勾股定理及其逆定理
- 格式:doc
- 大小:199.91 KB
- 文档页数:10
八年级上册全科资料群5526293231. 勾股定理文字表述符号语言在直角三角形中,如果两直角边的长分别为a和b,斜边长为c,那么a2+b2=c2.2.勾股定理命名依据我国古代把直角三角形中较短的直角边称为勾,较长的直角边称为股,斜边称为弦.因此,我们称上述定理为勾股定理,国外称为毕达哥拉斯定理.勾股定理反映了直角三角形中三边之间的平方关系,它把图形的特征转化成了数量之间的关系.相传2500多年前,古希腊有一位非常著名的数学家毕达哥拉斯,他善于观察和思考问题,经常从生活中寻找一些数学问题,有一次,他到朋友家做客,发现朋友家用砖铺成的地面中反映了直角三角形三边长度平方的某种数量关系.(2)在应用时,要分清哪个是直角边的长、斜边的长及直角边和斜边的位置;(3)已知直角三角形的两条边长,可求第三条边长.除勾股定理外,要注意勾股定理的如下两种变形:①b2=c2–a2,②a2 =c2–b2(其中a和b为直角边,c为斜边).示范例题例题1. (解析题)在△ABC中,∠C=90°,∠A、∠B、∠C的对边分别为a、b、c.(1)若a=6,b=8,求c;(2)若b=5,c=13,求a;(3)若a:b=3:4,c=20,求a和b.【答案】见解析【解析】在△ABC中,∠C=90°,由勾股定理,得a2+b2=c2.(1)∵a2+b2=c2,∴c2=a2+b2=62+82=100,∴c=10.(2)∵a2+b2=c2,∴a2=c2-b2=132-52=144,∴a=12.点拨已知直角三角形两边之比及第三边的长,常用设参数的方法把两边表示出来,然后利用勾股定理求出第三边,就可求出两边的长.知识点2 勾股定理的证明【重点】勾股定理的验证方法较多,例如,以下动图很好地展示了边长为a的正方形的面积加上边长为b的正方形的面积,等于边长为c勾股定理证明勾股定理证明最佳勾股定理证明勾股定理证明另外,还有常用的拼图法:式,通过化简等运算就可验证勾股定理.举例列表如下:拼图法1拼图法2拼图法3 划重点用拼图法证明勾股定理的关键是抓住图形面积间的关系,即用不同的面积形式表示同一个图形的面积.示范例题例题1. (解析题)如图1,是用硬纸板做成的两个完全一样的直角三角形,两直角边的长分别为a和b,斜边长为c,图2是以c 为直角边的等腰直角三角形,请你开动脑筋,将它们拼成一个能证明勾股定理的图形.(1)画出拼成的这个图形的示意图,写出它是什么图形?(2)用这个图形证明勾股定理;(3)假设图1中的直角三角形有若干个,你能运用图1中所给的直角三角形拼出另一种能证明勾股定理的图形吗?请画出拼后的示意图.【答案】见解析【解析】(1)如下图,是直角梯形.(3)如下图所示,拼出能证明勾股定理的图形.用拼图法证明勾股定理,关键是抓住图形面积间的关系,利用同一个图形面积的不同表示法,列等式证明.知识点3 勾股定理的逆定理【重点】1. 勾股定理的逆定理文字表述三角形是直角三角形.数学语言在△ABC中,∠A,∠B,∠C所对的边分别为a,b,c,如果a2+b2=c2,那么△ABC是直角三角形.的思想.(3)在判定时不能说成“在直角三角形中”“直角边”“斜边”,因为还没有确定是直角三角形.(4)a2+b2=c2只是一种表现形式,满足a2=b2+c2或b2=a2+ c2的也是直角三角形.2. 直角三角形的判定方法(1)利用定义如果有一个角是直角,那么这个三角形是直角三角形.当题目中的条件与角有关时,常用此方法.(2)利用勾股定理的逆定理.先找出最长边,再计算两个短边的平方和,看它与最长边的平方是否相等.若相等,则是直角三角形;若不相等,则不是直角三角形.当已知三边的长或三边之间的关系时,常用此方法.示范例题例题1. (解析题)判断满足下列条件的三角形是不是直角三角形,若是,请指出哪个角是直角.(1) 在△ABC中,AB=12,BC=20,CA=16;(2) 在△ABC中,AB=52,BC=42,CA=32;(3) △ABC的三边分别为2n,n2 –1,n2 +1(n为正整数).【答案】见解析【解析】(1) ∵AB2 +CA2=122+162=144 +256=400,而BC2=400,∴AB2+CA2=BC2,∴△ABC是直角三角形,且∠A为直角.(2)∵BC2+CA2=(42)2+(32)2=256+81=337,而AB2=(52)2=625,∴BC2+CA2≠AB2,∴△ABC不是直角三角形.(3) ∵(n2 +1)2 = n4 +2n2 +1,(n2-1)2 =n4 –2n2+1,(2n)2 =4n2.∴(n2+1)2 =n4 +2n2 +1=(n4 -2n2+1) +(4n2) ,即(n2 +1)2 = (n2 –1)2 +(2n)2,∴△ABC是直角三角形,且长度为n2 +1的边所对的角为直角.做第(2)题时要注意不要由32+42=52,得出三角形是直角三角形.知识点4 勾股数【基础】1. 定义2. 判别勾股数的一般步骤这三个数不是一组勾股数.(2)如果一组数是勾股数,那么当它们扩大相同整数倍(3)常见的勾股数有:①3,4,5;②6,8,10;③8,15,17;④7,24,25;⑤5,12,13;⑥9,12,15.(1)毕达哥拉斯发现的勾股数组:2n+1,2n2 +2n,2n2+2n+1(n是正整数).当n=2时,可以得到一组勾股数5,12,13.(2)柏拉图发现的勾股数组:2n,n2-1,n2 +1(n>1,且n是正整数).当n=4时,可以得到一组勾股数8,15,17.示范例题例题1.(单选题)[2019陕西宝鸡陈仓区期末]下列各组数据中,不是勾股数的是()A.3,4,5B.7,24,25C.8,15,17D.5,6,9【答案】D【解析】A、32+42=52,是勾股数;B、72+242=252,是勾股数;C、82+152=172,是勾股数;D、52+62≠92,不是勾股数.