y=2x-1,x∈A},则A∩B=()A.{1,3} B.{1,2} C.{2,3} D.{1,2,3}答案A3.(2015课标Ⅰ,1,5分)已知集合A={x|x=3n+2,n∈N},B={6,8,10,12,14},则集合A∩B中元素的个数为()A.5 B.4 C.3 D.2答案DA.⌀B.{2} C.{0} D.{-2}答案B5.(2013某某,2,5分)若集合A={x∈R|ax2+ax+1=0}中只有一个元素,则a=()A.4 B.2C.0 D.0或4答案A教师用书专用(6—8)6.(2015某某,10,5分)已知集合A={(x,y)|x2+y2≤1,x,y∈Z},B={(x,y)||x|≤2,|y|≤2,x,y∈Z},定义集合A ⊕B={(x1+x2,y1+y2)|(x1,y1)∈A,(x2,y2)∈B},则A⊕B中元素的个数为()A.77 B.49 C.45 D.30答案C7.(2014某某,1,5分)已知集合A={x|(x+1)(x-2)≤0},集合B为整数集,则A∩B=()A.{-1,0} B.{0,1}C.{-2,-1,0,1} D.{-1,0,1,2}答案D8.(2013课标全国Ⅰ,1,5分)已知集合A={1,2,3,4},B={x|x=n2,n∈A},则A∩B=()A.{1,4} B.{2,3} C.{9,16} D.{1,2}答案A考点二集合间的基本关系(2013某某,3,5分)若集合A={1,2,3},B={1,3,4},则A∩B的子集个数为()A.2 B.3 C.4 D.16答案C考点三集合间的基本运算1.(2017课标全国Ⅱ,1,5分)设集合A={1,2,3},B={2,3,4},则A∪B=()A.{1,2,3,4} B.{1,2,3} C.{2,3,4} D.{1,3,4}答案A2.(2017,1,5分)已知全集U=R,集合A={x|x<-2或x>2},则∁U A=()A.(-2,2) B.(-∞,-2)∪(2,+∞)C.[-2,2] D.(-∞,-2]∪[2,+∞)答案CA.{2} B.{1,2,4}C.{1,2,4,6} D.{1,2,3,4,6}答案B4.(2017某某,1,5分)设集合M={x||x-1|<1},N={x|x<2},则M∩N=()A.(-1,1) B.(-1,2) C.(0,2) D.(1,2)答案C5.(2016课标全国Ⅰ,1,5分)设集合A={1,3,5,7},B={x|2≤x≤5},则A∩B=()A.{1,3} B.{3,5} C.{5,7} D.{1,7}答案B6.(2016课标全国Ⅱ,1,5分)已知集合A={1,2,3},B={x|x2<9},则A∩B=()A.{-2,-1,0,1,2,3} B.{-2,-1,0,1,2}C.{1,2,3} D.{1,2}答案D7.(2016课标全国Ⅲ,1,5分)设集合A={0,2,4,6,8,10},B={4,8},则∁A B=()A.{4,8} B.{0,2,6}C.{0,2,6,10} D.{0,2,4,6,8,10}答案C8.(2016,1,5分)已知集合A={x|2<x<4},B={x|x<3或x>5},则A∩B=()A.{x|2<x<5} B.{x|x<4或x>5}C.{x|2<x<3} D.{x|x<2或x>5}答案C9.(2016某某,1,5分)设集合U={1,2,3,4,5,6},A={1,3,5},B={3,4,5},则∁U(A∪B)=()A.{2,6} B.{3,6}C.{1,3,4,5} D.{1,2,4,6}答案A10.(2016某某,2,5分)设集合A={x|1≤x≤5},Z为整数集,则集合A∩Z中元素的个数是()A.6 B.5 C.4 D.3答案B11.(2015课标Ⅱ,1,5分)已知集合A={x|-1<x<2},B={x|0<x<3},则A∪B=()A.(-1,3) B.(-1,0) C.(0,2) D.(2,3)答案A12.(2015某某,1,5分)已知全集U={1,2,3,4,5,6},集合A={2,3,5},集合B={1,3,4,6},则集合A∩∁U B=()13.(2015某某,1,5分)已知集合A={x|2<x<4},B={x|(x-1)·(x-3)<0},则A∩B=()A.(1,3) B.(1,4) C.(2,3) D.(2,4)答案C14.(2014某某,1,5分)已知全集U=R,A={x|x≤0},B={x|x≥1},则集合∁U(A∪B)=()A.{x|x≥0}B.{x|x≤1}C.{x|0≤x≤1}D.{x|0<x<1}答案D15.(2013课标全国Ⅱ,1,5分)已知集合M={x|-3<x<1},N={-3,-2,-1,0,1},则M∩N=()A.{-2,-1,0,1} B.{-3,-2,-1,0}C.{-2,-1,0} D.{-3,-2,-1}答案C16.(2017某某,1,5分)已知集合A={1,2},B={a,a2+3}.若A∩B={1},则实数a的值为____.答案1教师用书专用(17—40)17.(2016某某,1,5分)已知全集U={1,2,3,4,5,6},集合P={1,3,5},Q={1,2,4},则(∁U P)∪Q=()A.{1} B.{3,5}C.{1,2,4,6} D.{1,2,3,4,5}答案C18.(2015,1,5分)若集合A={x|-5<x<2},B={x|-3<x<3},则A∩B=()A.{x|-3<x<2} B.{x|-5<x<2}C.{x|-3<x<3} D.{x|-5<x<3}答案A19.(2015某某,1,5分)设集合M={x|x2=x},N={x|lg x≤0},则M∪N=()A.[0,1] B.(0,1] C.[0,1) D.(-∞,1]答案A20.(2015某某,1,5分)已知集合P={x|x2-2x≥3},Q={x|2<x<4},则P∩Q=()A.[3,4) B.(2,3] C.(-1,2) D.(-1,3]答案A21.