当前位置:文档之家› 锅炉房烟囱的设计方法与原则

锅炉房烟囱的设计方法与原则

锅炉房烟囱的设计方法与原则
锅炉房烟囱的设计方法与原则

1、烟囱高度要满足比200范围内最高建筑物的最高点再高出3m以上。

2、泄爆口面积为锅炉房净面积10%,做窗井还是屋顶开口建筑专业确定。

3、锅炉一般2-3台,型号都一样即可,不用大小机搭配,总装机容量不用放大,各单体楼红叶负荷相加即可。

4、锅炉房内与燃气表间内设事故通风,锅炉房风机放于室外,都是防爆型。

5、总房间分为锅炉间、水泵间、燃气表间、值班室、配电间,锅炉间只放锅炉,水泵间放水泵、水处理及定压系统等。值班室与配电间常规做法,空调散热器与空调排风系统。

6、事故排风(12次)兼做平时排风(6次),二者取大;事故补风、平时补风及送氧量(样本)三者取大,一般送多排少,正压。

7、没有环评时严格执行200m氛围内最高点高出3m(燃油燃气全部使用),如果有环评,可以按照环评设计,但是施工图时甲方要提供环评文件,因为环评往往低于规范。具体参见锅炉大气污染物排放标准GB13271-2015.pdf,燃气表间需

要有窗井,一般燃气公司会有此要求。

烟囱设计总说明

设计总说明 一:本工程设计 烟囱总高度102m,出口内径2.0m,基本风压0.55KN/m2,地面粗糙度类别为B类,抗震设防烈度为8度(水平地震设计基本加速度为0.2g),设计地震分组为第Ⅱ组,建筑场地类别为Ⅱ类,地基承载力特征值为150kpa,基础埋深为4m,烟气温度为150℃~250℃,烟气腐蚀性等级为无腐蚀,设计使用年限为50年,烟囱的安全等级为二级。 二:设计依据 《烟囱设计规范》GB50051-2002 《建筑地基基础设计规范》GB50007-2002 《建筑结构荷载规范》GB50009-2001 《混凝土结构设计规范》GB50010-2002 《建筑抗震设计规范》GB50011-2001 《钢结构设计规范》GB50017-2003 《砌体结构设计规范》GB50003-2001 《建筑物防雷设计规范》GB50057-94 《房屋建筑制图统一标准》GB/T50001-2001 《建筑结构制图标准》GB/T50105-2001 三:烟囱型号 3.1烟囱编号: YC100/2.0-0.55-2-150-b 3.2筒壁型号选用: TB100/2.0-1 3.3基础型号: J100/2.0-4 四:主要建筑材料 4.1 混凝土 4.1.1 筒壁:高度为102m,烟囱采用C35。 4.1.2 基础:采用C30。 4.1.3 垫层及散水:C15。 4.1.4 混凝土宜采用普通硅酸盐水泥或矿渣硅酸盐水泥配制。 4.1.5 混凝土的水灰比不宜大于0.5。 4.1.6 混凝土水泥用量不应超过45kg/m3,不应低于300kg/ m3(C35)。 4.1.7 环境类别为二(b)类时,混凝土最大氯离子含量分别不应大于0.3%、0.2%和0.1%。 4.18 混凝土最大碱含量不应大于3.0kg/ m3。 4.2 钢筋:HRB335级钢筋,fy=300N/mm2应符合现行国家标准《钢筋混凝土用热轧带肋钢筋》GB1499要求。HPB235级钢筋,fy=210N/mm2应符合现行国家标准《钢筋混凝土用热轧光圈钢筋》GB13013要求。钢筋焊接接头时焊条采用E43xx型(HPB235级钢筋焊接)和E50xx型(HRB335级钢筋焊接)。 4.3 钢材焊条 4.3.1 梯子、平台、附件等采用Q235-B,其质量应符合现行国家标准《碳素结构钢》GB/T700要求;焊条采用E4300~E4313型焊条,应符合现行国家标准《碳钢焊条》GB/T5117要求。 4.3.2 避雷针及针尖材料采用不锈钢,牌号为0Cr18Ni9Ti,不锈钢焊条为E0-19-10Nb-16。 4.4 内衬及隔热层 4.4.1 内衬、隔热层材料为MU10烧结普通粘土砖,重力密度要求≤18kN/ m3,导热系数≤0.81+0.0006TФcw/mK。 4.4.2内衬、隔热材料应按表4.4.2选用 4.4.2内衬、隔热材料应按表4.4.2选用

浅谈美国规范标准中的钢结构设计

龙源期刊网 https://www.doczj.com/doc/3d13025002.html, 浅谈美国规范标准中的钢结构设计 作者:周正为 来源:《装饰装修天地》2018年第11期 摘要:精研美国规范标准,使用STAAD.Pro结构设计软件,结合具体项目,优化钢结构设计,提高设计市场竞争力。 关键词:钢结构;美国规范标准 1 前言 在以往的钢结构设计过程中,一般采用中国建筑科学研究院建筑工程软件研究所研发的PKPM系列CAD软件,包括SATWE计算软件和PMCAD建模软件,基本满足所承担的各类工业和民用建筑中各种规则和复杂类型的框架结构、框排架结构、排架结构、剪力墙、连续梁、拱形结构、桁架结构等。但该软件主要应用于国内市场(国内市场占有率90%以上)。随着近几年海外市场的不断拓展,同国际设计同行的交流不断增多,以美国规范为例,PKPM的模型数据并不能按美标检验杆件,因此急需我们在设计软件等方面实现同步。STAAD.Pro是 由美国世界著名的工程咨询和CAD软件开发公司—REI(Research Engineering International)从上世纪七十年代开始开发的通用有限元结构分析与设计软件,已经在国际上普遍使用,本文通过国外和国内两个具体工程实例,比较美国规范和中国规范中钢结构设计的不同,为今后的海外项目设计提供借鉴。 2 工程概述 国外项目为转接机房,使用STAAD.Pro软件按美国标准进行计算,该构筑物共两层,平面尺寸为15m×12m,高度为15m;开敞结构,多层钢结构厂房。结构按IBC2012设计。场地类别:SE类场地,重要性系数1.25;基本风压49m/s(3秒最大风速),S1=0.186, Ss=0.426, Fa=1.9368,Fv=3.242,反应修正系数(R值)x=2.5,z=2.5; 国内项目同样为转接机房,使用PKPM进行计算,平面尺寸为15.5m×13.5m,高度为14.6m,多层钢结构厂房。该项目的自然条件为抗震设防烈度为7度,基本地震加速度为 0.15g,设计地震分组为第二组;基本风压为0.45kN/m2,场地类别为三类,地面粗糙度为A 类。该工程按照国标进行设计,在该种抗震设防烈度下,钢结构房屋的抗震等级为四级。 3 计算及对比分析 3.1 地震作用