故选D.K重难题型1勾股定理的简单应用示范例题例题1.(单选题)[2020湖北黄冈蕲春县期中]如图在正方形网格中,每个小正方形的边长均为1,则在△ABC中,边长为无理数的边有()A.3条B.2条C.1条D.0条【答案】B题型2 勾股定理的证明勾股定理的证明一般通过同一个图形,不同的面积表示形式,或两个图形面积相等,列出等式,然后变形证明.示范例题例题1. (解析题)中国古代数学家们对于勾股定理的发现和证明,在世界数学史上具有独特的贡献和地位,体现了数学研究中的继承和发展.现用4个全等的直角三角形拼成如图所示“弦图”.Rt△ABC中,∠ACB=90°,若AC=b,BC=a,请你利用这个图形说明a2+b2=c2.【答案】见解析点拨根据题意,我们可在图中找到等量关系,大正方形面积=小正方形面积+四个直角三角形面积,列出等式化简即可得出勾股定理的表达式.题型3 勾股定理的逆定理的简单应用已知三边判断是否是直角三角形时,只需验证两条较小边的平方和是否等于最大边的平方即可.若相等,则是直角三角形,且最长边所对的角是直角.若不相等,则不是直角三角形.示范例题例题1.(单选题)[2020山东济南历城区校级期中]在下列条件中:①∠A+∠B=∠C;②∠A:∠B:∠C=1:2:3;③∠A=2∠B=3∠C;④∠A=∠B=∠C中,能确定△ABC是直角三角形的条件有()A.1个B.2个C.3个D.4个【答案】B【解析】①∠A+∠B=∠C,是直角三角形;②∠A:∠B:∠C=1:2:3,是直角三角形;③∠A=2∠B=3∠C,不是直角三角形;④∠A=∠B=∠C,不是直角三角形,是等边三角形,能确定△ABC是直角三角形的条件有2个.故选B.。
A B C ac 弦勾勾股定理(知识点)【知识要点】1.勾股定理的概念:如果直角三角形的两直角边长分别为a ,b ,斜边长为c ,那么a 2+b 2=c 2.即直角三角8,15,17等③用含字母的代数式表示n 组勾股数:221,2,1n n n -+(2,n ≥n 为正整数);2221,22,221n n n n n ++++(n 为正整数)2222,2,m n mn m n -+(,m n >m ,n 为正整数)4.判断直角三角形:(1)有一个角为90°的三角形是直角三角形。
(2)有两个角互余的三角形是直角三角形。
(3)如果三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形。
(4;(1⇒∠A+(2)在直角三角形中,30°角所对的直角边等于斜边的一半。
∠A=30°1AB可表示如下:⇒BC=2∠C=90°(3)直角三角形斜边上的中线等于斜边的一半。
∠ACB=90°1AB=BD=AD可表示如下: CD=2D为AB的中点6.数轴上表示无理数1.2.、∠B、A.a2+b2=c2B.a2=2b2C.c2=2a2D.b2=2a23.矩形ABCD,AB=5cm,AC=13cm,则这个矩形的面积为60cm2.4.如图,在△ABC中,∠BAC=90o,AB=15,AC=20,AD⊥BC,垂足为D,则△ABC斜边上的高AD=12.5.已知等腰三角形底边长为10cm,腰长为13cm,则腰上的高....为(C)A.12cmB.60cm C.12013cm D.1013cm136.一个直角三角形的三边为三个连续偶数,则它的三边长分别为6,8,10.7.(易错题)已知直角三角形的两边x,y的长满足│x-4│+3 y=0,则第三边的长为5或.8.10.11.别用.12.,分别以13.形A,49cm第4题第11题第12题第13题14.在Rt△ABC,∠C=90°(1)已知c=17,b=8,求a。
勾股定理及其逆定理小结一、知识要点回顾 1、勾股定理勾股定理:直角三角形两直角边的平方和等于斜边的平方。
也就是说:如果直角三角形的两直角边为a 、b ,斜边为c ,那么 a 2 + b 2= c 2。
公式的变形:a 2= c 2- b 2, b 2= c 2-a 2。
2、勾股定理的逆定理如果三角形ABC 的三边长分别是a ,b ,c ,且满足a 2+ b 2= c 2,那么三角形ABC 是直角三角形。
这个定理叫做勾股定理的逆定理.该定理在应用时,同学们要注意处理好如下几个要点:①、已知的条件:某三角形的三条边的长度.②、满足的条件:最大边的平方=最小边的平方+中间边的平方. ③、得到的结论:这个三角形是直角三角形,并且最大边的对角是直角. ④、如果不满足条件(2),就说明这个三角形不是直角三角形。
二、考点剖析1、应用勾股定理在等腰三角形中求底边上的高例1、如图1所示,等腰中,,是底边上的高,若,则cm .2, 应用勾股定理解决楼梯上铺地毯问题 例2、某楼梯的侧面视图如图3所示,其中米,,,因某种活动要求铺设红色地毯,则在AB 段楼梯所铺地毯的长度应为 .3,应用勾股定理解决勾股树问题例3,如图6所示,是一株美丽的勾股树,其中所有的四边形都是正方形,所有的三角形都是直角三角形.若正方形A、B、C、D的边长分别是3、5、2、3,则最大正方形E的面积是:A.13 B.26 C.47 D.944,应用勾股定理解决阴影面积问题例4,已知:如图7所示,以Rt△ABC的三边为斜边分别向外作等腰直角三角形.若斜边AB=3,则图中阴影部分的面积为.5,应用勾股定理解决数学风车问题例5、如图8中,图甲是我国古代著名的“赵爽弦图”的示意图,它是由四个全等的直角三角形围成的。
在Rt△ABC中,若直角边AC=6,BC=5,将四个直角三角形中边长为6的直角边分别向外延长一倍,得到图乙所示的“数学风车”,则这个风车的外围周长(图乙中的实线)是______________。
