灰色关联度程序
- 格式:txt
- 大小:0.57 KB
- 文档页数:1
灰色关联度分析法为了适应瞬息万变的市场需求, 企业不断调整自己的核心能力, 在产品的开发设计中更重视供应商的作用。
作为供应链合作关系运行的基础, 供应商的评价选择是一个至关重要的问题, 供应商的业绩对企业的影响越来越大,影响着企业的生存与发展。
因此, 进行科学全面的供应商评价就显得十分必要。
(1)确定比较对象产品质量、技术水平、供应能力、经济效益、市场影响度指标属于效益型指标;产品价格、地理位置、售后服务指标属于成本型指标。
i 指五个待选供应商编号,,5,,1 =i j 指八个指标8,,1j =,ij a 是第i 个供应商第j 个指标变量为了使每个属性变换后的最优值为1 且最差值为0,对数据进行标准0-1变换利润型指标标准化公式)/()(min maxmin j j j ij ij a a a a b --=成本型指标标准化公式)/()(min max max j j ij j ij a a a a b --=数据结果见下表。
(2)计算灰色关联系数)()(max max )()()()(max max )()(min min )(0000t x t x k x k x t x t x t x t x k s tsi s ts s ts -+--+-=ρρξ为比较数列对参考数列在第个指标上的关联系数,其中为]1,0[∈ρ分辨系数。
称式中)()(min min 0t x t x s ts-、)()(max max 0t x t x s ts-分别为两级最小差及两级最大差。
一般来讲,分辨系数ρ越大,分辨率越大;ρ越小,分辨率越小。
在这里ρ取0.5。
(3)计算灰色加权关联度 灰色加权关联度的计算公式为∑==nk i i k w r 1)(ξ这里i r 为第i 个评价对象对理想对象的灰色加权关联度。
关联系数和关联度值(4)评价分析根据灰色加权关联度的大小,对各评价对象进行排序,可建立评价对象的关联序,关联度越大其评价结果越好。
一个高效实现灰色关联分析的R程序高志华;李桂琴;石晓辉;马莉丽【摘要】Grey relational analysis model widely used in various scientific research fields is a very important statisti-cal model,but it needs lots of computations to finish the whole data process. R is an advanced programming language for statistical computing and is available as free software downloaded from the Internet under the terms of the Free Software Foundation's GNU General Public License.In this paper,based on the method of grey relational analysis,a fast automatic calculation program in R for Deng relational degree is designed,and successfully applied into the actu-al case to verify it's feasibility and high-efficiency.%灰色关联分析模型是一种广泛应用于各个科研领域的重要的统计模型,但其数据处理过程计算量很大.R是一门高级统计计算编程语言,可以在通用公共许可(GPL)规则下从互联网免费获取.该研究基于灰色关联分析方法设计了一个可快速自动计算邓氏关联度的 R 程序,通过成功应用于实例,验证了本程序的可行性和高效性.【期刊名称】《安徽农学通报》【年(卷),期】2015(021)023【总页数】4页(P13-16)【关键词】R语言;灰色关联分析;R程序应用实例【作者】高志华;李桂琴;石晓辉;马莉丽【作者单位】河北经贸大学生物科学与工程学院,河北石家庄 050061;河北师范大学生命科学学院,河北石家庄 050016;复旦大学生命科学学院,上海 200438;河北经贸大学教务处,河北石家庄 050061;河北经贸大学生物科学与工程学院,河北石家庄050061;河北经贸大学生物科学与工程学院,河北石家庄 050061【正文语种】中文【中图分类】N941.5灰色关联分析是从无序、随机的系统特征量中确定各因素间的关联程度,早在1982年,邓聚龙教授就提出了计算灰色关联度的统计模型,该模型基本思想是根据序列曲线几何形状的相似程度来判断其联系是否密切,曲线越接近,则相应序列之间关联度就越大,反之则越小[1-3]。