烟囱设计规范

锅炉房烟囱设计 新建锅炉房的烟囱设计应符合下列要求: 1.燃煤、燃油(轻柴油、煤油除外)锅炉房烟囱高度的规定: 1)每个新建锅炉房只允许设一个烟囱,烟囱高度可按表8.4.10-1规定执行。 表8.4.10-1燃煤、燃油(轻柴油、煤油除外)锅炉房烟囱最低允许高度(GB 13271-2001)

表8.4.10-3燃煤锅炉砖烟囱出口内径参考值 表8.4.10-4燃油、燃气锅炉钢制烟囱出口内径参考值 6.当烟囱位于飞行航道或飞机场附近时,烟囱高度不得超过有关航空主管部门的规定。烟囱上应装信号灯,并刷标志颜色。 7.自然通风的锅炉,烟囱高度除应符合上述规定外,还应保证烟囱产生的抽力,能克服锅炉和烟道系统的总阻力。对于负压燃烧的炉膛,还应保证在炉膛出口处有20~40Pa的负压。每米烟囱高度产生的烟气抽力参见表8.4.10-5。 表8.4.10-5烟囱每米高度产生的抽力(Pa)

2.计算方法二:

烟囱的阻力计算: 1.烟囱的摩擦阻力Pycm(单位为Pa): 2.烟囱出口阻力Pycc(单位为Pa): 3.烟囱总阻力Pyc(单位为Pa):

砖烟囱和钢筋混凝土烟囱的结构应符合下列要求: 1.砖烟囱的最大高度不宜超过50m。 2.烟囱下部应设清灰孔,清灰孔在锅炉运行期间应严密封好(可用黄泥砖密封)。 3.烟囱底部应设置比水平烟道入口低0.5~1.0m的积灰坑。 4.当烟囱和水平烟道有两个接入口时,两个接口一般应相对设置,并用与水平烟道成45o角的隔板分开,隔板高出水平烟道的部分,不得小于水平烟道高度的 1/2。 5.烟囱应设置维修爬梯和避雷针。 钢烟囱的设计应符合下列要求: 1.钢烟囱应有足够的强度和刚度,烟囱壁厚要考虑一定量的腐蚀裕度,当烟囱高度为20~40m,直径为0.2~1.0m时,无内衬的筒体壁厚取4~10mm,有内衬的 壁厚取8~18mm。 2.当烟囱高度和直径之比超过20时,必须设置可靠的牵引拉绳,拉绳沿圆周等 弧度布置3~4根。 3.烟囱与基础连接部分一般制作锥形,支撑板厚度一般为20~40mm。4.带内衬的钢烟囱,内衬可分段支承,每段长4~6m,内衬和筒体之间保持20~50mm的间隙,并应在顶部装防护环板将内衬盖住。 5.钢烟囱宜选用由专业厂加工制造的焊制不锈钢烟囱。

