根据两点经纬度计算距离
- 格式:doc
- 大小:38.50 KB
- 文档页数:5
怎么用经纬度计算两地之间的距离?1、地球赤道上环绕地球一周走一圈共40075.04公里,而@一圈分成360°,而每1°(度)有60,每一度一秒在赤道上的长度计算如下:40075.04km/360°=111.31955km111.31955km/60=1.8553258km=1855.3m而每一分又有60秒,每一秒就代表1855.3m/60=30.92m任意两点距离计算公式为d=111.12cos{1/[sinΦAsinΦB十cosΦAcosΦBcos(λB—λA)]}其中A点经度,纬度分别为λA和ΦA,B点的经度、纬度分别为λB和ΦB,d为距离。
2、分为3步计算:第1步分别将两点经纬度转换为三维直角坐标:假设地球球心为三维直角坐标系的原点,球心与赤道上0经度点的连线为X轴,球心与赤道上东经90度点的连线为Y轴,球心与北极点的连线为Z轴,则地面上点的直角坐标与其经纬度的关系为:x=R×cosα×cosβy=R×cosα×sinβz=R×sinαR为地球半径,约等于6400km;α为纬度,北纬取+,南纬取-;β为经度,东经取+,西经取-。
第2步根据直角坐标求两点间的直线距离(即弦长):如果两点的直角坐标分别为(x1,y1,z1)和(x2,y2,z2),则它们之间的直线距离为:L=[(x1-x2)^2+(y1-y2)^2+(z1-z2)^2]^0.5上式为三维勾股定理,L为直线距离。
第3步根据弦长求两点间的距离(即弧长):由平面几何知识可知弧长与弦长的关系为:S=R×π×2[arc sin(0.5L/R)]/180上式中角的单位为度,1度=π/180弧度,S为弧长。
3、1度的实际长度是111公里。
但纬线的距离会越考两端越小,他的距离就会变成111乘COS纬度数,经度不变。
4、南北方向算出两点纬度差,一度等于60海里,1分等于1海里,海里与公里换算关系1海里等于1.852公里。
根据地球上任意两点的经纬度计算两点间的距离78、140千米,极半径为6356、755千米,平均半径6371、004千米。
如果我们假设地球是一个完美的球体,那么它的半径就是地球的平均半径,记为R。
如果以0度经线为基准,那么根据地球表面任意两点的经纬度就可以计算出这两点间的地表距离(这里忽略地球表面地形对计算带来的误差,仅仅是理论上的估算值)。
设第一点A的经纬度为(LonA, LatA),第二点B 的经纬度为(LonB, LatB),按照0度经线的基准,东经取经度的正值(Longitude),西经取经度负值(-Longitude),北纬取90-纬度值(90- Latitude),南纬取90+纬度值(90+Latitude),则经过上述处理过后的两点被计为(MLonA, MLatA)和(MLonB, MLatB)。
那么根据三角推导,可以得到计算两点距离的如下公式:C =sin(MLatA)*sin(MLatB)*cos(MLonA-MLonB)+ cos(MLatA)*cos(MLatB)Distance = R*Arccos(C)*Pi/180这里,R和Distance单位是相同,如果是采用6371、004千米作为半径,那么Distance就是千米为单位,如果要使用其他单位,比如mile,还需要做单位换算,1千米=0、mile如果仅对经度作正负的处理,而不对纬度作90-Latitude(假设都是北半球,南半球只有澳洲具有应用意义)的处理,那么公式将是:C = sin(LatA)*sin(LatB)+ cos(LatA)*cos(LatB)*cos(MLonA-MLonB)Distance =R*Arccos(C)*Pi/180以上通过简单的三角变换就可以推出。
如果三角函数的输入和输出都采用弧度值,那么公式还可以写作:C = sin(LatA*Pi/180)*sin(LatB*Pi/180)+ cos(LatA*Pi/180)*cos(LatB*Pi/180)*cos((MLonA-MLonB)*Pi/180)Distance = R*Arccos(C)*Pi/180也就是:C = sin(LatA/57、2958)*sin(LatB/57、2958)+ cos(LatA/57、2958)*cos(LatB/57、2958)*cos((MLonA-MLonB)/57、2958)Distance = R*Arccos(C)=6371、004*Arccos(C)kilometer = 0、*6371、004*Arccos(C)mile =3958、8*Arccos(C)mile在实际应用当中,一般是通过一个个体的邮政编码来查找该邮政编码对应的地区中心的经纬度,然后再根据这些经纬度来计算彼此的距离,从而估算出某些群体之间的大致距离范围(比如酒店旅客的分布范围-各个旅客的邮政编码对应的经纬度和酒店的经纬度所计算的距离范围-等等),所以,通过邮政编码查询经纬度这样一个数据库是一个很有用的资源。
知道两点经纬度求两点距离公式计算两点之间的距离是地理学中的一个基本问题。
在计算两点距离之前,我们首先需要明确计算距离的参考系。
通常情况下,我们使用经度(表示东西方的位置)和纬度(表示南北方的位置)来确定地球上的位置。
在计算两点之间的距离时,我们可以使用不同的方法。
其中,最常用的方法包括欧几里得距离、大圆距离和球面三角法。
1.欧几里得距离:欧几里得距离又称为直线距离,它是二维欧几里得空间中两点之间的直线上的距离。
对于平面上的两个点(x1,y1)和(x2,y2),欧几里得距离公式如下:d=√((x2-x1)²+(y2-y1)²)然而,由于地球是一个球体而不是一个平面,欧几里得距离并不适用于计算地球上两点之间的距离。
2.大圆距离:大圆距离也称为球面距离,它是地球上两点之间沿着地球表面的最短距离。
大圆距离公式如下:d=R*θ其中,R是地球的半径(通常取平均半径6371公里),θ是两点之间的中心角。