证明勾股定理逆定理勾股定理是初中数学中最为基础的定理之一,它是指在直角三角形中,斜边的平方等于两腰的平方和。
即a²+b²=c²,其中c为斜边,a、b为两腰。
证明勾股定理逆定理需要先了解什么是勾股数。
勾股数是指能够满足勾股定理的三个正整数,例如3、4、5就是勾股数。
逆定理即为:如果一个正整数n可以表示成两个正整数的平方和,则n一定不是勾股数。
首先我们需要证明一个引理:一个自然数n可以表示成两个正整数的平方和当且仅当n的所有形如4k+3(k为任意自然数)因子的幂次均为偶数。
证明如下:1. 如果n可以表示成两个正整数的平方和,则n有以下几种情况:① n=1+1② n=4+9③ n=16+25④ n=36+49……可见,每个能够表示成两个正整数平方和的自然数都可以由若干个完全平方数组成。
而完全平方数组成的自然数都只包含形如4k或4k+1(k为任意自然数)这样的因子,因此我们可以得出结论:如果n可以表示成两个正整数的平方和,则n的所有形如4k+3因子的幂次均为偶数。
2. 如果n所有形如4k+3(k为任意自然数)因子的幂次均为偶数,则n可以表示成两个正整数的平方和。
这一点需要用到费马定理,即如果p是一个素数且p不能被4整除,则p可以表示成两个正整数的平方和当且仅当p的幂次均为偶数。
由于任何自然数都可以唯一分解为若干个素数乘积,因此我们只需要证明任何一个形如4k+1(k为任意自然数)的素数都可以表示成两个正整数的平方和即可。
设p=4m+1,其中m为任意自然数。
由于p是素数,所以它有一个最小非零剩余r使得r²≡-1(mod p)。
那么我们就有:(r²)²≡(-1)²(mod p)r⁴≡1(mod p)由于r是最小非零剩余,所以r⁴≠1,而又有r⁴≡1(mod p),所以p必须是奇素数。
那么我们就可以将p唯一分解为以下形式:p=a²+b²其中a、b均为正整数。
勾股定理及其逆定理一、勾股定理勾股定理是数学中的基础定理之一,它描述了直角三角形中的关系。
根据勾股定理,直角三角形的两条直角边的平方和等于斜边的平方。
用公式表示就是:c² = a² + b²,其中c表示斜边的长度,a和b分别表示两条直角边的长度。
勾股定理的历史可以追溯到公元前6世纪的中国和印度,但最早被发现并应用的是中国的古代数学家勾股。
因此,这个定理被称为勾股定理。
勾股定理的应用非常广泛,特别是在测量和计算方面。
例如,我们可以利用勾股定理来计算三角形的边长、角度以及面积等。
在实际应用中,我们经常会遇到需要使用勾股定理解决问题的情况。
二、勾股定理的逆定理勾股定理的逆定理是指,如果一个三角形的三条边满足c² = a² + b²,那么这个三角形一定是直角三角形。
这个逆定理也被称为勾股定理的逆命题。
为了证明逆定理的正确性,我们可以通过数学推导来证明。
假设一个三角形的三条边为a、b、c,且满足c² = a² + b²。
首先,我们可以假设这个三角形不是直角三角形,即不存在直角。
根据三角形的角度性质可知,三角形的三个角度之和为180度。
如果这个三角形不是直角三角形,那么它的三个角度之和一定小于180度。
假设三个角度分别为A、B、C,且A + B + C < 180度。
然后,我们可以使用余弦定理来推导c²的表达式。
根据余弦定理,c² = a² + b² - 2ab·cosC。
将这个表达式代入c² = a² + b²中,得到a² + b² - 2ab·cosC = a² + b²。
经过简化后可得- 2ab·cosC = 0,即cosC = 0。
根据余弦函数的性质可知,当cosC = 0时,角C等于90度。
- 1 -第一讲、勾股定理及其逆定理一、勾股定理:(1)文字表述:在任何一个直角三角形(Rt △)中,两条直角边的长度的平方和等于斜边长度的平方(也可以理解成两个长边的平方相减与最短边的平方相等)。
(2)数学表达:如果直角三角形的两直角边长分别为a ,b ,斜边长为c (斜边对应的角为直角),那么222c b a =+。
(a :勾,b :股,c :弦)。
能够构成直角三角形的三边长的三个正整数称为勾股数,即222c b a =+中,a ,b ,c 为正整数时,称a ,b ,c 为一组勾股数 ,常见的勾股数有3,4,5;6,8,10;5,12,13;7,24,25等。
(2)平方根的表示方法一个正数a 的正的平方根,用符号2a 表示,a 叫做被开方数,2叫做根指数(一般情况下省略不写),正数a 的负的平方根用符号-2a 表示,a 的平方根合起来记作±2a ,其中2±读作二次根号,2a 读作“二次根号下a ”.根指数为2的平方根也可记作“2a ±”读作“正、负根号”。
时,未必等于有正负两个解。
=- 2 -,即,那么这个正数的平方根或二次方根。
这就是说,如果,那么2、已知两条线的长为5cm和4cm,当第三条线段的长为_________时,这三条线段能组成一个直角三角形。
3、能够成为直角三角形三条边长的正整数,称为勾股数。
请你写出三组勾股数:___________。
4、如图,求出下列直角三角形中未知边的长度。
c=________ b=__________h=__________5、在Rt△ABC中,∠C=90°,BC∶AC=3∶4,AB=10,则AC=_______,BC=________。
6、已知等腰三角形的腰长为10,底边上的高为6,则底边长为__________7、如图,在Rt△ABC中,∠C=90°,D为AC上一点,且DA=DB=5,又△DAB的面积为10,那么DC的长是。