(2015某某,2,5分)若集合M={x|-2≤x<2},N={0,1,2},则M∩N等于()22.(2014某某,1,5分)已知全集U={1,2,3,4,5,6,7},集合A={1,3,5,6},则∁U A=()A.{1,3,5,6} B.{2,3,7}C.{2,4,7} D.{2,5,7}答案C23.(2014某某,1,5分)若集合P={x|2≤x<4},Q={x|x≥3},则P∩Q等于()A.{x|3≤x<4}B.{x|3<x<4}C.{x|2≤x<3}D.{x|2≤x≤3}答案A24.(2014课标Ⅰ,1,5分)已知集合M={x|-1<x<3},N={x|-2<x<1},则M∩N=()A.(-2,1) B.(-1,1) C.(1,3) D.(-2,3)答案B25.(2014某某,2,5分)设集合A={x|x2-2x<0},B={x|1≤x≤4},则A∩B=()A.(0,2] B.(1,2) C.[1,2) D.(1,4)答案C26.(2014某某,1,5分)设集合S={x|x≥2},T={x|x≤5},则S∩T=()A.(-∞,5]B.[2,+∞)C.(2,5) D.[2,5]答案D27.(2014大纲全国,1,5分)设集合M={1,2,4,6,8},N={1,2,3,5,6,7},则M∩N中元素的个数为()A.2 B.3 C.5 D.7答案B28.(2014某某,1,5分)设集合M={x|x≥0,x∈R},N={x|x2<1,x∈R},则M∩N=()A.[0,1] B.(0,1)C.(0,1] D.[0,1)答案D29.(2013,1,5分)已知集合A={-1,0,1},B={x|-1≤x<1},则A∩B=()A.{0} B.{-1,0} C.{0,1} D.{-1,0,1}答案B30.(2013某某,1,5分)设集合S={x|x>-2},T={x|-4≤x≤1},则S∩T=()A.[-4,+∞)B.(-2,+∞)31.(2013某某,2,5分)已知A={x|x+1>0},B={-2,-1,0,1},则(∁R A)∩B=()A.{-2,-1} B.{-2} C.{-1,0,1} D.{0,1}答案A32.(2013某某,1,5分)设集合S={x|x2+2x=0,x∈R},T={x|x2-2x=0,x∈R},则S∩T=()A.{0} B.{0,2} C.{-2,0} D.{-2,0,2}答案A33.(2013某某,1,5分)设集合A={1,2,3},集合B={-2,2},则A∩B=()A.⌀B.{2}C.{-2,2} D.{-2,1,2,3}答案B34.(2013某某,1,5分)已知集合A={0,1,2,3,4},B={x||x|<2},则A∩B=()A.{0} B.{0,1} C.{0,2} D.{0,1,2}答案B35.(2013某某,1,5分)已知集合A={x∈R||x|≤2},B={x∈R|x≤1},则A∩B=()A.(-∞,2]B.[1,2] C.[-2,2] D.[-2,1]答案D36.(2013某某,1,5分)设全集为R,函数f(x)=的定义域为M,则∁R M为()A.(-∞,1)B.(1,+∞)C.(-∞,1]D.[1,+∞)答案B37.(2013某某,1,5分)已知全集U={1,2,3,4},集合A={1,2},B={2,3},则∁U(A∪B)=()A.{1,3,4} B.{3,4} C.{3} D.{4}答案D38.(2015某某,11,5分)已知集合U={1,2,3,4},A={1,3},B={1,3,4},则A∪(∁U B)=______.答案{1,2,3}39.(2014某某,11,5分)已知集合A={3,4,5,12,13},B={2,3,5,8,13},则A∩B=_______.答案{3,5,13}40.(2013某某,10,5分)已知集合U={2,3,6,8},A={2,3},B={2,6,8},则(∁U A)∩B=__________.答案{6,8}三年模拟A组2016—2018年模拟·基础题组1.(2018某某师大附中11月模拟,1)已知集合A={(x,y)|x,y为实数,且y=x2},B={(x,y)|x,y为实数,且x+y=1},则A∩B的元素个数为()A.无数个B.3 C.2 D.1答案C2.(2017某某某某高中毕业班4月调研,2)已知集合A={1,3},B=,则A ∪B=()A.{1,3} B.{1,2,3} C.{1,3,4} D.{1,2,3,4}答案B3.(2016某某某某一模,1)集合U=R,A={x|x2-x-2<0},B={x|y=ln(1-x)},则图中阴影部分所表示的集合是()A.{x|x≥1}B.{x|1≤x<2}C.{x|0<x≤1}D.{x|x≤1}答案B考点二集合间的基本关系4.(2017某某某某一模,2)已知集合M={-1,0,1},N={x|x=ab,a,b∈M,且a≠b},则集合M与集合N的关系是()A.M=N B.M∩N=N C.M∪N=N D.M∩N=⌀答案B5.(2016某某某某二模,1)设集合M={-1,1},N={x|x2-x<6},则下列结论正确的是()A.N⊆M B.N∩M=⌀C.M⊆N D.M∩N=R答案C6.(2018某某某某调研,13)设集合A={1,},B={a},若B⊆A,则实数a的值为______.答案07.(2017某某八市联考,13)已知A={x|x2-3x+2<0},B={x|1<x<a},若A⊆B,则实数a的取值X围是_____.答案[2,+∞)考点三集合间的基本运算8.(2018某某重点中学11月质检,1)已知集合A={x|3x>3},B={x|3x2-2x-5<0},则A∩B=()A.B.(-1,1) C.(-1,+∞)D.9.(2018某某重点中学期中联考,1)已知集合A=,B={x|(x+2)(x-1)>0},则A∩B等于()A.(0,2) B.(1,2)C.