传感器的含义
- 格式:doc
- 大小:936.00 KB
- 文档页数:31
简述传感器定义传感器是一种能够感知和测量环境中各种物理量并将其转化为可供人类理解或机器处理的信号的设备。
传感器的作用类似于人类的感官系统,能够帮助我们感知世界并做出相应的反应。
传感器广泛应用于各个领域,如工业生产、医疗保健、环境监测、交通运输等,发挥着重要的作用。
传感器的工作原理基本上是通过将某种物理量转化为电信号,然后通过电路处理这些信号并输出结果。
传感器可以感知的物理量包括温度、压力、光线强度、声音等,不同的传感器可以感知不同的物理量。
传感器的种类也非常多样,包括光学传感器、压力传感器、温度传感器、声音传感器等等。
每种传感器都有其特定的工作原理和应用场景。
在工业生产领域,传感器被广泛应用于监测生产过程中的各种参数,如温度、压力、流量等,以确保生产过程稳定运行并提高生产效率。
在医疗保健领域,传感器被用于监测患者的生理参数,如心率、血压等,帮助医生及时了解患者的健康状况并采取相应的治疗措施。
在环境监测领域,传感器被用于监测大气污染、水质污染等环境参数,以帮助监管部门及时采取措施保护环境。
在交通运输领域,传感器被用于监测交通流量、道路状态等信息,以帮助交通管理部门优化交通流动并提高交通效率。
随着科技的不断发展,传感器技术也在不断创新和进步。
传感器不仅变得更加精确和灵敏,还变得更加智能化和多功能化。
例如,智能手机上的各种传感器可以实现重力感应、光线感应、陀螺仪等功能,为用户提供更加便利的体验。
随着物联网技术的普及,传感器还可以实现设备之间的互联互通,实现智能家居、智慧城市等应用,为人们的生活带来更多的便利和舒适。
总的来说,传感器作为一种重要的感知设备,已经深入到人类社会的各个角落。
它不仅帮助人类更好地了解和控制周围的环境,还推动了社会的科技进步和发展。
随着科技的不断发展和创新,传感器技术也将不断进步,为人类创造出更加美好的未来。
传感器的定义可能会随着技术的不断发展而有所变化,但其作为一种感知和测量设备的基本作用将不会改变。
简述传感器定义
传感器是一种能够感知、检测并接收外部环境信息的设备,它能够将物理量或化学量转换成电信号或其他可以辨识的形式。
传感器的作用在于将各种不同的物理量转换成电信号,从而实现对环境的监测和控制。
传感器在现代科技中扮演着至关重要的角色,它们被广泛应用于各个领域,如工业生产、医疗保健、环境监测、交通运输等。
通过传感器,人们可以实时地获取到各种环境参数,从而更好地了解和控制周围的环境。
传感器的种类繁多,根据其工作原理和应用领域的不同,可以分为多种类型。
常见的传感器包括温度传感器、湿度传感器、压力传感器、光敏传感器、声音传感器等。
这些传感器能够实现对不同物理量的监测和检测,从而为人们提供了更多的信息和数据支持。
传感器的工作原理也各不相同,但基本原理是一致的:通过特定的传感元件将感知到的物理量转换成电信号,再通过信号处理电路将其转换成人们可以理解的形式。
这样,人们就可以通过传感器获取到所需的信息,从而实现对环境的监测和控制。
随着科技的不断发展,传感器的应用范围也在不断扩大。
人们不仅可以通过传感器监测环境的温度、湿度、压力等基本参数,还可以通过传感器实现对生物体的监测,如心率、血压等。
传感器的应用
不仅提高了生产效率,还为人们的生活带来了便利与安全。
总的来说,传感器作为一种能够感知、检测并接收外部环境信息的设备,在现代科技中扮演着至关重要的角色。
通过传感器,人们可以实时获取各种环境参数,从而更好地了解和控制周围的环境。
传感器的应用范围越来越广泛,其在各个领域的作用也越来越重要,可以说传感器已经成为现代社会不可或缺的一部分。
传感器的名词解释是什么意思啊在现代科技发展的浪潮下,我们常常听到“传感器”这个词。