计算大圆距离时,我们需要先将经纬度转换为弧度,然后使用球面三角法计算中心角。
3.球面三角法:余弦定理公式如下:cos(c) = cos(a) * cos(b) + sin(a) * sin(b) * cos(γ)其中,a和b是两个点分别与地球球心的连线与地球赤道的夹角,c 是两个点之间的中心角,γ是两个点之间的经度差。
为了计算中心角,我们需要首先将经纬度转换为弧度。
对于两个经纬度坐标点(φ1,λ1)和(φ2,λ2),其中φ表示纬度,λ表示经度,转换公式如下:φ = latitude * π / 180λ = longitude * π / 180然后,就可以使用余弦定理计算两点之间的距离了。
以上这些方法都可以计算两个经纬度坐标之间的球面距离。
对于一些较短距离的计算,例如在城市范围内,使用欧几里得距离可能是比较准确的。
对于大范围距离的计算,推荐使用球面三角法。
最后,还需要注意的是,上述公式都是基于地球模型的简化情况,实际地球的形状更接近于一个略扁的椭球体。
两个经纬度之间的距离计算公式excel计算两个经纬度之间的距离可以使用"球面余弦定理"。
在Excel 中,可以使用以下公式计算两点之间的距离:Copy code=ACOS(COS(lat1)*COS(long1)*COS(lat2)*COS(long2) + COS(lat1)*SIN(long1)*COS(lat2)*SIN(long2) + SIN(lat1)*SIN(lat2)) * R其中:lat1, long1 是第一个点的纬度和经度(以弧度为单位)lat2, long2 是第二个点的纬度和经度(以弧度为单位)R 是地球半径首先,我们需要把经纬度转换为弧度。
在Excel 中可以使用"RADIANS" 函数进行转换。
例如,将纬度转换为弧度的公式为:Copy code=RADIANS(lat1)经度同理。
然后在用上面给出的公式计算即可。
示例:假设第一个点纬度为A1,经度为B1;第二个点纬度为A2,经度为B2;地球半径为C1那么第一个点纬度转换为弧度的公式为=RADIANS(A1),经度同理。
最后使用公式=ACOS(COS(RADIANS(A1))*COS(RADIANS(B1))*COS(RADIANS(A2))*COS(RADIANS(B2)) + COS(RADIANS(A1))*SIN(RADIANS(B1))*COS(RADIANS(A2))*SIN(RADIANS(B2)) + SIN(RADIANS(A1))*SIN(RADIANS(A2))) * C1 即可计算出两个点之间的距离。
请注意,这个公式的结果是以千米为单位的距离。
如果需要米为单位的距离,可以将地球半径设置为6371即可。
请注意,由于经纬度是按照地球球面来计算的,所以这个公式只能用于近似计算地球上两点之间的距离,如果需要精确计算,可能需要使用其他方法。
地球上两点的经纬度计算他们距离的公式一、球面余弦定理球面余弦定理是一种常用的计算地球上两点距离的公式。
它基于球面三角形的余弦定理,公式如下:d = R * arccos(sin(lat1) * sin(lat2) + cos(lat1) * cos(lat2) * cos(lon2 - lon1))其中,d表示两点之间的距离,R表示地球的半径,而lat1、lat2、lon1和lon2分别表示两点的纬度和经度。
在计算中,经纬度应以弧度为单位。
如果给定的经纬度是度数,可以先将其转化为弧度再代入公式中计算。
二、哈弗斯因子公式哈弗斯因子公式也是一种常用的计算地球上两点距离的公式。
它基于海伦公式,公式如下:d = 2 * R * arcsin(√(sin((lat2 - lat1) / 2)² + cos(lat1) * cos(lat2) * sin((lon2 - lon1) / 2)²))其中,d表示两点之间的距离,R表示地球的半径,而lat1、lat2、lon1和lon2分别表示两点的纬度和经度。
在计算中,经纬度应以弧度为单位。
如果给定的经纬度是度数,可以先将其转化为弧度再代入公式中计算。
可以看到,球面余弦公式和哈弗斯因子公式在计算方式上有一些差异。
球面余弦公式更容易计算,因为它不需要计算所有角度的正弦函数值,只需要计算两个角度的正弦函数值并进行一些乘法和加法运算。
相比之下,哈弗斯因子公式需要计算所有角度的正弦函数值,计算量稍大一些。
无论是使用球面余弦公式还是哈弗斯因子公式,都需要注意地球的半径值。
地球的半径并不是一个精确的常数,因为地球的形状是复杂的。
在实际计算中,可以根据所需要的精度选择合适的地球半径值,一般情况下选择平均半径值进行计算即可。
除了上述公式之外,还可以使用其他更复杂的公式来计算地球上两点的距离。
例如,Vincenty公式和Haversine公式等都是比较常用的计算地球上两点距离的公式。
怎么用经纬度计算两地之间的距离经纬度是地球上一点的坐标表示方法,可以用来计算两个点之间的距离。
计算两地之间的距离可以使用多种方法,包括球面距离公式、大圆航线距离和Vincenty算法等。
下面将详细介绍这些方法。
1.球面距离公式球面距离公式是最简单且最常用的计算两点之间距离的方法。
它基于球面三角形的边长计算两点之间的距离,如下所示:d = R * arccos(sin(lat1) * sin(lat2) + cos(lat1) * cos(lat2) * cos(lon2 - lon1))其中,d是两点之间的球面距离,R是地球的平均半径,lat1和lat2是两点的纬度,lon1和lon2是两点的经度。
2.大圆航线距离大圆航线距离是计算两点之间最短距离的方法,它基于地球表面上连接两点的最短弧线,如下所示:d = R * arccos(sin(lat1) * sin(lat2) + cos(lat1) * cos(lat2) * cos(lon2 - lon1))其中,d是两点之间的大圆航线距离,R是地球的半径,lat1和lat2是两点的纬度,lon1和lon2是两点的经度。