灰色关联度是灰色系统理论中的一个重要概念,用于衡量两个或多个因素之间的关联程度。
灰色关联度的计算通常涉及到对数据序列的处理和分析。
以下是计算灰色关联度的一般步骤:1. 数据标准化:首先,需要对参与比较的各因素的原始数据进行标准化。
这是为了消除因素之间的量纲和数量级的差异。
标准化通常包括零均值化和单位方差化,使得各因素的数据具有相似的尺度。
2. 构建关联系数矩阵:通过计算各因素之间的关联系数(关联度),构建关联系数矩阵。
关联系数的计算可以使用各种方法,例如皮尔逊相关系数、斯皮尔曼等级相关系数等。
3. 确定参考因素:选择一个参考因素,即作为比较基准的因素。
这个选择通常依赖于具体问题的性质。
4. 计算灰色关联度:计算每个因素与参考因素之间的灰色关联度。
关联度的计算可以使用不同的公式,常见的有绝对差异法、百分比差异法等。
以绝对差异法为例,计算公式如下:ρi=min|X0−X i|+λmax|X0−X i| |X0−X i|+λmax|X0−X i|其中:•X0为参考因素的数据序列;•X i为其他因素的数据序列;•λ为分辨系数,通常取值为0.5。
5. 确定关联度等级:将计算得到的关联度进行等级划分,以便进行进一步的分析和决策。
关联度等级的划分可以根据具体问题的需求来确定。
6. 结果分析与决策:通过对灰色关联度的计算结果进行分析,可以得到各因素之间的关联强度。
这些分析结果可以用于决策支持、因素排序等应用。
需要注意的是,灰色关联度的计算方法和标准可能因研究问题的具体背景而有所不同。
因此,在具体应用中,需要根据实际情况选择合适的计算方法和标准。
灰色关联模型python代码摘要:1.灰色关联模型的概念2.灰色关联模型的Python 代码实现3.代码的运行与结果分析正文:灰色关联模型是一种基于灰色理论的关联分析方法,它通过计算各变量之间的灰色关联度来分析变量之间的关联性。
该模型广泛应用于工程、经济、社会等领域,对于数据挖掘、预测和决策具有重要意义。
下面我们将通过Python 代码实现灰色关联模型,并分析运行结果。
首先,我们需要安装`greyTheory`库,这是一个用于灰色关联分析的Python 库。
在命令行中输入以下命令进行安装:```pip install greyTheory```接下来,我们编写Python 代码来计算灰色关联度:```pythonimport numpy as npimport pandas as pdfrom greyTheory.grey import GRS# 构造数据data = {"X1": [25, 27, 29, 30, 32, 33, 34, 36, 37, 38],"X2": [23, 25, 26, 28, 30, 31, 32, 33, 35, 36]}df = pd.DataFrame(data)# 计算灰色关联度grs = GRS()result = grs.calculate(df)# 打印结果print(result)```代码运行后,我们得到了一个关联度矩阵,它表示了两个变量之间的灰色关联度。
关联度值的范围为-1 到1,值越接近1,表示两个变量之间的关联性越强;值越接近-1,表示两个变量之间的关联性越弱。
在上述示例中,我们构造了两组数据(X1 和X2),并计算了它们之间的灰色关联度。
灰色关联分析法是一种用于比较多个因素之间关联程度的分析方法,其基本思想是通过比较各因素之间的相似程度来评估它们之间的关联程度。
在两因素三水平的情境下,可以使用灰色关联分析法来比较三个水平之间的关联程度。
具体步骤如下:1.确定参考序列和比较序列。
参考序列是用于比较的基准序列,通常选择一个固定值或者已知的最佳水平作为参考序列。
比较序列是待比较的各个因素在不同水平下的观测值序列。
2.数据预处理。
对参考序列和比较序列进行数据预处理,包括数据清洗、缺失值处理、异常值处理等。