它在日常生活中已经变得越来越常见,但是你是否真正理解传感器是什么意思呢?在这篇文章中,我们将深入探讨传感器的定义、原理、应用以及未来前景。
一、定义传感器是一种能根据感受到的外部物理量(例如温度、湿度、光强、压力等)或者化学、生物活性物质,并把感受到的信息转化为可输出的电信号的装置。
换言之,传感器就是一种将现实世界的物理量转化为电信号的器件。
二、原理传感器的工作原理基于各种物理现象或化学反应。
例如,温度传感器利用温度导致电阻值变化的特性,将温度转化为电压或电阻的变化,然后通过电路进行信号处理,最终输出温度值。
光敏传感器则利用光敏材料受光照射后电阻变化的特性,将光强转化为电信号。
不同种类的传感器原理千差万别,但它们的目的都是感受到外部物理量,并将其转化为电信号。
三、应用传感器在各个领域都有广泛的应用。
其中,工业领域是传感器应用最为广泛的领域之一。
例如,工业现场常用的压力传感器可以用于检测管道、容器的压力变化,实现工业过程的监测和控制。
温湿度传感器可用于环境监测,提供实时的温度和湿度数据。
在汽车行业,传感器同样扮演着重要的角色。
车辆上装配的各种传感器能够监测车速、引擎温度、轮胎压力等参数,保障驾驶安全。
除了传统工业和汽车领域,传感器在智能家居、医疗健康、物联网等领域的应用也逐渐崭露头角。
智能家居领域的传感器能够感知环境中的人体活动、光照强度等信息,实现智能家居系统的自动化和便捷性。
在医疗健康领域,传感器可以监测病人的生理参数,提供及时的医疗数据,帮助医生进行准确的诊断。
而物联网发展的推动下,传感器的应用也得到了极大的拓展。
通过传感器,物体可以实现互联互通,实现智能化的生产、生活和管理。
四、未来前景传感器作为现代科技的核心之一,其未来前景将会更加广阔。
随着人工智能、大数据、云计算等技术的迅速发展,传感器将会扮演更重要的角色。
传感器原理复习题及参考答案1.什么是传感器?按照国标定义,“传感器”应该如何说明含义?从广义的角度来说,感知信号检出器件和信号处理部分总称为传感器。
我们对传感器定义是:一种能把特定的信息(物理、化学、生物)按一定规律转换成某种可用信号输出的器件和装置。
从狭义角度对传感器定义是:能把外界非电信息转换成电信号输出的器件。
我国标准(GB7665—87)对传感器(Sensor/transducer)的定义是:“能够感受规定的被测量并按照一定规律转换成可用输出信号的器件和装置”。
定义表明传感器有这样三层含义:它是由敏感元件和转换元件构成的一种检测装置;能按一定规律将被测量转换成电信号输出;传感器的输出与输入之间存在确定的关系。
按使用的场合不同传感器又称为变换器、换能器、探测器。
2.传感器应满足的必要条件?(1)输出信号与被测量之间具有唯一确定的因果关系;(2)输出信号信号处理系统匹配;(3)具有尽可能宽的动态围、良好的响应特性、足够高的分辨率和信号噪声比;(4)对被测量的干扰尽可能小,尽可能不消耗被测系统的能量,不改变被测系统原有的状态;(5)性能稳定可靠,抗干扰能力强;(6)适应性强,具有一定的过载能力;(7)便于加工制造,具有互换性;(8)输成本低,寿命长,使用维护方便。
3.画出传感器组成框图,叙述各部分作用。
(1)敏感元件: 直接感受被测量,并输出与被测量成确定关系的某一物理量的元件,如位移、应变、光强等。
(2)转换元件:把输入转换成适于传输或测量的可用信号,如电阻、电压、电荷等。
(3)信号调理电路:对可以信号进行转换、放大、运算、调制、滤波等。
4.传感器按工作机理分类有哪些类型?(1)物理型:利用敏感元件的物理结构或功能材料的物理特性及效应制成的传感器。
(2)化学型:利用电化学反应原理,将各种化学物质(如电解质、化合物、分子、离子)的状态、成分、浓度等转化成可用信号的传感器。