3. Vincenty算法Vincenty算法是一种更精确的计算两点之间距离的方法,它基于椭球体模型而不是简单地球模型。
该算法能够考虑地球形状的扁平化,并且适用于短距离和长距离的计算。
具体实现需要迭代计算,公式略显繁琐,如下所示:a=R1,b=R2,f=(a-b)/aL = L2 - L1, U1 = atan((1 - f) * tan(lat1)), U2 = atan((1 - f) * tan(lat2))sinU1 = sin(U1), cosU1 = cos(U1), sinU2 = sin(U2), cosU2 = cos(U2)λ=L,λʹ=2πwhile (,λ - λʹ, > 10e-12):sinλ = sin(λ), cosλ = cos(λ), sinσ = sqrt((cosU2 *sinλ) * (cosU2 * sinλ) + (cosU1 * sinU2 - sinU1 * cosU2 *cosλ) * (cosU1 * sinU2 - sinU1 * cosU2 * cosλ))cosσ = sinU1 * sinU2 + cosU1 * cosU2 * cosλσ = atan2(sinσ, cosσ)sinα = cosU1 * cosU2 * sinλ / sinσcos²α = 1 - sinα * sinαcos2σm = cosσ - 2 * sinU1 * sinU2 / cos²αC = f / 16 * cos²α * (4 + f * (4 - 3 * cos²α))λʹ=λλ = L + (1 - C) * f * sinα * (σ + C * sinσ * (cos2σm + C * cosσ * (-1 + 2 * cos2σm * cos2σm)))u² = cos²α * (a*a - b*b) / (b*b)B=u²/1024*(256+u²*(-128+u²*(74-47*u²)))Δσ = B / 6 * (cosσ * (-1 + 2 * cos2σm * cos2σm) - B / 4 * (cos2σm * (-3 + 4 * sinσ * sinσ) - B / 6 * cosσ * (-3 + 4 * cos2σm * cos2σm) * (-3 + 4 * sinσ * sinσ)))s=b*A*(σ-Δσ)其中,a和b是地球的长半轴和短半轴,f是扁平度参数,R1和R2是两点的曲率半径,L1和L2是两点的经度差,lat1和lat2是两点的纬度。
根据经纬度算距离
经纬度距离计算简单方法:
1) 根据最长的纬线,即0度纬线,也就是赤道,计算经度的距离。
赤道周长:40075704m(约4万km),所以,1度经度最大距离等于40075704/360=111321m(约111km)。
0.0001度经度最大距离等于11.132m。
0.000001度经度最大距离是0.1113m。
2) 根据经线长度,计算纬度的距离。
子午线周长:40008548m(约4万km,所以,1度纬度最大距离等于40008548/360=111134m(约111km)。
0.0001度经度最大距离等于11.113m。
0.000001度经度最大距离等于0.1111m。
所以说,经纬度相差0.000001度时候,距离相差位0.111m。
这个精度已经满足了绝大部分GIS应用的需求,所以各大在线地图的坐标也都保留到了第6位。
结论:
相差1经度或者1纬度,球面距离约为111 千米
相差0.000001经度或者0.000001纬度,球面距离为0.11 米
1。
经纬度坐标求距离引言经纬度是表示地理位置的一种常用坐标系统,经度表示纬度的距离,纬度表示赤道的距离。
在很多应用中,我们需要计算两个经纬度坐标之间的距离,以便确定两个地点之间的实际距离。
本文将简要介绍如何使用经纬度坐标来计算两个地点之间的距离。
距离公式在计算两个经纬度坐标之间的距离之前,我们需要了解一些基本的数学和地理概念。
地球是一个近似于椭球体的球体,我们可以使用大圆距离公式来计算两个经纬度坐标之间的距离。
大圆距离是两个点之间的最短距离,可以通过以下公式计算:$$ d = R \\cdot c $$其中, - d:两个经纬度坐标之间的距离 - R:地球的半径 - 对于地球,平均半径约为6371公里 - 对于其他行星,半径可能不同 - c:两个点之间的角度距离 - 可以通过以下公式计算:$$ c = 2 \\cdot \\arcsin(\\sqrt{\\sin^2(\\frac{lat_2-lat_1}{2}) + \\cos(lat_1) \\cdot \\cos(lat_2) \\cdot \\sin^2(\\frac{lon_2-lon_1}{2})}) $$其中, - lat_1, lon_1:第一个点的纬度和经度 - lat_2, lon_2:第二个点的纬度和经度示例代码以下是使用Python编写的示例代码,将两个地点的经纬度坐标作为输入,计算它们之间的距离。
```python import mathdef distance(lat1, lon1, lat2, lon2): # 将角度转换为弧度 lat1 = math.radians(lat1) lon1 = math.radians(lon1) lat2 = math.radians(lat2) lon2 = math.radians(lon2) # 地球的半径(单位:公里)R = 6371# 计算角度距离c = 2 * math.asin(math.sqrt(math.sin((lat2 - lat1) / 2) ** 2 + math.cos (lat1) * math.cos(lat2) * math.sin((lon2 - lon1) / 2) ** 2))# 计算距离distance = R * creturn distance示例输入lat1 = 52.520008 # 地点1的纬度 lon1 = 13.404954 # 地点1的经度 lat2 = 48.856613 # 地点2的纬度 lon2 = 2.352222 # 地点2的经度调用函数计算距离result = distance(lat1, lon1, lat2, lon2)输出结果print(。