烟囱高度的设计方法

烟囱高度的设计方法高架连续点源的典型代表就是孤立的高烟囱烟囱的作用除了利用热烟气与环境冷空气之间的密度差产生的自生通风力来克服烟气流动阻力向大气排放外,还要把烟气中的污染物散逸到高空之中,通过大气的稀释扩散能力降低污染物的浓度,使烟囱的周边的环境处于允许的污染程度之下1. 烟囱高度对烟气扩散的影响烟囱高度对扩散稀释污染物以及降低污染物的落地浓度起着重要作用由高斯扩散模式(4-23)可见,落地最大浓度与烟囱有效高度的平方成反比一个高烟囱所造成的地面污染物浓度,总是比相同排放强度的低烟囱所造成的浓度低,如图5-20所示其中,C(h2)<C(h1),即烟囱下风向高烟囱的地面烟气浓度小于低烟囱,只有当离开烟囱相当长的距离后烟气浓度曲线才逐渐接近此外,Xmax(h2)>Xmax(h1),Cmax(h2)<Cmax(h1),即低烟囱的污染物最大落地浓度Cmax位于离烟囱较近的距离Xmax处,而且数值上比高烟囱污染物的最大落地浓度要大得多因此,高烟囱的作用不是将高浓度的烟气由近处转移至远处,而是使下风处约10 km范围内的烟气浓度都降低了烟囱的设计应合理地确定烟囱高度,做到既减少污染又不浪费因为高烟囱虽然非常有利于污染物浓度的扩散稀释,但烟囱达到一定高度后,再继续增加高度对污染物落地浓度的降低已无明显作用,而烟囱的造价也近似地与烟囱高度的平方成正比因此,烟囱高度设计的基本要求是,在排放源造成的地面最大浓度不超过国家规定的数值标准下,使得建造投资费用最小2. 烟囱高度的设计方法烟囱高度应满足排放总量控制的要求目前,烟囱高度的计算一般采用按烟气在有效高度H处的正态分布扩散模式推导确定的简化公式,主要以地面最大浓度为依据,可以有以下两种计算方法:(1)按污染物的地面最大浓度计算的h若国家规定的排放标准浓度为C0,当地本底浓度为Cb,则烟囱排放污染物产生的地面最大允许浓度应满足CmaxC0-Cb如果设计有效高度为H的烟囱,当z/y=常数(一般取0.5~1.0)时,由式:(2)按污染物的地面绝对最大浓度计算的h 烟囱排放污染物产生的地面绝对最大允许浓度应满足可得烟囱高度:上述两种计算方法的差别在于风速取值不同式取用危险风速ucr计算h,这是考虑风速变化对地面最大浓度Cmax到的影响,当风速增加时,一方面使Cmax减小(见式5-26);另一方面,从烟流抬升公式烟流抬升高度h减小,则Cmax反而增大这双重相反影响的结果,定会在某一风速下出现地面最大浓度的极大值,称为地面绝对最大浓度Cabsm当出现绝对最大浓度时的风速即为危险风速ucr显然,风速取值不同,计算结果也不同将烟流抬升高度公式代入式中,便可得到式3. 影响烟囱设计高度的因素设计烟囱高度首先要考虑所用公式是否适当,能否代表实际的烟流扩散型式,其次是选择合理的计算参数烟囱高度设计中,选择适当的计算公式是准确确定烟囱高度的必要条件除了上述介绍的以外,还有一些计算公式这些公式对地形地貌及气象条件的依赖性很强,且计算结果差别也很大例如上述两种烟囱高度计算公式,按u=5m/s和ucr=15m/s分别计算,可达h=0.46hcr,即按u计算的烟囱高度还不到按ucr计算结果的一半设计时应结合当地实际状况,考虑可能出现的最不利的气象条件,以及地面最大浓度的数值出现的频率与持续时间,从而选择适合相应条件的计算公式近地面的风速是影响大气扩散和烟囱高度的重要因素如前所述,随着风速的增大,一方面增强了大气对污染物扩散稀释的能力,直接使地面最大浓度值减小;另一方面减小了烟流的抬升高度,降低了烟囱有效高度,反而使地面最大浓度值增大因此,当烟囱的几何高度一定时,地面最大浓度将随风速由小增大而出现最大值,如图5-21所示若按危险风速或地面绝对最大浓度要求设计烟囱高度,实际风速下地面浓度均不会超标,但烟囱高投资大;若按平均风速或地面最大浓度要求来设计,则烟囱较矮,可节省费用,但风速小于平均风速时,地面浓度可能超标因此对于不同的地区,应当考虑一个合理的计算风速通常是确定出一个地面浓度不会超标的保证率,以此确定用于烟囱高度设计的计算风速,即这个高度可保证在所确定的保证率内地面浓度不会超标对有抬升烟源的情况,用图5-21加以说明若规定地面污染浓度不超过0.9Cabsm,由曲线查得,当风速u/ u cr<0.52或u/ u cr>1.92时,Cmax<0.9 Cabsm 如果这两区间风速的累计出现频率为90%,此即为

钢结构规范及图集

【国家标准】 1、GB-50017-2003、《钢结构设计规范》 2、GB50018-2002、《冷弯薄壁型钢结构技术规范》 3、GB-50205-2001、《钢结构结构施工质量验收规范》 4、GB50191-93、《构筑物抗震设计规范》 5、GBJ135-90、《高耸结构设计规范》 6、GB500046、《工业建筑防腐蚀设计规范》 7、GB8923-88、《涂装前钢材表面锈蚀等级和涂装等级》 8、GB14907-2002、《钢结构防火涂料通用技术条件》 9、GB-50009-2001、《建筑结构荷载规范》 10、GBT-50105-2001、《建筑结构制图标准》 11、GB-50045-95、《高层民用建筑设计防火规范》(2001年修订版) 12、GB-50187-93、《工业企业总平面设计规范》 【行业标准】 1、JGJ138-2001/J130-2001、型钢混凝土组合结构技术规程 2、JGJ7-1991、网架结构设计与施工规程 3、JGJ61-2003/J258-2003、网壳结构技术规程 4、JGJ99-1998、高层民用建筑钢结构技术规程(正修订) 5、JGJ82-91、钢结构高强度螺栓连接的设计、施工及验收规程 6、JGJ81-2002/J218-2002、建筑钢结构焊接技术规程 7、DL/T5085-1999、钢-混凝土组合结构设计规程 8、JCJ01-89、钢管混凝土结构设计与施工规程 9、YB9238-92、钢-混凝土组合楼盖结构设计与施工规程 10、YB9082-1997、钢骨混凝土结构技术规程 11、YBJ216-88、压型金属钢板设计施工规程(正修订) 12、YB/T9256-96、钢结构、管道涂装技术规程 13、YB9081-97、冶金建筑抗震设计规范 14、CECS102:2002、门式刚架轻型房屋钢结构技术规程 15、CECS77:96、钢结构加固技术规范 16、YB9257-96、钢结构检测评定及加固技术规范 17、CECS28:90、钢管混凝土结构设计与施工规程 18、YB9254-1995、钢结构制作安装施工规程 19、CECS159:2004、矩形钢管混凝土结构技术规程 20、CECS24:90、钢结构防火涂料应用技术规范 21、CECS158:2004、索膜结构技术规程 22、CECS23:90、钢货架结构设计规范 23、CECS78:96、塔桅钢结构施工及验收规程 24、CECS167:2004、拱形波纹钢屋盖结构技术规程 25、JGJ85-92、预应力筋用锚具、夹具和连接器应用技术规程 26、CECS、多、高层建筑钢-混凝土混合结构设计规程 27、CECS、热轧H型钢构件技术规程 28、CECS、钢结构住宅建筑设计技术规程 29、CECS、建筑拱形钢结构技术规程