(3)生物型:利用生物反应(酶反应、微生物反应、免疫学反应等)原理,将生物体的葡萄糖、DNA等转换成可用信号的传感器。
真空传感器是工业实践中最常用的一种压力传感器,现已广泛应用于各种工业自控环境。
每种仪器在使用的时候,我们都力求能够使其测量结果精准,而首要的就是对该产品相关信息要有了如指掌,才能够为其安装使用奠定坚实的基础。
下面就让艾驰商城小编对传感器常用参数的含义来一一为大家做介绍吧。
1、传感器:能感受规定的被测量并按照一定的规律转换成可用输出信号的器件或装置。
通常有敏感元件和转换元件组成。
(1)敏感元件是指传感器中能直接(或响应)被测量的部分。
(2)转换元件指传感器中能较敏感元件感受(或响应)的北侧量转换成是与传输和(或)测量的电信号部分。
(3)当输出为规定的标准信号时,则称为变送器。
2、测量范围:在允许误差限内被测量值的范围。
3、量程:测量范围上限值和下限值的代数差。
4、精确度:被测量的测量结果与真值间的一致程度。
5、从复性:在所有下述条件下,对同一被测的量进行多次连续测量所得结果之间的符合程度:6、分辨力:传感器在规定测量范围圆可能检测出的被测量的最小变化量。
7、阈值:能使传感器输出端产生可测变化量的被测量的最小变化量。
8、零位:使输出的绝对值为最小的状态,例如平衡状态。
9、激励:为使传感器正常工作而施加的外部能量(电压或电流)。
10、最大激励:在市内条件下,能够施加到传感器上的激励电压或电流的最大值。
11、输入阻抗:在输出端短路时,传感器输入的端测得的阻抗。
12、输出:有传感器产生的与外加被测量成函数关系的电量。
13、输出阻抗:在输入端短路时,传感器输出端测得的阻抗。
艾驰商城是国内最专业的MRO工业品网购平台,正品现货、优势价格、迅捷配送,是一站式采购的工业品商城!具有10年工业用品电子商务领域研究,以强大的信息通道建设的优势,以及依托线下贸易交易市场在工业用品行业上游供应链的整合能力,为广大的用户提供了传感器、图尔克传感器、变频器、断路器、继电器、PLC、工控机、仪器仪表、气缸、五金工具、伺服电机、劳保用品等一系列自动化的工控产品。
传感器习题集及答案第01章检测与传感器基础1.1 什么是传感器?按照国标定义,“传感器”应该如何说明含义?1.1答:从广义的角度来说,感知信号检出器件和信号处理部分总称为传感器。
我们对传感器定义是:一种能把特定的信息(物理、化学、生物)按一定规律转换成某种可用信号输出的器件和装置。
从狭义角度对传感器定义是:能把外界非电信息转换成电信号输出的器件。
我国国家标准(GB7665—87)对传感器(Sensor/transducer)的定义是:“能够感受规定的被测量并按照一定规律转换成可用输出信号的器件和装置”。
定义表明传感器有这样三层含义:它是由敏感元件和转换元件构成的一种检测装置;能按一定规律将被测量转换成电信号输出;传感器的输出与输入之间存在确定的关系。
按使用的场合不同传感器又称为变换器、换能器、探测器。
1.2 传感器由哪几部分组成?试述它们的作用及相互关系。
1.2答:组成——由敏感元件、转换元件、基本电路组成;关系,作用——传感器处于研究对象与测试系统的接口位置,即检测与控制之首。
传感器是感知、获取与检测信息的窗口,一切科学研究与自动化生产过程要获取的信息都要通过传感器获取并通过它转换成容易传输与处理的电信号,其作用与地位特别重要。
1.3 简述传感器主要发展趋势1.3答:数字化、集成化、智能化、网络化等。
1.4传感器的静态特性是什么?由哪些性能指标描述?它们一般可用哪些公式表示?1.4答:静特性是当输入量为常数或变化极慢时,传感器的输入输出特性,其主要指标有线性度、迟滞、重复性、分辨力、稳定性、温度稳定性、各种抗干扰稳定性。
传感器的静特性由静特性曲线反映出来,静特性曲线由实际测绘中获得。