3.计算灰色关联度。
根据灰色关联分析法的原理,计算参考序列与各个比较序列之间的灰色关联度。
灰色关联度的计算公式为:(\gamma(x_0, x_i) = \frac{\min_i |x_0(k) - x_i(k)| + \rho \max_i |x_0(k) -x_i(k)|}{|x_0(k) - x_i(k)| + \rho \max_i |x_0(k) - x_i(k)|})其中,(x_0(k))表示参考序列在时刻k的值,(x_i(k))表示第i个比较序列在时刻k 的值,(\min_i |x_0(k) - x_i(k)|)和(\max_i |x_0(k) - x_i(k)|)分别表示第k时刻所有比较序列与参考序列的差的绝对值的最小值和最大值,(\rho)是一个分辨系数,通常取0.5。
4. 判断关联程度。
根据计算出的灰色关联度,判断各个比较序列与参考序列的关联程度。
灰色关联度越接近于1,表示关联程度越高。
通过以上步骤,可以得出各个水平之间的关联程度,从而为决策提供依据。
需要注意的是,灰色关联分析法只是一种定性的分析方法,其结果具有一定的主观性,因此在具体应用时需要根据实际情况进行合理的解释和判断。
灰色关联度计算随着社会的不断发展和进步,数据量的增加和数据分析的需求也越来越大。
在这个过程中,许多数学方法和模型被引入到数据分析中,以便更好地理解和分析数据。
其中,灰色关联度计算就是一种常用的方法之一。
灰色关联度计算是一种数学方法,用于分析两个或多个变量之间的关系。
它可以用于预测和分析,以及确定两个或多个变量之间的相似程度。
它的主要应用领域是工程、经济、环境、医学等领域。
灰色关联度计算的基本思想是将多个变量转换为一个灰色关联度序列,然后使用这个序列来计算变量之间的关联度。
这个序列是由多个变量的数据组成的,它们被标准化并转换为0到1之间的值。
计算灰色关联度的过程包括以下几个步骤:1. 数据标准化:将原始数据转换为标准数据,以便更好地进行比较和分析。
2. 灰色关联度序列的构建:将标准数据转换为灰色关联度序列,以便更好地计算变量之间的关联度。
3. 灰色关联度计算:使用灰色关联度序列计算变量之间的关联度。
4. 关联度的分析:分析计算出的关联度,以便更好地了解变量之间的关系。
在实际应用中,灰色关联度计算可以用于多种情况。
例如,在经济领域,可以使用它来分析股票价格和其他经济指标之间的关系。
在环境领域,可以使用它来分析气候变化和其他环境因素之间的关系。
在医学领域,可以使用它来分析疾病和其他健康因素之间的关系。
灰色关联度计算的优点是它可以处理不完整和不确定的数据,因此在实际应用中具有很强的适用性。
此外,它还可以处理多变量的情况,因此在分析复杂系统时非常有用。
当然,灰色关联度计算也有一些局限性。
例如,它不能处理数据之间的非线性关系。
此外,它还需要一些预处理步骤,以便更好地处理数据。
总之,灰色关联度计算是一种非常有用的数学方法,可以用于分析和预测多个变量之间的关系。
在实际应用中,它已经被广泛应用于多个领域,成为了数据分析中的重要工具之一。
灰色关联度方法介绍一、什么是灰色关联度方法1.1 灰色关联度方法的定义灰色关联度方法是一种用于分析、预测和决策的数学方法,由我国科学家陈彦斌于1988年提出。
它是一种相对较新的分析方法,可以应用于各种具有不确定性和模糊性的问题,特别在工程和管理领域得到广泛应用。
1.2 灰色关联度方法的特点灰色关联度方法的特点主要包括以下几个方面:1.适用范围广:灰色关联度方法可以用于处理不确定性、模糊性较强的问题,适用于各种实际情况。
2.简单易懂:灰色关联度方法基于数学模型,计算过程相对简单,容易理解和操作。
3.较强的应用性:灰色关联度方法可以广泛应用于决策分析、预测和优化等领域,并取得不错的效果。
二、灰色关联度方法的步骤2.1 确定比较对象与指标在应用灰色关联度方法进行分析前,首先需要明确比较的对象和相关指标。
比较对象可以是不同的产品、项目、方案等,指标可以是性能指标、经济指标、质量指标等。
2.2 数据标准化处理为了消除指标之间的量纲不同和取值范围不同的影响,需要对原始数据进行标准化处理。
常用的方法包括极差标准化法和零一标准化法。
2.3 计算关联系数和关联度通过计算比较对象之间指标的关联系数,可以得到相对于参考对象的关联度。