锅炉房烟囱改造施工合同

锅炉房烟囱改造施工合同 甲方:陕西恒源矿业有限公司(以下简称甲方) 乙方: (以下简称乙方) 为了应对全球气候变暖问题,恒源公司决定对选冶厂锅炉房烟囱进行改造施工,使二氧化硫排放能达到国家环保排放标准措施,按照工程承包合同条例等有关规定,双方根据平等互利、自愿和诚实信用的原则,在共同负责,相互协作的前提下为确保工程质量和施工顺利进行,经双方共同协商,达成如下协议内容。 一、工程地点:厂区锅炉房处 二、单位工程名称:烟囱改造(非标制作安装) 三、承包方式:单项施工费 四、单位工程造价:元(含税造价) (大写): 注:图纸外工程按实际发生据实结算,其他未尽事宜甲乙双方协商解决。 五、工程质量:乙方必须按图施工,精心组织,按照施工规范进行施工及 检验,做到先自检后由甲方验收。要求烟囱高度40米,在高度20米和35米均需进行安装地锚拉线,基础处理采用素混凝土施工,强度等级C25,要求预埋件安装误差不得超过10毫米,施工焊缝平整光洁,无夹渣、空洞等现象。 六、付款办法:不付预付款,工程竣工后由乙方申请甲方验收,并出据申 请书。甲方组织验收合格后,预留5%保修金,保修期一年,其余款项一次结清。

七、施工工期:由2010年月日起至2010 年月日止,共计 天。 八、安全问题:在施工过程中乙方必须时刻注意安全,教育职工学好安全 操作规程,做到人、材、物的安全。如出现任何不安全现象及事故,由乙方承担一切责任和经济损失,甲方概不承担一切后果及损失。 九、本合同一式三份,签定之日起生效。甲乙双方严格按合同条款执行。 甲方代表(签字盖章): 乙方代表(签字盖章): 年月日精品文档word文档可以编辑!谢谢下载!

烟囱航空障碍灯设置规范

烟囱航空障碍灯设置规范 2012年12月25日,住房城乡建设部,批准《烟囱设计规范》为标准,编号 为GB50051-2013,自2013年5月1日起实施,在标准文件中明确指出了第 14.1.1条为强制性条文,必须严格执行。这一条文就是在烟囱上设置航空障碍 灯的相关要求。下面我们一起来了解下《烟囱设计规范》中对于航空障碍灯的 相关要求: 一、是不是全部的烟囱都需安装航空障碍灯? 航空障碍灯安装与否取决于烟囱对航空器飞行是否有影响,特别注意的是航空 器不仅仅是民用航空飞机,还包括军用飞机,直升飞机等等,倘若烟囱所处区 域不属于飞机飞行航道或没有直升机飞机在该区域活动,就不存在强制性安装 航空障碍灯的状况。 二、烟囱上应该安装什么类型的航空障碍灯? 1、航空障碍灯有低光强,中光强,高光强三中类型,需要安装什么类型的航空障碍灯,是依据烟囱的高度来决定的。其中45米是个分界点。 2、高度小于或等于45米的烟囱,可只在烟囱顶部设置一层低光强航空障碍灯。 3、高度超过45米的烟囱应设置多层中光强航空障碍灯,各层的距离不应大于45,并尽可能想等。 4、高度超过150米的烟囱可设置高光强A型障碍灯。其间距控制在75-105米范围内,在高光强A型障碍灯分层之间设置低、中光强障碍灯。 5、 6、高度低于150米的烟囱,也可采用高光强A型障碍灯,采用高光强A型障 碍灯后,可不必在用色标漆标志烟囱。 二、烟囱设置航空障碍灯的数量 1、烟囱顶部的障碍灯应设置在烟囱顶端以下1.5-3m范围内,高度超过150m的烟囱可设置在烟囱顶端以下7.5m范围内。 2、每层障碍灯的数量应根据其所在标高烟囱的外径确定: 3、外径小于或等于6米时,每层设3个障碍灯; 4、外径超过6米,但不大于30米时,每层设4个障碍灯;

暖通空调中不可忽视的烟囱通风设计

暖通空调中不可忽视的烟囱通风设计 摘要:我国经济迅猛发展的同时也带来了环境破坏和空气污染的问题,笔者从事暖通空调设计行业工作多年来参与了数十个与烟囱项目改造设计、咨询的项目,经总结整理发现,需改造重新设计和出现烟囱排烟效果不理想的现象,与前期设计阶段有很大的关系,大多数烟囱的通风系统在设计时被忽视。因此,本文通过对烟囱通风系统由前期设计配合到设计计算及应注意采取的措施等整个相对完整的环节阐述,呼吁同行在今后的设计中对此问题予以重视。 关键词:暖通空调;烟囱;通风;烟气;空气污染 中图分类号:TU83 文献标识码:A 概述 改革开放以来,我国经济取得了举世瞩目的成就,但同时也带来了环境破坏、空气污染、温室效应等问题。特别是近十年来我国城市化的迅猛发展,各大中城市的中心区建筑密度大、建筑类型多,各建筑烟囱的通风排烟杂乱无章、相互影响,严重地影响了城市的空气环境。根据笔者近些年来所参与的改造设计、咨询的数十个项目发现,绝大多数均是在前期图纸设计当中对烟囱排烟通风系统设计不合理而造成的,因此在前期设计阶段,暖通空调专业若能对烟囱排烟

通风系统设计予以足够的重视,无疑对降低城市大气的 PM2.5污染物的浓度、提高城市的空气质量,具有重要的经济及社会意义。 1 合理设置烟囱在建筑总平面位置 在方案设计阶段,应根据建筑物所在的地区、规划的布局、烟囱的使用时段等因素合理设置烟囱在建筑总平面的位置。我国幅员辽阔、地形复杂、气候类型多样,在设计前期应了解项目所处当地的季风气候、地形特点,然后结合总平面商业区、居民区、环境保护区的布局,考虑烟囱使用的时段性,如有些锅炉房的烟囱是全年时运行,有些是季节性运行,综合确定烟囱的位置。一般来说,商用性、生产性的烟囱不应设置在居民区、环境保护区内,全年使用的烟囱应设置在总体最小频率风向的上风侧,季节性使用的烟囱应设置在该季节最大频率风向的下风向。这样就能在规划布置中大大减少对人和环境的影响。 2 土建烟囱井道面积、材料及构造 烟囱是设置在建筑物内部或贴附在建筑物侧的井道竖向空间。土建预留的井道面积尺寸,所采用的材料及构造等是烟囱的先决条件,相当于对烟囱起着先天的条件作用。 2.1烟囱井道的面积 在笔者改造设计的烟囱项目中,有其中一部分是烟井风道预留的土建面积过小或尺寸设置不合理,造成烟道的阻力