人们根据传感器的静特性来选择合适的传感器。
1.5传感器的线性度是如何确定的?确定拟合直线有哪些方法?传感器的线性γ表征了什么含义?为什么不能笼统的说传感器的线性度是多少。
1.5答:度L1)实际传感器有非线性存在,线性度是将近似后的拟合直线与实际曲线进行比较,其中存在偏差,这个最大偏差称为传感器的非线性误差,即线性度,2)选取拟合的方法很多,主要有:理论线性度(理论拟合);端基线性度(端点连线拟合);独立线性度(端点平移拟合);最小二乘法线性度。
传感器知识点一、什么是传感器?传感器是一种可以将环境中的物理量或化学量转换为电信号的装置。
它通过感受、测量和探测环境中的各种物理量,如温度、湿度、压力、流量等,并将其转化为可供电子设备处理的电信号。
二、传感器的分类1. 根据测量的物理量分类:- 温度传感器:用于测量环境或物体的温度。
- 压力传感器:用于测量气体或液体的压力。
- 湿度传感器:用于测量空气中的湿度水分含量。
- 光照传感器:用于检测环境中的光照强度。
- 加速度传感器:用于测量物体的加速度。
- 位置传感器:用于测量物体在空间中的位置。
2. 根据测量原理分类:- 电阻型传感器:利用物体电阻值与物理量之间的关系进行测量。
- 电容型传感器:利用物体电容值与物理量之间的关系进行测量。
- 压阻型传感器:利用物体阻值与物理量之间的关系进行测量。
- 磁阻型传感器:利用物体磁阻值与物理量之间的关系进行测量。
- 光电传感器:利用物体与光之间的相互作用进行测量。
三、传感器的应用1. 工业自动化领域:- 温度传感器被广泛用于测量工业过程中的温度,以控制物体的加热或冷却过程。
- 压力传感器用于测量管道中的液体或气体压力,以确保工业过程的正常运行。
- 光照传感器可用于在工业生产线上检测产品的正确定位和识别。
2. 环境监测领域:- PM2.5传感器用于测量空气中的颗粒物含量,以实时监测空气质量。
- 湿度传感器可用于测量土壤湿度,以帮助农民进行精确灌溉。
3. 医疗设备领域:- 心率传感器用于监测患者的心率情况。
- 血糖传感器可用于测量患者的血糖水平。
4. 智能家居领域:- 温度传感器和湿度传感器用于控制智能家居设备,如空调、加湿器等。
- 光照传感器可用于智能家居自动调节照明亮度。
四、未来发展趋势随着物联网技术的发展,传感器在各个领域的应用将越来越广泛。
传感器将更小、更智能化,能够实现更多的功能。
同时,传感器的精度和稳定性也将不断提高,使得测量结果更加准确可靠。
总结:传感器是现代科技发展中不可或缺的重要组成部分。
1、传感器的定义英文名称:transducer / sensor传感器是一种物理装置或生物器官,能够探测、感受外界的信号、物理条件(如光、热、湿度)或化学组成(如烟雾),并将探知的信息传递给其他装置或器官。
国家标准GB7665-87对传感器下的定义是:“能感受规定的被测量并按照一定的规律转换成可用信号的器件或装置,通常由敏感元件和转换元件组成”。
传感器是一种检测装置,能感受到被测量的信息,并能将检测感受到的信息,按一定规律变换成为电信号或其他所需形式的信息输出,以满足信息的传输、处理、存储、显示、记录和控制等要求。
它是实现自动检测和自动控制的首要环节。
2、传感器的分类可以用不同的观点对传感器进行分类:它们的转换原理(传感器工作的基本物理或化学效应);它们的用途;它们的输出信号类型以及制作它们的材料和工艺等。
根据传感器工作原理,可分为物理传感器和化学传感器二大类:传感器工作原理的分类物理传感器应用的是物理效应,诸如压电效应,磁致伸缩现象,离化、极化、热电、光电、磁电等效应。
被测信号量的微小变化都将转换成电信号。
化学传感器包括那些以化学吸附、电化学反应等现象为因果关系的传感器,被测信号量的微小变化也将转换成电信号。