勾股定理的逆定理(1)知识领航1.勾股定理的逆定理:如果三角形的三边长a 、b 、c 满足a 2+b 2=c 2,那么这个三角形是直角三角形.2. 满足a 2 +b 2=c 2的三个正整数,称为勾股数.勾股数扩大相同倍数后,仍为勾股数.常用的勾股数有3、4、5、;6、8、10;5、12、13等.3. 应用勾股定理的逆定理时,先计算较小两边的平方和再把它和最大边的平方比较.4. 判定一个直角三角形,除了可根据定义去证明它有一个直角外,还可以采用勾股定理的逆定理,即去证明三角形两条较短边的平方和等于较长边的平方,这是代数方法在几何中的应用.e 线聚焦【例】如图,已知四边形ABCD 中,∠B =90°,AB =3,BC =4,CD =12,AD =13,求四边形ABCD 的面积.分析:根据题目所给数据特征,联想勾股数,连接AC ,可实现四边形向三角形转化,并运用勾股定理的逆定理可判定△ACD 是直角三角形.解:连接AC ,在Rt △ABC 中,AC 2=AB 2+BC 2=32+42=25, ∴ AC =5. 在△ACD 中,∵ AC 2+CD 2=25+122=169, 而 AB 2=132=169,∴ AC 2+CD 2=AB 2,∴ ∠ACD =90°.故S 四边形ABCD =S △ABC +S △ACD =21AB ·BC +21AC ·CD =21×3×4+21×5×12=6+30=36.双基淘宝仔细读题,一定要选择最佳答案哟!1. 分别以下列四组数为一个三角形的边长:(1)3,4,5;(2)5,12,13;(3)8,15,17;(4)4,5,6.其中能构成直角三角形的有( )A .4组B .3组C .2组D .1组 2. 三角形的三边长分别为 a 2+b 2、2ab 、a 2-b 2(a 、b 都是正整数),则这个三角形是()A .直角三角形B .钝角三角形C .锐角三角形D .不能确定3.如果把直角三角形的两条直角边同时扩大到原来的2倍,那么斜边扩大到原来的( )A .1倍B . 2倍C . 3倍D . 4倍 4. 下列各命题的逆命题不成立的是( )A .两直线平行,同旁内角互补B .若两个数的绝对值相等,则这两个数也相等C .对顶角相等D .如果a =b ,那么a 2=b 25.五根小木棒,其长度分别为7,15,20,24,25,现将他们摆成两个直角三角形,其中正确的是( )715242520715202425157252024257202415(A)(B)(C)(D)A B C D综合运用认真解答,一定要细心哟!6. 如图所示的一块地,已知AD =4m ,CD =3m , AD ⊥DC ,AB =13m ,BC =12m ,求这块地的面积.7. 一个零件的形状如左图所示,按规定这个零件中∠A 和∠DBC 都应为直角.工人师傅量得这个零件各边尺寸如右图所示,这个零件符合要求吗?ADA D8. 如图,E 、F 分别是正方形ABCD 中BC 和CD 边上的点,且AB =4,CE =41BC ,F 为CD 的中点,连接AF 、AE ,问△AEF 是什么三角形?请说明理由.A D C B勾股定理的逆定理(2)知识领航1.应用勾股定理及其逆定理解决简单的实际问题,建立数学模型.2.体会从“形”到“数”和从“数”到“形”的转化,培养转化、推理的能力.e 线聚焦【例】如图,南北向MN 为我国领域,即MN 以西为我国领海,以东为公海.上午9时50分,我反走私A 艇发现正东方向有一走私艇C 以13海里/时的速度偷偷向我领海开来,便立即通知正在MN 线上巡逻的我国反走私艇B .已知A 、C 两艇的距离是13海里,A 、B 两艇的距离是5海里;反走私艇测得离C 艇的距离是12海里.若走私艇C 的速度不变,最早会在什么时间进入我国领海?分析:为减小思考问题的“跨度”,可将原问题分解成下述“子问题”:(1)△ABC 是什么类型的三角形?(2)走私艇C 进入我领海的最近距离是多少?(3)走私艇C 最早会在什么时间进入?这样问题就可迎刃而解.解:设MN 交AC 于E ,则∠BEC =900.又AB 2+BC 2=52+122=169=132=AC 2, ∴△ABC 是直角三角形,∠ABC =900.又∵MN ⊥CE ,∴走私艇C 进入我领海的最近距离是CE , 则CE 2+BE 2=144,(13-CE )2+BE 2=25,得26CE =288, ∴CE =13144. 13144÷169144≈0.85(小时), 0.85×60=51(分). 9时50分+51分=10时41分.答:走私艇最早在10时41分进入我国领海.双基淘宝仔细读题,一定要选择最佳答案哟!1. 如果下列各组数是三角形的三边,那么不能组成直角三角形的一组数是( )A .7,24,25B .321,421,521 C .3,4,5 D .4,721,821 2.在下列说法中是错误的( )A .在△ABC 中,∠C =∠A 一∠B ,则△ABC 为直角三角形.B .在△ABC 中,若∠A :∠B :∠C =5:2:3,则△ABC 为直角三角形.C .在△ABC 中,若a =53c ,b =54c ,则△ABC 为直角三角形. D .在△ABC 中,若a :b :c =2:2:4,则△ABC 为直角三角形.3. 有六根细木棒,它们的长度分别为2,4,6,8,10,12(单位:cm ),从中取出三根首尾A ME NC B顺次连接搭成一个直角三角形,则这根木棒的长度分别为( )A .2,4,8B .4,8,10C .6,8,10D .8,10,124.将勾股数3,4,5扩大2倍,3倍,4倍,…,可以得到勾股数6,8,10;9,12,15;12,16,20;…,则我们把3,4,5这样的勾股数称为基本勾股数,请你也写出三组基本勾股数 , , .5.若三角形的两边长为4和5,要使其成为直角三角形,则第三边的长为 . 6.若一个三角形的三边之比为5:12:13,且周长为60cm ,则它的面积为 .综合运用◆ 认真解答,一定要细心哟!7.