烟囱高度的设计1

《大气污染控制工程》 课程设计 专业/班级环境工程091班 姓名/学号 XXXXXXXXXXX 指导老师xxxxxxxxxx 浙江树人大学生环学院 二O一三年一月

目录 第一章总论---------------------------------------------------------------------3第一节设计任务和内容--------------------------------------------------------3 第二节基本资料-----------------------------------------------------------------4第二章烟囱高度设计工艺原理及结构--------------------------------------4 第一节烟囱高度设计的工艺原理------------------------------------------------4第二节影响烟囱设计高度的因素------------------------------------------------5 一、计算公式-------------------------------------------------------------------5 二、气象参数---------------------------------------------------------------------------5 三、烟流出口速度V S-------------------------------------------------------------------5 四、烟气的干、湿沉降-----------------------------------------------------------5 五、烟囱的散热------------------------------------------------------------------------5 第三节烟囱的基本结构-----------------------------------------------------------------5 一、砖烟囱-------------------------------------------------------------------------------------------5 二、钢烟囱--------------------------------------------------------------------------------------------6第三章烟囱高度设计计算-----------------------------------------------------6第一节烟囱高度的计算方式选择----------------------------------------------------------------6 1.按地面最大浓度计-------------------------------------------------------------------------------6 2.按地面绝对最大浓度计算----------------------------------------------------------------------6 3.按一定保证率的计算法-------------------------------------------------------------------------7 4.P值法-----------------------------------------------------------------------------------------------7 第二节设计参数说明---------------------------------------------------------------------------------7第三节烟囱高度的计算-----------------------------------------------------------------------------7第四节烟囱设计注意事项----------------------------------------------------------------------------8 第四章平面结构图设计---------------------------------------------------------------------------9参考文献-------------------------------------------------------------------------------------------------------9 附图

(完整word版)烟囱防腐施工技术规范

施工方案 一、工程概况及编制依据: (一)工程概况: 1、工程名称:发电有限公司烟囱内壁防腐工程 2、建设地点:市西郊 3、质量标准:遵守中国国家最新颁发的规范、技术标准以及建筑安装施工和环保规定。工程合格率100%,达到优良标准。 4、工期:25天。 暂定开竣工日期:2008年3月2日至2008年3月27日。 5、承包方式:包工、包料、包工期、包质量、包安全、包总价。 6、概述: 发电有限公司建设规模为2×135WM燃煤发电机组,#1、2机组分别于2003年8月、2004年2月投入运行。烟气脱硫装置(FGD)采用石灰石—石膏湿法工艺,一炉一塔布置,将于2007年底投入运行。脱硫装置不设GGH,脱硫效率不低于95%。脱硫后的烟气为湿饱和烟气,烟温低,烟气中水分含量大,造成原有烟囱已经不能适应烟气脱硫后腐蚀环境,必须对烟囱内壁进行防腐处理,防腐层必须满足脱硫系统运行或停止状态下烟气介质环境。 7、厂址概述: 发电有限公司位于河南南部市境内(市属淮河流域)。市大地构造单元上属于中朝准地台(一级)中的华北凹陷(二级)中的通许凸起。通许

凸起为早第三纪后下沉的潜伏凸起,以古生界为基底,基底稳定。厂址处于市西部,南邻漯阜铁路和周漯公路,北靠沙河水库,西邻沙河确保大堤,东邻市工业区。 (二)编制依据: 1、发电有限公司烟囱内壁防腐工程招标文件及技术规范书。 2、《烟囱设计规范》GB50051-2002; 3、《烟囱施工质量施工质量验收规范》现行版本; 4、《工业建筑防腐蚀设计规范》GB50046-95; 5、《建筑防腐蚀工程施工及验收规范》GB50212-2002; 6、《电力建设施工及验收技术规范(建筑工程篇)》现行版本; 7、《火电施工质量检验及评定标准》(土建工程篇)现行版本; 8、以往同类工程施工经验。 二、烟囱运行条件、改造方案及防腐选材 (一)烟囱基本情况及运行条件: 1、原烟囱设计基本情况: 发电有限公司2×135WM国产燃煤发电机组共用一座高180m、出口内径5.0m钢筋混凝土烟囱。 烟囱是按照烟气不进行脱硫处理的条件完成设计的;烟囱钢筋混凝土承重筒底部厚度为480mm,积灰平台处筒壁厚度为480mm,顶部厚度为180mm,厚度沿烟囱高度均匀减小;筒内由耐酸胶泥砌筑的耐火陶砖砌体组成,砖砌体厚180mm。烟囱每15m设滴水板一圈。

AISC 360-05 美国钢结构建筑设计规范.doc

ANSI/AISC 360-05 美国国家标准 钢结构建筑设计规范 2005年3月9日发布 本规范取代下列规范:1999年12月27日颁布的《钢结构建筑设计规范:荷载和抗力系数设计法》(LRFD)、1989年6月1日颁布的《钢结构建筑设计规范:容许应力设计法和塑性设计法》、其中包括1989年6月1日颁布的附录1《单角钢杆件的容许应力法设计规范》、2000年11月10日颁布的《单角钢杆件的荷载和抗力系数设计法设计规范》、2000年11月10日颁布的《管截面杆件的荷载和抗力系数设计法设计规范》、以及代替上述规范的所有从前使用的相关版本。 本规范由美国钢结构协会委员会(AISC)及其理事会批准发布实施。 本规范由美国钢结构协会规范委员会(AISC)审定,由美国钢结构协会董事会出版发行。 美国钢结构学会 One East Wacker Drive,Suite 700 芝加哥,伊利诺斯州60601-1802