有些传感器既不能划分到物理类,也不能划分为化学类。
大多数传感器是以物理原理为基础运作的。
化学传感器技术问题较多,例如可靠性问题,规模生产的可能性,价格问题等,解决了这类难题,化学传感器的应用将会有巨大增长。
按照其用途,传感器可分类为:压力敏和力敏传感器液面传感器速度传感器加速度传感器湿敏传感器气敏传感器真以其输出信号为标准可将传感器分为:模拟传感器——数字传感器——将被测量的非电学量转换成数字输出信号(包括直接和间接转换)膺数字传感器——将被测量的信号量转换成频率信号或短周期信号的输出(包括直接或间接转换)开关传感器——当一个被测量的信号达到某个特定的阈值时,传感器相应地输出一个设定的低电平或高电平信号。
传感器一.传感器的定义传感器是一种能感受规定的被测量件并按照一定的规律转换成可用信号的器件或装置,通常由敏感元件和转换元件组成”。
传感器是一种以一定的精确度把被测量转换为与之有确定对应关系的、便于应用的某种物理量的测量装置。
其包含以下几个方面的含义:1.传感器是测量装置,能完成检测任务2.它的输入量是某一被测量,可能是物理量,也可能是化学量、生物量等3.输出量是某种物理量,这种量要便于传输、转换、处理、显示等等,这种量可以是气、光、电量,但主要是电量。
4.输入输出有对应关系,且应有一定的精确度。
二.传感器的组成传感器一般由敏感元件、转换元件、转换电路三部分组成:1.敏感元件(Sensitive element):直接感受被测量,并输出与被测量成确定关系的某一物理量的元件。
2.转换元件(Transduction element):以敏感元件的输出为输入,把输入转换成电路参数。
3.转换电路(Transduction circuit):上述电路参数接入转换电路,便可转换成电量输出。
实际上,有些传感器很简单,仅由一个敏感元件(兼作转换元件)组成,它感受被测量时直接输出电量。
如热电偶。
有些传感器由敏感元件和转换元件组成,没有转换电路。
有些传感器,转换元件不止一个,要经过若干次转换。
三.传感器的分类一、根据输入物理量可分为:位移传感器、压力传感器、速度传感器、温度传感器及气敏传感器等。
二、根据工作原理可分为:电阻式、电感式、电容式及电势式等。
三、根据输出信号的性质可分为:模拟式传感器和数字式传感器。
即模拟式传感器输出模拟信号,数字式传感器输出数字信号.四、根据能量转换原理可分为:有源传感器和无源传感器。
有源传感器将非电量转换为电能量,如电动势、电荷式传感器等;无源程序传感器不起能量转换作用,只是将被测非电量转换为电参数的量,如电阻式、电感式及电容光焕发式传感器等。
传感器分类表。
传感器技术1.传感器的含义国家标准GB7665—87对传感器下的定义是:能感受到规定的被测量量并依据一定的规律转换成可用于输出信号的器件或装置。
传感器的涵义有广义和狭义之分,广义的传感器是指能感知某一物理量(或化学量,生物量,.…..)的信息,并能将它转化为有用的信息的装置。
狭义的传感器是指能将各种非电量转化成电信号的部件。
这是因为现代化技术中电信号是最适合传输、转换、处理和定量运算的物理量。
特别是在电子计算机作为处理信号的基本工具的时代,总是力图把各种被测量量通过传感器最终转换成电信号进行处理。
在大多数情况下,传感器是指狭义的传感器。
在现代化科学技术的发展过程中,非电量(例如压力、力矩、应变、位移、速度、流量、液位等)的测量技术(传感技术)已经成为各应用领域的重要组成部分。
但传感技术最主要的应用领域是自动检测和自动控制。
它将诸如温度、压力、流量等参量转化为电量,然后通过电的方法,进行测量和控制。
因此,传感器是一种获得信息的手段,它获得信息正确与否,关系到整个测量系统的精度。
2.传感器的组成传感器一般是利用物理、化学和生物等学科的某些效应或原理按照一定的制造工艺研制出来的。