关联系数的计算公式为:R i=minmj=1|x i(j)−x0(j)|+ρ⋅maxmj=1|x i(j)−x0(j)||xi(j)−x(j)|+ρ⋅maxmj=1|xi(j)−x(j)|其中,R i表示第i个比较对象相对于参考对象的关联系数,x i(j)表示第i个比较对象的第j个指标值,x0(j)表示参考对象的第j个指标值,m表示指标的个数,ρ是一个平衡系数。
然后,可以通过计算关联系数的加权平均值得到关联度,关联度的计算公式为:R i‾=1m∑w jmj=1⋅R i(j)其中,R i‾表示第i个比较对象的关联度,w j表示第j个指标的权重。
2.4 确定排名根据计算得到的关联度,可以确定比较对象的排名。
灰色关联分析方法灰色关联分析方法(Grey Relational Analysis,GRA)是一种多指标决策方法,它用于研究因素之间的关联程度。
与传统的关联分析方法相比,灰色关联分析方法具有较强的适用性和灵活性。
它可以用于分析多个指标之间的关联程度,对于复杂决策问题具有较强的应用能力。
灰色关联分析方法的基本思想是将系统的各个指标转化为灰色数列,再利用灰色关联度来评估指标之间的关联程度。
该方法可以对多个指标进行综合评价,找出各个指标之间的关联程度,并根据关联程度来进行排序和决策。
灰色关联分析方法的具体步骤如下:1. 数据预处理:将原始数据进行标准化处理,以确保各指标在同一数量级上进行比较。
2. 构建灰色数列:将标准化后的数据转化为灰色数列,通过建立灰色微分方程来描述数据序列的发展趋势。
3. 确定关联度测度:根据灰色数列的特点,选择适当的关联度测度方法来计算指标之间的关联程度。
4. 计算关联度:根据所选择的关联度测度方法,计算每个指标与其他指标之间的关联度。
5. 排序和决策:根据计算得到的关联度值进行排序,并作出相应的决策。
灰色关联分析方法的优点有以下几个方面:1. 适用性广泛:灰色关联分析方法适用于各种类型的指标数据,包括定量指标和定性指标。
2. 考虑了指标之间的时序关系:灰色关联分析方法考虑了指标数据的时序性,能够更好地反映指标之间的演变趋势。
3. 简单易行:灰色关联分析方法不需要过多的统计方法和复杂的计算过程,容易被理解和操作。
4. 提供了多指标综合评价的能力:灰色关联分析方法可以将多个指标之间的关联程度综合考虑,对于决策问题的综合评价有着较好的效果。
然而,灰色关联分析方法也存在一些限制和局限性:1. 灵敏度不高:由于灰色关联分析方法只考虑了指标之间的线性关联程度,对于非线性关系的刻画较为困难,灵敏度较低。
2. 依赖于初始数据:灰色关联分析方法对初始数据的选取较为敏感,不同的初始数据可能导致不同的关联度结果。
灰色关联系数法灰色关联系数法是一种用于确定影响因素的重要性及其相互影响关系的分析方法,常用于决策分析、风险评估等领域。
该方法具有简单易行、计算精度高的特点,被广泛应用于工程管理、市场营销等领域。
下面将就该方法的相关概念、步骤和应用进行详细介绍。
一、灰色系统理论的基本概念灰色系统理论是韩国学者陈纳言于20世纪80年代提出的,是一种以灰色系统建模和灰色预测为核心的一类新型系统理论。
其特点是解决少量或不完整的信息问题,能从不确定、不精确的数据中提取出有用的信息,对于复杂系统进行建模和分析具有重要意义。
在灰色系统理论中,常用到的概念包括灰色关联度、灰色关联系数、灰色数据等。
二、灰色关联系数法的步骤灰色关联系数法主要用于因素间的关联度量和分析,其步骤如下:1. 确定指标体系:根据研究目的和实际情况,确定与问题相关的指标体系。
2. 数据标准化:对指标数据进行归一化处理,将各个指标值映射到相同的数据范围内。
3. 确定权重:根据不同指标的重要程度,确定各指标的权重系数。
4. 计算关联系数:确定参考序列和比较序列,计算其灰色关联系数。
5. 分析结果:得出各个因素之间的关系强度和影响程度。
三、灰色关联系数法的应用灰色关联系数法常用于决策分析、风险评估、市场营销等领域。
以市场营销为例,利用该方法可以确定各种市场营销因素的重要性及相互作用关系,通过分析市场变化趋势和因素之间的关系,制定更加有效的市场营销策略,提高市场占有率和经济效益。
此外,在项目管理中,利用灰色关联系数法可以分析项目因素之间的关系,找出关键环节和风险点,制定风险管理策略,避免项目进展受到影响。
总之,灰色关联系数法是一种有效的分析方法,在解决一些具有不确定性、复杂性问题时具有良好的性能和实用价值。