如图,已知等腰△ABC 的底边BC =20cm ,D 是腰AB 上一点,且CD =16cm ,BD =12cm ,求△ABC 的周长.8.如图,三个村庄A 、B 、C 之间的距离分别为AB =5km ,BC =12km ,AC =13km .要从B 修一条公路BD 直达AC .已知公路的造价为26000元/km ,求修这条公路的最低造价是多少?9.如图,AB 为一棵大树,在树上距地面10m 的D 处有两只猴子,它们同时发现地面上的C处有一筐水果,一只猴子从D 处上爬到树顶A 处,利用拉在A 处的滑绳AC ,滑到C 处,另一只猴子从D 处滑到地面B ,再由B 跑到C ,已知两猴子所经路程都是15m ,求树高AB .拓广创新◆ 试一试,你一定能成功哟!10.如图,在△ABC 中,∠ACB =90º,AC =BC ,P 是△ABC 内的一点,且PB =1,PC =2,P A =3,求∠BPC 的度数.B12 5。
《勾股定理》专题复习一、知识要点:1、勾股定理勾股定理:直角三角形两直角边的平方和等于斜边的平方。
也就是说:如果直角三角形的两直角边为a、b,斜边为c ,那么a2 + b2= c2。
公式的变形:a2 = c2- b2, b2= c2—a2 .2、勾股定理的逆定理如果三角形ABC的三边长分别是a,b,c,且满足a2 + b2= c2,那么三角形ABC 是直角三角形.这个定理叫做勾股定理的逆定理.该定理在应用时,同学们要注意处理好如下几个要点:①已知的条件:某三角形的三条边的长度.②满足的条件:最大边的平方—最小边的平方=中间边的平方。
③得到的结论:这个三角形是直角三角形,并且最大边的对角是直角。
④如果不满足条件,就说明这个三角形不是直角三角形。
3、勾股数满足a2 + b2=c2的三个正整数,称为勾股数.注意:①勾股数必须是正整数,不能是分数或小数。
②一组勾股数扩大相同的正整数倍后,仍是勾股数.常见勾股数有:(3,4,5)(5,12,13)(6,8,10)(7,24,25)(8,15,17)(9,12,15)4、最短距离问题:主要运用的依据是两点之间线段最短.二、考点剖析考点一:利用勾股定理求面积1、求阴影部分面积:(1)阴影部分是正方形;(2)阴影部分是长方形;(3)阴影部分是半圆.2. 如图,以Rt △ABC 的三边为直径分别向外作三个半圆,试探索三个半圆的面积之间的关系.3、四边形ABCD 中,∠B=90°,AB=3,BC=4,CD=12,AD=13,求四边形ABCD 的面积.4、在直线l 上依次摆放着七个正方形(如图4所示)。
已知斜放置的三个正方形的面积分别是1、2、3,正放置的四个正方形的面积依次是S S 12、、S S S S S S 341234、,则+++=_____________。
考点二:在直角三角形中,已知两边求第三边1.在直角三角形中,若两直角边的长分别为1cm,2cm ,则斜边长为 .2.(易错题、注意分类的思想)已知直角三角形的两边长为3、2,则另一条边长的平方是 . 3、已知直角三角形两直角边长分别为5和12, 求斜边上的高.4、把直角三角形的两条直角边同时扩大到原来的2倍,则斜边扩大到原来的()A.2倍B.4倍C.6倍D.8倍5、在Rt△ABC中,∠C=90°①若a=5,b=12,则c=___________;②若a=15,c=25,则b=___________;③若c=61,b=60,则a=__________;④若a∶b=3∶4,c=10则Rt△ABC的面积是=________。
第02讲勾股定理逆定理与勾股数(4种题型)【知识梳理】一、勾股定理的逆定理如果三角形的三条边长a b c ,,,满足222a b c +=,那么这个三角形是直角三角形.要点诠释:(1)勾股定理的逆定理的作用是判定某一个三角形是否是直角三角形.(2)勾股定理的逆定理是把“数”转为“形”,是通过计算来判定一个三角形是否为直角三角形.二、如何判定一个三角形是否是直角三角形(1)首先确定最大边(如c ).(2)验证2c 与22a b +是否具有相等关系.若222c a b =+,则△ABC 是∠C=90°的直角三角形;若222c a b ≠+,则△ABC 不是直角三角形.要点诠释:当222a b c +<时,此三角形为钝角三角形;当222a b c +>时,此三角形为锐角三角形,其中c 为三角形的最大边.三、勾股数满足不定方程222x y z +=称为勾股数(又称为高数或毕达哥拉斯数),显然,以x y z 、、为三边长的三角形一定是直角三角形.熟悉下列勾股数,对解题会很有帮助:13、4、5;②5、12、13;③8、15、17;④7、24、25;⑤9、40、41……如果(a b c 、、)是勾股数,当t 为正整数时,以at bt ct 、、为三角形的三边长,此三角形必为直角三角形.要点诠释:(1)22121n n n -+,,(1,n n >是自然数)是直角三角形的三条边长;(2)2222,21,221n n n n n ++++(n 是自然数)是直角三角形的三条边长;(3)2222,,2m n m n mn -+(,m n m n >、是自然数)是直角三角形的三条边长;【考点剖析】题型一、勾股定理的逆定理例1、判断由线段a b c ,,组成的三角形是不是直角三角形.(1)a =7,b =24,c =25;(2)a =43,b =1,c =34;(3)22a m n =-,22b m n =+,2c mn =(0m n >>);【变式】发现下列几组数据能作为三角形的边:(1)8,15,17;(2)5,12,13;(3)12,15,20;(4)7,24,25.其中能作为直角三角形的三边长的有()A.1组 B.2组 C.3组 D.4组题型二.勾股数例2.