北师大版高二数学必修五第一章测试试题及答案
- 格式:doc
- 大小:427.00 KB
- 文档页数:5
本试卷分第I 卷(选择题)和第II 卷(非选择题)两部分
高二数学必修五第一章试题 第I 卷(选择题,共90分)
注意事项:
1.答第I 卷前,考生务必将答题卡及第II 卷密封线内项目填写清楚。
2.第I 卷每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再涂其他答案,答案不能答在试题纸上。
3.非选择题答案必须写在答题卡各题目指定区域内相应位置上,不按以上要求作答的答案无效。考生必须保持答题卡的整洁,
一、选择题:本大题共有12小题,每小题5分,共60分.在每小题给出的四个选项中,有且只有一项是符合题目要求的.
1.数列252211,,
,,的一个通项公式是
A. 33n a n =-
B. 31n a n =-
C. 31n a n =+
D. 33n a n =+ 2.已知数列{}n a 的首项11a =,且()1212n n a a n -=+≥,则5a 为 A .7 B .15 C.30 D .31
3.下列各组数能组成等比数列的是
A. 111,,369
B. lg3,lg9,lg 27
C. 6,8,10
D. 3,33,9-
4. 等差数列{}n a 的前m 项的和是30,前2m 项的和是100,则它的前3m 项的和是
A .130
B .170
C .210
D .260
5.若{}n a 是等比数列,前n 项和21n
n S =-,则2222123n a a a a +++
+=
A.2(21)n -
B.21(21)3n -
C.41n
- D.1(41)3
n -
6.各项为正数的等比数列{}n a ,478a a ⋅=,则1012222log log log a a a
+++=
A .5
B .10
C .15
D .20
7.已知等差数列{a n }的公差d ≠0,若a 5、a 9、a 15成等比数列,那么公比为 (A)
(B)
(C)
(D)
8.在等差数列{}n a 和{}n b 中,125a =,175b =,100100100a b +=,则数列{}n n a b +的前100项和为
A. 0
B. 100
C. 1000
D. 10000
9.已知等比数列{}n a 的通项公式为1
23n n a -=⨯,则由此数列的偶数项所组成的新数列的前n 项
和n S =
A.31n
- B.3(31)n
- C.91
4
n - D.3(91)4n -
10.等比数列{}n a 中,991a a 、为方程016102=+-x x 的两根,则805020a a a ⋅⋅ 的值为
A .32
B .64
C .256
D .±64 11.在等差数列{}n a 中,若4681012120a a a a a ++++=,则10112
3
a a -
的值为 A. 6 B. 8 C. 10 D. 16
12. 设由正数组成的等比数列,公比q=2,且303021
2=a a a ……·,则30963a a a a ……··等于 A .10
2 B .20
2 C .16
2 D .15
2
二、填空题:共6小题,每小题5分,共30分.将答案填在题中的横线上.
13.等差数列的前4项和为40,最后4项的和为80,所有各项的和为720,则这个数列
一共有 项. 14.若{}n a 是等比数列,下列数列中是等比数列的所有代号为 .
① {}2n a ② {}2n a ③ 1n a ⎧⎫⎨⎬⎩⎭
④ {}
lg n a
15.若{a n }是等差数列,a 3,a 10是方程x 2-3x-5=0的两根,则a 5+a 8= .
16.已知{}n a 是等比数列,n a >0,又知2a 4a +23a 5a +4a 6a =25,那么35a a +=__________. 17. 在等差数列{}n a 中,14101619100a a a a a ++++=,则161913a a a -+的值是________
18. 已知数列{}n a 的前n 项和n
n S 23+=,则n a =__________.
答题卡:
班级:______姓名:_________学号:_______得分:_______
二、填空题:
13、____________ 14、____________ 15、____________
16、____________ 17、____________ 18、____________
第II 卷(非选择题,共60分)
注意事项:用钢笔或圆珠笔直接答在试题卷上。
三、解答题:本大题共4小题,共60分.解答应写出文字说明,证明过程或演算步骤.
19(14分).已知四个数,前三个数成等比数列,和为19,后三个数成等差数列,和为12,求
此四个数.
20(14分).已知{}n a 满足13a =,121n n a a +=+,
(1)求证:{}1n a +是等比数列;(2)求这个数列的通项公式n a .