该方法的应用使得分析的结果更加科学、准确,为决策者提供了更加科学,可靠的依据。
灰色关联度matlab源程序(完整版)近几天一直在写算法,其实网上可以下到这些算法的源程序的,但是为了搞懂,最搞清楚,还是自己一个一个的看了,写了,作为自身的积累,而且自己的的矩阵计算类库也迅速得到补充,以后关于算法方面,基本的矩阵运算不用再重复写了,挺好的,是种积累,下面把灰关联的matlab程序与大家分享。
灰色关联度分析法是将研究对象及影响因素的因子值视为一条线上的点,与待识别对象及影响因素的因子值所绘制的曲线进行比较,比较它们之间的贴近度,并分别量化,计算出研究对象与待识别对象各影响因素之间的贴近程度的关联度,通过比较各关联度的大小来判断待识别对象对研究对象的影响程度。
简言之,灰色关联度分析的意义是指在系统发展过程中,如果两个因素变化的态势是一致的,即同步变化程度较高,则可以认为两者关联较大;反之,则两者关联度较小。
因此,灰色关联度分析对于一个系统发展变化态势提供了量化的度量,非常适合动态(Dynamic)的历程分析。
灰色关联度可分成“局部性灰色关联度”与“整体性灰色关联度”两类。
主要的差别在于局部性灰色关联度有一参考序列,而整体性灰色关联度是任一序列均可为参考序列。
关联度分析是基于灰色系统的灰色过程, 进行因素间时间序列的比较来确定哪些是影响大的主导因素, 是一种动态过程的研究。
关联度计算的预处理,一般初值化或者均值化,根据我的实际需要,本程序中使用的是比较序列与参考序列组成的矩阵除以参考序列的列均值等到的,当然也可以是其他方法。
%注意:由于需要,均值化方法采用各组值除以样本的各列平均值clear;clc;yangben=[47.924375 25.168125 827.4105438 330.08875 1045.164375 261.37437516.3372 6.62 940.2824 709.2752 962.1284 84.87455.69666667 30.80333333 885.21 275.8066667 1052.42 435.81]; %样本数据fangzhen=[36.27 14.59 836.15 420.41 1011.83 189.5464.73 35.63 755.45 331.32 978.5 257.8742.44 23.07 846 348.05 1025.4 296.6959.34 39.7 794.31 334.63 1016.4 317.2752.91 17.14 821.79 306.92 1141.94 122.044.21 4.86 1815.52 2584.68 963.61 0.006.01 2.43 1791.61 2338.17 1278.08 30.873.01 1.58 1220.54 956.14 1244.75 3.9125.65 7.42 790.17 328.88 1026.01 92.82115.80 27 926.5 350.93 1079.49 544.3812.63 8.75 1055.50 1379.00 875.10 1.65]; %待判数据[rows,cols]=size(fangzhen);p=0.5; %分辨系数[m,n]=size(yangben);R=[];for irow=1:rowsyy=fangzhen(irow,:);data=[yy;yangben];data_gyh1=mean(yangben)for i=1:m+1for j=1:ndata_gyh(i,j)=data(i,j)/data_gyh1(j);endendfor i=2:m+1for j=1:nDij(i-1,j)=abs(data_gyh(1,j)-data_gyh(i,j));endendDijmax=max(max(Dij));Dijmin=min(min(Dij));for i=1:mfor j=1:nLij(i,j)=(Dijmin+p*Dijmax)/(Dij(i,j)+p*Dijmax); endendLijRowSum=sum(Lij');for i=1:mRij(i)=LijRowSum(i)/n;endR=[R;Rij];endRmatlab求灰色关联度矩阵源代码2010-12-11 22:57 function greyrelationaldegree(X,c)%GRAYRELATIONALDEGREE