版权?2005 美国钢结构学会拥有版权 保留所有权利。没有出版人的书面允许,不得对本书或本书的任何部分以任何形式进行复制。 本规范中所涉及到的相关信息,基本上是根据公认的工程原理和原则进行编制的,并且只提供一般通用性的相关信息内容。虽然已经提供了这些精确的信息,但是,这些信息,在未经许可的专业工程师、设计人员或建筑工程师对其精确性、适用性和应用范围进行专业审查和验证的情况下,不得任意使用或应用于特定的具体项目中。本规范中所包含的相关材料,并非对美国钢结构协会的部分内容进行展示或担保,或者,对其中所涉及的相关人员进行展示或担保,并且这些相关信息在适用于任何一般性的或特定的项目时,不得侵害任何相关专利权益。任何人在侵权使用这些相关信息时,必须承担由此引起的所有相关责任。 必须注意到:在使用其它机构制订的规范和标准时,以及参照相关标准制订的其它规范和标准时,可以随时对本规范的相关内容进行修订或修改并且随后印刷发行。本协会对未参照这些标准信息材料,以及未按照标准规定在初次出版发行时不承担由此引起的任何责任。 在美国印刷发行 钢结构建筑设计规范 2005年3月9日发布 美国钢结构协会

GB50017-2017钢结构设计规范

本文从网络收集而来,上传到平台为了帮到更多的人,如果您需要使用本文档,请点击下载,另外祝您生活愉快,工作顺利,万事如意! GB50017-2017钢结构设计规范

一、章节目录 1总则 2术语和符号 2.1术语 2.2符号 3基本设计规定 3.1设计原则 3.2荷载和荷载效应计算 3.3材料选用 3.4设计指标 3.5结构或构件变形的规定 4受弯构件的计算 4.1强度 4.2整体稳定 4.3局部稳定 4.4组合梁腹板考虑屈曲后强度的计算 5轴心受力构件和拉弯、压弯构件的计算 5.1轴心受力构件 5.2拉弯构件和压弯构件 5.3构件的计算长度和容许长细比 5.4受压构件的局部稳定 6疲劳计算 6.1一般规定 6.2疲劳计算 7连接计算 7.1焊缝连接 7.2紧固件(螺栓、铆钉等)连接 7.3组合工字梁翼缘连接 7.4梁与柱的刚性连接 7.5连接节点处板件的计算 7.6支座

8构造要求 8.1一般规定 8.2焊缝连接 8.3螺栓连接和铆钉连接 8.4结构构件 8.5对吊车梁和吊车桁架(或类似结构)的要求 8.6大跨度屋盖结构 8.7提高寒冷地区结构抗脆断能力的要求 8.8制作、运输和安装 8.9防护和隔热 9塑性设计 9.1一般规定 9.2构件的计算 9.3容许长细比和构造要求 10钢管结构 10.1一般规定 10.2构造要求 10.3杆件和节点承载力 11钢与混凝土组合梁 11.1一般规定 11.2组合梁设计 11.3抗剪连接件的计算 11.4挠度计算 11.5构造要求 附录 A 结构或构件的变形容许值 附录 B 附录 C 附录 D 附录 E 附录 F 梁的整体稳定系数 轴心受压构件的稳定系数 柱的计算长度系数 疲劳计算的构件和连接分类 桁架节点板在斜腹杆压力作用下的稳定计算 附:本规范用词说明 附:修改条文说明 其中下面打—的节为新增,下面打~~的节为有较多修改。

烟囱的工作原理

烟囱的工作原理 烟囱的排烟原理: 由于烟囱有一定的高度,烟囱中的热气体受到大气浮力的作用,而具有一定的几何压头,在烟囱底部造成负压—“抽力”。如果这种抽力正好能克服气体在窑炉中流动的各种阻力,就能使窑内热气体能源源不断地流入烟囱底部,并通过烟囱排入大气。 烟囱的抽力,可用烟囱底部和顶部出口截面的伯努力方程求得: 取2-2截面为基准面,则有: 此时方程各简化为: 即: 烟囱底部负压的绝对值称之为抽力,用hc表示。 上式表明,烟囱的抽力是由烟囱的几何压头形成的。但烟囱中气体所具有的几何压头并非全部转为有用的抽力,实际上一部分要用于克服烟囱本身气体流动的摩擦阻力和满足烟囱中气体动压头增量。 2、影响烟囱抽力的因素: (1)烟囱的高度:H↑,hc↑,烟囱排烟能力强。 (2)烟气平均温度:tav↑,ρav↓,hc↑ (3)空气平均温度:ta↑,ρa↓,hc↓ (4)空气的湿度:ψ↑,ρa↓,hc↓ 故:高度一定时,hc冬天>hc夏天

(5)海拨高度:海拨高度↑,大气压↓,ρa↓,hc↓ 2.2.1.2烟囱的热工计算 1、烟囱的直径 (1)烟囱顶部直径 (m) 分析:速度大,直径小,阻力大;速度小,直径大,投资大,有倒风现象。 施工要求:砖烟囱和混凝土烟囱d≮0.8m,顶部厚度≮24cm。 (2)底部直径: ①小型铁皮烟囱通常上下直径一般大圆筒形,也有用砖砌成的方形。 ②大型的砖、混凝土烟囱是底部直径大的锥体形,斜率为1~2%。 底部直径为: 2、烟囱的高度 确定烟囱的高度不仅要考虑热工要求,还要考虑环保要求。 机械通风:环保要求高于热工要求 自然通风:热工要求、环保要求同样重要

烟囱设计规范样本

烟囱设计规范

锅炉房烟囱设计 新建锅炉房的烟囱设计应符合下列要求: 1.燃煤、燃油(轻柴油、煤油除外)锅炉房烟囱高度的规定:1)每个新建锅炉房只允许设一个烟囱,烟囱高度可按表8.4.10-1 规定执行。 表8.4.10-1燃煤、燃油(轻柴油、煤油除外)锅炉房烟囱最低允 许高度(GB 13271- ) 2)锅炉房装机总容量>28MW(40t/h)时,其烟囱高度应按批准的环境影响报告书(表)要求确定,且不得低于45m。新建烟囱周围半径200m距离内有建筑物时,其烟囱应高出最高建筑物3m以 上。 燃气、燃油(轻柴油、煤油)锅炉烟囱高度应按批准的环境影响报告书(表)要求确定,且不得低于8m。 2.各种锅炉烟囱高度如果达不到上述规定时,其烟尘、SO2、NOx