(-2,2) D.(-∞,-2)∪(0,+∞)答案B10.(2018某某某某一模,1)若集合A={x|1≤x≤5},B={x|log2x<2},则A∪B等于()A.(-1,5] B.(0,5] C.[1,4) D.[-1,4)答案B11.(2017某某百校联盟4月质检,1)已知集合A={x|2x2-7x+3<0},B={x∈Z|lg x<1},则阴影部分所表示的集合的元素个数为()A.1 B.2 C.3 D.4答案B12.(2017某某某某三模,1)已知全集U=R,集合M={x||x|<1},N={y|y=2x,x∈R},则集合∁U(M∪N)等于()A.(-∞,-1] B.(-1,2)C.(-∞,-1]∪[2,+∞)D.[2,+∞)答案A13.(2017某某襄阳五中模拟,1)设集合U={1,2,3,4},集合A={x∈N|x2-5x+4<0},则∁U A等于()A.{1,2} B.{1,4} C.{2,4} D.{1,3,4}答案B14.(2016中原名校四月联考,1)设全集U=R,集合A={x|0≤x≤2},B={y|1≤y≤3},则(∁U A)∪B=()A.(2,3] B.(-∞,1]∪(2,+∞)C.[1,2) D.(-∞,0)∪[1,+∞)答案DB组2016—2018年模拟·提升题组(满分:55分时间:40分钟)一、选择题(每小题5分,共35分)1.(2018某某南开中学月考,1)已知全集U={0,1,2,3,4,5},集合A={1,2,3,5},B={2,4},则(∁U A)∪B=()A.{1,2,4} B.{4} C.{0,2,4} D.{0,2,3,4}2.(2018某某浏阳三校联考,1)设A={x|y=},B={y|y=ln(1+x)},则A∩B=()A.{x|x>-1} B.{x|x≤1}C.{x|-1<x≤1}D.⌀答案B3.(2018某某某某重点高中联考,2)已知集合M=,N=,则M∩N=()A.⌀B.{(3,0),(0,2)}C.[-2,2] D.[-3,3]答案D4.(2018某某五校协作体9月联考,2)已知集合P={x|x2-2x-8>0},Q={x|x≥a},P∪Q=R,则a的取值X围是()A.(-2,+∞)B.(4,+∞)C.(-∞,-2] D.(-∞,4]答案C5.(2017某某某某、某某等六市一模,1)已知集合A={(x,y)|y-=0},B={(x,y)|x2+y2=1},C=A∩B,则C的子集的个数是()A.0 B.1 C.2 D.4答案C6.(2017某某某某第二次模拟,2)已知全集U=R,集合M={x|x+2a≥0},N={x|log2(x-1)<1},若集合M∩(∁U N)={x|x=1或x≥3},那么a的取值为()A.a=B.a≤C.a=-D.a≥答案C7.(2016某某某某瑞安八校联考,1)已知集合A={x|ax=1},B={0,1},若A⊆B,则由a的取值构成的集合为()A.{1} B.{0} C.{0,1} D.⌀答案C二、解答题(每小题10分,共20分)8.(2018某某某某四校联考,17)已知三个集合:A={x∈R|log2(x2-5x+8)=1},B={x∈R|=1},C={x∈R|x2-ax+a2-19>0}.(2)已知A∩C≠⌀,B∩C=⌀,某某数a的取值X围.解析(1)∵A={x∈R|log2(x2-5x+8)=1}={x∈R|x2-5x+8=2}={2,3},(2分)B={x∈R|=1}={x∈R|x2+2x-8=0}={2,-4},(4分)∴A∪B={2,3,-4}.(5分)(2)∵A∩C≠⌀,B∩C=⌀,∴2∉C,-4∉C,3∈C.(6分)∵C={x∈R|x2-ax+a2-19>0},∴(7分)即,解得-3≤a<-2.(9分)所以实数a的取值X围是[-3,-2).(10分)9.(2017某某某某、某某联考,18)已知函数f(x)=的定义域为A,函数g(x)=(-1≤x≤0)的值域为B.(1)求A∩B;(2)若C=[a,2a-1],且C∪B=B,某某数a的取值X围.解析(1)要使函数f(x)=有意义,需log2(x-1)≥0,解得x≥2,∴A=[2,+∞).对于函数g(x)=,∵-1≤x≤0,∴1≤g(x)≤2,∴B=[1,2],∴A∩B={2}.(2)∵C∪B=B,∴C⊆B.当2a-1<a,即a<1时,C=⌀,满足条件.当2a-1≥a,即a≥1时,要使C⊆B,则解得1≤a≤.综上可得,a∈.C组2016—2018年模拟·方法题组方法1利用数轴和韦恩(Venn)图解决集合问题的方法1.(2018某某某某一中11月模拟,2)已知集合A={x|-2≤x≤7},B={x|m+1<x<2m-1},且B≠⌀,若A∪B=A,则()A.-3≤m≤4B.-3<m<4 C.2<m<4 D.2<m≤4答案D2.(2017豫北名校联考,1)已知全集U={1,2,3,4,5,6,7},M={3,4,5},N={1,3,6},则集合{2,7}=()A.M∩N B.(∁U M)∩(∁U N)C.(∁U M)∪(∁U N) D.M∪N答案B3.(2016某某蓟县期中,1)函数y=的定义域为集合A,函数y=ln(2x+1)的定义域为集合B,则A∩B=()A.B.C.D.答案A方法2解决与集合有关的新定义问题的方法4.(2018某某某某三校联考,4)已知集合M={1,2,3,4},集合A,B为集合M的非空子集,若∀x∈A,y∈B,x<y恒成立,则称(A,B)为集合M的一个“子集对”,则集合M的“子集对”共有个__________.答案175.(2016某某中原名校3月联考,14)当两个集合中一个集合为另一集合的子集时,称这两个集合构成“全食”,当两个集合有公共元素,但互不为对方子集时,称这两个集合构成“偏食”.对于集合A=,B={x|ax2=1,a≥0},若A与B构成“全食”或构成“偏食”,则a的取值集合为___________.答案{0,1,4}。