this function is used for calculating the gery %relation between squence%rememeber that the first column of the input matrix is the desicion %attribution squences.what we want to calculate is the grey ralational degree between%it and other attributions%X is the squence matrix, c is the parameter used in the function%in most of the time, the value of c is 0.5firstrow = X(1,:);reci_firstrow = 1./firstrow;reci_convert = diag(reci_firstrow);initialMIRROR = X*reci_convert;% find the initial value mirror of the sequce matrixA = initialMIRROR'[nrow,ncolumn] = size(A);for (i=2:nrow)C = A(i,:)-A(1,:)D=abs(C);eval(['B' num2str(i) '=D']);amax = max(eval(['B' num2str(i)]))amin = min(eval(['B' num2str(i)]))maxarray(i-1)=amaxminarray(i-1)=aminend %find the difference squence and the max value and min value of each squencemaxmax = max(maxarray)minmin = min(minarray)for(i=2:nrow)for(j=1:ncolumn)eval(['greyrelationdegree' num2str(i)'(j)=(minmin+c*maxmax)/(B' num2str(i) '(j)+c*maxmax)'])endend % calculate the greyralational degree of each datafor(i=2:nrow)eval(['greyrelatioanaldegree_value' num2str(i) '= mean (greyrelationdegree' num2str(i) ')' ])end基于matlab灰色关联度计算的实现2006年07月28日星期五上午 11:06 function r=incident_degree(x0,x1)%compute the incident degree for grey model.%Designed by NIXIUHUI,DalianFisherUniversity.%17 August,2004,Last modified by NXH at 21 August,2004%数据初值化处理x0_initial=x0./x0(1);temp=size(x1);b=repmat(x1(:,1),[1 temp(2)]);x1_initial=x1./b;%分辨系数选择K=0.1;disp('The grey interconnect degree is: ');x0_ext=repmat(x0_initial,[temp(1) 1]);contrast_mat=abs(x0_ext-x1_initial);delta_min=min(min(contrast_mat));%delta_min在数据初值化后实际为零delta_max=max(max(contrast_mat));a=delta_min+K*delta_max;incidence_coefficient=a./(contrast_mat+K*delta_max);%得到关联系数r=(sum(incidence_coefficient'))'/temp(2); %得到邓氏面积关联度我们根据图1的步骤和图2的数据进行编程实现,程序如下:%清除存空间等clear;close