因此,传感器的组成将随不同的情况而有较大差异。
但是,总的来说,传感器是由敏感元件、传感元件和其他辅助部件组成,如下图。
传感器的组成敏感元件是直接感受非电量,并按一定规律转换成与被测量有确定关系的其他量(一般仍为非电量),例如应变式压力传感器的弹性膜片就是敏感元件,它的作用是将压力转换成膜片的变形。
传感元件又称变换器,一般情况下,它不直接感受被测量,而是将敏感元件输出的量转换成为电量输出的元件。
如应力式压力传感器的应变片,它的作用是将弹性膜片的变形转换成电阻值的变化,电阻应变片就是传感元件。
这种划分并无严格的界限,并不是所有的传感器必须包含敏感元件和传感元件。
如果敏感元件直接输出的是电量,它同时兼为传感元件;如果传感元件能直接感受被测非电量并输出与之成确定关系的电量,此时,传感器就是敏感元件。
1、传感器的定义英文名称:transducer / sensor传感器是一种物理装置或生物器官,能够探测、感受外界的信号、物理条件(如光、热、湿度)或化学组成(如烟雾),并将探知的信息传递给其他装置或器官。
国家标准GB7665-87对传感器下的定义是:“能感受规定的被测量并按照一定的规律转换成可用信号的器件或装置,通常由敏感元件和转换元件组成”。
传感器是一种检测装置,能感受到被测量的信息,并能将检测感受到的信息,按一定规律变换成为电信号或其他所需形式的信息输出,以满足信息的传输、处理、存储、显示、记录和控制等要求。
它是实现自动检测和自动控制的首要环节。
2、传感器的分类可以用不同的观点对传感器进行分类:它们的转换原理(传感器工作的基本物理或化学效应);它们的用途;它们的输出信号类型以及制作它们的材料和工艺等。
根据传感器工作原理,可分为物理传感器和化学传感器二大类:传感器工作原理的分类物理传感器应用的是物理效应,诸如压电效应,磁致伸缩现象,离化、极化、热电、光电、磁电等效应。
被测信号量的微小变化都将转换成电信号。
化学传感器包括那些以化学吸附、电化学反应等现象为因果关系的传感器,被测信号量的微小变化也将转换成电信号。
有些传感器既不能划分到物理类,也不能划分为化学类。
大多数传感器是以物理原理为基础运作的。
化学传感器技术问题较多,例如可靠性问题,规模生产的可能性,价格问题等,解决了这类难题,化学传感器的应用将会有巨大增长。
按照其用途,传感器可分类为:压力敏和力敏传感器位置传感器液面传感器能耗传感器速度传感器热敏传感器加速度传感器射线辐射传感器振动传感器湿敏传感器磁敏传感器气敏传感器真空度传感器生物传感器等。
以其输出信号为标准可将传感器分为:模拟传感器——将被测量的非电学量转换成模拟电信号。
数字传感器——将被测量的非电学量转换成数字输出信号(包括直接和间接转换)。
膺数字传感器——将被测量的信号量转换成频率信号或短周期信号的输出(包括直接或间接转换)。
开关传感器——当一个被测量的信号达到某个特定的阈值时,传感器相应地输出一个设定的低电平或高电平信号。
在外界因素的作用下,所有材料都会作出相应的、具有特征性的反应。
它们中的那些对外界作用最敏感的材料,即那些具有功能特性的材料,被用来制作传感器的敏感元件。
从所应用的材料观点出发可将传感器分成下列几类:(1)按照其所用材料的类别分金属聚合物陶瓷混合物(2)按材料的物理性质分导体绝缘体半导体磁性材料(3)按材料的晶体结构分单晶多晶非晶材料与采用新材料紧密相关的传感器开发工作,可以归纳为下述三个方向:(1)在已知的材料中探索新的现象、效应和反应,然后使它们能在传感器技术中得到实际使用。
(2)探索新的材料,应用那些已知的现象、效应和反应来改进传感器技术。
(3)在研究新型材料的基础上探索新现象、新效应和反应,并在传感器技术中加以具体实施。
现代传感器制造业的进展取决于用于传感器技术的新材料和敏感元件的开发强度。