《集合》复习巩固【要点梳理】要点一:集合的基本概念1.集合的概念一般地,我们把研究对象统称为元素,如1~10内的所有质数,包括2,3,5,7,则3是我们所要研究的对象,它是其中的一个元素,把一些元素组成的总体叫做集合,如上述2,3,5,7就组成了一个集合。
2.元素与集合的关系(1)属于: 如果a 是集合A 的元素,就说a 属于A ,记作a ∈A 。
要注意“∈”的方向,不能把a ∈A 颠倒过来写.(2)不属于:如果a 不是集合A 的元素,就说a 不属于集合A ,记作a A ∉。
3.集合中元素的特征 (1)确定性:集合中的元素必须是确定的。
任何一个对象都能明确判断出它是否为某个集合的元素; (2)互异性:集合中的任意两个元素都是不同的,也就是同一个元素在集合中不能重复出现。
(3)无序性:集合与组成它的元素的顺序无关。
如集合{1,2,3}与{3,1,2}是同一个集合。
4.集合的分类集合可根据它含有的元素个数的多少分为两类: 有限集:含有有限个元素的集合。
无限集:含有无限个元素的集合。
要点诠释:把不含有任何元素的集合叫做空集,记作∅,空集归入有限集。
要点二:集合间的关系1.(1)子集:对于两个集合A 与B ,如果集合A 的任何一个元素都是集合B 的元素,那么集合A 叫做集合B 的子集,记作A ⊆B ,对于任何集合A 规定A ∅⊆。
(2) 如果A 是集合B 的子集,并且B 中至少有一个元素不属于A ,那么集合A 叫做集合B 的真子集,记做.两个集合A 与B 之间的关系如下:A B A B B A A B A B A BA B⎧=⇔⊆⊆⎧⊆⎪⎨≠⇔⎨⎩⎪⎩且ÞÚ 其中记号A B Ú(或B A Û)表示集合A 不包含于集合B (或集合B 不包含集合A )。
2.子集具有以下性质:(1)A ⊆A ,即任何一个集合都是它本身的子集。
(2)如果A B ⊆,B A ⊆,那么A=B 。
数学专题复习:集合与常用逻辑用语,高考真题练习,拿去练
习一遍
众所周知,集合是高一新生进入高中后接触到的第一个数学知识点,也是高中数学大厦的基石。
高中数学,学生仅有粗浅的感性认识是远远不够的,没有对数学知识的理性分析与认识,做一万道题也没有用。
因此在集合教学中,必须让学生认识到这一点,并从集合的学习中初步掌握高中数学的学习方法。
例如,对集合这个核心概念,我们应该在它的表示和元素的三个特征上多思多想多比较。
在解集合的有关问题时,首先要看清集合的代表元素,不要把点集与数集混淆;其次,要注意元素的特点,尤其是一类含参数问题,需警惕元素的互异性和空集问题,要让学生知道,学习高中数学必须要学会反思,学会严谨,理解概念需做到一丝不差,只有这样,才能笑傲考场。
现在很多高考考生应该都是进行二轮或者三轮的复习了,为了帮助学生更好的复习好高中数学,我给大家准备了高中数学的第一个专题,是关于集合与常用逻辑用语这一个专题的,是比较基础的内容,也是很简单的内容,学生抽时间来复习一下,相信对整体成绩的提升会有好处的。
文末有打印资料方法
打印领取步骤:
1、点击头像进入主页然后再关注,
2、接着点击私信处发送“打印”二字即可。
集合与常用逻辑用语【考纲解读】1.通过实例了解集合的含义,体会元素与集合的从属关系,知道常用数集及其记号,了解集合中元素的确定性,互异性,无序性.会用集合语言表示有关数学对象.2.掌握集合的表示方法----列举法和描述法,并能进行自然语言与集合语言的相互转换,了解有限集与无限集的概念.3.了解集合间包含关系的意义,理解子集、真子集的概念和意义,会判断简单集合的相等关系.4.理解并集、交集的概念和意义,掌握有关集合并集、交集的术语和符号,并会用它们正确地表示一些简单的集合,能用图示法表示集合之间的关系.掌握并集、交集的求法.5.了解全集的意义,理解补集的概念.掌握全集与补集的术语和符号,并会用它们正确地表示一些简单的集合,能用图示法表示集合之间的关系.掌握补集的求法.6.理解命题的概念;了解“若p,则q”形式的命题及其逆命题、否命题与逆否命题,会分析种命题的相互关系;理解必要条件、充分条件与充要条件的意义.7.了解逻辑联结词“或”、“且”、“非”的含义.8.理解全称量词与存在量词的意义;能正确地对含有一个量词的命题进行否定.【考点预测】3.注意弄清元素与集合、集合与集合之间的包含关系.4.能根据Venn图表达的集合关系进行相关的运算.5.注意区分否命题与命题的否定,前者是同时否定条件和结论,而后者只否定结论.6.原命题与其逆否命题等价,当直接判定命题条件的充要性有困难时,可等价地转化为对该命题的逆否命题进行判断.7.全称命题的否定是存在性命题,存在性命题的否定是全称命题.【考点在线】考点一集合的概念例1.已知集合M={y|y=x2+1,x∈R},N={y|y=x+1,x∈R},则M∩N=()A.(0,1),(1,2) B.{(0,1),(1,2)}C.{y|y=1,或y=2} D.{y|y≥1}从而选B的错误,这是由于在集合概念的理解上,仅注意了构成集合元素的共同属性,而忽视了集合的元素是什么.事实上M、N的元素是数而不是点,因此M、N是数集而不是点集.②集合是由元素构成的,认识集合要从认识元素开始,要注意区分{x|y=x2+1}、{y|y=x2+1,x∈R}、{(x,y)|y=x2+1,x∈R},这三个集合是不同的.这类题目主要考察不等式的性质成立的条件,以及条件与结论的充要关系.【备考提示】:正确理解集合中的代表元素是解答好本题的关键.练习1:若P={y|y=x2,x∈R},Q={y|y=x2+1,x∈R},则P∩Q等于()A.P B.Q C. D.不知道【答案】B【解析】事实上,P、Q中的代表元素都是y,它们分别表示函数y=x2,y= x2+1的值域,由P={y|y≥0},Q={y|y≥1},知QP,即P∩Q=Q.∴应选B.考点二集合元素的互异性集合元素的互异性,是集合的重要属性,教学实践告诉我们,集合中元素的互异性常常被学生在解题中忽略,从而导致解题的失败,下面再结合例题进一步讲解以期强化对集合元素互异性的认识.