(2022春•铜梁区校级期中)下列四组数中,是勾股数的是()A .6,8,10B .0.3,0.4,0.5C .,,D .32,42,52例3.古希腊的哲学家柏拉图曾指出,如果m 表示大于1的整数,a =2m ,b =m 2﹣1,c =m 2+1,那么a ,b ,c 为勾股数,你认为正确吗?如果正确,请说明理由,并利用这个结论得出一组勾股数.【变式1】观察下列勾股数3、4、5;5、12、13;7、24、25;9、40、41;…;a 、b 、c .根据你发现的规律,回答下列问题:(1)a=17时,求b、c的值;(2)a=2n+1时,求b、c的值.【变式2】已知m>0,若3m+2,4m+8,5m+8是一组勾股数,求m的值.题型三、勾股定理逆定理的应用例4.(2022春•汉阴县月考)如图,在四边形ABCD中,AB=1,BC=2,CD=2,AD=3,且AB⊥BC.求证AC ⊥CD.例5.古埃及人曾用下面的方法得到直角:如图他们用13个等距的结把一根绳子分成等长的12段,一个工匠同时握住绳子的第1个结和第13个结,两个助手分别握住第4个结和第8个结,拉紧绳子,就会得到一个直角三角形,其直角在第4个结处.(1)你能说说其中的道理吗?(2)仿照上面的方法,你能否只用绳子,设计一种不同于(1)的直角三角形(在图2中,只需画出示意图.)【变式】如图,在Rt ABC中,∠ACB=90°,AB=13,AC=12,点D为ABC外一点,连接BD,CD,测得CD=4,BD=3,求四边形ABDC的面积.例6.如图所示,在△ABC中,已知∠ACB=90°,AC=BC,P是△ABC内一点,且PA=3,PB=1,PC=CD=2,CD ⊥CP,求∠BPC的度数.【变式1】如果△ABC 的三边长a 、b 、c 满足关系式()226018300a b b c +-+-+-=,则△ABC 的形状是.【变式2】如图,P 是等边三角形ABC 内的一点,连接PA,PB,PC,以BP 为边作∠PBQ=60°,且BQ=BP,连接CQ.(1)观察并猜想AP 与CQ 之间的大小关系,并证明你的结论;(2)若PA:PB:PC=3:4:5,连接PQ,试判断△PQC 的形状,并说明理由.题型四、勾股定理逆定理的实际应用例7.(2022春•蚌山区校级期中)龙梅和玉荣是草原上的好朋友,可是有一次经过一场争吵之后,两人不欢而散,龙梅的速度是米/秒,4分钟后她停了下来,觉得有点后悔了,玉荣走的方向好像是和龙梅成直角,她的速度是米/秒,如果她和龙梅同时停下来,而这时候她俩正好相距200米,那么她走的方向是否成直角?如果她们现在想讲和,那么原来的速度相向而行,多长时间后能相遇?例8、“远航”号、“海天”号轮船同时离开港口,各自沿一固定方向航行“远航”号每小时航行16海里,“海天”号每小时航行12海里,它们离开港口一个半小时后相距30海里,如果知道“远航”号沿东北方向航行,能知道“海天”号沿哪个方向航行吗?例9.如图所示,在△ABC中,AB:BC:CA=3:4:5,且周长为36cm,点P从点A开始沿边向B点以每秒1cm 的速度移动;点Q从点B沿BC边向点C以每秒2cm的速度移动,如果同时出发,问过3秒时,△BPQ的面积为多少?【过关检测】一.选择题1.满足下列条件的三角形中,不是直角三角形的是()A .三内角之比为3:4:5B .三边长的平方之比为1:2:3C .三边长之比为7:24:25D .三内角之比为1:2:32.下列条件中,能判断ABC 是直角三角形的有()①A B C ∠+∠=∠;②A B C ∠-∠=∠;③::2:5:3A B C ∠∠∠=;④23A B C ∠=∠=∠;⑤1123A B C ∠=∠=∠;⑥::3:4:5AB AC BC =.A .5个B .4个C .3个D .2个3.如图,根据下列条件,不能判断ABD △是直角三角形的是()A .20,70DB ∠=︒∠=︒B .5,12,13AB AD BD ===C .AC BC DC==D .3,8B D BAD D ∠=∠∠=∠二.填空题4.已知三角形三边长分别是6,8,10,则此三角形的面积为.5.勾股数为一组连续自然数的是.6.若一个三角形的三边之比为5:12:13,且周长为60cm ,则它的面积为cm 2.7.(2022春•泗水县期中)观察下列几组勾股数,并填空:①6,8,10,②8,15,17,③10,24,26,④12,35,37,则第⑥组勾股数为.8.已知△ABC中,AB=6cm,BC=8cm,AC=10cm,则△ABC的面积是cm2.9.(2022春•孝南区月考)探索勾股数的规律:观察下列各组数:(3,4,5),(5,12,13),(7,24,25),(9,40,41)…,请写出第6个数组:.10.已知△ABC中,AB=k,AC=k﹣1,BC=3,当k=时,∠C=90°.三.解答题11.如图,在△ABC中,AB=5,=3,D是BC的中点,AD=2,求△ABC的面积.12.已知△ABC中,AB=AC,BC=20,D是AB上一点,且CD=16,BD=12,(1)求证:CD⊥AB;(2)求三角形ABC的周长.13.如图,AD是△ABC的中线,DE是△ADC的高,DF是△ABD的中线,且CE=1,DE=2,AE=4.(1)∠ADC是直角吗?请说明理由.(2)求DF的长.14.如图是由边长均为1的小正方形组成的网格,点A,B,C都在格点上,∠BAC是直角吗?请说明理由.。