最高允许排放浓度,应按相应区域和时段排放标准值50%执行。 3.出力≥1t/h或0.7MW的各种锅炉烟囱应按《锅炉烟尘测试方法》(GB5468)和《固定污染源排气中颗粒物测定与气态污染物采样方法》(GB/T16157- )的规定,设置便于永久采样孔及其相关 设施。 4.锅炉房烟囱高度及烟气排放指标除应符合上述1~3款(摘自GB13271- )的规定外,尚应满足锅炉房所在地区的地方排放标 准或规定的要求。 5.烟囱出口内径应保证在锅炉房最高负荷时,烟气流速不致过高,以免阻力过大;在锅炉房最低负荷时,烟囱出口流速不低于2.5~3m/s,以防止空气倒灌。烟囱出口烟气流速参见表8.4.10- 2,烟囱出口内径参见表8.4.10-3和表8.4.10-4。 表8.4.10-2烟囱出口烟气速表(m/s) 表8.4.10-3燃煤锅炉砖烟囱出口内径参考值

美国钢结构建筑设计规范(ANSI-AISC-360-05)

关于钢结构建筑设计规范的条文说明 (本条文说明不是《钢结构建筑设计规范》(ANSI/AISC 360-05)的一部分,而只是为该规范使用人员提供相关信息。) 序言 本设计规范旨在提供完善的标准设计之用。 本条文说明是为该规范使用人员提供规范条文的编制背景、文献出处等信息帮助,以进一步加深使用人员对规范条文的基础来源、公式推导和使用限制的了解。 本设计规范和条文说明旨在供具有杰出工程能力的专业设计员使用。

术语表 本条文说明使用的下列术语不包含在设计规范的词汇表中。在本条文说明文本中首次出现的术语使用了斜体。 准线图。用于决定某些柱体计算长度系数K的列线图解。 双轴弯曲。某一构件在两垂直轴同时弯曲。 脆性断裂。在没有或是只有轻微柔性变形的情况下突然断裂。 柱体弧线。表达砥柱强度和直径长度比之间关系的弧线。 临界负荷。根据理论稳定性分析,一根笔直的构件在压力下可能弯曲,也可能保持笔直状态时的负荷;或者一根梁在压力下可能弯曲,平截面发生扭曲或者其平截面状态时的负荷。 循环负荷。重复地使用可以让结构体变得脆弱的额外负荷。 位移残损索引。用于测量由内部位移引起的潜性损坏的参变量。

有效惯性矩。构件横截面的惯性矩在该横截面发生部分逆性化的情况下(通常是在内应力 和外加应力共同作用下),仍然保持其弹性。同理,基于局部歪曲构件的有效宽度的惯性矩。同理,用于设计部分组合构件的惯性矩。 有效劲度。通过构件横截面有效惯性矩计算而得的构件劲度。 疲劳界限。不计载荷循环次数,不发生疲劳断裂的压力范围。 一阶逆性分析。基于刚逆性行为假设的结构分析,而未变形结构体的平衡条件便是基于此 分析而归纳出来的——换言之,平衡是在结构体和压力等于或是低于屈服应力条件下实现的。柔性连接。连接中,允许构件末端简支梁的一部分发生旋转,而非全部。 挠曲。受压构件同时发生弯曲和扭转而没有横截面变形的弯曲状态。 非弹性作用。移除促生作用力后,材料变形仍然不消退的现象。 非弹性强度。当材料充分达到屈服应力时,结构体或是构件所具有的强度。此时,也达到 其强度极限状态。 层间位移。底盘侧挠度及与其关联的毗邻底盘侧挠度,为两底盘间的间隔所分,(δ -δn-1)/h。 n 永久负荷。超时变动极少或是微少的负荷。其他所有负荷均为变动负荷。

烟囱设计规范5.2.1条

5.2 风荷载 5.2.1 基本风压按国家标准《建筑结构荷载规范》(GB 50009)规定的50 年一遇的风压采用,但基本风压不得小于0.35kN/m 基本风压按国家标准《建筑结构荷载规范》(GB 50009)规定的50 年一遇 的风压采用,但基本风压不得小于0.35kN/m 2。对于安全等级为一级的烟囱,基本风 压应按100 年一遇的风压采用。 5.2.2 。对于安全等级为一级的烟囱,基本风 压应按100 年一遇的风压采用。 5.2.2 计算塔架式钢烟囱风荷载时,可不考虑塔架与排烟筒的相互影响,可分别计算塔架和排烟筒的基本风荷载。 5.2.3 塔架式钢烟囱的排烟筒为两个和两个以上时,排烟筒的风荷载体型系数,应由风洞试验确定。 5.2.4 当烟囱坡度≤2%时,对于钢筋混凝土烟囱、钢烟囱(不含塔架式钢烟囱)应按国家标准《建筑结构荷载规范》(GB 50009)的规定验算横风向风振影响。当按国家标准《建筑结构荷载规范》(GB 50009)判断烟囱可能出现跨临界强风共振时,对于第1 振型横风向风振,当烟囱顶端设计风压值 h ω,满足(5.2.4-1)式时,烟囱 承载能力极限状态仍由顺风向设计风压控制。 h ω≥ 2 2 1 1 04 . 0 h cr β ξ ω + (5.2.4-1) 1600 2 1 1 cr

υ ω = (5.2.4-2) 式中 h ω——烟囱顶端风压设计值(kN/m 2); 1 cr υ ——第1 振型对应的临界风速(m/s),按国家标准《建筑结构荷载规范》 (GB 50009)的规定计算; 1 ξ——风振计算时,第1 振型结构阻尼比,钢筋混凝土烟囱取0.05,钢烟囱 取0.01; h β——烟囱顶端风振系数,按国家标准《建筑结构荷载规范》(GB 50009) https://www.doczj.com/doc/3d13025002.html, 第33 页 @ 筑龙网https://www.doczj.com/doc/3d13025002.html, 《烟囱设计规范》资料编号:GB50051-2002 @ 的规定计算。 5.2.5 当不满足(5.2.4-1)式时,第1 振型横风向风振可能起控制作用,应计算 横风向风振效应(弯矩和剪力)。 1 横风向风振锁住区,最不利起点高度 1 H 按下列公式计算: 1)当1.3 1 cr υ ≤ h υ时: a H H / 1 1 ) 3 . 1 ( =