(a2-3a-8), a3+例2.若A={2,4, a3-2a2-a+7},B={1, a+1, a2-2a+2,-12a2+3a+7},且A∩B={2,5},则实数a的值是________.【答案】2【解析】∵A∩B={2,5},∴a3-2a2-a+7=5,由此求得a=2或a=±1. A={2,4,5}.当a=1时,a2-2a+2=1,与元素的互异性相违背,故应舍去a=1.当a=-1时,B={1,0,5,2,4},与A∩B={2,5}相矛盾,故又舍去a=-1.当a=2时,A={2,4,5},B={1,3,2,5,25},此时A∩B={2,5},满足题设.故a=2为所求.【解析】分两种情况进行讨论.(1)若a+b=a c且a+2b=a c2,消去b得:a+a c2-2a c=0,a=0时,集合B中的三元素均为零,和元素的互异性相矛盾,故a≠0.∴c2-2c+1=0,即c=1,但c=1时,B中的三元素又相同,此时无解.(2)若a+b=a c2且a+2b=a c,消去b得:2a c2-a c-a=0,.∵a≠0,∴2c2-c-1=0,即(c-1)(2c+1)=0,又c≠1,故c=-12考点三集合间的关系例3.设集合A={a|a=3n+2,n∈Z},集合B={b|b=3k-1,k∈Z},则集合A、B的关系是________.【答案】A=B【解析】任设a∈A,则a=3n+2=3(n+1)-1(n∈Z),∴ n∈Z,∴n+1∈Z.∴ a∈B,故A B⊆.①又任设b∈B,则 b=3k-1=3(k-1)+2(k∈Z),∵ k∈Z,∴k-1∈Z.∴ b∈A,故B A⊆②由①、②知A=B.【名师点睛】这里说明a∈B或b∈A的过程中,关键是先要变(或凑)出形式,然后再推理.【备考提示】:集合与集合之间的关系问题,是我们解答数学问题过程中经常遇到,并且必须解决的问题,因此应予以重视.反映集合与集合关系的一系列概念,都是用元素与集合的关系来定义的.因此,在证明(判断)两集合的关系时,应回到元素与集合的关系中去.考点四要注意利用数形结合思想解决集合问题集合问题大都比较抽象,解题时要尽可能借助文氏图、数轴或直角坐标系等工具将抽象问题直观化、形象化、明朗化,然后利用数形结合的思想方法使问题灵活直观地获解.例4.设全集U={x|0<x<10,x∈N*},若A∩B={3},A∩C U B={1,5,7},C U A∩C U B={9},则集合A、B是________.【答案】A={1,3,5,7},B={2,3,4,6,8}.【解析】由题意,画出图如下:由图可知: A={1,3,5,7},B={2,3,4,6,8}.【名师点睛】本题用推理的方法求解不如先画出文氏图,用填图的方法来得简捷,由图不难看出.【备考提示】:熟练数形结合的思想是解答好本题的关键.练习4.集合A={x|x2+5x-6≤0},B={x|x2+3x>0},求A∪B和A∩B.【答案】A∪B=R,A∩B={x|-6≤x<-3或0<x≤1}.【解析】本题采用数轴表示法,根据数轴表示的范围,可直观、准确的写出问题的结果.∵ A={x|x2-5x-6≤0}={x|-6≤x≤1},B={x|x2+3x>0}={x|x<-3,或x>0}.如图所示,∴ A∪B={x|-6≤x≤1}∪{x|x<-3,或x>0}=R.A∩B={x|-6≤x≤1}∩{x|x<-3,或x>0}={x|-6≤x<-3,或0<x≤1}.【易错专区】问题1:空集例1.已知集合A={x|x2-3x+2=0},B={x|x2-a x+a-1=0},且A∪B=A,则a的值为______.解:∵ A∪B=A,,∴⊆B A∵ A={1,2},∴ B=∅或B={1}或B={2}或B={1,2}.若B=∅,则令△<0得a∈∅;若B={1},则令△=0得a=2,此时1是方程的根;若B={2},则令△=0得a=2,此时2不是方程的根,∴a∈∅;若B={1,2}则令△>0得a∈R且a≠2,把x=1代入方程得a∈R,把x=2代入方程得a=3.1.(2011年高考山东卷文科1)设集合 M ={x|(x+3)(x-2)<0},N ={x|1≤x ≤3},则M ∩N =( )(A )[1,2) (B)[1,2] (C)( 2,3] (D)[2,3]【答案】A【解析】因为{}|32M x x =-<<,所以{}|12M N x x ⋂=≤<,故选A.2. (2011年高考海南卷文科1)已知集合{}0,1,2,3,4M =,{}1,3,5N =,P M N =⋂,则P 的子集共有( )A.2个B.4个C.6个D.8个【答案】B【解析】因为{}1,3M N ⋂=中有两个元素,所以其子集个数为224=个,选B. 3.(2011年高考安徽卷文科2)集合}{,,,,,U =123456,}{,,S =145,}{,,T =234,则()U S C T 等于( )(A )}{,,,1456 (B) }{,15 (C) }{4 (D) }{,,,,12345 【答案】B【解析】{}1,5,6U T =,所以(){}1,6U S T =.故选B.4.(2011年高考广东卷文科2)已知集合(){,|A x y x y =、为实数,且}221x y +=,5. (2011年高考江西卷文科2)若全集{1,2,3,4,5,6},{2,3},{1,4}U M N ===,则集合{5,6}等于( )A.M N ⋃B.M N ⋂C.()()U U C M C N ⋃D.()()U U C M C N ⋂【答案】D【解析】{}4,3,2,1=⋃N M ,Φ=⋂N M ,()(){}6,5,4,3,2,1=⋃N C M C U U ,()(){}6,5=⋂N C M C U U .6.(2011年高考福建卷文科1)若集合M={-1,0,1},N={0,1,2},则M∩N 等于A.{0,1}B.{-1,0,1}C.{0,1,2}D.{-1,0,1,2}【答案】A【解析】因为{}{}{}1,0,10,1,20,1M N ⋂=-⋂=,故选A.7.(2011年高考湖南卷文科1)设全集{1,2,3,4,5},{2,4},U U M N M C N ===则N =( )A .{1,2,3}B .{1,3,5} C.{1,4,5} D.{2,3,4}答案:B解析:画出韦恩图,可知N ={1,3,5}。