根据两点经纬度计算距离
明确了两点的经纬度,可以有多种方法计算这两点间的距离,下面将介绍两种方法:
一、Google地球中直接量算
这是最简单的方法。
打开Google地球,点击图钉标志,分别将两点坐标输入,你会在地图上看到你刚输入的两个点,这时你可以直接在工具栏中选择距离量算,起点是其中一个点,终点为另一个点,此时量算的结构就是两点间的距离。
二、变换直角坐标求距离
这个方法类似于在平面中求解,假设你的两点A1(e1,n1)、A2(e2,n2),可以利用坐标转换器将坐标首先转成直角坐标(注:任何一款GIS软件都可以实现坐标转换)得到A1(x1,y1)、A2(x2,y2),那么接下来的工作就比较简单了,利用高中时学过的两点间距离公式:
A1A2=x1−x22+y1−y22。
根据经纬度计算地⾯两点间的距离-数学公式及推导1.假设:地球是正球体。
地⾯两点A和B的经纬度坐标分别为(Aj,Aw)和(Bj,Bw),地球半径R取平均值6371km。
2.建⽴三维直⾓坐标系:地球球⼼为原点O,地轴为Z轴,北极⽅向为Z轴正⽅向,⾚道平⾯为X轴和Y轴所在平⾯,在该平⾯上地⼼到零度经线的⽅向为X轴正⽅向,根据右⼿定则确定Y轴正⽅向。
设点A的三维坐标为(Ax,Ay,Az),点B的三维坐标为(Bx,By,Bz)3.思路:A、B、O三点所在平⾯与地球相交形成⼀个半径为R的圆,求AB间的地⾯距离就是求该圆上圆弧AB的长度。
可由弧长等于半径乘以圆⼼⾓公式求得。
由于R是确定的,只要获得OA与OB的夹⾓θ就可以获得弧AB的长度。
弧AB=R*θ。
⾓θ可通过向量公式求得:向量OA*向量OB=|OA||OB|cosθ。
则cosθ=向量OA*向量OB/|OA||OB|=(Ax*Bx+Ay*By+Az*Bz)/R*R4.⽤经纬度坐标表⽰三维直⾓坐标:Ax=R*cosAw*cosAjAy=R*cosAw*sinAjAz=R*sinAwBx=R*cosBw*cosBjBy=R*cosBw*sinBjBz=R*sinBw代⼊可得cosθ=cosAw*cosAj*cosBw*cosBj+cosAw*sinAj*cosBw*sinBj+sinAw*sinBw=cosAw*cosBw(cosAj*cosBj+sinAj*sinBj)+sinAw*sinBw=cosAw*cosBw*cos(Aj-Bj)+sinAw*sinBwθ=arccos[cosAw*cosBw*cos(Aj-Bj)+sinAw*sinBw]5.综上可得根据经纬度计算地⾯两点间距离的公式:弧AB=R*arccos[cosAw*cosBw*cos(Aj-Bj)+sinAw*sinBw]说明:类似的公式推导⼤家以前都做过,时间久了可能会忘记⼀些东西,于是我把它记了下来,以备查阅。
怎么计算两坐标之间的距离在地理定位和导航等领域中,计算两个坐标之间的距离是一个常见且重要的问题。
这个问题在实际应用中有广泛的应用,比如计算两个地点之间的驾驶距离、航行距离等。
1. 概述计算两坐标之间的距离主要依赖于经纬度坐标系统。
经度是指地球上某点与本初子午线之间的夹角,范围为-180°到180°。
纬度是指地球上某点与赤道之间的夹角,范围为-90°到90°。
一般情况下,我们可以使用以下算法来计算两坐标之间的距离。
2. 球面三角法球面三角法是计算球面上点与点之间距离的一种方法,常用于计算两个地理位置之间的距离。
球面三角法的基本原理是根据经纬度计算两点之间的夹角,并通过一些数学公式将这个夹角转换为实际距离。
以下是基于球面三角法的一个常用算法来计算两坐标之间的距离:1.将经纬度转换为弧度制,如将度数除以180再乘以π。
lat1_rad = lat1 * π / 180lon1_rad = lon1 * π / 180lat2_rad = lat2 * π / 180lon2_rad = lon2 * π / 1802.根据以下公式计算两个点之间的夹角。
dlon = lon2_rad - lon1_raddlat = lat2_rad - lat1_rada = sin^2(dlat/2) + cos(lat1_rad) * cos(lat2_rad) * sin^2(dlon/2)c = 2 * atan2(sqrt(a), sqrt(1-a))3.将计算出的夹角乘以地球半径,得到两个点之间的距离。
distance = R * c其中,R是地球的半径,取值约为6371千米。
3. 代码示例下面是一个简单的Python代码示例,展示如何使用球面三角法来计算两坐标之间的距离。
```python import mathdef calc_distance(lat1, lon1, lat2, lon2): R = 6371 # 地球半径,单位为千米lat1_rad = lat1 * math.pi / 180 lon1_rad = lon1 * math.pi / 180 lat2_rad = lat2 * math.pi / 180 lon2_rad = lon2 * math.pi / 180 dlon = lon2_rad - lon1_rad dlat =lat2_rad - lat1_rad a = math.sin(dlat/2)2 + math.cos(lat1_rad) *math.cos(lat2_rad) * math.sin(dlon/2)2 c = 2 * math.atan2(math.sqrt(a), math.sqrt(1-a)) distance = R * c return distance示例使用lat1 = 22.5362 lon1 = 113.9454 lat2 = 31.9686 lon2 = 99.9018result = calc_distance(lat1, lon1, lat2, lon2) print(。