传感器开发的基本趋势是和半导体以及介质材料的应用密切关联的。
表1.2中给出了一些可用于传感器技术的、能够转换能量形式的材料。
按照其制造工艺,可以将传感器区分为:集成传感器薄膜传感器厚膜传感器陶瓷传感器集成传感器是用标准的生产硅基半导体集成电路的工艺技术制造的。
通常还将用于初步处理被测信号的部分电路也集成在同一芯片上。
薄膜传感器则是通过沉积在介质衬底(基板)上的,相应敏感材料的薄膜形成的。
使用混合工艺时,同样可将部分电路制造在此基板上。
厚膜传感器是利用相应材料的浆料,涂覆在陶瓷基片上制成的,基片通常是Al2O3制成的,然后进行热处理,使厚膜成形。
陶瓷传感器采用标准的陶瓷工艺或其某种变种工艺(溶胶-凝胶等)生产。
完成适当的预备性操作之后,已成形的元件在高温中进行烧结。
厚膜和陶瓷传感器这二种工艺之间有许多共同特性,在某些方面,可以认为厚膜工艺是陶瓷工艺的一种变型。
每种工艺技术都有自己的优点和不足。
由于研究、开发和生产所需的资本投入较低,以及传感器参数的高稳定性等原因,采用陶瓷和厚膜传感器比较合理。
电阻式传感器电阻式传感器是将被测量,如位移、形变、力、加速度、湿度、温度等这些物理量转换式成电阻值这样的一种器件。
主要有电阻应变式、压阻式、热电阻、热敏、气敏、湿敏等电阻式传感器件。
电阻应变式传感器传感器中的电阻应变片具有金属的应变效应,即在外力作用下产生机械形变,从而使电阻值随之发生相应的变化。
电阻应变片主要有金属和半导体两类,金属应变片有金属丝式、箔式、薄膜式之分。
半导体应变片具有灵敏度高(通常是丝式、箔式的几十倍)、横向效应压阻式传感器压阻式传感器是根据半导体材料的压阻效应在半导体材料的基片上经扩散电阻而制成的器件。
其基片可直接作为测量传感元件,扩散电阻在基片内接成电桥形式。
当基片受到外力作用而产生形变时,各电阻值将发生变化,电桥就会产生相应的不平衡输出。
用作压阻式传感器的基片(或称膜片)材料主要为硅片和锗片,硅片为敏感材料而制成的硅压阻传感器越来越受到人们的重视,尤其是以测量压力和速度的固态压阻式传感器应用最为普遍。
热电阻传感器热电阻传感器主要是利用电阻值随温度变化而变化这一特性来测量温度及与温度有关的参数。
在温度检测精度要求比较高的场合,这种传感器比较适用。
目前较为广泛的热电阻材料为铂、铜、镍等,它们具有电阻温度系数大、线性好、性能稳定、使用温度范围宽、加工容易等特点。
用于测量-200℃~+500℃范围内的温度。
热电阻传感器分类:1.NTC热电阻传感器:该类传感器为负温度系数传感器,即,传感器阻值随温度的升高而减小;2.PTC热电阻传感器:该类传感器为正温度系数传感器,即,传感器阻值随温度的升高而增大。
温度传感器1、室温管温传感器:室温传感器用于测量室内和室外的环境温度,管温传感器用于测量蒸发器和冷凝器的管壁温度。
室温传感器和管温传感器的形状不同,但温度特性基本一致。
按温度特性划分,目前美的使用的室温管温传感器有二种类型:1、常数B值为4100K±3%,基准电阻为25℃对应电阻10KΩ±3%。
温度越高,阻值越小;温度越低,阻值越大。
离25℃越远,对应电阻公差范围越大;在0℃和55℃对应电阻公差约为±7%;而0℃以下及55℃以上,对于不同的供应商,电阻公差会有一定的差别。
除个别老产品外,美的空调电控使用的室温管温传感器均使用这种类型的传感器。
常数B值为3470K±1%,基准电阻为25℃对应电阻5KΩ±1%。
同样,温度越高,阻值越小;温度越低,阻值越大。
离25℃越远,对应电阻公差范围越大。
2、排气温度传感器:排气温度传感器用于测量压缩机顶部的排气温度,常数B值为3950K±3%,基准电阻为90℃对应电阻5KΩ±3%。
3.、模块温度传感器:模块温度传感器用于测量变频模块(IGBT 或IPM)的温度,目前用的感温头的型号是602F-3500F,基准电阻为25℃对应电阻6KΩ±1%。