专题01 集合与常用逻辑用语一.基础题组1. 【2014全国2,文1】设集合2{2,0,2},{|20}A B x x x =-=--=,则A B =( )A. ∅B. {}2C. {0}D. {2}- 【答案】B【解析】由已知得,{}21B =,-,故{}2AB =,选B .2. 【2013课标全国Ⅱ,文1】已知集合M ={x |-3<x <1},N ={-3,-2,-1,0,1},则M ∩N =( ).A .{-2,-1,0,1}B .{-3,-2,-1,0}C .{-2,-1,0}D ..{-3,-2,-1} 【答案】:C3. 【2010全国2,文1】设全集U ={x ∈N *|x <6},集合A ={1,3},B ={3,5},则 (A ∪B )等于( )A .{1,4}B .{1,5}C .{2,4}D .{2,5} 【答案】:C【解析】∵U ={1,2,3,4,5},A ∪B ={1,3,5},∴(A ∪B )={2,4}.4. 【2007全国2,文2】设集合U={1,2,3,4},A={1,2},B={2,4},则 (A∪B)= ( ) (A) {2}(B){3}(C) {1,2,4}(D) {1,4}【答案】:B 【解析】{1,2,4}AB =,∴(){3}UC A B =.5. 【2006全国2,文2】已知集合{}2{|3},|log 1M x x N x x =<=>,则MN =( )(A )∅ (B ){}|03x x << (C ){}|13x x << (D ){}|23x x << 【答案】D【解析】{|2}N x x =>,∴{|23}MN x x =<<.6. 【2005全国2,文10】已知集合{}47M x x =-≤≤,{}260N x x x =-->,则MN 为( ) (A) {|42x x -≤<-或}37x <≤ (B) {|42x x -<≤-或}37x ≤< (C) {|2x x ≤-或}3x > (D) {|2x x <-或}3x ≥【答案】A【解析】{|23}N x x x =<->或,∴{|427}M N x x x =-≤<-<≤或3.7. 【2016新课标2文数】已知集合{123},A =,,2{|9}B x x =<,则A B =(A ){210123}--,,,,, (B ){21012}--,,,, (C ){1,2,3}(D ){12},【答案】D【考点】 一元二次不等式的解法,集合的运算【名师点睛】对于集合的交、并、补运算问题,应先把集合化简再计算,常常借助数轴或韦恩图处理.8.【2015新课标2文数】已知集合{}|12A x x =-<<,{}|03B x x =<<,则A B =( )A .()1,3-B .()1,0-C .()0,2D .()2,3 【答案】A 【解析】因为{}|12A x x =-<<,{}|03B x x =<<,所以{}|13.AB x x =-<<故选A.【考点定位】本题主要考查不等式基础知识及集合的交集运算.【名师点睛】集合是每年高考中的必考题,一般以基础题形式出现,属得分题.解决此类问题一般要把参与运算的集合化为最简形式再进行运算,如果是不等式解集、函数定义域及值域有关数集之间的运算,常借助数轴进行运算.9. 【2017新课标2,文1】设集合{1,2,3},{2,3,4}A B ==,则AB =A .{}123,4,, B .{}123,, C .{}234,, D .{}134,, 【答案】A 【解析】由题意{1,2,3,4}A B =,故选A.【考点】集合运算【名师点睛】集合的基本运算的关注点:(1)看元素组成.集合是由元素组成的,从研究集合中元素的构成入手是解决集合运算问题的前提.(2)有些集合是可以化简的,先化简再研究其关系并进行运算,可使问题简单明了,易于解决.(3)注意数形结合思想的应用,常用的数形结合形式有数轴、坐标系和Venn 图.二.能力题组1. 【2014全国2,文3】函数()f x 在0x x =处导数存在,若0:()0p f x =;0:q x x =是()f x 的极值点,则( )A .p 是的充分必要条件 B. p 是的充分条件,但不是的必要条件 C. p 是的必要条件,但不是的充分条件 D. p 既不是的充分条件,也不是的必要条件 【答案】C2. 【2012全国新课标,文1】已知集合A ={x |x 2-x -2<0},B ={x |-1<x <1},则( ) A .AB B .B AC .A =BD .A ∩B =【答案】 B【解析】由题意可得,A ={x |-1<x <2}, 而B ={x |-1<x <1},故B A .三.拔高题组1. 【2010全国新课标,文1】已知集合A ={x ||x |≤2,x ∈R },B ={x x ∈Z },则A ∩B =( )A .(0,2)B .0,2]C .{0,2}D .{0,1,2} 【答案】:D【解析】∵A={-2,-1,0,1,2},B ={0,1,2,3,…,16},∴A∩B={0,1,2}.。