all;clc;%载入源数据 %其实这里可以载入execl表格的n=15; %参与评价的人数m=4; %参与评价的指标个数X_0=zeros(n,m); % 数据矩阵X_2=zeros(n,m); %偏差结果的求取矩阵X_3=zeros(n,m); % 相关系数计算矩阵a1_0=[13 18 17 18 17 17 18 17 13 17 18 13 18 13 18];a2_0=[18 18 17 17 18 13 17 13 18 13 17 13 13 17 17];a3_0=[48.67 43.33 43.56 41.89 39.47 43.44 37.97 41.14 39.67 39.83 34.11 40.58 34.19 30.75 21.22];a4_0=[10 10.7 3 5.4 5.4 0.7 4.2 0.5 9.3 0.85 2.9 5.45 4.2 2.7 6]; %指标数X_1=[a1_0',a2_0',a3_0',a4_0']; %最后使用到的数据矩阵%1 寻找参考列x0=[max(a1_0),max(a2_0),max(a3_0),max(a4_0)]; %取每列的最大值(指标的最大值)%2 计算偏差结果i=1;while(i~=m+1) %为什么这个地方会出问题呢for j=1:1:nX_2(j,i)=abs(X_1(j,i)-x0(i));end;i=i+1;end%3 确定偏差的最值error_min=min(min(X_2));error_max=max(max(X_2));%4 计算相关系数i=1;p=0.5;while(i~=m+1)for j=1:1:nX_3(j,i)=(error_min+p*error_max)/(X_2(j,i)+p*error_max); end;i=i+1;end%X_3 %可以在此观察关联矩阵%5 计算各个学生的关连序a=zeros(1,n);for j=1:1:nfor i=1:1:ma(j)=a(j)+X_3(j,i); %%%%其实可以直接用sumend;a(j)=a(j)/m; %%%%%%%%%可以改进%%%%%%%%%%123下一页%end%a %在此可以观测各个学生的序%改进:如果各个指标的所占权重不一样的话,可以添加相应的权系数%6 排序b=a';[c,s]=sort(b);for i=1:1:nd(i)=i;endd=d';result=[d b c s]%7 将结果显示出来figure(1);plot(a);figure(2)bar(a); %柱状图最后所得到的结果如图3到图5所示。
灰色关联度分析法引言灰色关联度分析法是一种用于揭示变量之间关联程度的方法。
它可以在缺乏足够数据的情况下,通过对变量之间的相关性进行评估,帮助分析人员做出决策。
在本文中,我们将介绍灰色关联度分析法的原理和应用,并探讨其在实际问题中的价值和局限性。
一、灰色关联度分析法的原理灰色关联度分析法是在灰色系统理论基础上发展起来的一种关联性分析方法。
灰色关联度分析法的核心思想是通过模糊度量的方法,将样本数据的数量化描述量和次序特征结合起来,通过计算变量间的关联度,得出它们之间的相关性。
具体而言,灰色关联度分析法的步骤主要包括以下几个方面:1. 数据标准化:将原始数据进行归一化处理,以消除变量之间的量纲差异,使其具有可比性。
2. 确定参考序列:在给定的多个序列中,根据研究目标和实际需求,选择一个作为参考序列,其他序列将与之进行比较。
3. 计算关联度指数:通过计算每个序列与参考序列之间的关联度指数,来评估它们之间的关联程度。
关联度指数的计算通常有多种方法,如灰色关联度、相对系数法等。
4. 判别等级:根据关联度指数的大小,将序列划分为几个等级,以便更直观地评估变量之间的关联程度。
二、灰色关联度分析法的应用灰色关联度分析法在许多领域和问题中都有广泛的应用。
下面将介绍一些典型的应用情况:1. 经济领域:灰色关联度分析法可以用于评估经济指标之间的关联性,识别影响经济发展的主要因素,帮助政府和企业做出相应的调整和决策。
2. 工业制造业:在工业制造领域,灰色关联度分析法可以用于优化生产工艺,提高产品质量,降低成本。
通过分析不同因素对产品质量的影响程度,可以找出关键因素,并制定相应的改进措施。
3. 市场调研:在市场调研中,灰色关联度分析法可以用于分析消费者行为和市场趋势,预测产品的需求量和销售额。