勾股定理及其逆定理⑴勾股定理的内容:在直角三角形中,斜边的平方等于两条直角边的平方和.例如:①如图所示,在等腰△ABC中,若AB=AC=13,BC=10,求底边上的高.②如图所示,在△ABC中,∠ACB=,AC=4,CB=3,求斜边AB上的高.解:①作AH⊥BC∵AB=AC=13,AH⊥BC⑵勾股定理逆定理的内容:如果三角形一条边的平方等于其他两条边的平方和,那么这个三角形是直角三角形,这条边所对的角是直角.例如:①如图所示,在△ABC中,三条边之比为9:12:15,那么此三角形为何三角形?②如图所示,在△ABC中,若,,那么此三角形为何三角形?解:①∴设∴此三角形是Rt△.②证:∴此三角形是Rt△.注:勾股定理与勾股定理逆定理的联系与区别:区别:勾股定理是直角三角形的性质定理,而其逆定理是直角三角形的判定定理; 联系:勾股定理与其逆定理的题设和结论正好相反,都与直角三角形有关.2. 勾股定理的证明方法介绍勾股定理曾引起很多人的兴趣,几千年来,人们已经发现了400多种勾股定理的证明方法,其中包括大画家达·芬奇和美国总统詹姆士·阿·加菲尔德.以下我们撷取几个优美而巧妙的证法供同学们欣赏.(1)赵爽的拼图法我国古代著名数学家赵爽在《勾股圆方图》一书中运用四个相同的直角三角形组成一个正方形,从面积的角度证明了勾股定理,其方法简捷、优美.如图,在边长为的正方形中,有四个斜边为的全等的直角三角形,已知它们的直角边为、利用这个图,即可证明勾股定理.理由如下:因为正方形边长为,所以正方形的面积为.又因为正方形的面积=,所以有.(2)旋转面积法如图,设矩形ABCD为火柴盒侧面,将这个火柴盒推倒至A'B'C'D的位置,D点不动.若设AB=,BC=,DB=,则梯形的面积=,又因为其面积还等于三个三角形面积的和,即为:.所以有:=.化简为:,即.(3)美国第20任总统的拼图面积法加菲尔德的证法的关键是用两个相同的直角三角形,组成直角梯形,使两斜边之间的夹角为90°.如图所示,将两个全等的直角三角形拼成如图所示的直角梯形,设AC=BE=,BC=DE=,AB=DB=.因为,.即=即.3. 有关勾股定理题时常用的辅助线和数学思想方法⑴解有关勾股定理的题型时常作垂线构成直角三角形.⑵解有关勾股定理的题型时常用方程思想、分类讨论思想、转化思想和数形结合思想.4. 勾股定理及其逆定理的应用勾股定理及其逆定理在实际生活中有着广泛的应用,我们要能善于从实际生活背景中抽象出直角三角形,再运用勾股定理及其逆定理解答相关的问题.【典型例题】例1. 若直角三角形两直角边的比是3:4,斜边长是20,求此直角三角形的面积. 分析:直角三角形边的有关计算中,常常要设未知数,然后用勾股定理列方程(组)求解.解:设此直角三角形两直角边分别是3x,4x,根据题意得:(3x)2+(4x)2=202化简得x2=16;∴直角三角形的面积=×3x×4x=6x2=96例2. 如图,在长方形ABCD中,DC=5cm,在DC上存在一点E,沿直线AE 把ΔAED折叠,使点D恰好落在BC边上,设此点为F,若ΔABF的面积为30cm2,那么折叠的ΔAED的面积为______.分析:注意折叠后相等的角与相等的线段的转化,通过设未知数列方程求解. 解:由已知条件可得BF=12,则在RtΔABF中,AB=5,BF=12根据勾股定理可知AF=13,再由折叠的性质可知AD=AF=13,所以FC=1,可设DE=EF =x,则EC=5-x,则在RtΔEFC中,可得方程:12+(5-x)2=x2.解这个方程,得x=.所以SΔAED=××13=16.9(cm2).例3. 直角三角形周长为12cm,斜边长为5cm,求直角三角形的面积.分析:两条直角边长不能直接求出,要求直角三角形的面积,只要求出两直角边长的积即可.解:设此直角三角形两直角边分别是x,y,根据题意得:由(1)得:x+y=7,(x+y)2=49,x2+2xy+y2=49 (3)(3)-(2),得:xy=12∴直角三角形的面积是xy=×12=6(cm2)例4. 等边三角形的边长为2,求它的面积.分析:要求等边三角形的面积,已知边长,只需求出任意一边上的高.解:如图,等边△ABC,作AD⊥BC于D则:BD=BC(等腰三角形底边上的高与底边上的中线互相重合)∵AB=AC=BC=2(等边三角形各边都相等)∴BD=1在直角三角形ABD中AB2=AD2+BD2,即:AD2=AB2-BD2=4-1=3∴AD=S△ABC=BC·AD=注:等边三角形面积公式:若等边三角形边长为a,则其面积为a2.例5. 飞机在空中水平飞行,某一时刻刚好飞到小明头顶正上方4000米处,过了20秒,飞机距离小明头顶5000米,问:飞机飞行了多少千米?分析:根据题意,可以先画出符合题意的图形,如图,图中△ABC•中的∠C=90°,AC=4000米,AB=5000米,•要求出飞机这时飞行多少千米,•就要知道飞机在20秒时间里飞行的路程,也就是图中的BC长,在这个问题中,•斜边和一直角边是已知的,这样,我们可以根据勾股定理来计算出BC的长.解:根据题意可得示意图:(如图)在△ABC•中的∠C=90°,AC=4000米,AB=5000米,根据勾股定理可得:BC===3000(千米)所以:飞机飞行了3000千米.例6. 以下列各组数为边长,能组成直角三角形的是()A、8,15,17B、4,5,6C、5,8,10D、8,39,40分析:此题可直接用勾股定理的逆定理来进行判断,对数据较大的可以用c2=a2+b2的变形:b2=c2-a2=(c-a)(c+a)来判断.例如:对于选择项D,∵82≠(40+39)×(40-39),∴以8,39,40为边长不能组成直角三角形.解:因为172=82+152,所答案为:A.例7. 如图所示的一块地,AD=12m,CD=9m,∠ADC=90°,AB=39m,BC =36m,求这块地的面积.分析:在求面积时一般要把不规则图形分割为规则图形,若连接BD,则无法求出.由于题中含有直角∠ADC,故可考虑连结AC,应用勾股定理.解:连结AC,在Rt△ADC中,AC2=CD2+AD2=92+122=225,所以AC=15m.