高三数学(理)一轮复习 作业 第一编 集合与常用逻辑用语 总第 1 期§1.1集合的概念及其基本运算一、填空题1.定义集合运算:A *B ={}.B ,A ,|∈∈=y x xy z z 设A ={},2,1B {},2,0=则集合A *B的所有元素之和为 .2.已知集合U ={0,1,3,5,7,9},A ∩U B={1},B ={3,5,7},那么(U A )∩(U B )= .3.设全集U =R ,集合M ={x |x ≤1或x ≥3},集合P ={}R ∈+<<k k x k x ,1|,且U M P ≠∅,则实数k 的取值 范围是 .4.集合A ={y ∈R |y =lg x ,x>1},B ={-2,-1,1,2},则(R A )∩B = .5.已知集合P ={(x ,y )||x |+|y |=1},Q ={(x ,y )|x 2+y 2≤1},则P 与Q 的关系为 .6设A ,B 是非空集合,定义A ×B ={}B A x B A x x ∉∈且|,已知A ={}22|x x y x -=, B ={}0,2|>=x y y x,则A ×B = .7.集合A ={x ||x -3|<a ,a >0},B ={x |x 2-3x +2<0},且B ⊆A ,则实数a 的取值范围是 .8. 设P 是一个数集,且至少含有两个数,若对任意a 、b ∈P ,都有a +b 、a -b 、ab 、ba ∈P (除数b ≠0),则称P 是一个数域.例如有理数集Q 是数域;数集F ={a +b2|a ,b ∈Q }也是数域.有下列命题: ①整数集是数域;②若有理数集Q ⊆M ,则数集M 必为数域;③数域必为无限集;④存在无穷多个数域.其中正确的命题的序号是 .(把你认为正确的命题的序号都填上)二、解答题9.已知集合A ={x |mx 2-2x +3=0,m ∈R }.(1)若A 是空集,求m(2)若A 中只有一个元素,求m(3)若A 中至多只有一个元素,求m 的取值范围..10.(1)已知A ={a +2,(a +1)2,a 2+3a +3}且1∈A ,求实数a 的值;(2)已知M ={2,a ,b },N ={2a ,2,b 2}且M =N ,求a ,b 的值.11.已知集合A =,,116|⎭⎬⎫⎩⎨⎧∈≥+R x x x B ={},02|2<--m x x x (1)当m =3时,求A (R B );(2)若A B {}41|<<-=x x ,求实数m 的值.12.设集合A ={(x ,y )|y =2x -1,x ∈N *},B ={(x ,y )|y =ax 2-ax +a ,x ∈N *},问是否存在非零整数a ,使A ∩B ≠∅?若存在,请求出a 的值;若不存在,说明理由.。
8+6分项练1 集合与常用逻辑用语1.(2018·烟台适应性考试)已知全集U =Z ,A ={0,1,2,3},B ={x |x 2=3x },则A ∩(∁U B )等于( ) A .{1,3} B .{1,2} C .{0,3} D .{3}答案 B解析 由题意得B ={x |x 2=3x }={0,3}, ∴A ∩(∁U B )={1,2}.2.(2018·南昌模拟)已知a ,b 为实数,则“ab >b 2”是“a >b >0”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件 答案 B解析 由a >b >0,得ab >b 2成立, 反之:如a =-2,b =-1,满足ab >b 2, 则a >b >0不成立,所以“ab >b 2”是“a >b >0”的必要不充分条件,故选B.3.(2018·湖南省岳阳市第一中学模拟)已知集合A ={} |y y =x 2-1,B ={x |y =ln(x -2x 2)},则∁R (A ∩B )等于( )A.⎣⎢⎡⎭⎪⎫0,12 B .(-∞,0)∪⎣⎢⎡⎭⎪⎫12,+∞ C .(-∞,0]∪⎣⎢⎡⎭⎪⎫12,+∞ D.⎝ ⎛⎭⎪⎫0,12答案 C解析 A =[0,+∞),B =⎝ ⎛⎭⎪⎫0,12,故A ∩B =⎝ ⎛⎭⎪⎫0,12, 所以∁R (A ∩B )=(-∞,0]∪⎣⎢⎡⎭⎪⎫12,+∞. 4.下列命题中,假命题是( )A .∀x ∈R ,e x>0 B .∃x 0∈R,02x>x 2C .a +b =0的充要条件是a b=-1 D .a >1,b >1是ab >1的充分不必要条件 答案 C解析 对于A ,根据指数函数y =e x 的性质可知,e x>0总成立,故A 正确; 对于B ,取x 0=1,则21>12,故B 正确;对于C ,若a =b =0,则a b无意义,故C 错误,为假命题;对于D ,根据不等式的性质可得当a >1,b >1时,必有ab >1,但反之不成立,故D 正确. 5.(2018·漳州质检)满足{2 018}⊆A {2 018,2 019,2 020}的集合A 的个数为( ) A .1 B .2 C .3 D .4 答案 C解析 由题意,得A ={2 018}或A ={2 018,2 019}或A ={2 018,2 020}.故选C. 6.(2018·山西省榆社中学模拟)设集合A ={x |x 2-6x -7<0},B ={x |x ≥a },现有下面四个命题:p 1:∃a ∈R ,A ∩B =∅;p 2:若a =0,则A ∪B =(-7,+∞); p 3:若∁R B =(-∞,2),则a ∈A ; p 4:若a ≤-1,则A ⊆B .其中所有的真命题为( ) A .p 1,p 4 B .p 1,p 3,p 4 C .p 2,p 3 D .p 1,p 2,p 4答案 B解析 由题意可得A =()-1,7,则当a ≥7时,A ∩B =∅,所以命题p 1正确;当a =0时,B =[0,+∞),则A ∪B =(-1,+∞), 所以命题p 2错误;若∁R B =()-∞,2,则a =2∈A , 所以命题p 3正确;当a ≤-1时,A ⊆B 成立,所以命题p 4正确.7.(2018·衡水金卷调研卷)已知a >0,命题p :函数f (x )=lg ()ax 2+2x +3的值域为R ,命题q :函数g (x )=x +ax在区间(1,+∞)内单调递增.若(綈p )∧q 是真命题,则实数a 的取值范围是( ) A .(-∞,0]B.