通过对多个变量之间的关联性进行评估,可以为企业的市场营销决策提供有价值的参考和支持。
4. 环境管理:在环境管理领域,灰色关联度分析法可以用于评估各种环境因素对生态系统的影响程度,为环境保护和可持续发展提供科学依据。
灰色关联度分析灰色关联度分析是一种常用的多指标决策方法,它可以用于相关性较强但不易被直接比较的指标之间的关联度分析。
该方法最早由中国工程师陶行知在20世纪50年代提出,并在实践中得到广泛应用。
灰色关联度分析的基本思想是将研究对象的各个指标进行数值标准化处理,以消除量纲和单位的差异。
然后,根据数据序列中的变化趋势,寻找出存在的关联规律。
通过计算不同指标之间的关联度,可以确定其相关性的强弱程度。
具体而言,灰色关联度分析的步骤如下:首先,将各个指标的原始数据进行正态化处理,将其限制在0-1之间。
然后,根据数据的发展趋势,构建关联数列,并计算相邻数据之间的差值。
接下来,通过计算累加生成序列的绝对值来确定各个指标的权重。
最后,根据权重值计算出不同指标之间的关联度。
灰色关联度分析的优点是能够充分考虑不同指标之间的相关程度,避免了单指标评价所带来的不足之处。
它对于数据规模较小、数据质量较差的情况下仍能有效分析,并且可以通过调整权重值来考虑不同指标的重要性。
此外,灰色关联度分析方法简单易行,不需要大量数据和复杂的运算,适用范围广泛。
然而,灰色关联度分析也存在一些限制和不足之处。
首先,该方法对于数据的处理比较敏感,一旦数据质量较差或者变化趋势不明显,分析结果可能受到较大影响。
其次,该方法不能直接评估指标的具体表现,只能提供关联度的大小,对于指标的具体意义和解释需要结合实际情况进行判断。
此外,灰色关联度分析所得到的关联度结果不能作为因果关系的证据,只能作为参考依据。
综上所述,灰色关联度分析是一种常用的多指标决策方法,通过对指标间关联度的计算,帮助决策者进行综合评价。
虽然该方法存在一些局限性,但在实际应用中却有着广泛的应用前景。
随着大数据时代的到来,灰色关联度分析方法也得到了进一步的发展和完善,为决策提供更准确、科学的依据。
第五章灰色关联度分析目录壹、何谓灰色关联度分析-------------------- 5-2贰、灰色联度分析实例详说与练习--------------- 5-8第五章灰色关联度分析壹、何谓灰色关联度分析一.关联度分析灰色系统分析方法针对不同问题性质有几种不同做法,灰色关联度分析(Grey Relational Analysis) 是其中的一种。
基本上灰色关联度分析是依据各因素数列曲线形状的接近程度做发展态势的分析。
灰色系统理论提出了对各子系统进行灰色关联度分析的概念,意图透过一定的方法,去寻求系统中各子系统(或因素)之间的数值关系。
简言之,灰色关联度分析的意义是指在系统发展过程中,如果两个因素变化的态势是一致的,即同步变化程度较高,则可以认为两者关联较大;反之,则两者关联度较小。
因此,灰色关联度分析对于一个系统发展变化态势提供了量化的度量,非常适合动态(Dynamic)的历程分析。
灰色关联度可分成「局部性灰色关联度」与「整体性灰色关联度」两类。
主要的差别在于「局部性灰色关联度」有一参考序列,而「整体性灰色关联度」是任一序列均可为参考序列。
二.直观分析依据因素数列绘制曲线图,由曲线图直接观察因素列间的接近程度及数值关系,表一某老师给学生的评分表数据数据为例,绘制曲线图如图一所示,由曲线图大约可直接观察出该老师给分总成绩主要与考试成绩关联度较高。
表一某一老师给学生的评分表单位:分/%由曲线图直观分析,是可大略分析因素数列关联度,可看出考试成绩与总成绩曲线形状较接近,故较具关联度,但若能以量化分析予以左证,将使分析结果更具有说服力。
三.量化分析量化分析四步曲:1.标准化(无量纲化):以参照数列(取最大数的数列)为基准点,将各数据标准化成介于0至1之间的数据最佳。
2.应公式需要值,产生对应差数列表,内容包括:与参考数列值差(绝对值)、最大差、最小差、Z (Zeta)为分辨系数,0VZV1,可设Z = 0.5(采取数字最终务必使关联系数计算:E i (k)小于1为原则,至于分辨系数之设定值对关联度并没影响,请参考p14例)3.关联系数E i (k)计算:应用公式i(k)mi n maxAoi(k)+』max 计算比较数列X上各点k与参考数列X参照点的关联系数,最后求各系数的平均值即是X与X o的关联度r i。