3、传感器静态特性传感器的静态特性是指对静态的输入信号,传感器的输出量与输入量之间所具有相互关系。
因为这时输入量和输出量都和时间无关,所以它们之间的关系,即传感器的静态特性可用一个不含时间变量的代数方程,或以输入量作横坐标,把与其对应的输出量作纵坐标而画出的特性曲线来描述。
表征传感器静态特性的主要参数有:线性度、灵敏度、分辨力和迟滞等。
4、传感器动态特性所谓动态特性,是指传感器在输入变化时,它的输出的特性。
在实际工作中,传感器的动态特性常用它对某些标准输入信号的响应来表示。
这是因为传感器对标准输入信号的响应容易用实验方法求得,并且它对标准输入信号的响应与它对任意输入信号的响应之间存在一定的关系,往往知道了前者就能推定后者。
最常用的标准输入信号有阶跃信号和正弦信号两种,所以传感器的动态特性也常用阶跃响应和频率响应来表示。
通常情况下,传感器的实际静态特性输出是条曲线而非直线。
在实际工作中,为使仪表具有均匀刻度的读数,常用一条拟合直线近似地代表实际的特性曲线、线性度(非线性误差)就是这个近似程度的一个性能指标。
拟合直线的选取有多种方法。
如将零输入和满量程输出点相连的理论直线作为拟合直线;或将与特性曲线上各点偏差的平方和为最小的理论直线作为拟合直线,此拟合直线称为最小二乘法拟合直线。
6、传感器的灵敏度灵敏度是指传感器在稳态工作情况下输出量变化△y对输入量变化△x的比值。
它是输出一输入特性曲线的斜率。
如果传感器的输出和输入之间显线性关系,则灵敏度S是一个常数。
否则,它将随输入量的变化而变化。
灵敏度的量纲是输出、输入量的量纲之比。
例如,某位移传感器,在位移变化1mm时,输出电压变化为200mV,则其灵敏度应表示为200mV/mm。
当传感器的输出、输入量的量纲相同时,灵敏度可理解为放大倍数。
提高灵敏度,可得到较高的测量精度。
但灵敏度愈高,测量范围愈窄,稳定性也往往愈差。
分辨力是指传感器可能感受到的被测量的最小变化的能力。
也就是说,如果输入量从某一非零值缓慢地变化。
当输入变化值未超过某一数值时,传感器的输出不会发生变化,即传感器对此输入量的变化是分辨不出来的。
只有当输入量的变化超过分辨力时,其输出才会发生变化。
通常传感器在满量程范围内各点的分辨力并不相同,因此常用满量程中能使输出量产生阶跃变化的输入量中的最大变化值作为衡量分辨力的指标。
上述指标若用满量程的百分比表示,则称为分辨率。
分辨率与传感器的稳定性有负相相关性。
8、传感器的迟滞特性迟滞特性表征传感器在正向(输入量增大)和反向(输入量减小)行程间输出-一输入特性曲线不一致的程度,通常用这两条曲线之间的最大差值△MAX与满量程输出F·S的百分比表示。
迟滞可由传感器内部元件存在能量的吸收造成。
9、接口传感器魏德米勒传感器/执行器接口产品,可以通过加装相应的总线协议适配器,SAI产品可以直接连接到现场总线。
可以支Profibus-DP、CANopen、DeviceNet、Interbus和ASi现场总线协议。
无源传感器/执行器接口产品(SAI)防护等级达到IP68,可直接安装而无需防护。
节约安装材料、时间、空间。
提供4、6、8路的分配器,每路有3针、4针和5针的结构(提供一路和两路信号)。
有带接线盖型(标准型)和电缆预制型。
可另外提供金属外壳的产品,适用于食品行业。
带有信号和电源的指示。
有源传感器/执行器接口产品(SAI)通过加装相应的总线协议适配器,SAI产品可以直接连接到现场总线。
可以支持Profibus-DP、CANopen、DeviceNet、Interbus 和ASi现场总线协议。
提供两种防护等级的产品:IP67(总线连接方式为圆形接头连接),IP68(总线连接方式为自装配型)。