⎝⎛⎦⎥⎤-∞,13 C.⎝ ⎛⎦⎥⎤0,13 D.⎝ ⎛⎦⎥⎤13,1 答案 D解析 由题意,函数f (x )=lg ()ax 2+2x +3的值域为R ,a >0,故Δ=4-12a ≥0,解得a ≤13,故0<a ≤13,即p :0<a ≤13;若a >0,g (x )=x +ax 在区间(1,+∞)内单调递增,即g ′(x )=1-ax2≥0在区间(1,+∞)内恒成立,即a ≤x 2在区间(1,+∞)内恒成立,解得0<a ≤1,因为 (綈p )∧q 是真命题,所以p 为假命题,q 为真命题,即⎩⎪⎨⎪⎧a >13,0<a ≤1,得13<a ≤1,故选D. 8.(2018·河北衡水中学模拟)下面几个命题中,假命题是( ) A .“若a ≤b ,则2a ≤2b-1”的否命题B .“∀a ∈(0,+∞),函数y =a x在定义域内单调递增”的否定C .“π是函数y =sin x 的一个周期”或“2π是函数y =sin 2x 的一个周期”D .“x 2+y 2=0”是“xy =0”的必要条件 答案 D解析 对于A ,“若a ≤b ,则2a ≤2b -1”的否命题是“若a >b ,则2a >2b-1”,A 是真命题; 对于B ,“∀a ∈(0,+∞),函数y =a x在定义域内单调递增”的否定为“∃a 0∈(0,+∞),函数y =a x0在定义域内不单调递增”.如当a =12时,函数y =⎝ ⎛⎭⎪⎫12x 在R 上单调递减,B 为真命题;对于C ,因为“π是函数y =sin x 的一个周期”是假命题,“2π是函数y =sin 2x 的一个周期”是真命题,所以C 为真命题;对于D ,“x 2+y 2=0”⇒“xy =0”,反之不成立,因此“x 2+y 2=0”是“xy =0”的充分不必要条件,D 是假命题.9.(2018·昆明适应性检测)已知集合A ={}x | x 2-4x -3≤0,B ={}x ∈N | -1<x <3,则A ∩B =________.答案{}0,1,2解析 B ={}x ∈N | -1<x <3={}0,1,2.将0,1,2分别代入集合A ={}x | x 2-4x -3≤0中的不等式,可得02-4×0-3≤0,化简得-3≤0,此不等式成立,故有0; 12-4×1-3≤0,化简得-6≤0,此不等式成立,故有1, 22-4×2-3≤0,化简得-7≤0,此不等式成立,故有2.10.(2018·内蒙古鄂伦春自治旗模拟)记不等式组⎩⎪⎨⎪⎧x +y ≤4,3x -2y ≥6,x -y ≥4表示的区域为Ω,点P的坐标为(x ,y ).有下面四个命题:p 1:∀P ∈Ω,y ≤0; p 2:∀P ∈Ω,12x -y ≥2; p 3:∀P ∈Ω,-6≤y ≤65; p 4:∃P 0∈Ω,12x 0-y 0=15.其中的真命题是________. 答案 p 1,p 2解析 根据不等式组画出可行域如图阴影部分(含边界)所示.由图可得,∀P ∈Ω,y ≤0,故p 1正确,p 3错误;令z =12x -y ,即y =12x -z ,由图可得,当直线y =12x -z 经过点(4,0)时,直线在y 轴上的截距最大,此时z 最小,则z min =12×4=2,故p 2正确,p 4错误.11.若命题“∃x 0∈R ,x 20-2x 0+m ≤0”是假命题,则m 的取值范围是________. 答案 (1,+∞)解析 因为命题“∃x 0∈R ,x 20-2x 0+m ≤0”是假命题,所以∀x ∈R ,x 2-2x +m >0为真命题,即Δ=4-4m <0,所以m >1.12.已知p :x ≥a ,q :x 2-2x -3≥0,若p 是q 的充分不必要条件,则实数a 的取值范围是________. 答案 [3,+∞)解析 由x 2-2x -3≥0,得x ≤-1或x ≥3,若p 是q 的充分不必要条件,则{}x |x ≥a {}x |x ≤-1或x ≥3,所以a ≥3.13.(2018·上海普陀调研)设集合M =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫y ⎪⎪⎪ y =⎝ ⎛⎭⎪⎫12x ,x ∈R, N =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫y ⎪⎪⎪ y =⎝⎛⎭⎪⎫1m -1+1(x -1)+()|m |-1(x -2),1≤x ≤2,若N ⊆M ,则实数m 的取值范围是________. 答案 (-1,0)解析 ∵ M =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫y ⎪⎪⎪y =⎝ ⎛⎭⎪⎫12x,x ∈R =(0,+∞),N ⊆M ,∴y =⎝⎛⎭⎪⎫1m -1+1(x -1)+()|m |-1(x -2)在[1,2] 上恒为正,设f (x )=⎝⎛⎭⎪⎫1m -1+1(x -1)+()|m |-1(x -2),则⎩⎪⎨⎪⎧f (1)>0,f (2)>0,即⎩⎪⎨⎪⎧1-|m |>0,1m -1+1>0,得⎩⎪⎨⎪⎧-1<m <1,m >1或m <0,即-1<m <0,实数m 的取值范围是(-1,0).14.已知M 是集合{}1,2,3,…,2k -1(k ∈N *,k ≥2)的非空子集,且当x ∈M 时,有2k-x ∈M .记满足条件的集合M 的个数为f (k ),则f (2)=________;f (k )=________. 答案 3 2k-1解析 将1,2,…,2k -1分为k 组,1和2k -1,2和2k -2,……,k -1和k +1,k 单独一组,每组中的两个数必须同时属于或同时不属于一个满足条件的集合M ,每组属于或不属于M ,共两种情况,所以M 的可能性有2k,排除一个空集, 则可能性为2k-1,即f (k )=2k-1,f (2)=3, 故f (2)=3,f (k )=2k-1.。