根据经纬度计算两地距离计算两地距离的基本原理是利用地球的球体几何性质,将两个地点视为球体表面上的两个点,并计算球面上的大圆距离。
这种计算方法利用了经纬度的角度,将它们转换为弧度,然后应用球面三角学的方法来计算两点之间的角度,最后通过地球的半径来计算出两点之间的直线距离。
步骤一:确定两个地点的经纬度首先,需要确定两个地点的经纬度。
经度表示为东经或西经,以0°为基准线,范围从0°到180°,东经为正数,西经为负数。
纬度表示为北纬或南纬,以赤道为基准线,范围从0°到90°,北纬为正数,南纬为负数。
步骤二:将经纬度转换为弧度由于球面三角学的计算需要将角度转换为弧度,因此需要将经纬度转换为弧度。
可以利用以下公式进行转换:弧度=角度×π/180步骤三:计算两点之间的角度通过应用球面三角学的公式,可以计算出两点之间的角度。
最常用的公式是“球面余弦定理”和“Haversine公式”。
球面余弦定理(trigonometric method)公式如下:d = acos(sin(lat1) * sin(lat2) + cos(lat1) * cos(lat2) * cos(lon1 - lon2))Haversine公式如下:a = sin²((lat2 - lat1) / 2) + cos(lat1) * cos(lat2) *sin²((lon2 - lon1) / 2)c = 2 * atan2(√a, √(1-a))d=R*c其中,lat1和lon1是第一个地点的纬度和经度,lat2和lon2是第二个地点的纬度和经度,d是两点之间的角度,R是地球的半径(通常取6371公里)。
步骤四:计算两点之间的直线距离通过上述计算得到的角度值,可以计算出两点之间的直线距离。
直线距离可以通过以下公式计算:距离=角度×R其中,距离是两点之间的直线距离,角度是由步骤三计算出的角度,R是地球的半径。
地球是一个近乎标准的椭球体,它的赤道半径为6378.140千米,极半径为6356.755千米,平均半径6371.004千米。
如果我们假设地球是一个完美的球体,那么它的半径就是地球的平均半径,记为R。
如果以0度经线为基准,那么根据地球表面任意两点的经纬度就可以计算出这两点间的地表距离(这里忽略地球表面地形对计算带来的误差,仅仅是理论上的估算值)。
设第一点A的经纬度为(LonA, LatA),第二点B的经纬度为(LonB, LatB),按照0度经线的基准,东经取经度的正值(Longitude),西经取经度负值(-Longitude),北纬取90-纬度值(90- Latitude),南纬取90+纬度值(90+Latitude),则经过上述处理过后的两点被计为(MLonA, MLatA)和(MLonB, MLatB)。
那么根据三角推导,可以得到计算两点距离的如下公式:C = sin(MLatA)*sin(MLatB)*cos(MLonA-MLonB) +cos(MLatA)*cos(MLatB)Distance = R*Arccos(C)*Pi/180这里,R和Distance单位是相同,如果是采用6371.004千米作为半径,那么Distance就是千米为单位,如果要使用其他单位,比如mile,还需要做单位换算,1千米=0.621371192mile如果仅对经度作正负的处理,而不对纬度作90-Latitude(假设都是北半球,南半球只有澳洲具有应用意义)的处理,那么公式将是:C = sin(LatA)*sin(LatB) +cos(LatA)*cos(LatB)*cos(MLonA-MLonB)Distance = R*Arccos(C)*Pi/180以上通过简单的三角变换就可以推出。
如果三角函数的输入和输出都采用弧度值,那么公式还可以写作:C = sin(LatA*Pi/180)*sin(LatB*Pi/180) +cos(LatA*Pi/180)*cos(LatB*Pi/180)*cos((MLonA-MLonB)*Pi/180) Distance = R*Arccos(C)*Pi/180也就是:C = sin(LatA/57.2958)*sin(LatB/57.2958) +cos(LatA/57.2958)*cos(LatB/57.2958)*cos((MLonA-MLonB)/57.295 8)Distance = R*Arccos(C) = 6371.004*Arccos(C) kilometer =0.621371192*6371.004*Arccos(C) mile =3958.758349716768*Arccos(C) mile。
经纬度与距离换算公式
同一纬线上,经度相差一度,距离相差111KM乘以cos该纬度数.赤道上,经度相差一度,距离相差111KM;cos纬度数×经度差×111km 同一经度:纬度差×111km
不在同一纬线或同一经线上的就另当别论,
具体分析.a)在纬度相等的情况下:
经度每隔0.00001度,距离相差约1米;
每隔0.0001度,距离相差约10米;
每隔0.001度,距离相差约100米;
每隔0.01度,距离相差约1000米;
每隔0.1度,距离相差约10000米。
b)在经度相等的情况下:
纬度每隔0.00001度,距离相差约1.1米;
每隔0.0001度,距离相差约11米;
每隔0.001度,距离相差约111米;
每隔0.01度,距离相差约1113米;
每隔0.1度,距离相差约11132米。