在Rt△ABC中,AB2=1521,AC2+BC2=152+362=1521,所以AB2=AC2+BC2,所以∠ACB=90°.所以S△ABC-S△ACD=AC·BC-AD·CD=×15×36-×12×9=270-54=216(m2).答:这块地的面积是216m2.例8. 如图,圆柱的轴截面ABCD是边长为4的正方形,动点P从A点出发,沿着圆柱的侧面移动到BC的中点S的最短路径长为( )A. 2B. 2C. 4D. 2分析:在运用勾股定理解决有关问题时,常常需要将一些线段通过平移、旋转、翻折等运动变化从而转化到一个直角三角形中.化归思想即转化思想,它是我们初中阶段数学解题方法的灵魂,是指当有些问题如果直接解决则难以入手,于是换一个角度来考虑,从而使问题清晰明朗.运用转化思想来解题常用的策略有:化复杂为简单;化陌生为熟悉;换一种方式来表达等等.解:求几何体的表面的最短距离,可联系我们学过的圆柱体的侧面展开图,化“曲面”为“平面”,再寻找解题的途径.如右图,可得展开图中的AB长为2π,BS为2,根据勾股定理,在RtΔABS中,得AS=2所以,动点P从A点出发,沿着圆柱的侧面移动到BC的中点S的最短路径长为2.故选A.例9. 在锐角△ABC中,已知其两边a=1,b=3,求第三边的变化范围.分析:显然第三边b-a<c<b+a,但这只是能保证三条边能组成一个三角形,却不能保证它一定是一个锐角三角形,为此,先求△ABC为直角三角形时第三边的值.解:设第三边为c,并设△ABC是直角三角形(1)当第三边是斜边时,c2=b2+a2,∴c=(2)当第三边不是斜边时,则斜边一定是b,b2=a2+c2,∴c=2(即)∵△ABC为锐角三角形所以点A应当绕着点B旋转,使∠ABC成为锐角(如图),但当移动到点A'位置时∠ACB成为直角.故点A应当在A和A'间移动,此时2<AC<注:此题易忽视①或②中一种情况,因为假设中并没有明确第三边是否直角边,所以有两种情况要考虑.例10. 四边形ABCD中,∠B=90°,AB=3,BC=4,CD=12,AD=13,求四边形ABCD的面积.分析:先根据勾股定理求出AC的长,再由勾股定理的逆定理得到ΔADC是直角三角形,将四边形ABCD分成两个直角三角形.本题是一个典型的勾股定理及其逆定理的应用题.解:连结AC∵∠B=90°,AB=3,BC=4∴AC2=AB2+BC2=25(勾股定理)∴AC=5∵AC2+CD2=169,AD2=169∴AC2+CD2=AD2∴∠ACD=90°(勾股定理逆定理)∴S四边形ABCD=S△ABC+S△ACD=AB·BC+AC·CD=36例11. 若、为正实数,且,则的最小值是多少?试求之.解析:此题是竞赛题,不知从何下手,若仔细观察分析,从x2+1和y2+4入手,结合勾股定理的形式可为我们提供解题的思路.可以看出,、分别是以x、1,y、2为直角边的直角三角形的斜边长,这时,上述问题就变成了求两条线段之和的最值问题.构造如图所示的图形:线段AB=4,P为AB上任意一点.设PA=x,PB=y.CA⊥AB于A,DB⊥AB于B,且CA=1,BD=2,则PC+PD=.要求的最小值就是求PC+PD最小,很明显,当点P、C、D在同一直线上时,PC+PD的最小值.再过C作CE⊥DB交DB的延长线于点E,构造RtΔDCE,在RtΔDCE中,CE=AB=4,ED=1+2=3,所以PC+PD=DC==5.所以的最小值是5.例12. (2006年山西中考题)如图,分别以直角ΔABC的三边AB,BC,CA为直径向外作半圆.设直线AB左边阴影部分的面积为S1,右边阴影部分的面积和为S2,则()A. S1=S2B. S1<S2C. S1>S2D. 无法确定分析:将阴影部分的面积表示出来,再观察所列代数式与直角三角形三边长的关系可得答案.解:直线AB左边阴影部分的面积为:=,直线AB右边阴影部分的面积为:=.∵ΔABC是直角三角形,根据勾股定理有:.故选A.【模拟试题】(答题时间:40分钟)一、填空题:1. 设直角三角形的三条边长为连续自然数,则这个直角三角形的面积是_____.2. 如图,•某人欲横渡一条河,•由于水流的影响,•实际上岸地点C•偏离欲到达点B200m,结果他在水中实际游了520m,则该河流的宽度为_____m.二、选择题:3. 直角三角形的两直角边分别为5cm,12cm,其中斜边上的高为().A. 6cmB. 8.5cmC. cmD. cm4. 有四个三角形:⑴△ABC的三边之比为3:4:5;⑵△A′B′C′的三边之比为5:12:13;⑶△A′B′C′的三个内角之比为1:2:3;⑷△CDE的三个内角之比为1:1:2.其中是直角三角形的有().A. ⑴⑵B. ⑴⑵⑶C. ⑴⑵⑷D. ⑴⑵⑶⑷三、解答题:5. 在△ABC中,AC=21cm,BC=28cm,AB=35cm,求△ABC的面积.6. 如图,△ABC的三边分别为AC=5,BC=12,AB=13,将△ABC沿AD折叠,使AC•落在AB上,求DC的长.7. 如图,一只鸭子要从边长分别为16m和6m的长方形水池一角M•游到水池另一边中点N,那么这只鸭子游的最短路程应为多少米?8. 如图,铁路上A、B两点相距25km,C、D为两村庄,DA•垂直AB于A,CB垂直AB于B,已知AD=15km,BC=10km,现在要在铁路AB上建一个土特产品收购站E,使得C、D两村到E站的距离相等,则E站建在距A站多少千米处?【试题答案】一、填空题1. 62. 480二、选择题3. D4. D三、解答题5. 294cm26. 因为AC2+BC2=52+122=169=132=AB2,•∴∠C=90°,将△ABC沿AD折叠,使AC落在AB上,C的对称点为E,则CD=DE,AC=AE,BE=AB-AE=8,设CD=x,则x2+82=(12-x)2,x=,∴CD=.7. 10m8. 10km处。