锅炉房通风烟囱设计

锅炉房烟风系统设计 1.1、设计原则 1)烟道和风道的布置应力求简短平直、附件少、气密性好。避免出现“袋形”、“死角”及局部流速过低的管段。 2)多台锅炉共用烟囱、烟道和风道时,总烟、风道内各截面处的流速宜接近,单台锅炉配置两侧风道或两个烟道时,宜使每侧风道或每个烟道的阻力均衡。 1)烟道和热风道应考虑膨胀和热补偿措施,烟道和砖烟囱连接处应设置伸缩缝。 2)金属烟道和热风道应进行保温,钢烟囱在人员能接触到的部分也应进行隔热。钢制烟风道中的介质温度大于50度或由于防冻需要应给予保温。 5)多台锅炉共用总烟道或总风道时,支烟道、支风道上,应装设能全开全闭、气密性好的闸板阀或调风阀。 6)在烟道和风道的适当位置应按《锅炉烟尘测试方法》(GB5468)的要求,设置永久采样孔,并安装用于测量采样的固定装置。 7)钢制冷风道可采用2-3mm厚钢板,钢制烟道和热风道可采用3-5mm厚的钢板,矩形或圆形烟风道应具有足够的强度和刚度,必要时设置加强筋。 8)布置在室外的烟道和风道,应设置防雨和防暴晒的设施。锅炉使用含硫量高的燃料时,除有烟气脱硫措施外,烟道和烟囱内壁应采取防腐措施。 9) 对于单台锅炉出力大于等于10t/h或7MW的锅炉房,鼓风机和和燃烧机宜分开设置,鼓风机宜集中布置在隔音机房内。 10)对于微正压燃烧的燃油、燃气锅炉,锅炉机组排烟出口后的烟道、烟囱阻力,一般可由烟囱的抽力来克服,当烟囱抽力不足时,应采用下列措施: (1)由锅炉厂家提高燃烧机组和炉膛的燃烧正压; (2)在排烟系统设置引射排烟装置; (2)在排烟系统设置调频引风机; 对于设置在高层建筑物内的锅炉房,应注意核算排烟系统的阻力平衡,当烟囱抽力达大时,应考虑减小烟道、烟囱断面尺寸,提高流速,增加阻力,适应平衡,可在烟道系统设置抽风控制器,调工阻力平衡。 11) 烟风道穿过墙壁、楼板或屋面时,所设预留孔的内壁与管道表面(包括加固及保温层)

最清晰的钢结构设计步骤和设计思路(精)

(一) 判断结构是否适合用钢结构 钢结构通常用于高层、大跨度、体型复杂、荷载或吊车起重量大、有较大振动、高温车间、密封性要求高、要求能活动或经常装拆的结构。直观的说:大厦、体育馆、歌剧院、大桥、电视塔、仓棚、工厂、住宅和临时建筑等。这是和钢结构自身的特点相一致的。 (二) 结构选型与结构布置 此处仅简单介绍. 详请参考相关专业书籍.由于结构选型涉及广泛,做结构选型及布置应该在经验丰富的工程师指导下进行。 在钢结构设计的整个过程中都应该被强调的是\"概念设计\",它在结构选型与布置阶段尤其重要. 对一些难以作出精确理性分析或规范未规定的问题,可依据从整体结构体系与分体系之间的力学关系、破坏机理、震害、试验现象和工程经验所获得的设计思想,从全局的角度来确定控制结构的布置及细部措施。运用概念设计可以在早期迅速、有效地进行构思、比较与选择。所得结构方案往往易于手算、概念清晰、定性正确,并可避免结构分析阶段不必要的繁琐运算。同时,它也是判断计算机内力分析输出数据可靠与否的主要依据。 林同炎教授在《结构概念和体系》一书中介绍了用整体概念来规划结构方案的方法,以及结构总体系和个分体系间的相互力学关系和简化近似设计方法。[20] 钢结构通常有框架、平面(木行)架、网架(壳)、索膜、轻钢、塔桅等结构型式。 其理论与技术大都成熟。亦有部分难题没有解决,或没有简单实用的设计方法,比如网壳的稳定等。 结构选型时,应考虑它们不同的特点。在轻钢工业厂房中,当有较大悬挂荷载或移动荷载,就可考虑放弃门式刚架而采用网架。基本雪压大的地区,屋面曲线应有利于积雪滑落(切线50度内需考虑雪载),如亚东水泥厂石灰石仓棚采用三心圆网壳。总雪载释放近一半。降雨量大的地区相似考虑。建筑允许时,在框架中布置支撑会比简单的节点刚接的框架有更好的经济性。而屋面覆盖跨度较大的建筑中,可选择构件受拉为主的悬索或索膜结构体系。高层钢结构设计中,常采用钢混凝土组合结构,在地震烈度高或很不规则的高层中,不应单纯为了经济去选择不利抗震的核心筒加外框的形式。宜选择周边巨型SRC柱,核心为支撑框架的结构体系。我国半数以上的此类高层为前者。对抗震不利。[19] 结构的布置要根据体系特征,荷载分布情况及性质等综合考虑.一般的说要刚度均匀.力学模型清晰.尽可能限制大荷载或移动荷载的影响范围,使其以最直接的线路传递到基础. 柱间抗侧支撑的分布应均匀.其形心要尽量靠近侧向力(风震)的作用线. 否则应考虑结构的扭转. 结构的抗侧应有多道防线. 比如有支撑框架结构,柱子至少应能单独承受1/4的总水平力.

相关主题
文本预览
相关文档 最新文档