根据两点经纬度计算距离计算两个地点之间的距离,一种常见的方法是使用Haversine公式。
Haversine公式是根据球面上的两个点的经纬度计算它们之间的距离。
下面是一个详细的步骤来根据两个经纬度计算距离。
首先,我们需要了解地球的半径。
地球的平均半径大约是6371公里。
步骤如下:1.将经度和纬度转换为弧度。
这是因为Haversine公式需要使用弧度而不是度数。
你可以使用以下公式将度数转换为弧度:弧度 = 度数* π / 1802.使用Haversine公式计算距离。
Haversine公式如下:d = 2 * R * arcsin√((sin²(θ/2) * cos(α) * cos(β) - cos(θ/2) * sin(α) * sin(β)) / (cos²(θ/2) * cos²(α) + sin²(θ/2) * sin²(β)))在这个公式中,d是两个地点之间的距离,R是地球的半径(在步骤1中定义),θ是两个地点之间的经度差,α和β是两个地点的纬度。
注意所有角度都应转换为弧度。
sin²(θ/2)和cos²(θ/2)可以使用以下公式计算:sin²(θ/2) = (1 - cos θ) /2cos²(θ/2) = (1 + cos θ) / 2同样,sin²(β)和cos²(β)可以使用以下公式计算:sin²(β) = (1 - cos β) / 2cos²(β) = (1 + cos β) / 2注意,由于sin和cos的函数值是在-1到1之间,所以当角度非常大时(例如接近90度或270度),这些公式可能会导致数值不稳定性。
在实际应用中,为了避免这个问题,通常会使用泰勒级数展开或者查找表的方法来计算这些值。
3.计算完成后,将距离从弧度转换为公里。
你可以使用以下公式进行转换:距离(公里)= R * d * 180 / π其中R是地球半径(在步骤1中定义),d是使用Haversine公式计算得到的距离(在步骤2中计算)。
根据两点经纬度计算距离根据两点的经纬度计算距离是一个常见且有广泛应用的问题。
这个问题具有一定的复杂性,因为地球是一个球体而不是平面。
在解决这个问题时,我们需要考虑到地球的曲率以及经纬度的度量单位。
有多种方法可以计算两点间的距离,下面将介绍两种常用的方法:大圆距离和Haversine公式。
1.大圆距离:大圆距离是指从一个点到另一个点沿着地球表面的最短距离。
当我们考虑地球为球体时,这是一种较为准确的近似方法。
首先,将经纬度转换为弧度。
经度的范围是-180到180度,纬度的范围是-90到90度。
将角度转换为弧度的公式为:弧度=角度*π/180然后,可以使用以下公式计算大圆距离:a = sin²(Δφ/2) + cos φ1 * cos φ2 * sin²(Δλ/2)c = 2 * atan2(√a, √(1−a))d=R*c其中,Δφ是纬度的差异,Δλ是经度的差异。
φ1和φ2是两个点的纬度,R是地球的半径(通常为6371千米)。
2. Haversine公式:Haversine公式是一种计算球面上两点间距离的方法,它使用了一个中间的函数haversine。
这种方法也是一种精确的方法。
Haversine公式的计算步骤如下:首先,将经纬度转换为弧度。
然后,可以使用以下公式计算距离:a = sin²(Δφ/2) + cos φ1 * cos φ2 * sin²(Δλ/2)c = 2 * atan2(√a, √(1−a))d=R*c其中,Δφ是纬度的差异,Δλ是经度的差异。
φ1和φ2是两个点的纬度,R是地球的半径(通常为6371千米)。
这些公式可以使用各种编程语言计算,下面以Python代码为例:```import mathdef distance(lat1, lon1, lat2, lon2):R=6371#地球半径,单位为千米#将经纬度转换为弧度lat1 = math.radians(lat1)lon1 = math.radians(lon1)lat2 = math.radians(lat2)lon2 = math.radians(lon2)#计算差异delta_lat = lat2 - lat1delta_lon = lon2 - lon1# 应用大圆距离或Haversine公式计算a = math.sin(delta_lat/2) ** 2 + math.cos(lat1) *math.cos(lat2) * math.sin(delta_lon/2) ** 2c = 2 * math.atan2(math.sqrt(a), math.sqrt(1 - a))distance = R * creturn distance```这段代码定义了一个名为distance的函数,接受四个参数:两个点的纬度和经度。
方法1:由于地球是椭球体,这个太难算了,如果假设地球是球体,可以使用以下公式:设地球上某点的经度为A,纬度为B,则这点的空间坐标是 x=cos(B)*cos(A) y =cos(B)*sin(A) z=sin(B) 设地球上两点的空间坐标分别为(x1,y1,z1),(x2,y2,z2)则它们的夹角为 C=acos(x1*x2+y1*y2+z1*z2),C是角度则两地距离为 C/180*pi* R,其中R为地球平均半径6371 误差不超过1%地球是一个近乎标准的椭球体,它的赤道半径为6378.140千米,极半径为 6356.75 5千米,平均半径6371.004千米。
如果我们假设地球是一个完美的球体,那么它的半径就是地球的平均半径,记为R。
如果以0度经线为基准,那么根据地球表面任意两点的经纬度就可以计算出这两点间的地表距离(这里忽略地球表面地形对计算带来的误差,仅仅是理论上的估算值)。
设第一点A的经纬度为(LonA, LatA),第二点B的经纬度为(LonB, LatB),按照0度经线的基准,东经取经度的正值(Longitude),西经取经度负值(-Longitude),北纬取90-纬度值(90- Latitude),南纬取90+纬度值(90+Latitude),则经过上述处理过后的两点被计为(MLonA, MLatA)和(MLonB, ML atB)。
那么根据三角推导,可以得到计算两点距离的如下公式:C = sin(MLatA)*sin(MLatB)*cos(MLonA-MLonB) + cos(MLatA)*cos(MLatB)Distance = R*Arccos(C)*Pi/180这里,R和Distance单位是相同,如果是采用6371.004千米作为半径,那么Dist ance就是千米为单位,如果要使用其他单位,比如mile,还需要做单位换算,1千米=0.621371192mile如果仅对经度作正负的处理,而不对纬度作90-Latitude(假设都是北半球,南半球只有澳洲具有应用意义)的处理,那么公式将是:C = sin(LatA)*sin(LatB) + cos(LatA)*cos(LatB)*cos(MLonA-MLonB)Distance = R*Arccos(C)*Pi/180以上通过简单的三角变换就可以推出。
已知地图上两点的经纬度如何计算距离地球赤道上环绕地球一周走一圈共40075.04公里而一圈分成360°而每1°(度)有60'每一度一秒在赤道上的长度计算如下:40075.04km/360°=111.31955km111.31955km/60'=1.8553258km=1855.3m而每一分又有60秒每一秒就代表1855.3m/60=30.92m任意两点距离计算公式为d=111.12cos{1/[sinΦAsinΦB十cosΦAcosΦBcos(λB—λA)]}其中:A点经度,纬度分别为λA和ΦAB点的经度、纬度分别为λB和ΦB,d为距离我又来补充了;在经纬网图上,可以根据经纬度量算两点之间的距离。
全球各地纬度1°的间隔长度都相等(因为所有经线的长度都相等),大约是111km/1°。
赤道上经度1°对应在地面上的弧长大约也是111km。
由于各纬线从赤道向两极递减,60°纬线上的长度为赤道上的一半,所以在各纬线上经度差1°的弧长就不相等。
在同一条纬线上(假设此纬线的纬度为α)经度1°对应的实际弧长大约为111cosαkm。
因此,只要知道了任意两地间的纬度差,或者是赤道上任何两地的经度差,就可以计算它们之间的实际距离。
两地间最近距离的判断:若两地经度差等于180o,则过两地的大圆为经线圈,两地最近距离为大圆中过两极点的劣弧;若两地经度差不等于180o,则过两地的大圆不是经线圈,而与经线圈斜交,两地最近距离不过极点,而是过两极地区。
你可以去这个网站看看关于计算经纬度的软件不知道是不是真的希望可以帮上你忙:/Soft/kjsc/200601/97.html/200604/93855.htm。
根据两点经纬度计算距离这些经纬线是怎样定出来的呢?地球是在不停地绕地轴旋转(地轴是一根通过地球南北两极和地球中心的假想线),在地球中腰画一个与地轴垂直的大圆圈,使圈上的每一点都和南北两极的距离相等,这个圆圈就叫作“赤道”。
在赤道的南北两边,画出许多和赤道平行的圆圈,就是“纬圈”;构成这些圆圈的线段,叫做纬线。
我们把赤道定为纬度零度,向南向北各为90度,在赤道以南的叫南纬,在赤道以北的叫北纬。
北极就是北纬90度,南极就是南纬90度。
纬度的高低也标志着气候的冷热,如赤道和低纬度地地区无冬,两极和高纬度地区无夏,中纬度地区四季分明。
其次,从北极点到南极点,可以画出许多南北方向的与地球赤道垂直的大圆圈,这叫作“经圈”;构成这些圆圈的线段,就叫经线。
公元1884平面坐标图年,国际上规定以通过英国伦敦近郊的格林尼治天文台的经线作为计算经度的起点,即经度零度零分零秒,也称“本初子午线”。
在它东面的为东经,共180度;在它西面的为西经,共180度。
因为地球是圆的,所以东经180度和西经180度的经线是同一条经线。
各国公定180度经线为“国际日期变更线”。
为了避免同一地区使用两个不同的日期,国际日期变线在遇陆地时略有偏离。
每一经度和纬度还可以再细分为60分,每一分再分为60秒以及秒的小数。
利用经纬线,我们就可以确定地球上每一个地方的具体位置,并且把它在地图或地球仪上表示出来。
例如问北京的经纬度是多少?我们很容易从地图上查出来是东经116度24分,北纬39度54分。
在大海中航行的船只,只要把所在地的经度测出来,就可以确定船在海洋中的位置和前进方向。
纬度共有90度。
赤道为0度,向两极排列,圈子越小,度数越大。
横线是纬度,竖线是经度。
当然可以计算,四元二次方程。
经度和纬度都是一种角度。
经度是个两面角,是两个经线平面的夹角。
因所有经线都是一样长,为了度量经度选取一个起点面,经1884年国际会议协商,决定以通过英国伦敦近郊、泰晤士河南岸的格林尼治皇家天文台(旧址)的一台主要子午仪十字丝的那条经线为起始经线,称为本初子午线。
本初子午线平面是起点面,终点面是本地经线平面。
某一点的经度,就是该点所在的经线平面与本初子午线平面间的夹角。
在赤道上度量,自本初子午线平面作为起点面,分别往东往西度量,往东量值称为东经度,往西量值称为西经度。
由此可见,一地的经度是该地对于本初子午线的方向和角距离。
本初子午线是0°经度,东经度的最大值为180°,西经度的最大值为180°,东、西经180°经线是同一根经线,因此不分东经或西经,而统称180°经线。
纬度是个线面角。
起点面是赤道平面,线是本地的地面法线。
所谓法线,即垂直于参考扁球体表面的线。
某地的纬度就是该地的法线与赤道平面之间的夹角。
纬度在本地经线上度量,由赤道向南、北度量,向北量值称为北纬度,向南量值称为南纬度。
由此可见,一地的纬度是该地对于赤道的方向和角距离。
赤道是0°纬线,北纬度的最大值为90°,即北极点;南纬度的最大值为90°,即南极点。
经纬度互换度(DDD):E 108.90593度N 34.21630度如何将度(DDD)::108.90593度换算成度分秒(DMS)东经E 108度54分22.2秒?转换方法是将108.90593整数位不变取108(度),用0.90593*60=54.3558,取整数位54(分),0.3558*60=21.348再取整数位21(秒),故转化为108度54分21秒.同样将度分秒(DMS):东经E 108度54分22.2秒换算成度(DDD)的方法如下:108度54分22.2秒=108+(54/60)+(22.2/3600)=108.90616度因为计算时小数位保留的原因,导致正反计算存在一定误差,但误差影响不是很大。
1秒的误差就是几米的样子。
GPS车友可以用上述方法换算成自己需要的单位坐标。
经纬度换算成米纬度分为60分,每一分再分为60秒以及秒的小数。
纬度线投射在图上看似水平的平行线,但实际上是不同半径的圆。
有相同特定纬度的所有位置都在同一个纬线上。
赤道的纬度为0°,将行星平分为南半球和北半球。
纬度是指某点与地球球心的连线和地球赤道面所成的线面角,其数值在0至90度之间。
位于赤道以北的点的纬度叫北纬,记为N,位于赤道以南的点的纬度称南纬,记为S。
纬度数值在0至30度之间的地区称为低纬地区,纬度数值在30至60度之间的地区称为中纬地区,纬度数值在60至90度之间的地区称为高纬地区。
赤道、南回归线、北回归线、南极圈和北极圈是特殊的纬线。
纬度1秒的长度地球的子午线总长度大约40008km。
平均:纬度1度= 大约111km纬度1分= 大约1.85km纬度1秒= 大约30.9m根据地球上任意两点的经纬度计算两点间的距离地球是一个近乎标准的椭球体,它的赤道半径为6378.140千米,极半径为6356.755千米,平均半径6371.004千米。
如果我们假设地球是一个完美的球体,那么它的半径就是地球的平均半径,记为R。
如果以0度经线为基准,那么根据地球表面任意两点的经纬度就可以计算出这两点间的地表距离(这里忽略地球表面地形对计算带来的误差,仅仅是理论上的估算值)。
设第一点A的经纬度为(LonA, LatA),第二点B的经纬度为(LonB, LatB),按照0度经线的基准,东经取经度的正值(Longitude),西经取经度负值(-Longitude),北纬取90-纬度值(90- Latitude),南纬取90+纬度值(90+Latitude),则经过上述处理过后的两点被计为(MLonA, MLatA)和(MLonB, MLatB)。
那么根据三角推导,可以得到计算两点距离的如下公式:C = sin(MLatA)*sin(MLatB)*cos(MLonA-MLonB) + cos(MLatA)*cos(MLatB)Distance = R*Arccos(C)*Pi/180这里,R和Distance单位是相同,如果是采用6371.004千米作为半径,那么Distance 就是千米为单位,如果要使用其他单位,比如mile,还需要做单位换算,1千米=0.621371192mile如果仅对经度作正负的处理,而不对纬度作90-Latitude(假设都是北半球,南半球只有澳洲具有应用意义)的处理,那么公式将是:C = sin(LatA)*sin(LatB) + cos(LatA)*cos(LatB)*cos(MLonA-MLonB)Distance = R*Arccos(C)*Pi/180以上通过简单的三角变换就可以推出。
如果三角函数的输入和输出都采用弧度值,那么公式还可以写作:C = sin(LatA*Pi/180)*sin(LatB*Pi/180) +cos(LatA*Pi/180)*cos(LatB*Pi/180)*cos((MLonA-MLonB)*Pi/180)Distance = R*Arccos(C)*Pi/180也就是:C = sin(LatA/57.2958)*sin(LatB/57.2958) +cos(LatA/57.2958)*cos(LatB/57.2958)*cos((MLonA-MLonB)/57.2958)Distance = R*Arccos(C) = 6371.004*Arccos(C) kilometer =0.621371192*6371.004*Arccos(C) mile = 3958.758349716768*Arccos(C) mile在实际应用当中,一般是通过一个个体的邮政编码来查找该邮政编码对应的地区中心的经纬度,然后再根据这些经纬度来计算彼此的距离,从而估算出某些群体之间的大致距离范围(比如酒店旅客的分布范围-各个旅客的邮政编码对应的经纬度和酒店的经纬度所计算的距离范围-等等),所以,通过邮政编码查询经纬度这样一个数据库是一个很有用的资源。
附:C#代码:private const double EARTH_RADIUS = 6378.137;//地球半径private static double rad(double d){return d * Math.PI / 180.0;}public static double GetDistance(double lat1, double lng1, double lat2, double lng2) {double radLat1 = rad(lat1);double radLat2 = rad(lat2);double a = radLat1 - radLat2;double b = rad(lng1) - rad(lng2);double s = 2 * Math.Asin(Math.Sqrt(Math.Pow(Math.Sin(a/2),2) +Math.Cos(radLat1)*Math.Cos(radLat2)*Math.Pow(Math.Sin(b/2),2)));s = s * EARTH_RADIUS;s = Math.Round(s * 10000) / 10000;return s;。